

UNIVERSIDADE DE SÃO PAULO
Instituto de Ciências Matemáticas e de Computação
ISSN 0103-2577

**Generalized Homogeneous Functions and the
Two-Body Problem**

C. Biasi
S.M.S. Godoy

Nº 154

NOTAS

Série Matemática

São Carlos – SP
Out./2002

SYSNO	1266812
DATA	/ /
ICMC - SBAB	

GENERALIZED HOMOGENEOUS FUNCTIONS AND THE TWO-BODY PROBLEM

C. BIASI AND S.M.S. GODOY

ABSTRACT. In this article we study a generalization of the homogeneous function concept. An application is done with a solution of the two-body problem.

RESUMO. Neste artigo estudamos uma generalização do conceito de função homogênea. Uma aplicação é feita com uma solução para o problema de dois corpos.

key words and phrases: homogeneous function, Kepler's second law, two-body problem

1. INTRODUCTION

In this paper we generalize the classic concept of homogeneous function of degree α and we study the relation between the homogeneous function concept and the movement of a body that satisfies the Kepler's second law.

As an application of the involved techniques that were used, we present a solution of the two-body problem, giving a way to obtain a time equation for the body that rotates around the other, using the concept of homogeneous function.

We obtained a series like as that was presented in [1].

2. GENERALIZED HOMOGENEOUS FUNCTIONS

Let U be an open subset of \mathbb{R}^n so that if $x \in U$ and λ is a real number, $0 < \lambda < 1$, then $\lambda.x \in U$.

Definition 1. Let $f : U \rightarrow \mathbb{R}$ be a C^r function. We say that f is an homogeneous function of degree α if $f(\lambda.x) = \lambda^\alpha.f(x)$, if $\lambda > 0$.

We put bellow the well known concept of homogeneous function.

Let θ be a function of class C^r such that $\theta : (0, \infty) \times (0, \infty) \rightarrow (0, \infty)$ and

$$(1) \quad \begin{cases} \theta(1, z) = z, \\ \theta(\lambda_1 \cdot \lambda_2, z) = \theta(\lambda_1, \theta(\lambda_2, z)). \end{cases}$$

1991 *Mathematics Subject Classification.* AMS Subject Classification: 34C40.

We observe that θ is an action of the multiplicative group $(0, \infty)$ to $(0, \infty)$.

Consider the function $\alpha(z) = \frac{\partial \theta(1, z)}{\partial \lambda}$, $z \in (0, \infty)$.

Let us generalize the concept of an homogeneous function.

Definition 2. Let $f : U \rightarrow \mathbb{R}$ be a function of class C^r . We say that f is θ – homogeneous if

- i) $f(\lambda \cdot x) = \theta(\lambda, f(x))$
- ii) $\alpha(f(x)) > 0$.

Lemma 1. Let θ be an action of $(0, \infty)$.

Then f is a θ – homogeneous function $\iff \langle \vec{\nabla} f(x), x \rangle = \alpha(f(x))$

Proof: \Rightarrow) We note that:

$\langle \vec{\nabla} f(\lambda x), x \rangle = \frac{\partial \theta}{\partial \lambda}(\lambda, f(x))$. Then, for $\lambda = 1$, we have that, $\langle \vec{\nabla} f(x), x \rangle = \frac{\partial \theta}{\partial \lambda}(1, f(x)) = \alpha(f(x))$.

\Leftarrow) We define for each value of x , the functions:

$\varphi(\lambda) = f(\lambda x)$ and $\tilde{\varphi}(\lambda) = \theta(\lambda, f(x))$

We note that $\varphi(1) = f(x) = \tilde{\varphi}(1)$. We will prove that φ and $\tilde{\varphi}$ are solutions of an ordinary differential equation with the same initial condition.

We have that: $\alpha(f(\lambda x)) = \langle \vec{\nabla} f(\lambda x), \lambda x \rangle = \lambda \langle \vec{\nabla} f(\lambda x), x \rangle = \lambda \varphi'(\lambda)$

Then, $\alpha(\varphi(\lambda)) = \lambda \varphi'(\lambda)$

So φ is a solution of the equation $\varphi' = \frac{\alpha}{\lambda} \varphi$.

For the function $\tilde{\varphi}(\lambda)$ we have,

$\lambda \tilde{\varphi}'(\lambda) = \lambda \frac{\partial \theta}{\partial \lambda}(t \lambda, f(x))$.

Consider the function $h(t) = \theta(t, \theta(\lambda, f(x))) = \theta(t \lambda, f(x))$.

Then, $h'(t) = \lambda \frac{\partial \theta}{\partial \lambda}(t \lambda, f(x))$. So, $h'(1) = \lambda \frac{\partial \theta}{\partial \lambda}(\lambda, f(x))$.

By other side, $h'(1) = \frac{\partial \theta}{\partial t}(1, \theta(\lambda, f(x))) = \alpha(\theta(\lambda, f(x)))$. Then, $\lambda \tilde{\varphi}'(\lambda) = \alpha(\tilde{\varphi}(\lambda))$. So,

$\tilde{\varphi}' = \frac{\alpha}{\lambda} \tilde{\varphi}$, and then $\varphi = \tilde{\varphi}$.

Remark 1. Let f be a θ – homogeneous function with $\theta(\lambda, z) = \lambda^\alpha z$. Then f is homogeneous of degree α , with $\alpha(z) = \alpha z$.

In fact, if f is a θ – homogeneous function, then $f(\lambda x) = \theta(\lambda, f(x)) = \lambda^\alpha f(x)$. But $\alpha(z) = \frac{\partial \theta}{\partial \lambda}(1, z) = \alpha \lambda^{\alpha-1} z$, for $\lambda = 1$. So, $\alpha(z) = \alpha z$.

Remark 2. When P_0 is any point, we say that f is a θ – homogeneous function relative to P_0 if $f(P_0 + \lambda(x - P_0)) = \theta(\lambda, f(x))$.

As in the proof of Lemma 1 we easily demonstrate that: $\langle \vec{\nabla} f(x), x - P_0 \rangle = \alpha(f(x))$.

Theorem 1. Let θ be an action as in (1), C a curve and $P_0 \notin C$. There exists a θ – homogeneous function f relative to P_0 , so that $f(x) = 1, \forall x \in C$.

Proof: Define $\psi(\lambda) = \theta(\lambda, 1)$. Suppose $P_0 = 0$. For every $x \in C$, choose y so that $\frac{x}{\psi^{-1}(y)} \in C$. Then we define $f(x) = y$. It is clear that $f(x) = 1, \forall x \in C$.

We have that $\frac{\lambda x}{\psi^{-1}(\theta(\lambda, f(x)))} = \frac{\lambda x}{\lambda \psi^{-1}(f(x))} \in C$.

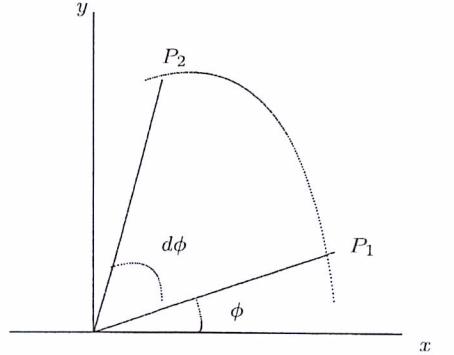
So, $\theta(\lambda \psi^{-1}(f(x)), 1) = \psi(\lambda \psi^{-1}(f(x))) = \psi(\psi^{-1}(\theta(\lambda, f(x)))) = \theta(\lambda, f(x))$.

So, $f(\lambda, x) = \theta(\lambda, f(x))$ and the function f is θ – homogeneous.

Corollary 1. If C is any curve, then it is a level curve of a homogeneous function of degree $\alpha > 0$.

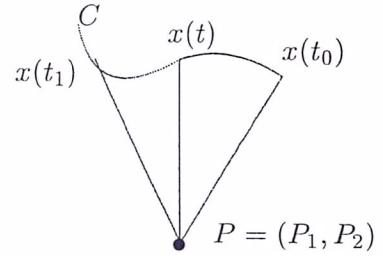
We remember now the Kepler's second law: The Area's Law

Let P_1 and P_2 be two successive positions of a body in a interval of time δt . The element of area in this interval of time is $\delta A = r^2 \delta \phi / 2$, or, $\frac{\partial A}{\partial t} = \frac{r^2}{2} \frac{\partial \phi}{\partial t}$ is a constant, that is, the area is proportional to time.



Consider a C^r plane curve C , $r \geq 1$, and a point $P = (P_1, P_2) \notin C$. Suppose C is given by $x = x(t) = (x_1(t), x_2(t))$, so that

$$(2) \quad \det \begin{vmatrix} x(t) - P \\ x'(t) \end{vmatrix} = \det \begin{vmatrix} x_1(t) - P_1 & x_2(t) - P_2 \\ x'_1(t) & x'_2(t) \end{vmatrix} > 0$$



We know that the area swept out by a body that moves from $Q_0 = (x_1(t_0), x_2(t_0))$ to $Q_1 = (x_1(t_1), x_2(t_1))$ is

$$A = \frac{1}{2} \int_{t_0}^{t_1} \left| \begin{vmatrix} x(t) - P \\ x'(t) \end{vmatrix} \right| dt$$

So,

$$A'(t) = \frac{1}{2} \left| \begin{vmatrix} x(t) - P \\ x'(t) \end{vmatrix} \right| = c$$

Definition 3. A curve C satisfies the Kepler's second law relative to the point P if $A'(t) = c$, for some $c > 0$.

$$\text{Then, } A(t) = \frac{1}{2} \int_{t_0}^t \left| \frac{x(u) - P}{x'(u)} \right| du = \frac{1}{2} 2c(t - t_0) = c(t - t_0).$$

So, the area is proportional to the time to go from $x(t_0)$ to $x(t)$, and then satisfies the area's Kepler's law.

Remark 3. If $x(t)$, $t \in (a, b)$ is a parametric curve C that satisfies the Kepler's second law with constant c in relation to P , we have that:

$$A = \frac{1}{2} \int_a^b \left| \frac{x(t) - P}{x'(t)} \right| dt = c(b - a) = cp$$

where $p = b - a$.

3. PARAMETRIC REPRESENTATION BY SURFACE MEASURE

It is often convenient to shift from one parameter representation of a curve, to another, to achieve once a special parametric representation for the Kepler's second law to be satisfied. Let $\tilde{x}(u)$, $u \in (c, d)$, the parameter representation of a curve C . We have that:

$$\tilde{A}(u) = \frac{1}{2} \int_{u_0}^u \left| \frac{\tilde{x}(v) - P}{\tilde{x}'(v)} \right| dv$$

So,

$$\tilde{A}'(u) = \frac{1}{2} \left| \frac{\tilde{x}(u) - P}{\tilde{x}'(u)} \right| > 0, \forall u$$

We make the follow change of parameter: $t = \tilde{A}(u)$, $t \in (a, b)$, and $h(t) = u$, and define $x(t) = \tilde{x}(h(t))$.

With this choice of the parametric representation, the curve C satisfies the Kepler's second law in relation to P .

In fact, we have that:

$$\frac{1}{2} \left| \frac{x(t) - P}{x'(t)} \right| = \frac{1}{2} \left| \frac{\tilde{x}(u) - P}{\tilde{x}'(u) \cdot h'(t)} \right| = \frac{1}{2} h'(t) \left| \frac{\tilde{x}(u) - P}{\tilde{x}'(u)} \right| = \frac{1}{2} \cdot 2 \frac{1}{\left| \frac{\tilde{x}(u) - P}{\tilde{x}'(u)} \right|} \cdot \left| \frac{\tilde{x}(u) - P}{\tilde{x}'(u)} \right| = 1$$

So $\left| \frac{x(t) - P}{x'(t)} \right| = 2$ and the Kepler's second law is satisfied.

Definition 4. If a curve C satisfies the Kepler's second law with constant $c = 1$ in relation to P we say that the curve C has a parametric representation by surface measure.

Then, above we prove that any curve can have a parametric representation by surface measure, what is analogous that we know by the parametric representation of one curve by arc length. [2]

So we prove that if $x(t)$ is a parametric representation of a curve by surface measure and the time to go from a point Q_1 to Q_2 is T , then the area swept out is T .

4. GENERALIZED HOMOGENEITY AND THE KEPLER'S SECOND LAW

Let U be an open subset of \mathbb{R}^2 . Let $f: U \rightarrow \mathbb{R}$ be a C^1 function whose derivative at a point x is denoted by $f'(x)$. There exists a unique vector $g(x) \in \mathbb{R}^2$ such that $f'(x) \cdot v = \langle g(x), v \rangle$, for all $v \in \mathbb{R}^2$, where $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{R}^2 . Let $u(x)$ be the hamiltonian field obtained by rotating $g(x)$ by an angle of $\frac{\pi}{2}$ radians. Observe that the vectors $u(x)$ are tangent to the level curves of f , so the vectors $g(x)$ are orthogonal to the level curves of f .

Theorem 2. *Let f be a θ – homogeneous function and $x(t)$ a solution of the initial value problem*

$$(3) \quad \begin{cases} \dot{x} = u(x) \\ x(t_0) = x_0 \end{cases}$$

where u is defined above. Then $x(t)$ satisfies the Kepler's second law in relation to the origin.

Proof We note that because $x(t)$ is a solution of (3), then it is a parametric function of a part of the level curve $f^{-1}(f(x_0))$. This fact and lemma 1 imply that

$$A'(t) = \begin{vmatrix} x_1(t) & x_2(t) \\ x_1'(t) & x_2'(t) \end{vmatrix} = \langle \nabla f(x), x \rangle = \alpha(f(x)) = \alpha f(x_0)$$

which is constant.

Corollary 2. *Let f be homogeneous of degree $\alpha > 0$. Then the solution of the equation $\dot{x} = u(x)$ satisfies the Kepler's second law with constant $c = \frac{\alpha}{2}$.*

Proof The function f is homogeneous of degree α , then by Remark 1, $\alpha(z) = \alpha z$. Let $x(t)$ be the solution of $\dot{x} = u(x)$ so that $f(x(t)) = 1$. Then by Theorem 2, $2c = A'(t) = \alpha \cdot f(x_0) = \alpha \cdot 1$, and so $c = \frac{\alpha}{2}$.

Lemma 2. *Let $x(t)$, $t \in (a, b)$ a parameter representation of a curve of a curve C that satisfies the second Kepler's law with constant c in relation to P . Then to obtain another parametric representation $x_1(s)$, $s \in (c, d)$ that satisfies the Kepler's second law with constant c_1 it is sufficient to take $x_1(s) = x(s \frac{c}{c_1})$.*

Proof Let $h: (c, d) \rightarrow (a, b)$ be a function so that $t = h(s)$ and $x(t) = x_1(h(s))$. Then,

$$2c = \begin{vmatrix} x(t) - P \\ x'(t) \end{vmatrix} = \begin{vmatrix} x_1(h(s)) - P \\ h'(s)x_1'(h(s)) \end{vmatrix} = h'(s) \begin{vmatrix} x_1(h(s)) - P \\ x_1'(h(s)) \end{vmatrix} = h'(s)2c_1$$

Then $h'(s) = \frac{c}{c_1}$ which implies that $t = h(s) = \frac{c}{c_1}s + t_0$,
 So, $x_1(s) = x(s\frac{c}{c_1} + t_0)$.

Lemma 3. *Let $x(t)$, $t \in J$ and $\tilde{x}(s)$, $s \in J_1$, parametric representations of a curve C that satisfies the Kepler's second law with the same constant c in relation to P . Then $t = s + d$, with d constant.*

Proof Because $x(t)$ and $\tilde{x}(s)$ parameterize the same curve C we have that $\tilde{x}(s) = x(t) = x(h(s))$, $t = h(s)$, and then $\tilde{x}'(s) = h'(s)x'(h(s)) = h'(s)x'(t)$. So,

$$2c = \left| \begin{array}{c} \tilde{x}(s) - P \\ \tilde{x}'(s) \end{array} \right| = h'(s) \left| \begin{array}{c} x(t) - P \\ x'(t) \end{array} \right| = h'(s)2c$$

Then, $h'(s) = 1$ and so $h(s) = s + d$.

Theorem 3. *Let $x(t)$ be a parametric representation of a curve C that satisfies the Kepler's second law with a constant $\alpha = c$ in relation to origin. Then there exists a homogeneous function of degree $\alpha = 2c$ so that $x(t)$ is a solution of (3).*

Proof By Corollary 1 we have that $C = \{x(t), t \in J\}$ is a level curve of a homogeneous function f of degree $\alpha = 2c$, that is, $f(x(t)) = 1$, $x(t_0) = x_0$, $f(x_0) = 1$. Consider the equation (3) and let $\tilde{x}(s)$ be a solution so that $\tilde{x}(t_0) = x_0$. Then, $f(\tilde{x}(s)) = 1$, and because $\tilde{x}(s)$ satisfies the Kepler's second law with the same constant c and $\tilde{x}(t_0) = x_0$, then $\tilde{x}(t) = x(t)$.

We observe that if we change the point P and consider the same parameter, the relation between the areas swept out by a point that moves from point P to a point P_1 is given by:

$$(4) \quad A = \int_a^b \frac{1}{2} \left| \begin{array}{c} x(t) - P \\ x'(t) \end{array} \right| dt = \int_a^b \frac{1}{2} \left| \begin{array}{c} x(t) - P_1 + P_1 - P \\ x'(t) \end{array} \right| dt \\ = \int_a^b \frac{1}{2} \left| \begin{array}{c} x(t) - P_1 \\ x'(t) \end{array} \right| dt + \int_a^b \frac{1}{2} \left| \begin{array}{c} P_1 - P \\ \int_a^b x'(t) \end{array} \right| dt = A_1 + \frac{1}{2} \left| \begin{array}{c} P_1 - P \\ x(t) - x(a) \end{array} \right|$$

If f is θ homogeneous and $x(t)$ is a solution of (3) for $t \in (t_0, t_1)$, we have that $\left| \begin{array}{c} x(t) - P \\ x'(t) \end{array} \right| = \left| \begin{array}{c} x(t) - P \\ u(x) \end{array} \right| = \alpha(f(x))$
 Then, $A = \frac{1}{2} \int_{t_0}^{t_1} \alpha(f(x(t))) dt = \frac{1}{2} \int_{t_0}^{t_1} \alpha(z_0) dt = \frac{1}{2} \alpha(z_0)(t_1 - t_0)$.

5. AN APPLICATION: THE TWO-BODY PROBLEM

Consider the classical problem in which an object of mass m orbits another object of a much larger mass M . Let F be the center of mass between m and M , and suppose that the movement is elliptical, that is, the object of mass m describes an ellipse whose focus is F .

The orbital period P is known in terms of the masses m and M , that is: $P = \frac{4\pi^2 a^3}{G(m+M)}$, where G is the gravitational constant.

We observe that this is a movement that satisfies the Kepler's second law and then we know that:

$$\frac{1}{2} \begin{vmatrix} x(t) - F \\ x'(t) \end{vmatrix} = c \quad \text{and} \quad A = \pi ab$$

Then, $\pi ab = \int_{t_0}^{t_1} \frac{1}{2} \begin{vmatrix} x(t) - F \\ x'(t) \end{vmatrix} dt = (t_1 - t_0)c = Pc$.

$$\text{So, } c = \frac{\pi ab}{P}.$$

Our objective is to obtain the equation of the movement $x(t)$ of the body of mass m . (with Kepler's constant c relatively to F).

Given $f = f(x_1, x_2) = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} - 1$, the movement's orbit is given by the level curve one of f , that is, $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$.

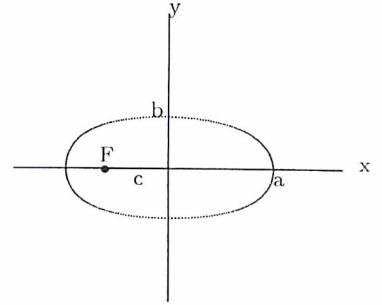
We observe that f is homogeneous of degree 2, $\vec{\nabla} f(x) = \left(\frac{2x_1}{a^2}, \frac{2x_2}{b^2} \right)$, and $u(x) = \left(\frac{-2x_2}{b^2}, \frac{2x_1}{a^2} \right)$.

The ordinary differential equation is $\dot{x} = \left(\frac{-2x_2}{b^2}, \frac{2x_1}{a^2} \right)$.

The solution for this equation is $\tilde{x}(s) = \left(a \cos \frac{2s}{ab}, b \sin \frac{2s}{ab} \right)$. For this solution the constant in relation to $P = 0$ is:

$$\frac{1}{2} \begin{vmatrix} x(\tilde{t}) - P \\ x'(\tilde{t}) \end{vmatrix} = \frac{1}{2} \begin{vmatrix} a \cos \frac{2\tilde{t}}{ab} & b \sin \frac{2\tilde{t}}{ab} \\ \frac{-2}{b} \sin \frac{2\tilde{t}}{ab} & \frac{2}{a} \cos \frac{2\tilde{t}}{ab} \end{vmatrix} = 1$$

Let $\bar{x}(\tilde{t})$ be the parametric representation with constant $c = 1$ in relation to F . We know that any curve can have a parametric representation for to satisfy the Kepler's



second law.

$$\text{So, } \tilde{t} = \tilde{A}(s) = \frac{1}{2} \int_{s_0}^s \left| \begin{array}{c} \tilde{x}(v) - F \\ \tilde{x}'(v) \end{array} \right| dv = \frac{1}{2} \int_{s_0}^s \left| \begin{array}{c} \tilde{x}(v) \\ \tilde{x}'(v) \end{array} \right| dv - \frac{1}{2} \int_{s_0}^s \left| \begin{array}{c} F \\ \tilde{x}'(v) \end{array} \right| dv =$$

$$s - s_0 - \frac{1}{2} \left| \begin{array}{c} F \\ \tilde{x}(s) - \tilde{x}(s_0) \end{array} \right|$$

Since $F = -\sqrt{a^2 - b^2}$ and taking $s_0 = 0$, it follows that:

$$\tilde{t} = \tilde{A}(s) = s - s_0 + \frac{1}{2} \left| \begin{array}{c} (-\sqrt{a^2 - b^2}, 0) \\ \tilde{x}(s) - \tilde{x}(0) \end{array} \right| = s + \frac{1}{2} \left| \begin{array}{c} -\sqrt{a^2 - b^2} \\ a(\cos \frac{2s}{ab} - 1) \quad b \sin \frac{2s}{ab} \end{array} \right|.$$

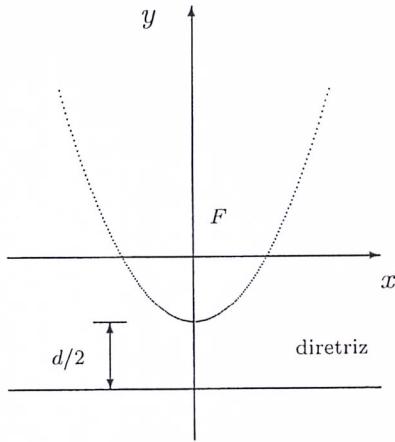
$$\text{Then, } \tilde{t} = s - \frac{1}{2} b \sqrt{a^2 - b^2} \sin \frac{2s}{ab} = s - \frac{1}{2} b \sqrt{a^2 - b^2} \left[\frac{2s}{ab} - \left(\frac{2s}{ab} \right)^3 \frac{1}{3!} + \left(\frac{2s}{ab} \right)^5 \frac{1}{5!} + \dots \right]$$

But $\tilde{t} = \tilde{A}(s)$, $s = h(\tilde{t})$, then $\bar{x}(\tilde{t}) = \tilde{x}(h(\tilde{t}))$, and we remember that in this manner $\bar{x}(\tilde{t})$ satisfies the Kepler's second law with constant $c = 1$.

Taking $x(t) = \bar{x}(ct)$, where $\tilde{t} = ct$, the Kepler's second law is satisfied with constant $c = \frac{\pi ab}{P}$.

This is the parametric representation of the planetary movement of two-body problem whose Kepler's constant is given as a function of the period.

Let us now consider the case when the orbit is a parabola, $y = \frac{1}{2d}(x^2 - d^2)$.



The parametric representation $\begin{cases} x = u \\ y = \frac{1}{2d}(u^2 - d^2) \end{cases}$

cannot satisfies the Kepler's second law, and then we make a parametric representation by surface measure by making:

$$\frac{1}{2} \begin{vmatrix} u & \frac{1}{2d}(u^2 - d^2) \\ 1 & \frac{u}{d} \end{vmatrix} = \frac{1}{2} \left(\frac{u^2}{d} - \frac{1}{2d}(u^2 - d^2) \right) = \frac{1}{2} \left(\frac{u^2 + d^2}{2d} \right) = \frac{1}{4d}(u^2 + d^2)$$

$$\text{Then, } \tilde{t} = \frac{1}{2} \int_0^u \frac{v^2 + d^2}{2d} dv = \frac{1}{2} \left(\frac{1}{6d}u^3 + \frac{d}{2}u \right) = \frac{1}{12d}u^3 + \frac{d}{4}u = \theta(u) \text{ and so, } u = \theta^{-1}(\tilde{t})$$

By making a change of parameters, we obtain a new parametric representation that satisfies the Kepler's second law with constant 1 in relation to F. Let $(\tilde{x}(\tilde{t}), \tilde{y}(\tilde{t}))$ this parametric representation. So, $(\tilde{x}(ct), \tilde{y}(ct))$ will satisfies the Kepler's second law with constant c determined by the velocity v_0 at $t = 0$.

But, $(\tilde{x}(ct), \tilde{y}(ct)) = ((u, \frac{1}{2d}(u^2 - d^2)) = (\theta^{-1}(ct), \frac{1}{2d}(\theta^{-1}(ct))^2 - d^2)$ and $(\tilde{x}'(ct), \tilde{y}'(ct))_{t=0} = \left(\frac{1}{\theta'(u)}, \frac{2}{2d} \frac{1}{\theta'(u)}u \right)_{u=0}$, where $\theta'(u) = \left(\frac{3u^2 + 3d^2}{12d} \right)_{u=0} = \frac{1}{4}d$ and we observe that in this example the constant c was not determined in function of the period because we are treating of the parabolic case; it is done in function of the initial velocity.

Put now $x(t) = \tilde{x}(ct)$ and $y(t) = \tilde{y}(ct)$. Then, $(x'(0), y'(0)) \frac{4}{d} = (1, 0)$ and then $\vec{v}_0 = (c \frac{4}{d}, 0)$ and $v_0 = |\vec{v}_0| = c \frac{4}{d}$ and then, $c = \frac{dv_0}{4}$. So, we have that $(x(t), y(t))$ is a parametric representation that satisfies the Kepler's second law with constant c in relation to F, where c is given above.

We observe that in this case we obtain u in function of \tilde{t} by resolving a cubic equation.

In the elliptic case the equation is transcendent.

In a analogous way we can describe the movement in the case that the orbit is a hyperbole. In this case the parametric representation involves hyperbolic functions.

REFERENCES

- [1] Herrick, C., On the computation of nearly parabolic two-body orbits, *Astronom.J.*, vol.65, number 6, 386-388(1960)
- [2] Stoker, J. J., *Differential Geometry, Pure and applied Mathematics*, Wiley-Interscience, (1969)

DEPARTAMENTO DE MATEMÁTICA, INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO,
UNIVERSIDADE DE SÃO PAULO- CAMPUS DE SÃO CARLOS, CAIXA POSTAL- 668, 13560-970 SÃO
CARLOS- SP

E-mail address: biasi@icmc.sc.usp.br, smsgodoy@icmc.sc.usp.br

NOTAS DO ICMC

SÉRIE MATEMÁTICA

153/2002 LABOURIAU, I.S.; RUAS, M.A.S. – Invariants for bifurcations.

152/2002 LICANIC, S. – An upper bound for the total sum of the Baum-Bott indexes of a holomorphic foliation and the Poincaré's problem.

151/2002 OLIVEIRA, C.R.; GUTIERREZ, C.- Almost periodic Schrödinger operators along interval exchange transformations.

150/2002 CHAU, N.V.; GUTIERREZ, C.- A note on properness and the Jacobian conjecture in R^2 .

149/2002 ARRIETA, J.M.; CARVALHO, A.N. – Neumann boundary value problems: continuity of attractors relatively to domain perturbations.

148/2002 ABREU, E.A.M.; CARVALHO, A.N. – Lower semicontinuity of attractors for parabolic problems with dirichlet boundary conditons in varying domains.

147/2002 TAHZIBI, A. – Robust transitivity implies almost robust ergodicity.

146/2002 HERNÁNDEZ M. – Existence results for second a order partial neutral functional differential equation.

145/2002 HERNÁNDEZ M. – A impulsive functional second order differential equation.

144/2002 BRUCE, J.W.; TARI, F. – On families of square matrices.