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1. Introduction

In the context of heat transfer, the boundary identification problem is a special class of inverse geometric problem for
determining the location and shape of the boundary of a conducting body by means of thermal measurements, performed
on an accessible part of the boundary. In particular, such problems arise in steel blast furnaces, where it is desired to
monitor the corroded thickness of the accreted refractory wall based on the measurement of temperature and heat flux
on an accessible part of the boundary or at some internal positions [1-4]. Some other areas where heat-related boundary
identification problems may arise are the following:

« glass fibre manufacture [5]: molten glass is pulled vertically upwards and cut into lengths as it cools;
 glass car windscreens [5]: the molten glass shape is produced so that, when it cools, it has the desired shape;
o manufacture of ceramic products [6]: these take on a different shape during the cooling process.
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A popular approach for solving boundary identification problems in general has been the method of fundamental so-
lutions (MFS), whose simplicity over the other mesh methods [4] made it a suitable choice for solving such problems; a
recent review of the MFS can be found in [7]. Nonetheless, one crucial aspect of how to solve inverse problems efficiently
using the MFS remains almost unexplored. An efficient numerical approximation depends on a reliable method to determine
its quality and an efficient algorithm for the solution of the discrete problem. This can be achieved by obtaining a sharp a
posteriori error estimator, which depends on the given data in the problem and the numerical solution. In particular, for
inverse problems such as those involving boundary identification, which suffer from stability issues, it is a nontrivial task,
since they are ill-posed in the sense of Hadamard [8], i.e., any small change in the input data can lead to a drastic change
in the solution; hence, it is imperative to use regularization techniques for stabilizing the computations.

Besides, it is not clear how to develop an adaptive algorithm, once an a posteriori error estimator is available in the con-
text of the MFS; this is primarily due to certain open issues associated with this method. For example, the accuracy obtained
by the MFS relies on a suitable placement of the source points [9,10]. Moreover, the matrix resulting from the MFS system
will be highly ill-conditioned [11]; note that this is because the inverse problem is ill-posed rather than, as may be the case
in well-posed problems, because a larger number of boundary points have been used [13]. Regularization techniques, such
as the Tikhonov regularization method, the damped singular value decomposition method, or the truncated singular value
decomposition method, etc., usually give better control on levels of numerical accuracy to the original problem [12]. Further,
a good choice of regularization parameter is vital for stable results; this can be chosen based upon different rules, such as
the discrepancy principle [12], L-curve criterion [3], generalized cross-validation technique [22], and so on. The effect of the
aforementioned methods for regularization in conjunction with different procedures for choosing a suitable value of the
regularization parameter on the solution error and on the condition number of the MFS matrix has been studied in [13].

Against this background, the contributions of this article are twofold and are as follows.

o We derive an a posteriori error estimator for the boundary identification problem. From a mathematical point of view,
we first use the stability results [14] to obtain an a priori bound on the error. Then, linear independence and denseness
properties of the set of fundamental solutions [15,16] are used to obtain the a posteriori error estimate, which basically
accounts for the discretization error. To take into account the contributions due to different levels of added noise, we
need to choose an appropriate stability estimator, which then constitutes the total a posteriori estimator. There are a few
articles available that deal with a posteriori error estimates for direct problems [17-19] in context of the MFS, but no such
MES results are available for boundary identification. The behaviour of the estimator is examined under the influence of
random noise and a statistical analysis is performed for the effectivity indices in two spatial dimensions (2D).

In order to identify the moving boundary efficiently, an attempt has been made to develop a stochastic algorithm in two
dimensions. This, in turn, requires a suitable location of the source points and good choice of a regularization parameter
at each iteration. The idea is to find a suitable pseudo-boundary at a certain distance from the heat conduction domain
at each iteration and to adapt the source points on it. The algorithm is based on solving a linear system, and hence com-
putationally cheap compared to the existing nonlinear optimization tools like MINPACK routine 1mdif [20] and MATLAB
optimization toolbox routine 1sqnonlin [21]. The obtained a posteriori error estimates are used as raw ingredients to
develop the algorithm. For a given tolerance and a specified percentage of noise level on the contaminated data, this
algorithm generates:

(a) relatively optimal location of source points outside the domain;

(b) the optimal regularization parameter, without using any traditional regularization criteria, like discrepancy principle
(DP) [12], generalized cross-validation (GCV) [3], or L-curve (LC) method [22];

(c) the fewest possible source and collocation points;

(d) the best possible reconstructed boundary, in view of (a)-(c).

To obtain an accurate and stable solution, it is necessary to balance the discretization and stability contributions of the
error separately, which is an important feature of this algorithm, and according to the knowledge of the authors, it does
not seem to be available presently in existing routines for the boundary identification problem.

We will apply these ideas to two transient 2D benchmark examples from literature [22,23]; both are studied under the
influence of noise. We can note that they are the only ones available in 2D, although others are available in one dimension
(1D) [3,24-28]; these, however, are unsuitable for the present purposes, as they treat initial data reconstruction also.

The article is organized as follows. The mathematical formulation, along with a solution strategy for the boundary iden-
tification problem, is introduced in Section 2. In Section 3, we briefly discuss the motivation for acquiring a posteriori error
estimates, whilst in Section 4 we obtain them. In Section 5, we develop and test the adaptive algorithm on two examples;
numerical conclusions are drawn based on the quantitative analysis. In Section 6, we draw overall conclusions.

2. Mathematical formulation and solution strategy

We consider the heat conduction domain as Qr ={(x,y,t):0<x <1, 0 <y < p(x,t), 0 <t < T}, as shown in Fig. 1,
where p(x, t) determines the moving boundary. Let 02 = ' UT'; UT'; denote the boundary of Q7, where

Fo={(*,95,0):0<x<1, 0<y < p(x,0)}
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Fig. 1. Heat conduction domain Q.

is the initial base,
[ ={x01):0=x=<1, 0=t =<Thu{(L.y,t): 0=<y=p(lt), 0<t=<T}
U{(0,y,t): 0=y =p(0,t), 0 <t =T}
is the part of the boundary on which Dirichlet and Neumann data are prescribed, and
Iy ={(x px,t),t):0<x<1,0<t<T}

is the unknown moving boundary.
The canonical 2D heat equation is given as

du 0%u  0%u

at—W‘f‘Tst (vaat)EQT (l)
subject to the Dirichlet and Neumann data

U(X,y,t)zgé(x,y,t), (X’y’t)erl (2)

au

G &YD=8xy.0, &yl 3)

where § denotes the percentage of noise in the given data which might have been contaminated due to probable mea-
surement error. Here, g(]) denotes the exact Dirichlet condition and gg denotes the exact Neumann condition. The boundary
identification problem in this case involves locating the moving boundary y = p(x, t), where

ux,y,t)y=up=0, (x,y,t) eIy
Assuming purely Dirichlet conditions are prescribed on I'y, the following compatibility conditions must be satisfied:
89(0,p(0,).t) = up, g (1, p(1,£),t) =up, 0 <t <T.

2.1. The MFS

We approximate the solution u as a linear combination of the fundamental solutions. The fundamental solution for the
heat equation in 2D is given by

— _ =2
Fix,t;z,7) = H(t —7) exp( X 2] )

47 (t — 1) T4(t-1)

where X, z € R?. Following the density arguments given in [15,16,29], the solution u of (1) can be approximated as follows:
K

M
upps(X,t) =Y Y CF(X 62, 7)), (X.t) € Qr,

i=1 j=1
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where (zi, ‘L'j), j=1,....M,i=1,... K, are the source points, which are placed outside Qr, and CS- are the unknown co-
efficients to be determined.

2.1.1. Placement of source and collocation points

The source points are arranged on a pseudo-boundary which is at a positive distance h from the domain’s boundaries.
The shape of the pseudo-boundary is cylindrical and its cross-section at each time level t € [T, T] is an up-scaled version
of the initial base I'y. For a given N € N, let M; = |'§'| and M, = L%J, where [] and || denote the least integer and greatest
integer functions, respectively. For placing the source points, we discretize the time-axis in (-T,T) {0} as

T 2T
TMI,m:—ﬁ—mm, m:O,l,...,(Ml—l),
3T 2T

'L'M1+n+1=ﬁ+wn, n:O,l,...,(Mz—l).

The spatial axes are discretized as

a1k=—h+(k—1)1t\]2h, k=1,2,...,N,
w, = (1+h) - k-2 p 12N

N
and
p(1+h,0)+2h

B, = —h+ (- HPEIE j=1.2,...2N,
ﬂzj:(p(—h,0)+h)—(j—1)w, ~1,2,...2N

For given N, the 6N2 source points are ordered as

(a1, —h.Tw), m=1,2,....N, k=1,2,....N,
(1+h By tn), m=1,2,...,N, j=1,2,....2N,

(02, P(0r2,. 0) + ho 7). m=1.2,....N, k=1.2,....N,
and
(<h, Bz, tm), m=1,2,...,N, j=1,2,...,2N.

The boundary conditions (2) and (3) are collocated at 3N? points on the fixed boundary I'y. For this purpose, the time axis
is discretized as

=T i=12,.. N,

N+1
and the spatial axes are discretized as
xkzk_Tl, k=1,2,...,N,
"—j_—l(ltl) j=1,2,...,N,i=1,2,....N
y'l]_ N p ’l’.]_ sy eeey N, =1, 4,00, N,
i N—-j+1 . .
Yo == p0.t), j=1.2.. N i=1.2. .. N.

Moreover, the collocation points are arranged as

(*r, 0,6),i=1,2,...,N, k=1,2,... N,
1‘ : ._ ._

(Lyh ), i=1,2,... N, j=1,2,...,N,

(o,y;j,t,-), i=1,2,....N, j=1,2,...,N.

Fig. 2a and b present the arrangement of source and collocation points for Examples 1 and 2, respectively, as described in
Section 5.2.
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Fig. 2. Source and collocation points. SP stands for the source points, whereas BP and IP stand for the collocation points on the lateral parts of the fixed
boundary and on the initial base, respectively.

2.1.2. System of equations
We describe the system of equations as follows.

Unrs (X, 0,6) = 83 (%4, 0,6), i=1,....N, k=1,...,N,

uwrs(LYy . 6) =81 (LY ). i=1.....N. j=1....N,

unrs (0.5, ) = g (0.¥4 . t). i=1.....N. j=1.....N.
—8%’;”F5(xk,o,ti)=gg(xk,o,ti), i=1,...,N, k=1,...,N,
Owrs 4 vty _ @1y ey i=1.... N j=1.....N

X (7Y1j7ti)_ 2( ’yljﬁ ,'),l— sees NG =100 0N,
Ju

——a o (0.95 ) =g (0.yh ). i=1...N. j=1.....N,

The random noise has been added to the boundary conditions according to

82X, t) =gl x, )+ (5 X max |lgh(x. )| x U(-1, 1)), k=1,2,

where U(—1,1) denotes a random variable following the uniform distribution on (-1, 1). The above-mentioned system of
equations can be represented as

Ac=f, (4)

where ¢ denotes the vector of unknown coefficients c'] f is the vector containing the collocated data, and A is the matrix
containing the values of the fundamental solution evaluated for all possible combinations of the collocation and source
points. The large condition number of the matrix A [11,30] underscores the importance of regularization. Let A > 0 denote
the regularization parameter and I the identity matrix. Applying the Tikhonov regularization technique results in the system

(A'A + Al)c = A'f, (5)

where the superscript ‘¢’ denotes the transpose. Compared to (4), the system (5) is well-conditioned, and we use the Gaus-
sian elimination method to solve it. Note that different regularization techniques such as the damped singular value decom-
position, truncated singular value decomposition and Tikhonov regularization, in conjunction with the well-known schemes
for choosing a suitable value of the regularization parameter namely the L-curve method, discrepancy principle, and the
generalized cross validation, can also be employed. Here, although we apply Tikhonov regularization so as to regularize the
ill-conditioned system (4), the proposed algorithm produces an optimal value of the regularization parameter A without
using any of the aforementioned well-known schemes.

3. Metivation for a posteriori error estimates

To construct a reliable and efficient method to determine the quality of approximation for the inverse boundary identifi-
cation problem, we first need to establish a sharp a posteriori error estimate, and an efficient adaptive algorithm based on it.
In order to construct a quality a posteriori error estimator it is necessary to identify and separate the error contributions. A
further difficult question is how to use the obtained estimator to develop an efficient and adaptive algorithm. The approach
adopted in this article is to find the optimal distance of the source points from the fixed boundary and to adapt the points
on the pseudo-boundary at each iteration.
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There are several methods available in the literature for finding the optimal distance of source points for different kinds
of problems. One way to handle such an issue is the trial and error method. However, this approach is quite difficult as
there are several parameters (N, h, A) for a given percentage of random noise. Recently, some approaches have been pro-
posed using some optimizing tools. One such tool is MINPACK [20] routine 1mdif. This routine implements a version of
the Levenberg-Marquardt [31,32] algorithm and is designed to solve nonlinear least squares problems; however, it does not
have the option to impose simple bounds on the handling variables. A part of the routine requires the computation of the
Jacobian matrix for the objective function, the issues associated with which are discussed towards the end of this paragraph.
Another tool is the MATLAB optimization toolbox routine 1sqnonlin [15,21], which is designed to minimize the sum of
squares of arbitrary differentiable functions. The routine uses two algorithms, namely the trust-region-reflective algorithm
(which is effective for sparse problems) and the Levenberg-Marquardt algorithm, for this purpose. The former, which is the
default setting for the routine, cannot handle underdetermined systems, and the latter, as mentioned earlier, cannot be ap-
plied when we have bound constraints. Furthermore, the trust-region-reflective algorithm, which is a gradient-based method,
requires the computation of J¢J, where J is the Jacobian matrix for the objective function. The user can either explicitly define
the Jacobian or can input the sparsity pattern of the Jacobian matrix. However, that is possible, mostly, when the objective
function is in a closed form. As an alternative, the algorithms use finite difference schemes in order to compute the Jacobian
matrix. This could bring additional error into the system, while being computationally expensive.

One of the advantages of the above-mentioned approaches is that they only depend on the maximum possible a posteriori
computable data available through the inverse problem. However, they suffer from some disadvantages:

« these algorithms are sensitive to initial inputs. If the initial guess is far from the exact solution, the computational time
may be very large, and in some cases, it might not give good convergent results [15];

» with a good initial choice, they produce an optimal distance h, and hence a pseudo-boundary, but no information on the
choice of the regularization parameter, A, or on the number and location of source points, all of which play a significant
role in determining the accuracy of the approximation [33].

This motivates us to establish some reliable and sharp a posteriori error indicators, which are capable of monitoring the
desired error and useful in developing an adaptive algorithm that is:

e a transition from nonlinear to linear algorithms;
« suitable for more practical problems, where the input data must be independent of a priori quantities such as p(x, t) and
u(x,y.t) [18].

In the next section, we shall derive a posteriori error estimates for the boundary identification problems.

4. A posteriori error estimates

The a posteriori error estimator to be developed in this section relies on the stability results of [14] along with density
arguments of MFS approximations [16]. For wr c 21, we introduce the following notation:

1€ oo = max [&(x,0)].
(x,t)ewr

Further, let u;, j = 1, 2 be two solutions of the heat equation (1) defined in {(x,y,£) :0 <x<1,0<t <T.0 <y <pj(x.t),j =
1, 2}. Suppose further that

ujx,pj(x,t),t)=0, 0 <x<1,0<t<T, j=1,2.

We begin with a two-dimensional version of the stability result derived in [14]. Interested readers may refer to [14] for
the proof.

Lemma 1. Assume:
o there exist two positive constants U; and U, such that

lux,H)ll o <U;, and min u(x,t) >U, Yt e[0,T];
e (x.0)eSy

o there exist two positive constants | and L such that
I <pxt) <L

e for all (x,t) in the x-t plane and for all unit vectors n lying in the plane tangent to the surface p at (x,t), there exists a
positive constant A such that

max ‘Vp(x, t) -n) <A.

Then, the moving boundary p(x,t) depends continuously on the Dirichlet and Neumann data prescribed on I';.
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Now, to obtain an a posteriori error estimate based on this stability result, we need to exploit the approximation proper-
ties of fundamental solutions. In particular, we need to generate a linearly independent and dense set (total set) in L2(I").
In this context, we shall briefly recall the following approximation properties of the set of fundamental solutions [16].

Lemma 2. The set of fundamental solutions {F(X.t;y;. 7;)},i=1,2,---:j=1,2,--- forms a linearly independent and dense set
in L2(T"y). Also, the set of normal derivatives {g—ﬁ(x, 6y, T)}i=1,2,---;j=1,2,... forms a linearly independent and dense

set in L2(I"y).

A posteriori error estimate: We now introduce two a posteriori error indicators, n° and 5.
The error indicator nP represents the contribution mainly due to the discretization error, and is given by

K M .
P g 8) = 2 e F(x twir. m) -~

i=1 j=1
K M oF
g s ) ~Beo| (6)
i=1 j=1 oo,y

where coefficients c;:reg result as the solution of the regularized system (5) and M is the number of source points placed on
each y;.
The error indicator 5 reflects the stability error contributions due to added noise, and is given by

Us(k) = ”pﬁ%sk - pﬁ%‘so”w,rz* (7)
where p[r\f,‘is . denotes the boundary identified using the regularized MFS with k% of added relative noise.

The a posteriori result can be stated as follows.
Theorem 1. Under the assumptions of Lemma 1, we obtain an a posteriori error estimate of the form
n=n"+n’
for the boundary identification problem, where the estimators n° and n’ are given by (6) and (7), respectively.

Proof. Lemma 1 asserts that, quantitatively, [|p;(x,t) — p2(X,t)|l,r, depends continuously upon [[u;(X,t) — uz(X, ) |leo,r,

and || aair:(x, t)— %(x, ) lco.r,» Where p;, u;, i = 1,2, are as defined at the beginning of Section 4. If we assume that pq(x, t)
corresponds to exact solution p(x,t), and p,(x,t) is its MFS approximation pps(x, t), which has to deal with contaminated
data, then the quantity of interest ||p(x,t) — purs(x, t)|| depends continuously upon |u(x, t) —g‘i (X t)|loo,r, and || g—:(x, t) —
& X.)lloor,- Thus, the a priori estimate [[u(x.t) — g (X, )|l r, + 134 (X, 1) — g5 (X.t) |1, gives a reliable bound for the
error in identifying p(x, t). In view of Lemma 2, this leads to an a posteriori error estimator with contaminated data g‘i(x, t)
and g (x, t) of the form

K M K
‘ > AF(x tyi(T). 1)) —g‘i(x,t)H + ZZC;%(x,t;yi(q), 7)) —g‘Z(x,t)H :

im1 j=1 oo.I'y io1 j=1 oo.I'y
However, due to instability caused by the inverse problem, the regularization needs to be considered, which thus leads to
D
n

In addition, increasing the noise level is deleterious for the approximations, which can be controlled by the stability
indicator n° defined in (7), as shown in the next remark. O

Remark 1. We observe that the estimator n° tends to get smaller with an increment in the basis functions, hence correctly
reflecting the error ||p(x,t) — plr\;%s,o”oo,l“r which is expected to be small with a sufficiently large number of basis functions.
However, under the influence of noise, say k%, k > 0, it is difficult to control the term ||p(x,t) — plr\;%s illco.T, The following

observation has been made to control this term:

||p(x, t) - p]r\ff;g:syk”oo,l"z = I|p(X7 t) - pxﬁ:_go + p;\;'fg:go - plr\;‘lg:syk”oo,l"z
< Ip(x,t) — PiFsolloars + | Piis i — Phitsollso.r

<+’

It reflects the contribution of the error coming from stability component 75.
5. Adaptive algorithm and numerical investigations

In this section, we study an adaptive algorithm for the efficient numerical solution of the boundary identification prob-
lems.
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5.1. Adaptive algorithm

Algorithm 1, presented in this segment, is based on the statistical information provided by choosing different input

Algorithm 1 A posteriori stochastic algorithm for inverse boundary identification in 2D
Input: Ny, Nstep, Rin. Rstep, Amaxs Amin, Astep, Amax, 6, TOL

1€,
OlltplltZ ng[, hgpt, )"Opt» pM%S,S (Nop[, hopt, )\OP[)

1. N« No
2: for h < hpyp @ hstep : hmax do > Nstep = (Mmax — hiin) /v
3: for A < Apin t Astep : Amax dO
4: Compute uﬁ%s_s (N, h, ) when applied a random noise ~U(-1,1)

> Solve
5: Compute n° (W, h, 1) > Estimate
6: end for
% 0PN h ) = min (nD(/\/, h, x))
8:  Compute n5(N, h, A)

9: end for

- - S
10: Compute mean X and standard deviation S of the data set { N fhy)

) }hehm,-,,:hmp:h,mx'
11: Store D = {nD(N, h, )"h)}hEhmin:hsrep:hmux

12: Compute nP (N, h*, Ap.) = minD.

T < R+ D915 then

14: Go to Line 17

15: else D « D\{n® (W, h*, A;x)}, Go to Line 12
16: end if

17: if n° (W, h*, A+ ) < TOL then

18: P;\;}g:sﬁ (Nopt- hopt, Aopt) = p;;%svg (N, A )
19: else V' <~ N + Nitep, Go to Line 2

20: end if

13: if

parameters. The input for the algorithm comprises:

» MNp, the initial number of source points;

¢ Njtep, the increment for the number of source points;

 [humin, hmax], the range for the distance h of the pseudo-boundaries from the domain boundaries;
¢ hgtep, the increment in h values;

® [Amin» Amax], the range for the regularization parameter A;

* Astep, the increment in A values;

« §, the relative noise; and

* TOL, the tolerance on nP.

With the above set of inputs, the aim of the algorithm is to produce the best possible estimated location of the mov-
ing boundary p;\f’%s s» the optimal distance of the source points from the boundaries hopr, and the optimal regularization
parameter Aqpr with the minimum possible computational effort.

As we start with a small number of source and collocation points, i.e. with a coarse approximation, we are likely to
notice a high value of nP and a smaller value of 5. Here, the contribution towards error is more from the discretization
than from the stability. With subsequent increase in the number of source points, the former is expected to decrease as a
result of the addition of more basis functions in the MFS approximation. At the same time, due to the increment in size of
the MFS matrix (A in (4)) and hence, the increment in its condition number, the stability component is expected to rise with
some fluctuations. In order to have a stable solution, 5 should not be allowed to grow away from nP and for an accurate
solution, the latter should not be allowed to dominate the former by a large margin. Here, we try to study this delicate
balance between the two estimators with the help of the quantity n5/nP.

To find an appropriate balance, we first minimize n°, where we find the regions resulting in a small discretization error
and among those regions, we select the one where the ratio n5/5° is not large. To elaborate, for a fixed number of source
points A, nP is minimized over the A-range for each of the h values in [hpip. hmax]. The A values corresponding to these
minimum values of P are marked and used to compute 7° for the given relative noise level. Statistical quantities such the
mean, median and variance of 55/nP give good information on how to choose the range of h. Statistically, a range of the
pseudo-boundary could be considered as reasonably good if, for the given range of h values, the mean and median show
a good consistency and smaller variance of the particular quantity of interest. As it is of interest that discretization error
must be in accordance with stability, so we shall be careful in choosing a good range of h, as there will be regions where
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the discretization errors may be small, but the stability contributions may be very high, and vice versa. For most of the
computations, we consider the range of h as [1.5, 2.3] with an increment of 0.1. The range of A is kept as [107'¢, 1072] with
a multiplicative increment of 10.

If we were to adopt the deterministic approach, at this point, we would go for minimizing n° again over h. Then, n°
could be handled with a different tolerance. However, we are interested in a bound on n5/nP which need not be specified

explicitly. For the sake of simplicity, let us re-index the values of h in [hy;,, hmaex], incremented by hgeep, as hy, hy, ..., h,, for
some v € N. Further, let X;,X;,..., X, be v independent and identically distributed (i.i.d.) random samples where X; is the
random variable (RV) that takes on the value of »5/nP at h;, j=1,2,...,v.

Let X=1%"V X and $?=1%7, (Xj —)_()2 be the sample mean and the sample variance, respectively. It has been ob-
served that the mean and median of the above random sample are sufficiently close to each other for the chosen range of
h. Thus, it could be assumed that the i.i.d. samples come from a Normal population for a relatively large number of values
of v. Here, the sample mean could be seen as a probable bound for the desired n5/nP. As has been observed, the minimum
nP may sometimes correspond to a reasonable 1, with their ratio being larger than the sample mean. These values of the
estimators are likely to be leading to small error, but may get ignored if we just consider the sample mean as the bound.
Similar cases may be encountered if we replace the sample mean by the estimated mean of the population. Therefore, a
confidence upper bound of the population mean, u, appears to be a more flexible and reliable choice.

More precisely, we consider the values of n° and nP for which their ratios fall within the 99% confidence upper bound
for p. Recorded are the ones corresponding to the minimum of those nP. As a result, we would be ignoring the highly
unstable solutions. As the number of simulated data points is small, i.e. 9, we assume a t-distribution for estimating the

confidence bound. Moreover, the 99% confidence upper bound for © would be (f( + &’(’%5) If we go with an upper bound

with different confidence, say 95%, then that would be closer to the sample mean. Consequently, a sharper confidence bound
may exclude some ratios where the error is likely to be good. Therefore, a 99% confidence bound appears to be a reasonable
tolerance on 7°/nP.

After choosing the error estimators with a suitable ratio, we could expect a stable solution, whereas the accuracy part
yet remains to be examined. To this direction, we try imposing a tolerance TOL on 7P, since it exhibits a monotonically
decreasing behaviour with increment of basis functions compared to random behaviour of the stability estimator n5. Upon
satisfying the tolerance, the algorithm returns the parameters corresponding to the obtained estimator-values and computes
the approximate moving boundary with the same. Otherwise, it moves on to the next iteration, thereby updating A/

5.2. Numerical investigation

In this section, two benchmark problems are investigated. We impose § = 1%, 5%, 10% for the first example and § = 1%, 5%
for the second example, so as to study the effect of noise on the algorithm. We choose two nonlinear examples, one each
from [22,23]. We choose the examples based on how the moving interface p(x, t) is evolving with respect to time t, although
both are nonlinear when considered with respect to x. In the first example, we choose a case where the moving surface
p(x, t) evolves linearly with respect to t with almost horizontal slope, whereas in the second example, p(x,t) is a nonlinear
function of time t, which exhibits a sharp behaviour around (0,0), with a greater slope with respect to t. This makes the
second example much more difficult to handle, which is evident from the error profiles shown later in Fig. 15: from Fig. 15a
and b, we observe that to obtain a particular desired accuracy for Example 2, we need a larger number of points, and
hence more basis functions, compared to that for Example 1. Also, the Dirichlet and Neumann conditions on the faces are
nonlinear for Example 2 and linear for Example 1.

For each of these examples and for each &, the presented figures show the MFS approximation of the moving boundary
purs and the corresponding errors with different tolerances on n°. Henceforth, the abbreviations ABSe, RMSe, and RELe stand
for the maximum absolute error, the root mean squared error, and the relative error in the approximation, respectively.

Example 1. For this example, we consider the exact solution
(x+1)2 t
T+y+ ﬁ’ (X,y,t)GQT, (8)

where Q7 ={(x,5,t) :0<x <1, 0<y < p(x,t), 0 <t <1} is the heat conduction domain, and
t (x+1)2
P =1- 35— —55—

is the moving boundary. The Dirichlet and Neumann boundary conditions on the fixed boundaries and the initial condition
at t = 0 can be obtained using (8).

ux,y.t) =

,0<x<1,0<t<1,

Here, the temperature on the moving boundary is non-zero, i.e.,
ux,p(x,t),t)=u,=1,0<x<1,0<t=<1.

Example 2. The exact solution is given by

4t

ux,y,t) =e *sin(2x-1)—-y+1, (x,y.t) e Qr,
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(a) TOL = 0.5, Nopt = 54, (b) TOL = 0.3, Nopt = 150, (¢c) TOL = 0.1, Nopt = 294, (d) TOL = 0.06, Nopy = 486,
hopt = 2.0, Appt = 1.0e — 06 hopt = 2.0, Aopt = 1.0e — 05 hopt = 2.3, Aopt = 1.0e — 07 hopt = 2.2, Aopt = 1.0e — 06

Fig. 3. MFS approximation of p for different tolerances on n°, Example 1, § = 1%

where the domain of heat conduction taken as Qr = {(x,y,t) :0<x<1, 0 <y < p(x,t), 0 <t <1}.
Here, the moving boundary to be identified is given by

px,t) =e¥sin(2x—1)+1, 0<x<1,0<t<1,
and
ux, px,t),t)y=up=0,0<x<1,0<t=<1,

is the temperature on the moving boundary p(x, t).

5.3. Analysis of numerical experiments

In this section, we shall present the analysis obtained through the numerical results. First, we discuss the behaviour of
the a posteriori error estimator, which can suggest how appropriate the estimator is for the boundary identification. We also
discuss the sensitivity of the proposed approach with respect to the fictitious boundary; this is relegated to Appendix A.

Quality of the estimator: To begin with, we check the behaviour of the error estimates in Figs. 13 and 14, where 7ms
denotes the total estimator with both of its components n° and n° calculated in the root mean squared sense. In particular
for each A, n° has been minimized over all the (h, 1) pairs and 1° has been calculated with those h and A causing the
minimum 7nP°. Under the influence of noise, it is evident from Figs. 13 and 14 that both RMSe and 7n,s are decreasing
with increasing N (except at a few values of A/, where the stability estimator n° is large). The placement of source points
seems to be adapting appropriately at each iteration, as the error is decreasing beyond the amount of noise entered into
calculations. The estimator also appears to be behaving in a manner similar to the error, even where the latter has sudden
fluctuations. This is a preliminary study to understand the estimator and owing to the subsequent observations, as discussed
in Section 5.1, we implement the stochastic Algorithm 1 for computing the estimators.

The quality of an a posteriori error estimator is often measured using a quantity called the effectivity index (EI). Due
to the aforementioned additional issues, such as choosing an optimal regularization parameter and suitable placement of
source points associated with the inverse boundary identification problem, at each iteration we define the effectivity index
as

e =T

where the percentage of § is fixed, and all the quantities are measured in an RMS sense. At each iteration, the minimization
is taken over nP, the parameters (h, A) of which will then be used to calculate 5 and the error ||p — p]r\f,‘isan. Since we
are dealing with noisy data, the deterministic values of EIs may not reflect the correct behaviour of an estimator. Therefore,
we analyze the statistical behaviour of the Els by fitting the obtained data. We fit the data with Generalized Extreme Value
distribution (GEV) due to skewness of the data and the plots are shown in Figs. B1 and B2 in Appendix B. The maximum
likelihood method is used to estimate the means. From Table B1, it is evident that n is the guaranteed upper bound on the
error, as all statistical values of Els are above 1. On the other hand, they are not far away from 1, showing the efficiency of
the estimator. Alternatively, this is also evident in Figs. 13 and 14 as the gap between error and estimator is very narrow,
though with a peak.

For Example 1, the boundary identification has been presented in Fig. 3a-d for 1% noise, in Fig. 5a-d for 5% noise, and in
Fig. 7a-d for 10% noise. The error plots are provided in Fig. 4a-d for 1% noise, in Fig. 6a-d for 5% noise, and in Fig. 8a-d for
10% noise. Similarly for Example 2, we have shown the boundary identification in Fig. 9a-d for 1% noise, and in Fig. 11a-d
for 5% noise with the errors being documented right below Fig. 10a-d, and Fig. 12a-d, respectively. The optimal parameters
for each approximation have been listed below the corresponding boundary identification figure. By decreasing tolerances
in Algorithm 1 as we are moving from left to right in Fig. 3a-d, the MFS approximations are becoming more accurate and
the errors are decreasing, with the rightmost figure seeming to be very accurate, taking into account the error introduced
into the computations due to noise. Similar observations can be made from the other figures.

The convergence plots for both of the examples are shown in Fig. 15. The solid curves represent the estimator n (com-
puted in sup norm), whereas the dashed and the dotted lines represent the maximum absolute error (ABSe) and the root
mean squared error (RMSe), respectively. We observe that for each percentage of noise (indicated by different colors), the

10
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Fig. 4. Error in the MFS approximation for different tolerances on n®, Example 1, § = 1%
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Fig. 5. MFS approximation of p for different tolerances on n°, Example 1, § = 5%.
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Fig. 6. Error in the MFS approximation for different tolerances on nP, Example 1, § = 5%.
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Fig. 7. MFS approximation of p for different tolerances on n°, Example 1, § = 10%.
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Fig. 8. Error in the MFS approximation for different tolerances on n?, Example 1, § = 10%.
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Fig. 9. MFS approximation of p for different tolerances on n°, Example 2, § = 1%
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Fig. 10. Error in the MFS approximation for different tolerances on nP, Example 2, § = 1%
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Fig. 11. MFS approximation of p for different tolerances on nP, Example 2, § = 5%
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Fig. 12. Error in the MFS approximation for different tolerances on n°, Example 2, § = 5%
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Fig. 13. Error and estimator behaviour for Example 1 using the deterministic approach.
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Fig. 14. Error and estimator behaviour for Example 2 using the deterministic approach.
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(b) Convergence for Example 2

Fig. 15. Convergence with respect to different tolerances for different noise levels

estimator 7 is decreasing with increasing number of source points. A similar behaviour is depicted in both ABSe and RMSe.
We can notice from Fig. 15a and b the change in behaviour of the error and estimator with respect to different percentages
of noise. The curves for the estimator and errors with larger percentage of applied noise lie above those for smaller per-
centage of noise, as predicted for both examples. Further, for a given percentage of noise, the errors exhibit almost similar
behaviour to the estimator. Such behaviour justifies that the proposed estimator can be a reliable bound for the error. Also,
it is evident that a desired accuracy for a lower percentage of noise is attained with rather fewer points as compared with
a high percentage of the noise, which shows the efficient behaviour of the estimator with respect to the noise level.

Remark 2. As we attempt to study the behaviour of discretization and stability errors separately, one possible way is to im-
pose two different tolerances on them. Apparently, this approach would require the user to choose two different tolerances.
For this purpose, a deterministic algorithm could be proposed as follows.

Algorithm 2 A posteriori deterministic algorithm for inverse boundary identification in 2D

Input: Ny, Nstep, Bmin, Bstep, Rmax, Amin, Astep, Amax. 8, TOLp, TOLg
. Te
Output: Nop, hopt, Aopt PM‘iSY‘; (Nopt, hopt, Aopt)

1. N« No
2: for h < hpy @ hstep : hmax do > hstep = (hmax — hin) /#h
3: for A < Apin @ Astep : Amax dO
4: Compute uy 2 (N, h, 1) when applied a random noise ~ U(—1, 1)

> Solve
5: Compute n°(W, h, 1) > Estimate
6: end for
% PV Ay) = min (nD(/\/, h, A))
8: end for

o: 7P (N, hemP, AtemP) = min (nD(N, h, )\h))

10: if P (N, htemp_jtempy - ToL;, then

1:  Compute p;&‘i&s (N, htemp_pfemp) pos o
122 if gS(N, htemP_AfemP) _ ToLg then

13: P;\fﬁsﬁ (Nopt» hopt, Aopt) = P,r\f,gFS,a (N, htemp ) temp
14: else N < N + Njeep, Go to Line 2

15: end if

16: else N < N + Njstep, Go to Line 2

17: end if

(N, ptemp, )‘temp)’ nS(N’ htemp, )\temp)

The advantage of the stochastic algorithm (SA) over the deterministic algorithm (DA) can be perceived from Fig. 16. It
exhibits the behaviour of optimal n, ABSe and RMSe produced by both deterministic and stochastic approaches for 6 values
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Fig. 16. Results for Example 1, § = 1% obtained with DA and SA.

of V. With the deterministic approach, we recorded the results corresponding to the minimum of #° (minimized over the
h — A grid) without imposing any of the tolerances. Similarly for the stochastic approach, we did not put any tolerance on
nP, but we took that minimum 5° for which the respective n°/nP satisfies the confidence upper bound, as discussed in
Section 5.1.

At the initial value of A, n obtained by the deterministic approach (indicated by the solid red line) is below that ob-
tained by the stochastic approach (indicated by the solid blue line). However, instead of recording the minimum 7P, the
second method considers that value for which the proportion of 1 to 5P is balanced. Thus, possibly due to a bad nS-value
encountered by the deterministic approach, the ordering between the corresponding ABSe (indicated by the dashed lines)
and RMSe (indicated by the dotted lines) is just the opposite to that between the respective estimators for the algorithms.
A similar situation can be noticed at the fifth value of A/, though the gap between n-curves is very small there. Further-
more with the DA, it appears difficult to choose the right combination of the two tolerances. It has been observed from the
computations that the minimum of 7P can also correspond to a value of n5 higher than those at other nP values. This is
probably due to the bad choice of the location of the basis functions and hence an increased condition number of the MFS
matrix. Therefore, DA may ignore some good estimator values either due to violation of the tolerance on 7° or due to the
minimization of nP. On the other hand, the SA does not necessarily take the parameters corresponding to the minimum
nP and may give better results at an earlier iteration compared to DA, thus being more efficient. As an advantage, it comes
with the reduced burden of choosing only one tolerance on nP. In Fig. 16, the respective curves produced by deterministic
and stochastic methods match at 4 values of A. Thus, we expect the SA to perform better than or the same as the DA, if
not worse.

Remark 3. The SA is expected to perform well in cases where the stability component of the estimator n° takes on relatively
smaller values than the discretization component nP. As discussed in Section 5.1, the algorithm is based on the observation
that the mean and median of the samples 7°/nP are close to each other. Therefore, in cases where there is sudden and high
fluctuation in n°, the algorithm’s performance may become affected. This oscillatory behaviour of #° could depend upon
the dimensions involved and the placement of source points that in turn decide the contributing basis functions in the MFS
approximation.

5.4. Advantages and novelties of the method

Although MFS been used previously by others for boundary identification problems, this has normally been in association
with a least squares formulation based on the discrepancy between the given and computed data; consequently, some
objective functional can be minimized by employing appropriate nonlinear optimization algorithms. Here, on the other hand,
we bypass these nonlinear routines by utilizing a posteriori estimators. To the best of our knowledge, there is no existing
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Table 1

Comparison of the presented results with similar results from [22,23]. For
Example 2, Liu and Wei [23] employed 10 points in the x-direction, around
50 points in the y-direction and 10 points in the t-direction, and hence around
5000 points in total.

1) Method Number of points ~ RMSe
Example 1 5%  MFS [22] 900 0.0239
a posteriori indicator 150 0.0212
Example 2 1%  Method of lines [23]  ~ 5000 0.0597
a posteriori indicator 54 0.0247

150 0.011

Table 2
Time to complete one iteration of the stochastic algorithm for each of
the test problems with § = 1%.

N Time (in seconds)
Example 1 54 137.96

150 194.68

294 388.69

486 354.33
Example 2 54 141.10

150 176.79

294 604.39

486 857.99

work which investigates the numerical solution of the boundary identification problem by implementing an algorithm based
on a posteriori indicators and studies the efficiency of the MFS in terms of the minimum number of source points, the
optimal distance of pseudo-boundary from the domain’s boundaries, and the optimal regularization parameter.

Moreover, in Table 1, we provide a quantitative comparison of the benchmark results in [22,23] and those obtained using
our method; from these, it is clear that our method supersedes the existing methods by some margin in terms of achieving
lower error using fewer points.

5.5. Computational time

As regards the computing time for our algorithm, we note that it is difficult to make any general statement, as the time
may vary depending on the MFS parameters used. However, in Table 2, we show the time required to complete one iteration
of the stochastic algorithm for different values of A. In particular, each iteration corresponds to a particular value of A" and
the computations are being done for the fixed ranges of values of h and A, as taken earlier. Note that all computations were
carried out on an Intel Core i7 Notebook with a 2.6 GHz 6-core processor and 16GB of RAM.

6. Conclusions and future work

In this article, we have considered the efficient numerical solution of the inverse boundary identification problem in
2D. We found that the estimator depicts robust behaviour with respect to error, and a statistical study of the effectivity
index shows that the estimator is a reliable upper bound of the error. We demonstrated by numerical examples that the
corresponding error indicator could be successfully used to construct a practical adaptive algorithm. It reconstructs the
boundary efficiently by detecting the optimal distance of the source points from the boundary of the domain and optimal
regularization parameter (without any traditional regularization approach such as the L-curve method, discrepancy principle
or GCV, etc.). This might be thought of as an alternative to existing computationally expensive non-linear optimization tools
like MINPACK or the MATLAB optimization toolbox routine 1sqnonlin.

Since the purpose of the article was to build a novel methodology for simple and standard boundary identification prob-
lems, it will be interesting to see whether such an approach will succeed for other types of geometric inverse problems,
such as cavity detection problems.

Acknowledgement

The authors would like to thank Prof. Sean McKee of the Department of Mathematics and Statistics, University of Strath-
clyde, for his insightful comments and suggestions. The first author would like to thank SERB, India for the financial support
received [Grant Number SRG/2019/001973]. Further, the first and second authors acknowledge DST, New Delhi, India, for
providing facilities through DST-FIST lab, Department of Mathematics, BITS-Pilani, Hyderabad Campus where a part of this
work has been done.



G.M.M. Reddy, P. Nanda, M. Vynnycky et al. Applied Mathematics and Computation 409 (2021) 126402

Table A1
Error profiles and optimal parameter values with increased range of h, for Example 1, § = 1%.
hopt Aopt ABSe RMSe RELe
N
™ Rng, Rng; Rng Rung, Rng Rng, Rng; Rng» Rng; Rng,

54 2.0 2.0 106 10-6 0.093813  0.098468  0.025653  0.038664  0.098750  0.103650
150 2.0 2.3 10-° 107 0.061595  0.037214  0.014514  0.007408  0.064837  0.039173
294 23 1.7 107 104 0.018313  0.035399  0.005419  0.007964  0.019277  0.037262
486 2.2 2.2 106 103 0.009237  0.020015  0.002321 0.005643  0.009723  0.021069

Appendix A. Sensitivity of the fictitious boundary

As is well-known [7], the MFS is sensitive to the fictitious boundary. In order to study this sensitivity, additional compu-

tations have been performed with an increased range of h-values, the distance of the pseudo-boundaries from the domain’s
boundaries. Precisely, for a given 8, we have run one iteration of the stochastic algorithm with N = Ay, taking the the
same range of A as previously, and with the range of h changed to [1.5,3.0]. These computations have been conducted for
Example 1 and é = 1%. The optimal values of h and the corresponding error profiles for different values of Aoy are given in
Table A1, wherein Rng; and Rng, represent the two chosen ranges of h-values, i.e., the one chosen for the earlier computa-
tions and [1.5,3.0], respectively.

Based on these results, we can make the following observations:

Even after taking a larger range, the newly estimated optimal values of h fall within the interval [1.5,2.3] that has been
chosen in most of the earlier computations. In some of those, the algorithm determined hoy = 2.3. In such cases, we
have translated the h-range, so as to have 2.3 in its interior, while keeping the number of h-values the same, i.e., 9.

The reasons for restricting the number and range of h-values have been discussed in section 5.1, prior to Algorithm 1.
Precisely, the allowed range is chosen so that the quantity of interest, °/1P, can be treated as a Normal random variable.
Allowing h to run over a larger set of numbers may have two potential shortcomings. First, it can be computationally
expensive, as the algorithm will run over all the admissible A-values for each of the additional h-values. This appears su-
perfluous in view of the two items mentioned above. Second, with more h-values, the confidence upper bound employed
in the computations may change. In particular, the term (to,m‘v_])/ﬁ in line 13 of Algorithm 1 may become smaller,
thereby dragging the bound on 15/nP closer to the sample mean. This sharper bound is likely to retain the smaller val-
ues of 75/nP, which might result from a relatively larger value of n° and a smaller value of n5 than those in the case
of a relaxed upper bound as chosen in the earlier computations. Consequently, the accuracy may become compromised
due to the higher values of nP. This is evident from Table A1, where the error profiles corresponding to Rng, are larger
than those corresponding to Rng;, when Aop: = 294 and 486.

Another way of controlling the confidence upper bound on 15/nP is to change the confidence level, which is currently
99%. The possible effects of choosing a different upper bound for n5/nP have already been discussed in Section 5.1.

It is observable from Table A1 that, with a larger set of h-values, we did not obtain improvement in the error profiles for
Nopt = 54,294 and 486, although we got smaller error with the newly chosen h-range for Mgy = 150.

In summary, it does not appear absolutely necessary to choose an increased number of permissible h-values, as it does

not guarantee an improvement in the accuracy, but merely incurs a greater computational burden.

Appendix B. Statistical analysis of Els
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Fig. B1. Statistical behaviour of EI for Example 1.

16



G.M.M. Reddy, P. Nanda, M. Vynnycky et al. Applied Mathematics and Computation 409 (2021) 126402

a5l ] —EI | 251 M —EI ||
—GEV —GEV
3 2t g
> 25 >
= E 151 1
[} 2t [}
=} =1 —
5 )
A 15 A g
1
0.5
0.5
0 0
2 25 Value 3 35 1 1.5 2 Value® 3 35
(a) 6 =1% (b) 6 =5%
Fig. B2. Statistical behaviour of EI for Example 2.
Table B1
Estimated parameter values for the distributions fitted to EI
data. For the GEV distribution, . denotes estimated location,
o denotes estimated scale parameter, and k denotes the es-
timated shape parameter.
Example & n o k
1 0.01 2.96996 1.6931 -0.387144
0.05 2.73644 0.57293 0.0578462
2 0.01 2.64525 0.559031 -0.110095
0.05 2.25618 0.717524 -0.419859
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