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GENERALIZED HOMOGENEOUS FUNCTIONS AND THE
TWO-BODY PROBLEM

C. BIAST AND S.M.S. GODOY

ABSTRACT. In this article we study a generalization of the homogeneous function
concept. An application is done with a solution of the two-body problem.

RESUMO. Neste artigo estudamos uma generalizacdo do conceito de func¢ao ho-
mogénea. Uma aplicagdo é feita com uma solugdo para o problema de dois corpos.
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1. INTRODUCTION

In this paper we generalize the classic concept of homogeneous function of degree o
and we study the relation between the homogeneous function concept and the move-
ment of a body that satisfies the Kepler’s second law.

As an application of the involved techniques that were used, we present a solution of
the two-body problem, giving a way to obtain a time equation for the body that rotates
around the other, using the concept of homogeneous function.

We obtained a series like as that was presented in [1].

2. GENERALIZED HOMOGENEOUS FUNCTIONS

Let U be an open subset of R™ so that if z € U and A is a real number, 0 < A < 1,
then A\.x € U.

Definition 1. Let f : U — R be a C" function. We say that f is an homogeneous
function of degree « if f(A.x) = X*.f(z), if A > 0.

We put bellow the well known concept of homogeneous function.

Let @ be a function of class C™ such that 6 : (0, 00) x (0,00) — (0, c0) and

Al z) =z
(1) {0(/\1./\2,2) = 0(\,0()\2, 2)).
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2 BIASI AND GODOY

We observe that 0 is an action of the multiplicative group (0,00) to (0, 00).

00(1, z)
ER , 2 € (0,00).

Let us generalize the concept of an homogeneous function.

Consider the function  «(z) =

Definition 2. Let f : U — R be a function of class C". We say that f is 0 —
homogeneous if

1) f(Az) =0() f(2))
it) a(f(z)) > 0.

Lemma 1. Let 0 be an action of (0, 00).
Then fis a 6 — homogeneous function <= (V f(z), ) = a(f(x))

Proof: =) We note that:

(Vf(hz), z) = 89(/\ f(x)). Then, for A = 1, we have that, (V f(z), z) =

21, fa) = a (f@))
<) We define for each value of z, the functions:

p(A) = f(Az) and ¢(A) = O(A, f(x))

We note that ¢(1) = f(z) = ¢(1). We will prove that ¢ and ¢ are solutions of an
ordinary differential equation with the same initial condition.

We have that: a(f(Az)) = (V f(Az), Az) =MV f(Az), z) =A¢'(N)

Then, a(p(})) = A¢'(A)

So ¢ is a solution of the equation ¢’ = %(p.

7

For the function ¢(A) we have,

AP () = Ag2 (6, @),
Consider the function h(t) = 0(¢,0(N, f(z))) = 0(t A, f(z)).

Tiién, h’()—)\%(t/\ £(z)). So, A(1) = az( £(z)).
9

By other side, h'(1) = o —(1,0(A, f(z)) = a(0(A, f(z))). Then, Ag'(A) = a(p(N)). So,

@ = X(,b, and then ¢ = @.

Remark 1. Let f be a 8 — homogeneous function with 0(X\,z) = A\*z. Then f is
homogeneous of degree o, with a(z) = a z.

In fact, if f is a O — homogeneous function, then f(Ax) = 0(N, f(z)) = A\* f(z). But

ai(l z) = @A*lz, for A = 1. Se, a(z) = az.

Remark 2. When Py is any point, we say that f s a 0 — homogeneousfunction
relative to Py if f(Py+ Mz — Pp)) = 0(, f(x)).

o 2) =

As in the proof of Lemma 1 we easily demonstrate that: (6 flz), z—Fy) = a(f(z)).
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Theorem 1. Let 0 be an action as in (1), C a curve and Py ¢ C. There exists a
0 — homogeneous function f relative to Py, so that f(z) =1,Vx € C.

Proof: Define P(A) = (N, 1). Suppose Py = 0. For every z € C, choose y so that
e (}) € C. Then we define f(z) =y. It is clear that f(z) =1, Vz € C.

We have that AL A e C.

OO f(z ))) Mp=1(f(z))
So, O(Mp ! (f (= )),1)(= YW~ (f () = (0N f(2)))) = 0(), f(2)).

So, f(A, ) =0(A, f(x)) and the function f is @ — homogeneous.

Corollary 1. If C' is any curve, then it is a level curve of a homogeneous function of

degree o > 0.
Yy
We remember now the Kepler’s second law: The Area’s Law PZ_\
Let P, and P be two successive positions of a body N
in a interval of time d¢. The element of1a4rea i% tgis
interval of time is 64 = r2§¢/2, or, — = ,—.—¢
is a constant, that is, the area is proportional to !
time. —7
Consider a C" plane curve C,r > 1, and a
point P = (P, P;) ¢ C. Suppose C is given by c
z = z(t) = (z1(t), z2(t)), so that x(t) "
z(t1) /xx( 0)
2 /
— ' — 5 - P
det CC(t), P — det l](t/) P1 Qg(tl) 2 =0
a'(t) i (t) 5 (t) P =(P,P)

We know that the area swept out by a body that moves from Qy = (z1 (o), z2(t0))
to Q1= (w1(t1), z2(t1)) is

1 [ z(t) — P
A—§[O ’Ll(t) (“
30,
Ay L z(t) — P| _
10=30" -

Definition 3. A curve C satisfies the Kepler’s second law relative to the point P if
A'(t) = ¢, for some ¢ > 0.
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i
w) — 1

Then’ A(f) == %/ a:(;b,)(?j)Pl du = 5 2c (t - to) = C(t o to).
to 'l ! =

So, the area is proportional to the time to go from z(¢g) to z(¢), and then satisfies the
areca’s Kepler’s law.

Remark 3. Ifz(t), t € (a,b) is a parametric curve C that satisfies the Kepler’s second
law with constant ¢ in relation to P, we have that:

where p =0 — a.

3. PARAMETRIC REPRESENTATION BY SURFACE MEASURE

It is often convenient to shift from one parameter representation of a curve, to
another, to achieve once a special parametric representation for the Kepler’s second
law to be satisfied. Let Z(u), u € (¢, d), the parameter representation of a curve C. We

have that: . )
~ “1\zZ(v) — P
(U)—i./uO () ‘dv
So,
=0« 1 (Ea)—P
A (U) = 5 .'i'/(’LL) = O,VU

We make the follow change of parameter: ¢t = A(u), t € (a,b), and h(t) = u, and define
w(t) = o(h(f)).

With this choice of the parametric representation, the curve C' satisfies the Kepler’s
second law in relation to P.
In fact, we have that:

1iz() — P -1 |&u) —P =L :f:(u)—P_lz 1 CZ‘(’LL)—P_I
2| ='(t) | 2|3 (w).K()| ' (u) 27 &(u) — P|7| T(uw) |
¥ (m)
So
1(?,(;)]3 = 2 and the Kepler’s second law is satisfied.
Definition 4. If a curve C satisfies the Kepler’s second law with constant ¢ = 1

in relation to P we say that the curve C has a parametric representation by surface
Measure.

Then, above we prove that any curve can have a parametric representation by surface
measure, what is analogous that we know by the parametric representation of one curve
by arc length. [2]
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So we prove that if z(t) is a parametric representation of a curve by surface measure
and the time to go from a point (); to Q3 is T, then the area swept out is 7.

4. GENERALIZED HOMOGENEITY AND THE KEPLER’S SECOND LAW

Let U be an open subset of R?. Let f: U — R be a C! function whose derivative
at a point = is denoted by f'(z). There exists a unique vector g(z) € R? such that
f'(@) - v = (g(z),v), for all v € R?*, where (, ) denotes the inner product in R2. Let

u(z) be the hamiltonian field obtained by rotating g(z) by an angle of 7 radians.
Observe that the vectors u(z) are tangent to the level curves of f, so the vectms g(2)
are orthogonal to the level curves of f.

Theorem 2. Let f be a 0 — homogeneous function and x(t) a solution of the initial
value problem

3) {7: = u(z)

$(to) =Ty

where u is defined above. Then x(t) satisfies the Kepler’s second law in relation to
the origin.

Proof We note that because z(t) is a solution of (3), then it is a parametric function
of a part of the level curve f~'(f(zo)). This fact and lemma 1 imply that

z1(t) ()] _ (Vf(z),z) = a(f(z)) = af(z))

AO =200 o)

which is constant.

Corollary 2. Let f be homogeneous of degree o > 0. Then the solutzon of the equation
& =u(z) satisfies the Kepler’s second law with constant ¢ =

l\')]Q

Proof The function f is homogeneous of degree a, then by Remark 1, a(z) = az. Let
z(t) be the solution of # = u(z) so that f( (t)) = 1. Then by Theorem 2,

2¢ = A'(t) =a.f(25) = 0.1, and se ¢ = 3.
Lemma 2. Let z(t), t € (a,b) a parameter representation of a curve of a curve C
that satisfies the second Kepler’s law with constant c in relation to P. Then to obtain
another parametric representation z1(s), s € (c¢,d) that satisfies the Kepler’s second

law with constant ¢, it is suficient to take 1(s) = z(s ).

Proof Let i : (¢,d) — (a,b) be a function so that ¢ = i(s) and z(t) = z1(h(s)). Then,
_z@®) = P| _|z1(h(s)) - P| _ (s z1(h(s)) — P| _ ()9
=" |7 /’L’(s):z:l’(/‘z,(s))‘ =P (s 1 duss
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Then A'(s) = ~ which implies that t = h(s) = el to,
C Cq

So, z1(s) = :c(si + to).
C1

Lemma 3. Let x(t), t € J and &(s), s € Jy, parametric representations of a curve C
that satisfies the Kepler’s second law with the same constant c in relation to P. Then
t = s+ d, with d constant.

Proof Because xz(t) and Z(s) parameterize the same curve C' we have that Z(s) =

z(t) = z(h(s)), t = h(s), and then Z'(s) = h'(s)z'(h(s)) = h'(s)z'(t). So,

Z(s)— P

28 = g} ’ = H(s)|"

Then, A'(s) = 1 and so h(s) = s+ d.

Theorem 3. Let z(t) be a parametric representation of a curve C' that satisfies the
Kepler’s second law with a constant o = c in relation to origin. Then there exists a
homogeneous function of degree o = 2c so that x(t) is a solution of (3).

Proof By Corollary 1 we have that C = {z(t),t € J} is a level curve of a homogeneous
function f of degree o = 2¢, that is, f(z(t)) = 1, z(to) = zo, f(z0) = 1.

Consider the equation (3) and let Z(s) be a solution so that #(ty) = z,. Then,
f(z(s)) = 1, and because z(s) satisfies the Kepler’s second law with the same con-
stant ¢ and Z(tg) = o, then Z(t) = z(¢).

We observe that if we change the point P and consider the same parameter, the
relation between the areas swept out by a point that moves from point P to a point

P, is given by:
b b
B 1|z(t)— P - 1
P — P\ 1

bl -bl
= — dt — dt = Ay + —
/ > +/a 2| 2(t) 13

If f is 6 homogeneous and z(t) is a solution of (3) for ¢ € (ty,t1), we have that
z(t) — P‘ |zt -P

(IZ(t)-Pl—f‘P]—P
/(1)

[

z'(t)

P -P
z(t) — z(a)

Thisn, A= é/ "l el = % |

< Jto



5. AN APPLICATION: THE Two-BopYy PROBLEM

Consider the classical problem in which an
object of mass m orbits another object of a
much larger mass M. Let F' be the center of v
mass between m and M, and suppose that
the movement is elliptical, that is, the object

of mass m describes an ellipse whose focus is B
F [ N
The orbital period P is knew in terms of the \C /1

A72q?

G(m+ M)’
where G is the gravitational constant.

masses m and M, that is: P =

We observe that this is a movement that satisfies the Kepler’s second law and then
we know that:

1 _
Z T(t), i =¢ and A=nab
2| z'(t)
1 |w(t) — F
Then, mab = /LO 5 T(l)’(f) dt = (t; — tg)c = Pe.
bo), B== 7r_a,b.

Our objective is to obtain the equation of the movement x(¢) of the body of mass m.
(with Kepler’s constant c relatively to F).

2 2
, i Ty ) o
Given f = f(z1,22) = —a%— = b% —1, the movement’s orbit is given by the level curve
2 3
T T
one of f, that is, —1—2 + —27 = 1.
a b*
. = 211)1 21132
We observe that f is homogeneous of degree 2, Vf(z) = (=, _bQ_)’ and
e
—2x9 224
“(T):( IR )
o —2z5 2z
The ordinary differential equation is z = (72, azl)
’ ) . L 2s . 2s ) )
The solution for this equation is Z(s) = (a cos —, bsin -—b) For this solution the
a a

constant in relation to P = 0 is:

2t s 2t
T 1| @cos g bsin =
= = = 1

2f

ab

—2 o 3 2
< Sin 2+ Cos

Let Z(f) be the parametric representation with constant ¢ = 1 in relation to F. We
know that any curve can have a parametric representation for to satisfy the Kepler’s
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second law. . N s
So, = A(s) = 5/50 I(g,)(U_)F‘ dv = 5/50 ;,((?) dv — 5/50 :T:’j(wv) dv =
1 F
57507 5 E(s) — E(so)
Since F' = —v/a2? — b? and taking sq = 0, it follows that:
f=Als)=s-s+ % (;(SC)Lz—_iZ)(%)O)» =8 % a/(_cosag—z_—bz) bsi?l 2\

- 1 28 1 28 28.n 1 25 1
Then, f= 5—=b/aE — I sin— =8 — — by —1E [ = (P (et ..
- 5T gove M T T v [ab (a,b) 3! +(ab) 5+ ]
But t = A(s), s = h(t), then z(f) = Z(h(t)), and we remember that in this manner
z(t) satisfies the Kepler’s second law with constant ¢ = 1.

Taking z(t) = #(ct), where ¢ = ct, the Kepler’s second law is satisfied with constant

mab
c=—.

This is the parametric representation of the planetary movement of two-body problem
whose Kepler’s constant is given as a function of the period.
2 dZ).

. L. 1
Let us now consider the case when the orbit is a parabola, y = ﬁ('r
a

‘\\ /

/2 T diretriz

~

=1
The parametric representation r ., 5
y =5~ &)

Do
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cannot satisfies the Kepler’s second law, and then we make a parametric representation
by surface measure by making:

U ag(u? —d?)
1 U

1

; (4 = (e = ) = 3(55E) = 3 (* + &)

71 [uv?id? _1({ 1,3 ,d _ 1.3 ,d,, _ nf, . . — -1
Then, t=3 [, 55 dv—2<6du, +2u>—12du + qu = 0(u) and so, u=07'(t)

By making a change of parameters, we obtain a new parametric representation that
satisfies the Kepler’s second law with constant 1 in relation to F. Let (Z(%),7(#)) this
parametric representation. So, (Z(ct), y(ct)) will satisfies the Kepler’s second law with
constant ¢ determined by the velocity vy at ¢t = 0.

But, (Z(ct), §(ct)) = ((u, 53 (w* = &) = (07 (ct), 55 (67 (c1))* — &) amdl
Ju + 3d

= = _ (1 2 1 ) — _ 1
(m’(ct),y’(ct))tzo = (W’ﬁm“‘)uzo , where 0'(u) = <T)u=0 = zd and
we observe that in this example the constant ¢ was not determined in function of the
period because we are treating of the parabolic case; it is done in function of the initial
velocity.

Put now z(t) = #(ct) and y(t) = §(ct). Then, (2'(0),4'(0))3 = (1,0) and then

v
vy = (¢3,0) and vy = [0g| = ¢ and then, ¢ = =2 So, we have that (z(t),y(t)) is

a parametric representation that satisfies the Kepler’s second law with constant c in
relation to F, where c is given above.

We observe that in this case we obtain u in function of ¢ by resolving a cubic
equation.

In the elliptic case the equation is transcendent.

In a analogous way we can describe the movement in the case that the orbit is a
hyperbole. In this case the parametric representation involves hyperbolic functions.
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