Semana Integrada do Instituto de Física de São Carlos

Coordenadores

Prof. Dr. Vanderlei Salvador Bagnato
Diretor do Instituto de Física de São Carlos – Universidade de São Paulo

Prof. Dr. Luiz Vitor de Souza Filho
Presidente da Comissão de Pós Graduação do Instituto de Física de São Carlos – Universidade de São Paulo

Prof. Dr. Luís Gustavo Marcassa
Presidente da Comissão de Graduação do Instituto de Física de São Carlos – Universidade de São Paulo

Comissão Organizadora

Arthur Deponte Zutião
Artur Barbedo
Beatriz Kimie de Souza Ito
Beatriz Souza Castro
Carolina Salgado do Nascimento
Edgard Macena Cabral
Fernando Camargo Soares
Gabriel dos Reis Trindade
Gabriel dos Santos Araujo Pinto
Gabriel Henrique Armando Jorge
Giovanna Costa Villefort
Inara Yasmin Donda Acosta
Humberto Ribeiro de Souza
João Hiroyuki de Melo Inagaki
Kelly Naomi Matsui
Leonardo da Cruz Rea
Letícia Cerqueira Vasconcelos
Natália Carvalho Santos
Nickolas Pietro Donato Ceroni
Vinícius Pereira Pinto

Normalização e revisão – SBI/IFSC

Ana Mara Marques da Cunha Prado
Maria Cristina Cavarette Dziabas
Maria Neusa de Aguiar Azevedo
Sabrina di Salvo Mastrantonio

Ficha catalográfica elaborada pelo Serviço de Informação do IFSC

Semana Integrada do Instituto de Física de São Carlos
(11: 06 set. - 10 set. : 2021: São Carlos, SP.)
Livro de resumos da XI Semana Integrada do Instituto de
Física de São Carlos/ Organizado por João H. Melo Inagaki [et al.]
São Carlos: IFSC, 2021.
412 p.
Texto em português.
1. Física. I. Inagaki, João H. de Melo, org. II. Titulo

ISBN 978-65-993449-3-0 CDD 530
Implementation and simulation of drift-diffusion models for organic mixed conductor devices

UNIGARRO, A. D. P.; GÜNTHER, F.; FARIA, G.
ap.unigarro@ifsc.usp.br

Instituto de Física de São Carlos - USP

In the past years, organic electrochemical transistors (OECTs) have emerged as potential transducers in applications that require the conversion of ion fluxes to electronic current. For the rational optimization and understanding of the fundamentals of OECTs and OECT-based applications, however, it is essential to have theoretical models that can predict the experimental data. (1) The OECT models, which have majorly been discussed during the past decade, mostly originate from Ohm’s law where the ion flux from the electrolyte into the organic, semiconducting layer takes place only due to an electrical field. These models are efficient to describe the steady-state operations of OECTs, but are rather limited for the predictions of transient behaviors. More recent models take a diffusion term into account in order to improve the existing approaches. For example, Coppedè et al. (2) developed a model for which the analytical solution of the Nernst-Planck equation in one dimension with standard boundary conditions was used. In doing so, the diffusion coefficients of different metal cations could be fitted to experimental transient measurement with a very good agreement. In their work, however, only metal cations of the electrolyte were considered. In our work, we intend to solve the equations numerically to overcome the limitations of the analytical solution. This allows us to go beyond the standard boundary conditions and also to analyze the impact of other alterations, such as the existence of anion, variations in the diffusion coefficient between electrolyte and polymer film, etc.


Referências: