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Abstract
To better understand the biodiversity-biogeographic polar connections between southern South America and Antarctica (SSA 
& A), we used benthic communities of hydroids as a model to investigate marine assemblages by evaluating classic spatial 
divisions at different geographical resolutions. Using a georeferenced dataset of 249 species and multivariate analyses, we 
investigated species’ distribution, composition and biogeographic connectivity, and defined assemblages of ecoregions and 
provinces for the area. Hotspots of rich biodiversity at risk of depletion were defined. Analyses of ecoregions have a more 
stratified biogeographic structure, and reveal critical regions susceptible to loss of diversity. Analyses of provinces show 
a clear division between Atlantic-Pacific and Antarctic-Subantartic assemblages, with high biogeographic isolation of the 
Subantarctic islands. Depending on spatial resolution, the biogeographic position of the Magellan area is spatially contra-
dictory, clustering on the one hand with SSA ecoregions and on the other with Antarctic provinces. Our patterns appear to 
be driven by different combinations of processes and barriers, reflected in the stratified distribution of hydroids. The high 
level of endemism and concentration of species at the edge of distribution in the Magellan area and Scotia Arc suggest their 
transitional nature and particular importance for understanding the historical and ecological connections between SSA & A.
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Introduction

The southern South America (SSA) coast extends 
from ~ 22°S to 56°S, encompassing ~ 10,000 km of coastline 
washed by the Atlantic and the Pacific oceans (Miloslavich 
et al. 2011). It comprises several different geographic fea-
tures and marine ecosystems (e.g., archipelagos, channels, 
estuaries, lagoons, mangroves, rocky shores, sandy beaches, 
seagrass beds), supporting a high, but still poorly known, 
marine biodiversity (Acha et al. 2004; Costello et al. 2010; 
Miloslavich et al. 2011). Historically, part of the marine 
fauna of the Atlantic and Pacific is shared with the Southern 
Ocean due to the past connection between southern South 
America and Antarctica (SSA & A). Antarctica, however, 
has been isolated for the last ~ 25 million years contribut-
ing to the high incidence of endemic marine species (e.g., 
Lawver and Gahagan 2003).

The region has been classified according to many bio-
geographic schemes based on different taxa (e.g., Gib-
bons 1997; Linse et al. 2006; Griffiths et al. 2009), but 
usually focusing on single oceans (e.g., Gibbons 1997; 
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Douglass et al. 2014; Koubbi et al. 2014; Acha et al. 2020) 
or on global studies (e.g., Watling et al. 2013; Costello 
et al. 2017; Sutton et al. 2017), obscuring detailed bio-
geographic patterns of the SSA & A. The Marine Ecore-
gions of the World (MEOW) and the pelagic provinces of 
the world (Spalding et al. 2007, 2012), however, provide 
nested systems of classification of the oceans that combine 
small-scale spatial units and standardized datasets that 
provide practical utility, facilitating biogeographic analy-
ses along SSA & A. Both systems are complementary and 
preserve many common elements of previous global and 
regional biogeographic classifications (e.g., Briggs 1974). 
Their ecoregions and provinces are defined as cohesive 
units applicable to the broad life history processes of most 
mobile, sedentary, and dispersive species (e.g., cnidarians 
of the class Hydrozoa; Spalding et al. 2007). As such, they 
are widely used for biodiversity and biogeographic studies 
wordwide (Poore and Bruce 2012; Vilar et al. 2019; Palo-
mares et al. 2020; Summers and Watling 2021).

Along the SSA & A coasts, hydroids—the polyp stage 
of the cnidarian class Hydrozoa (Cornelius 1992)—are 
abundant in benthic communities, being usually among 
the first organisms to settle available space and having the 
capacity to grow quickly on several natural and artificial 
substrates (Gili and Hughes 1995; Genzano et al. 2009). 
Recent phylogenetic studies have identified several likely 
clades corresponding roughly to the suborder or order 
level in hydrozoan classifications, including Limnomedu-
sae, Leptothecata, Aplanulata, Capitata, and Pseudothe-
cata; the latter three taxa along with a few other groups 
of “Filifera” are still united under a non-monophyletic 
“Anthoathecata” (Collins et al. 2006; Cartwright et al. 
2008; Leclère et al. 2009; Kayal et al. 2015; Maronna et al. 
2016; Mendoza-Becerril et al. 2018).

Hydroids are widely distributed in marine benthic stub-
strates, occurring from shallow coastal to abyssal habitats 
(Gili and Hughes 1995; Gravili 2016). Geographic records 
of hydroids are directly related to the wordwide distribu-
tion of hydrozoan taxonomists. The Mediterranean sea, 
for example, has a comparatively high richness of known 
hydrozoan species but also concentrates a large number 
of specialists in Hydrozoa and is one of the best studied 
areas of the world (Gravili et al. 2013; González-Duarte 
et al. 2015; Gravili 2016). In contrast, the deep-sea, polar 
regions, and vast areas of the South Atlantic and South 
Pacific have significant knowledge gaps (Henry et al. 2008; 
Genzano et al. 2009, 2017; Peña Cantero 2014; Ronow-
icz et al. 2015; Fernandez and Marques 2018). Neverthe-
less, recent studies in these areas are building biodiversity 
knowledge about Hydrozoa, allowing for reports on pat-
terns of richness, endemism, dispersal, and bathymetrical 
and latitudinal distributions (Genzano et al. 2009, 2017; 

Gibbons et al. 2010a, b; Mercado Casares et al. 2017; 
Ronowicz et al. 2019; Fernandez et al. 2020).

Wider or patchier geographic distributions of hydroids 
generally result from different dispersal capabilities, biotic 
interactions, substrate availability and environmental pref-
erences (Cornelius 1992; Gili and Hughes 1995). Despite 
being relatively well known since the nineteenth century 
in the Chilean Patagonia (from ~ 40°S to 56°S), the south-
eastern Brazilian and Buenos Aires coasts (from ~ 20°S to 
40°S) and the Antarctic Peninsula (from ~ 60°S to 75°S) 
(Peña Cantero 2014; Oliveira et al. 2016), hydroids are 
still poorly known from the Argentinian Patagonia (from 
40°S–55°S), and along the east coast of Antarctica (from 
60°S–70°S 0°–180°E). Many records are associated with 
contradictory identifications or are referred to cryptic spe-
cies (e.g., species of Campanulariidae and Sertulariidae; 
Moura et al. 2011; Cunha et al. 2015, 2017), and thus are 
likely to benefit from a taxonomic review prior to biogeo-
graphic inferences. The first steps to minimize biases in bio-
geographic studies are defining the species pool under study, 
intensive and careful field surveys (particularly in poorly 
explored regions), and detailed cleaning and quality control 
of taxonomic and spatial data (Yang et al. 2013; Khalighifar 
et al. 2020). The use of measures of biodiversity that are 
highly dependent on equal sampling effort (e.g., richness) 
is challenging because these measures may generate biased 
conclusions (Hortal et al. 2007; Clarke et al. 2014). Alterna-
tive approaches employing taxonomic distinctness, which 
measures the biodiversity at the taxonomic level, allow 
for the comparison of diversity between unequal samples 
(Clarke et al. 2014). For conservation purposes, taxonomic 
distinctness provides a high level of accuracy for the descrip-
tion of patterns of biodiversity, being highly applicable for 
qualitative datasets and species lists with presence/absence 
data (Clarke and Warwick 1998, 2001; Clarke et al. 2014).

The distributions of biological communities along these 
continents have been separated into different marine realms, 
provinces and ecoregions (viz., Spalding et al. 2007, 2012), 
encompassing the southwestern Atlantic, the southeastern 
Pacific and the Southern Ocean. For hydroids, the area is 
classically divided in Patagonia, the Antarctic region, and 
the Scotia Arc, the latter traditionally considered as a bioge-
ographic bridge between both continents (Mercado Casares 
et al. 2017). Recent studies involving hydroid distributions 
show that the Scotia Arc has higher faunistic affinity to Ant-
arctica than to Patagonia, and they suggest that the Polar 
Front is an important biogeographic barrier in the area (Soto 
Àngel and Peña Cantero 2017). Studies with other marine 
taxa, however, suggest that the colonization of Antarctica 
was not necessarily from the Magellan area via the Scotia 
Arc (Mühlenhardt-Siegel 1999), implying that the connec-
tivity of the latter is likely scale and taxon dependent (Moon 
et al. 2017), and that the permeability of the Polar Front and 
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the Antarctic Circumpolar Current (ACC) is likely higher 
than once presumed (Sanches et al. 2016).

The area between SSA & A represents a complex and 
interesting biogeographic laboratory to study the composi-
tion, biodiversity and distribution of marine species in an 
ecological and historical context. Here, we study the marine 
hydroid fauna of SSA & A in order to (1) update the tax-
onomic status of the species present, (2) evaluate species 
endemism, (3) assess distribution patterns of species and 
community composition along Spalding’s ecoregions and 
provinces, and (4) assess the biogeographic connectivity 
between SSA & A. We hypothesize that the biodiversity and 
faunistic composition of assemblages are scale-dependent 
and vary across Spalding’s ecoregions and provinces, and 
also that endemism increases southwards.

Material and methods

Area of study

The study area comprises the marine benthic habitats of 
southern South America (both the southwestern Atlantic 
and the southeastern Pacific oceans) and Antarctica (includ-
ing the Southern Ocean) from 20°S to 80°S, from shallow 
waters to ~ 5,000 m depth. The main oceanographic cur-
rents influencing the area are the Humboldt system along 
the Pacific side, the Brazilian and Falklands/Malvinas cur-
rents along the Atlantic side, and the Antarctic Circumpolar 
Current (ACC) of the Southern Ocean (Acha et al. 2004).

The area was divided in 25 ecoregions (Fig. 1a) and 10 
provinces (Fig. 1b) following the global biogeographic clas-
sification proposed by Spalding et al. (2007)—the Marine 
Ecoregions of the World (MEOW)—and three additional 
Antarctic pelagic provinces of Spalding et al. (2012)—used 
only for the Antarctic ecosystem because several Antarctic 
and subantarctic records are beyond the coastal and shelf 
areas presented by Spalding et al. (2007). Despite being pro-
posed for pelagic waters, these provinces agree with many 
Antarctic biogeographic benthic systems delimited for dif-
ferent taxa (e.g., Linse et al. 2006; Clarke 2008; Griffiths 
2010; Pierrat et al. 2013), as well as with recent proposals 
included in the Biogeographic Atlas of the Southern Ocean 
(De Broyer and Koubbi 2014). We chose these large-scale 
biogeographic classification systems because they were 
developed under the same methodology for both the ecore-
gions and provinces of SSA & A, enhancing the coherence 
and robustness of our biogeographic analyses. Using both 
the ecoregions and provinces proposed by Spalding et al. 
(2007, 2012), we approach the data from different bio-
geographic perspectives—from smaller and larger scales, 
respectively—allowing for a more complete understanding 
of the distribution data and the biodiversity of hydroids. 76: 

eastern Brazil; 176: Humboldtian; 177: central Chile; 178: 
Araucanian; 180: southeastern Brazil; 181: Rio Grande; 182: 
Rio de La Plata; 183: Uruguay-Buenos Aires shelf; 184: 
north Patagonian gulfs; 185: Patagonian shelf; 186: Malvi-
nas/Falklands; 187: channels and fjords of southern Chile; 
188: Chiloense; 217: Bouvet Island; 218: Peter the First 
Islands; 219: South Sandwich Islands; 220: South Georgia; 
221: South Orkney Islands; 222: South Shetlands Islands; 
223: Antarctic Peninsula; 224: east Antarctic Wilkes Land; 
226: east Antarctic Dronning Maud Land; 227: Weddell 
Sea; 229: Ross Sea; TSWA: Tropical Southwestern Atlan-
tic; WTSWA: Warm Temperate Southwestern Atlantic; M: 
Magellan; WTSEP: Warm Temperate Southeastern Pacific; 
S: Subantarctic; APF: Antarctic Polar Front; A: Antarctic; 
SS: Scotia Sea; CHA: Continental High Antarctica; SI: Sub-
antarctic Islands.

Data collection

Hydroid specimens (hydrocorals excepted) collected in the 
field and from museum and university collections, from 
1,360 geographic sites along the SSA & A coasts, were 
examined. All specimens collected in the field were depos-
ited in the Marine Invertebrates Collection of the Museu 
de Zoologia of the University of São Paulo. A qualitative 
approach was required due to (1) the lack of standardized 
collections available at universities and museums, (2) the 
lack of knowledge of large marine areas of SSA & A, (3) and 
the availability of unexamined and unpublished records of 
hydroids in university and museum collections. While less 
suitable than quantitative sampling for estimating the rich-
ness and abundance of species in communities, qualitative 
surveys are advantageous in that they maximize the explo-
ration of poorly studied areas and uncover new records that 
increase knowledge of species distributions (Hortal et al. 
2007; Clarke et al. 2014). As our focus is to update knowl-
edge of the taxonomic composition of hydroid species in 
SSA & A and to use these observations in order to make 
biogeographic inferences, we placed considerable effort on 
maximizing the taxonomic quality of our presence/absence 
data.

We personally identified specimens and checked all 
collection and geographic information in the literature, 
thereby guaranteeing taxonomic uniformity and geographic 
accuracy; as required for large-scale biogeographic studies 
(Hortal et al. 2007; Santos et al. 2010; Di Camillo et al. 
2018). This approach is particularly essential for taxonomi-
cally complex groups, given that available databases have 
non-uniform identifications and extensive taxonomic revi-
sions have recently been produced (e.g., Peña Cantero 2014; 
Oliveira et al. 2016). We compiled a list of the species stud-
ied and their geographic distribution by ocean and/or sea of 
occurrence (Online Resource Table S1); the endemic species 
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Fig. 1   Ecoregions (a) and 
provinces (b) for southern 
South America and Antarctica 
(modified from Spalding et al. 
2007, 2012)
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were classified in eight categories of endemicity along SSA 
& A, and according to their distribution and traditional bio-
geographic classifications of the area (Balech 1954; Pala-
cio 1982): species endemic to (1) the whole area of study, 
i.e., from 22°S to 78°S, (2) tropical areas, i.e., from 22°S 
to 30°S, (3) tropical and subtropical areas, i.e., from 22°S 
to ~ 43°S, (4) subtropical areas, i.e., from 30°S to ~ 42°S, (5) 
subtropical and Magellan areas, i.e., from 30°S to 60°S, (6) 
the Magellan area, i.e., from ~ 42°S to 60°S, (7) the Magel-
lan and Antarctic areas, i.e., from ~ 42°S to 78°S, and (8) 
the Antarctic area, i.e., ~ 60°S to 78°S (Online Resource 
Table S1). Literature records of hydroids were not herein 
listed, as this has already been done elsewhere (Oliveira et al. 
2016; Ronowicz et al. 2019). Exceptions are the Antarctic 
records of Corymorpha microrhiza (Hickson and Gravely 
1907) and Zyzzyzus parvula (Hickson and Gravely 1907) 
from Svoboda and Stepanjants (2001), which were included 
after studying the specimens at the National Museum of Nat-
ural History, Smithsonian Institution. The taxonomy of all 
species was standardized following the pertinent literature 
to their area of occurrence (Oliveira et al. 2016 and refer-
ences therein; Ronowicz et al. 2019 and references therein; 
Schuchert 2021). Species were phylogenetically classified 
according to Maronna et al. (2016), Mendoza-Becerril et al. 
(2018) and Schuchert (2021).

Multivariate analyses

We included only georeferenced records that were identified 
to the species level in the analyses. Records only to the genus 
or family level, (e.g., Sphaerocoryne sp., Eudendriidae not 
identified) and dubious records (e.g., ?Hybocon chilensis, 
or Hebella ?striata) were excluded from the analyses. For 
the ecoregion analyses, records of Oswaldella gracilis, 
Staurotheca abyssalis and Symplectoscyphus liouvillei col-
lected from outside coastal and shelf areas of SSA & A were 
excluded.

All multivariate analyses were conducted twice, compar-
ing assemblages from ecoregions and provinces. To com-
pare species richness between equally large samples and to 
evaluate sampling effort between assemblages, we calculated 
sample-based rarefaction curves of estimated richness by 
sampling unit in each assemblage. Each sampling unit is a 
geographic site, represented by a unique pair of latitude and 
longitude coordinates, and may have one or more species 
records.

To compare the biodiversity of hydroids at different 
taxonomic levels between assemblages, we used the aver-
age taxonomic distinctness (AvTD) and the variation in 
taxonomic distinctness (VarTD). Both AvTD and VarTD 
are unbiased statistical diversity measures, applicable to 
presence/absence data, and unsensitive to sampling effort, 
size and dominant species (Clarke et al. 2014). They use 

the Linnaean classification relationships between species to 
test for biodiversity changes among assemblages, qualita-
tively comparing their taxonomic distinctness given a master 
list of species observed in an area (i.e., the “species pool” 
of SSA & A) (Clarke and Gorley 2015). The AvTD of an 
assemblage is a reflection of the taxonomic distance across 
the taxonomic hierarchy of a master list of species observed 
for the whole area of study (i.e., the species inventory), and 
is not impacted by species abudance distributions (Clarke 
and Warwick 2014). It is defined as the ratio between the 
average taxonomic distance (i.e., the expected path length 
in the classification tree between any two individuals cho-
sen at a random) and the Simpson diversity index (i.e., the 
probability that any two individuals selected at a random 
belong to the same species) of a sample (Warwick and 
Clarke 1995; Clarke et al. 2014). The VarTD is the variance 
of the taxonomic distances between each pair of species, 
representing the unevenness of the classification tree (i.e., 
reflects different classification tree constructions) (Clarke 
and Warwick 2001; Clarke et al. 2014). Both AvTD and 
VarTD of an assemblage can be calculated from the master 
list of species which encompasses the taxonomic bounda-
ries of the classification tree related to the inventory, and 
the suitable biogeographic limits from which the species 
were documented. As taxonomic distinctness measures are 
independent of sampling effort, it is possible to compare the 
AvTD and VarTD of a subset of species in an assemblage 
with those of the master list to check if they represent the 
biodiversity expressed in the full species inventory. There-
fore, the AvTD and VarTD for the master list correspond to 
the expected values for the whole faunal group (Clarke et al. 
2014). Analyses of taxonomic distinctness were performed 
using seven taxonomic levels (superorder, order, suborder, 
infraorder, family, genus and species) and equal weights 
between them.

Hydroid distributions, compositions and biogeographic 
connectivity across assemblages were investigated based on 
Bray–Curtis similarities of presence/absence data. Assem-
blages were clustered using the group-average method, and 
the similarity profile test (SIMPROF) was used to test for 
statistically significative clusters. To identify the species 
that mostly contributed to the internal similarity within 
clusters, and for the overall dissimilarity between clusters, 
the similarity percentages routine (SIMPER) was used, with 
a cut-off value for low contributions of 70%. This method 
compares two clusters at a time and identifies the most influ-
ential species for its similarities, through the decomposition 
of the Bray–Curtis dissimilarity index between the species 
(Clarke et al. 2014).

A non-metric multidimensional scaling (nMDS) with 50 
interactions was also performed to assess gradual faunistic 
changes between the assemblages. To test for differences 
in species composition between assemblages, the one-way 
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analysis of similarity test (ANOSIM) with 999 permutations 
was calculated (Clarke and Green 1988). Finally, we used 
BVSTEP, a stepwise routine that searches for the smallest 
subset of species contributing most for the nMDS pattern 
(Clarke et al. 2014). All multivariate analyses were per-
formed using the software Primer-e v. 7 (Clarke and Gorley 
2015).

Results

A total of 5,622 records and 357 morphospecies of 
hydroids—representing 2 superorders, 8 orders, 5 suborders, 
4 infraorders, 38 families, 83 genera, and 256 identified spe-
cies—were documented for the 1,360 sampling sites along 
the SSA & A. Seven singleton non-georeferenced records 
(i.e., Acryptolaria crassicaulis, Corydendrium parasiticum, 
Cryptolarella abyssicola, Filellum bouvetensis, Halecium 
secundum, Sertularella uruguayensis, Zygophylax infundib-
ulum; Online Resource Table S1) were excluded, reducing 
the number of analyzed species to 249. Three species are 

new records for the Southwestern Atlantic Ocean (Nemerte-
sia ciliata, Sertularella leiocarpa, and Zygophylax sibogae), 
and 128 are endemic to SSA & A, corresponding to ~ 51% 
of the total species recorded (Fig.  2; Online Resource 
Table S1). Among the endemic species, the proportion of 
endemism increases towards Antarctica (Fig. 3; Online 
Resource Table S1). 

Eighty-eight percent of the species (226 of 256) 
belong to the superorder Leptothecata, 9% (24 of 256) 
to “Anthoathecata” (i.e., “Filifera”, Capitata and Aplanu-
lata), and 3% (6 of 256) to Pseudothecata. The majority 
of the species belong to the order Macrocolonia (175 of 
256 species); the most speciose families are Symplectos-
cyphidae (30 species), Kirchenpaueriidae (29 species) and 
Staurothecidae (23 species). The most speciose genera are 
Oswaldella (26 species), Staurotheca (24 species), Sym-
plectoscyphus (21 species), Sertularella (14 species) and 
Halecium (12 species), which together encompass ~ 38% 
of the 256 identified species (Online Resource Table S1).

Rarefaction curves do not reach a clear asymptote for 
any of the ecoregions and provinces analyzed, providing 

Fig. 2   Distribution of the endemic and non-endemic species of 
hydroids sampled along southern South America and Antarctica. The 
graphics show the number of geographic locations (total: 1,360), and 

non-endemic (total: 121) and endemic species (total: 128) examined 
by latitudinal band
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evidence that sampling effort along SSA & A is unequal 
and still deficient (Fig. 4). However, within all biogeo-
graphic units analyzed, ecoregions 180, 183, 185, 187, 
220, 222, 223, 227, and 229 appear to be closer to reaching 
an asymptote (Fig. 4a), as well as curves CHA, M, SS and 
WTSWA for provinces (Fig. 4b).

Regarding taxonomic distinctness, eleven ecoregions 
have AvTD values within the 95% interval of expectation 
of the master list, three ecoregions (180, 181 and 183) 
have AvTD values above it, and ten have AvTD values 
below the expected (Fig. 5a; Table 1). Most VarTD values 
were within the expected, with exceptions of above expec-
tation values for ecoregions 177, 222, 223, 227 and 229 
(Fig. 5b; Table 1). For provinces, most AvTD values were 
within or below the expected, except for WTSWA (Fig. 6a; 
Table 2). The VarTD values were also mostly within the 
expected for each area, except for above expected values 
for provinces A, CHA and SS (Fig. 6b; Table 2).

Bray–Curtis and SIMPROF analyses showed 17 statisti-
cally significant clusters for the ecoregions (Fig. 7a) and 7 
statistically significant clusters for the provinces (Fig. 8a). 
For both ecoregions and provinces, analyses divide the 
whole area of study between southern South American (E10 
to E17 and P1 to P2; Fig. 7a) and Antarctic assemblages 
(E1 to E9 and P3 to P7; Fig. 8a). The Magellan area (ecore-
gions 185 to 187 and province M; Fig. 1) clusters with SSA 
assemblages when ecoregions are analyzed (Fig. 7a), but 
with Antarctic assemblages when provinces are considered 

(Fig. 8a). SIMPER analyses show great variation in spe-
cies composition within and between assemblages, for both 
ecoregions and provinces (Online Resource Tables S2, S3).

Along the southwestern Atlantic coast, assemblages E11 
and P2 in particular (Figs. 1, 7a, 8a), have similar com-
position of non-endemic species widely distributed along 
tropical and subtropical areas (e.g., Dynamena spp., Sertu-
laria spp., among others; Online Resource Tables S1–S3), 
including records for the Caribbean (cf. Calder 1988, 1991). 
Endemic species along the southwestern Atlantic were found 
in assemblage E17 (as well as other species widely distrib-
uted across the world), all of them distributed among the 
categories tropical + subtropical, subtropical + Magellan and 
Magellan + Antarctic (Figs. 1a, 7a; Online Resource Tables 
S1, S2). Along the Pacific coast, SIMPER suggests that 
WTSEP (Figs. 1b, 7) as an assemblage with few endemic 
species, distributed along the Subtropical (e.g., Sertularella 
mixta, Thuiaria polycarpa), subtropical + Magellan (e.g., 
Sertularella fuegonensis) and Magellan + Antarctic (e.g., 
Halecium interpolatum) categories of endemicity (Online 
Resource Tables S1, S3). The presence of Coryne eximia, 
Obelia dichotoma and Plumularia setacea along the north-
ern Chilean coast (176, 177), the Chilean Patagonia (178, 
188), the southern Brazil (181) and the Río de La Plata 
Estuary (182), gather these ecoregions in assemblage E13, 
with lower internal similarity value but connecting the 
Pacific and the Atlantic coasts of SSA (Figs. 1a, 7a; Online 
Resource Table S2). The most dissimilar assemblage in 

Fig. 3   Number of endemic species of hydroids in each of the eight 
categories of endemicity recognized for the southern South America 
and Antarctica. “Total” is the total number of endemic species of 
hydroids recorded for the whole coast of SSA & A. The numbers in 

bold and between parenthesis are the percentages of endemic spe-
cies of hydroids for each of the eight categories of endemicity for the 
SSA & A in relation to the “Total”. See Online Resource Table S1 for 
details on the endemic species distribution
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SSA is E14 (Figs. 1a, 7a; Online Resource Table S4), with 
a mix of endemic species from tropical + subtropical (e.g., 
Sertularella fuegonensis), Magellan (e.g., Sertularella jor-
gensis), and Magellan + Antarctic ranges (e.g., Abietinella 
operculata) (Online Resource Tables S1, S2). Assemblage 
E16 correponds to the Magellan area, composed of endemic 
species from tropical + subtropical (e.g., Corymorpha jan-
uarii), Magellan (e.g., Orthopyxis hartlaubi) and Magel-
lan + Antarctic categories of endemicity (e.g., Halecium 
interpolatum), in addition to some widely distributed species 
(Figs. 1a, 7a; Online Resource Tables S1, S2).

Our results suggest that Antarctic assemblages are bio-
geographically divided between the subantarctic islands (i.e., 

assemblages E2 and SI) and the Scotia Arc plus the rest of 
the Antarctic ecosystem (assemblages E3 and P4) (Figs. 1a, 
7a, 8a). E2 clusters Bouvet Island and Peter I Island by the 
presence of Antarctoscyphus spiralis and Staurotheca dicho-
toma (Figs. 1a, 6a; Online Resource Table S2). SI gathers 
Bouvet, Prince Edwards, Crozet, Kerguelen islands, being 
the most dissimilar assemblage of provinces (Figs. 1b, 8a; 
Online Resource Table S5), composed of endemic species 
from the Magellan + Antarctic category (e.g., Oswaldella 
erratum, O. vervoorti, Schizotricha vervoorti, Staurotheca 
dichotoma, S. vanhoeffeni) but also by rare (e.g., Staurotheca 
echinocarpa) and widely distributed species (e.g., Symplec-
toscyphus subdichotomus) (Online Resource Tables S1, S3). 

Fig. 4   Sample-based rarefaction 
curves of species of hydroids 
from southern South America 
and Antarctica ecoregions 
(a) and provinces (b). Refer 
to Fig. 1 for ecoregions numbers 
and provinces acronyms

(a)

(b)
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South Georgia and South Sandwich Islands, which are part 
of the Scotia Arc, are represented by assemblage E5, with 
most endemic species from Magellan + Antarctic category 
(mainly Antarctoscyphus spp., Oswaldella spp., and Stau-
rotheca spp.) (Figs. 1a, 7a; Online Resource Tables S1, S2). 
The west coast of the Antarctic Peninsula corresponds to 
assemblage E9 (Figs. 1a, 7a), composed of species distrib-
uted in a few lower taxonomic levels (e.g., genus and fam-
ily levels) and by a high number of species endemic from 
Antarctica (e.g., Antarctoscyphus spp., Oswadella spp., 
Clathrozoella medeae, Mixoscyphus antarcticus, Schizotri-
cha crassa, S. nana, S. vervoorti, Staurotheca antarctica) 

(Online Resource Tables S1–S3). This faunistic pattern 
was also found in P5, corresponding to the whole coast 
of Antarctica (Figs. 1b, 8a). APF is composed of endemic 
species from Magellan (e.g., Acryptolaria spp., Clathrozo-
ella abyssalis, Oswaldella elongata, Sertularella jorgensis, 
Staurotheca abyssalis, S. profunda, S. vervoorti) and Magel-
lan + Antarctic categories (e.g., Antarctoscyphus elongatus, 
Schizotricha vervoorti, Staurotheca jaederholmi, S. pachy-
clada), besides some worldwide distributed species (e.g., 
Amphisbetia operculata and Sertularella gaudichaudi) 
(Online Resource Tables S1, S3).

Fig. 5   Funnel plots for the (a) 
average taxonomic distinctness 
(AvTD) and (b) variation in 
taxonomic distinctness (VarTD) 
simulated for each southern 
South American and Antarc-
tic ecoregion. Dashed lines 
indicate the AvTD and VarTD 
for the master list of species 
of hydroids. Black lines show 
the 95% probability interval for 
simulated AvTD and VarTD. 
Blue triangles and red crosses 
represent the ecoregions of 
SSA & A, respectively. Refer 
to Fig. 1 for ecoregions numbers
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The nMDS ordination plots reflect the same biogeo-
graphic division between the assemblages of SSA & A found 
in the cluster and SIMPROF analyses (Figs. 7, 8). Addition-
ally, a gradual variation in species composition along the 
ecoregions and provinces was observed (Figs. 7b, 8b). The 
adjacent ecoregions 76 and 180, for example, have similar 
species composition, while ecoregion 186, although more 
isolated, is more similar in species composition to ecore-
gions 187 and 188 (Figs. 1, 7b). The geographically isolated 
province SI has a unique species composition, while adjacent 
S and APF are more closely related to each other (Figs. 8b). 
The BVSTEP routine identified five species (correlation 
0.815) better matching the pattern of the nMDS ordination 
of the ecoregions: Antarctoscyphus spiralis, Billardia sub-
rufa, Halecium jaederholmi, Staurotheca dichotoma, and S. 
glomulosa. For the province nMDS patterns, BVSTEP iden-
tified 15 species (correlation 0.952): Acryptolaria conferta, 
A. operculata, Aglaophenia latecarinata, A. trifida, Antarc-
toscyphus grandis, Clathrozoella abyssalis, Halecium pal-
lens, Obelia dichotoma, Schizotricha vervoorti, Sertularella 
gaudichaudi, S. mixta, S. polyzonias, Staurotheca antarctica, 
S. dichotoma, and S. echinocarpa.

Although R values are low, the ANOSIM global test 
resulted in significantly different species composition 
among both ecoregions (R = 0.192, p = 0.1%) and provinces 

(R = 0.11, p = 0.1%). Pairwise tests show significantly differ-
ent faunistic composition between most ecoregions and most 
provinces, with few exceptions (Online Resource Tables S6, 
S7).

Discussion

Despite the unavoidable unequal sampling along the ecore-
gions and provinces of SSA & A, the patterns herein docu-
mented are related to the geographic scale of aggregation 
of hydroid occurrence data, but they help elucidate biotic 
and abiotic factors that impact their biogeographic distri-
butions. In general, the distribution of hydroids along SSA 
& A appears to be driven by a combination of barriers of 
varying intensity for different species, modulating dispersal 
over long distances.

Faunistic composition

The 256 species of hydroids studied here represent ~ 7% 
of the total species of Hydrozoa described in the world 
(Schuchert 2021), and ~ 30% of all species of hydroids 
recorded for South America and Antarctica (Oliveira et al. 
2016; Ronowicz et al. 2019). Leptothecata (88% of the 

Table 1   Richness, average 
taxonomic distinctness (AvTD), 
and variation in taxonomic 
distinctness (VarTD) estimated 
for each ecoregion analyzed. 
Refer to Fig. 1 for ecoregions 
numbers

Ecoregion Species Genera Families Infraorders Suborders Orders Superorders AvTD VarTD

76 23 19 13 9 9 4 2 79.39 413.34
176 2 2 2 2 2 2 1 85.71 0
177 14 8 8 6 6 4 2 68.29 815.44
178 6 5 5 5 5 3 2 80.95 453.51
180 85 46 26 14 12 7 2 79.80 466.02
181 14 12 11 9 8 6 2 86.34 353.95
182 10 9 9 9 8 5 2 86.03 258.40
183 47 29 21 15 13 8 2 80.84 392.50
184 35 22 16 12 11 6 2 78.03 438.31
185 45 24 18 11 10 6 2 74.92 496.57
186 20 11 9 6 5 3 1 68.72 476.02
187 58 25 19 13 10 6 2 74.47 435.45
188 9 7 7 6 6 3 2 79.76 401.08
217 5 3 3 2 2 1 1 54.29 522.45
218 6 5 5 3 3 2 1 66.67 426.30
219 16 4 4 2 2 1 1 48.57 552.38
220 17 4 4 2 2 1 1 44.33 580.07
221 25 10 8 6 6 4 2 63.67 581.25
222 69 16 13 9 9 6 2 63.62 548
223 59 17 16 9 9 6 2 67.58 607.45
224 30 12 12 8 8 5 2 66.93 530.07
226 9 2 2 2 2 1 1 26.98 564.37
227 38 9 9 8 8 5 2 61.80 734.58
229 34 11 10 7 7 4 2 65.98 604.01
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Fig. 6   Funnel plots for the (a) 
average taxonomic distinctness 
(AvTD) and (b) variation in 
taxonomic distinctness (VarTD) 
simulated for each southern 
South American and Antarc-
tic province. Dashed lines 
indicate the AvTD and VarTD 
for the master list of species 
of hydroids. Black lines show 
the 95% probability interval for 
simulated AvTD and VarTD. 
Blue triangles and red crosses 
represent the provinces of 
SSA & A, respectively. Refer 
to Fig. 1 for provinces acronyms

Table 2   Richness, average 
taxonomic distinctness (AvTD), 
and variation in taxonomic 
distinctness (VarTD) estimated 
for each province analyzed. 
Refer to Fig. 1 for provinces 
acronyms

Province Species Genera Families Infraorders Suborders Orders Superorders AvTD VarTD

A 39 12 12 9 9 5 2 60.90 633.92
APF 15 9 8 5 5 3 2 68.03 635.66
CHA 60 13 12 10 10 5 2 62.74 640.34
M 81 35 22 14 11 7 2 75.67 449.51
S 25 15 12 7 6 3 1 66.90 502.66
SI 7 4 4 2 2 1 1 53.74 503.49
SS 86 21 17 11 11 7 2 65.80 593.23
TSWA 20 17 12 8 7 4 2 80.38 387.18
WTSEP 14 9 8 6 6 4 2 71.11 672.70
WTSWA 111 57 32 14 12 8 2 80.92 417.11
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Fig. 7   (a) Dendrogram and SIMPROF test among ecoregions from 
southern South America and Antarctica. Black lines indicate statisti-
cally significant clusters: E1 to E9 for Antarctica, and E10 to E17 for 

SSA. (b) Non-metric multidimensional scaling (nMDS) ordination 
plot of southern South American (blue triangles) and Antarctic (red 
crosses) ecoregions. Refer to Fig. 1 for ecoregions numbers
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Fig. 8   (a) Dendrogram and SIMPROF test among provinces from 
southern South America and Antarctica. Black lines indicate statisti-
cally significant clusters: P1 and P2 for SSA, and P3 to P7 for Ant-

arctica. (b) Non-metric multidimensional scaling (nMDS) ordination 
plot of southern South American (blue triangles) and Antarctic (red 
crosses) provinces. Refer to Fig. 1 for provinces acronyms
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species) dominates over “Anthoathecata” and Pseudothe-
cata (9% and 3% of the species, respectively)—a similar 
proportion found in other parts of the world, such as tropi-
cal (Calder 1993; Di Camillo et al. 2008) and subtropical 
areas (Genzano et al. 2017; Ajala-Batista et al. 2020), the 
Mediterranean (Bouillon et al. 2004; Gravili et al. 2013), 
the Arctic (Ronowicz et al. 2015) and the Antarctic (Peña 
Cantero 2014; Soto Àngel and Peña Cantero 2019; Peña 
Cantero 2021). The high proportions of Leptothecata over 
Anthoathecata is at least partially due to the destructive 
sampling of unprotected polyps (i.e., anthoathecates) (Peña 
Cantero 2004), although it also likely reflects true higher 
diversity of Leptothecata as compared to Anthoathecata 
(Fernandez and Marques 2018; Fernandez et al. 2020). Sym-
plectoscyphidae is the most speciose family in the study area 
(Online Resource Table S1) (cf. Soto Àngel and Peña Can-
tero 2019; Peña Cantero 2021), although Haleciidae is the 
most speciose hydrozoan family in South America (Oliveira 
et al. 2016). Among genera, Oswaldella, Staurotheca, Sym-
plectoscyphus, Sertularella and Halecium are the most spe-
ciose genera for SSA & A, corroborating previous findings 
(cf. Peña Cantero 2014; Oliveira et al. 2016; Soto Àngel and 
Peña Cantero 2019).

Sampling effort, biodiversity and taxonomic 
distinctness

Sampling effort along SSA & A is unequal and none of 
the rarefaction curves reached an asymptote. Therefore the 
biodiversity of the region is underestimated, hindering full 
biogeographic comparisons among the ecoregions and prov-
inces. However, exhaustive sampling effort for large-scale 
areas is challenging, and geographical gaps in knowledge 
of taxa is the usual situation in studies making biodiversity 
inferences (Hortal 2008; Fernandez et al. 2020).

Taxonomic distinctness (i.e., AvTD and VarTD) are 
useful measures to characterize differences in taxonomic 
structure across SSA & A, revealing areas with apparent 
losses or gains of biodiversity, or reduced habitat diversity 
(Clarke and Warwick 2001; Clarke et al. 2014). High val-
ues of AvTD (e.g., ecoregions 180, 181, 183 and province 
WTSWA; Figs. 1, 5a, 6a; Tables 1, 2), for example, are 
related to comparatively high biodiversity. This pattern sug-
gests that the southeastern Brazilian and the Buenos Aires 
coasts have the hierarchy of their taxonomic units more 
finely partitioned, possibly as a result of environmental sta-
bility of the region over evolutionary and/or ecological time 
scales (Warwick and Clarke 1995).

Low values of AvTD are related to loss of biodiversity, 
as evidenced for the Antarctic and sub-Antarctic ecosystems 
(e.g., ecoregions 219 to 224, 226, 227, 229, provinces A, 
CHA, S, SI, SS; Figs. 1, 5a, 6a; Tables 1, 2). The higher 
resolution analyses (i.e., ecoregions) suggest that the Scotia 

Arc, the Antarctic Peninsula, the Weddel Sea, the Ross Sea 
and Queen Maud Land are more susceptible to biodiversity 
loss. This might be related to their geographic proximity to 
commercial fishery areas, implying transportation of ben-
thic exotic species on ship hulls from the northern oceans 
(Clarke et al. 2005; Scott 2012). An example of possible 
anthropogenic impacts along the region is the presence of 
the globally distributed Lafoea dumosa and Obelia bidentata 
in the South Orkney Islands, as well as along other Antarctic 
areas (cf., Online Resource Tables S1, S2).

High values of VarTD, on the other hand, reflect lower 
habitat diversity, as found in ecoregion 177 and province 
WTSEP (Figs. 1, 5b, 6b; Tables 1, 2). These regions corre-
spond to the Chilean coast, historically socio-economically 
dependent on marine resources, and with human activities 
commonly impacting different habitats along the southeast-
ern Pacific (Fernandez et al. 2000; Miloslavich et al. 2016). 
The overexploitation of benthic resources, pollution by sew-
age discharges and oil spils from ships are the main human 
impacts in the region, possibly associated with habitat dep-
auperation and consequently, loss of habitat diversity (Fer-
nandez et al. 2000).

Ecoregions and provinces with low values of AvTD and 
high values of VarTD (e.g., Antarctic Peninsula, Weddell 
and Ross seas, i.e., ecoregions 222, 223, 227, 229, provinces 
A, CHA, SS; Figs. 5, 6; Tables 1, 2) are probably related to 
the presence of species’ pools that are unevenly distributed 
across the taxonomic classification tree and which belong 
to a few high taxonomic groups (Clarke and Warwick 2001; 
Clarke et al. 2014; Ronowicz et al. 2015). These regions 
have a hydroid fauna concentrated in a few families and/
or genera (e.g., Antarctoscyphus spp. and Oswaldella spp.; 
Figs. 1, 7, 8; Tables S1–S3). A similar pattern was docu-
mented for Arctic hydrozoans (Ronowicz et al. 2015), pre-
sumably related to high speciation (Mayr 1963) and low 
rates of higher taxa diversification along polar regions, also 
influenced by particular climatologic, geologic and oceano-
graphic events (Gillespie and Roderick 2014).

The other ecoregions and provinces have values of AvTD 
and VarTD within expectation (i.e., within the 95% range 
of simulated values depart from the one of the master list; 
Figs. 5, 6), meaning that the subsets of species observed in 
each ecoregion/province have the same taxonomic diversity 
of the whole SSA & A (Figs. 5, 6; Table 1, 2).

Endemism, distribution and biogeographic patterns

There is a statistically significant separation between SSA 
and Antarctic assemblages, for both ecoregions and prov-
inces (Figs. 7, 8; ANOSIM test; Online Resource Tables S6, 
S7). This pattern has been shown for other benthic inverte-
brates based on different biogeographic units and molecu-
lar inferences (González-Wevar et al. 2010; Figuerola et al. 
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2013; Griffiths and Waller 2016). However, the biogeo-
graphic affinity of the Magellan area (including the Falkland/
Malvinas Islands and the Burdwood Bank) is scale depend-
ent and muddies the picture somewhat. Magellan ecoregions 
E16 and 186 are grouped with SSA assemblages, but prov-
ince P7 is grouped with Antarctic assemblages (Figs. 1, 7a, 
8a). The Falkland/Malvinas Islands and Burdwood Bank 
(assemblage 186; Figs. 1a, 7a) are currently part of the 
large biogeographic region of Patagonia (42°S–56°S; Acha 
et al. 2004), which includes the Magellan area (Mercado 
Casares et al. 2017). The Southern tip of South America, the 
Falkland/Malvinas Islands and Burdwood Bank (viz., E16, 
P7 and 186) are composed of species from the Magellan, 
Antarctic and Magellan + Antarctic categories of endemicity 
(Online Resource Tables S1, S2). Their faunistic composi-
tion is unique, revealing a dissimilarity higher than 75% in 
relation to the other assemblages (Online Resource Tables 
S4, S5), corroborating its distinct and complex biogeo-
graphic role as a center of endemism and route for dispersal 
of benthic species (Schejter et al. 2016).

The nMDS plots also corroborate the conflicting biogeo-
graphic position of the Magellan area, with the intermediate 
ecoregions 185, 186 and 187 between SSA & A. Province 
S clusters with Antarctic provinces, and M occupies an 
intermediate position between SSA & A (Figs. 1, 7b, 8b). 
Although conflicting, these patterns reinforce the complex 
role of the Magellan area as a transition zone connecting the 
SE Pacific, the SW Atlantic and the Southern Ocean. The 
high proportion of endemic species with different ranges 
along the Magellan area (Fig. 3) and the high concentra-
tion of species at the edge of their distributions (Online 
Resource Tables S1–S3) corroborate its transitional nature. 
The Magellan, the Antarctic and the Magellan + Antarctic 
ranges of endemicity in particular (Fig. 3; Online Resource 
Table S1), reinforce the hypothesis that the Magellan area 
is a biogeographic corridor for interchange of some spe-
cies, but also a barrier impacting the distribution of others 
(Balech 1954; Souto et al. 2014; Sepulveda et al. 2016). This 
transition area results in species being either geographically 
restricted or dispersed over long distances, mainly through 
the influence of the ACC.

The ACC plays a fundamental role in the biogeographic 
structuring of hydroids from the Southern Hemisphere 
(Marques and Peña Cantero 2010; Miranda et al. 2013; 
Mercado Casares et al. 2017; Soto-Àngel and Peña Can-
tero 2017), since its circulation simultaneously connects the 
Southern Ocean biota with the rest of the adjacent oceans 
but also isolates Antarctica promoting its high endemism 
(Sanches et al. 2016). Therefore, it is a significant biogeo-
graphic barrier to the subtropical, subtropical + Magellan 
and Magellan endemic hydroids, but does not influence 
the distribution of the Magellan + Antarctic species. An 
example is the intermediate area between the subantarctic 

and Antarctic waters (assemblage APF; Fig. 1b), directly 
influenced by the ACC and more than 88% dissimilar to 
the assemblages of other provinces, with a mixed composi-
tion of Subtropical (e.g., Acryptolaria operculata), Magel-
lan (e.g., Clathrozoella abyssalis, Oswaldella elongata, 
Sertularella jorgensis, Staurotheca abyssalis, S. profunda 
and S. vervoorti) and Magellan + Antarctic endemic species 
(e.g., Antarctoscyphus elongatus, Schizotricha vervoorti, 
Staurotheca jaederholmi, S. pachyclada) (Online Resource 
Tables S1, S3, S5).

The southwestern Atlantic is also a transition zone char-
acterized by widely distributed tropical-subtropical species 
(assemblages E11 and P2; Figs. 1, 7a, 8a; Tables S1–S3—cf. 
Palacio 1982; Barroso et al. 2016 for other marine taxa). 
The Uruguay-Buenos Aires shelf and the Atlantic Patago-
nia coast (assemblages E17; Figs. 1a, 7a) are characterized 
by warmer temperate waters (Genzano et al. 2009) with 
widely distributed species, and a few tropical + subtropical, 
subtropical + Magellan and southern South America + Ant-
arctica endemic species (Online Resource Tables S1, S2). 
The Uruguay-Buenos Aires Shelf and the Atlantic Patagonia 
coasts are areas of endemism per se (Miranda et al. 2015), 
although they have a low number of endemic species when 
compared with the Antarctic assemblages (Online Resource 
Tables S1, S2).

The convergence zone of the Brazilian and Falkland/
Malvinas currents is a biogeographic barrier for some spe-
cies (Miranda et al. 2015; Barroso et al. 2016), but some sub-
tropical and Magellan edges of species ranges might extend 
to latitudes lower than 40°S (e.g., 35°–37°S; Genzano et al. 
2009; Souto et al. 2014). This is particularly supported by 
Campanularia agas, C. subantarctica, Lytocarpia canepa, 
Phialella chilensis, Sertularella cruzensis, and Symplectos-
cyphus magellanicus (viz., E17 species composition; Online 
Resource Fig S1, S2), and is probably related to the adjacent 
subantarctic waters and the cooler and more saline waters 
of the Falkland/Malvinas current along the Argentinian con-
tinental shelf (Acha et al. 2004). The thermohaline front 
produces flows northwards (Acha et al. 2004; Genzano et al. 
2009) and explains the presence of subantarctic species at 
lower latitudes (e.g., along 27°–30°S), such as Amphisbetia 
operculata, Lafoea dumosa, Stegolaria irregularis, and Sym-
plectoscyphus subdichotomus (Online Resource Table S1).

The southeastern Pacific (WTSEP and part of E13—
ecoregion 177; Figs. 1, 7a) has a unique set of endemic 
species from different categories: Tropical (Sertularella 
mixta), Tropical + Subtropical (Thuiaria polycarpa), 
Magellan + Antarctic (Halecium interpolatum) and south-
ern South America + Antarctica (Sertularella fuegonen-
sis). Sertularella mixta and Thuiaria polycarpa, for exam-
ple, corroborate the “warm-temperate north of 35°S” area 
defined for benthic macroinvertebrates of the southeastern 
Pacific (Lancellotti and Vasquez 1999), while Halecium 
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interpolatum is more related to the “cold-temperate south 
of 48°S” area, reinforcing the position of the southeast-
ern Pacific as a mixed biogeographic area (Camus 2001) 
driven by the Humboldt Current system and its upwelling 
zones. Although being the most isolated province among 
the SSA assemblages (Fig. 8; Online Resource Tables S1, 
S3), WTSEP might be considered a hotspot of biodiversity 
since it is suffering from loss of habitat diversity (see the 
section above).

Despite the low internal similarity (29.8%; Online 
Resource Table S2), E13 is connected to the Chilean coast 
(ecoregions 176 to 178 and 188), the southern Brazil-
ian coast (ecoregion 181) and the Río de La Plata Estuary 
(ecoregion 182) (Figs. 1a, 7) based on the presence of the 
well-known and widely distributed—equatorial to subant-
arctic—Coryne eximia, Obelia dichotoma, and Plumularia 
setacea (Oliveira et al. 2016; Online Resource Table S2). 
This pattern reflects the Pacific-Atlantic connection driven 
by the Humboldt Current system distributing species from 
the Pacific to the Atlantic through the Cape Horn current 
(Fernandez et al. 2000; Sepulveda et al. 2016). Its role in 
shaping biogeographic patterns along the Magellan-Ant-
arctic area is poorly understood despite the importance of 
the area as a marine hotspot (Fernandez et al. 2000; Scott 
2012; Selig et al. 2014; Schejter et al. 2016). The Cape 
Horn current flows through the Magellan Strait, surrounds 
the tip of South America, and turns northeastwards to form 
the Falkland/Malvinas current (Montiel et al. 2005; Souto 
et al. 2014; Sepulveda et al. 2016), which passes through the 
Scotia Arc and flows northwards meeting the warm Brazil-
ian current (at ~ 36°S–40°S) (Acha et al. 2004). Bio/phylo-
geographic models have suggested that the formation of the 
Magellan Strait created a new pathway for faunistic inter-
change between the Pacific and the Atlantic (Montiel et al. 
2005; González-Wevar et al. 2012; Souto et al. 2014). The 
intermediate role of the Scotia Arc along the area includes 
dispersal events of species between the Atlantic and South-
ern oceans (Marques and Peña Cantero 2010; Miranda et al. 
2013; Mercado Casares et al. 2017).

The hydroid communities of South Georgia and South 
Sandwich (cluster E5; Figs.  1a, 7) are highly (97 + %) 
dissimilar to those of SSA, and more similar to those of 
Antarctica (Online Resource Table S4). The South Sand-
wich + South Georgia assemblage, therefore, is a unique 
mixture of Magellan and Magellan + Antarctic endemic 
species (Online Resource Tables S1, S2), corroborating the 
role of these islands as a biogeographic bridge between both 
continents (Montiel et al. 2005; Dalziel et al. 2013; Mal-
donado et al. 2015; Mercado Casares et al. 2017). The posi-
tion of the South Orkney Islands (ecoregion 221; Figs. 1a, 
7) reinforces the bridge idea because of its unique composi-
tion of Magellan + Antarctic and Antarctic species (Online 

Resource Table S2), although the assemblage is more similar 
to that of the Antarctic Peninsula (assemblage E9; Fig. 7; 
Online Resource Table S4).

Clustering between South Georgia and South Sandwich 
Islands has been commonly demonstrated (Ramos-Esplá 
et al. 2005; Primo and Vásquez 2009), but recent inferences 
based on hydroids clustered the South Sandwich Islands 
with Bouvet Island, keeping South Georgia with Shag 
Rocks, although with low internal support (Soto Àngel 
and Peña Cantero 2017). We recovered Bouvet Island with 
Peter I (assemblage E2) despite low internal similarity 
(i.e., 36.4%; Online Resource Table S2; Figs. 1a, 7a), but 
the analysis with the provinces includes Bouvet Island in 
SI (Figs. 1b, 8). The high concentration of endemic (e.g., 
Magellan + Antarctic and Antarctic) and rare species (e.g., 
Staurotheca echinocarpa; Online Resource Tables S1–S3) 
around E2 and SI suggests that their hydroid communities 
are truly highly isolated despite being poorly known (Figs. 7, 
8; Online Resource Tables S4, S5).

Queen Maud Land (assemblage 226; Fig. 1a) is the most 
isolated area of Antarctica, with a fauna composed only 
of Magellan + Antarctic and Antarctic endemic species of 
Oswaldella and Staurotheca (Online Resource Tables S2, 
S4). It is part of the Eastern High Antarctica Zone, an Ant-
arctic area of endemism characterized by an impoverished 
fauna of hydroids with vast geographical gaps interrupted 
by scattered records (Marques and Peña Cantero 2010). The 
faunistics of this area have been poorly explored (De Broyer 
et al. 2011), hindering knowledge on biogeographic patterns, 
since real absences and insufficient sampling effort are com-
monly treated together (Gili et al. 2016; Griffiths and Waller 
2016).

The western Antarctic Peninsula (assemblage E9) has 
the strongest biogeographic structure in the higher reso-
lution analysis, and the whole coast of Antarctica and the 
Scotia Arc (assemblage P5) in the lower resolution analy-
sis (Figs. 1, 7, 8; Tables S2, S3). These assemblages have 
an endemic fauna of hydroids with the highest internal 
similarity in relation to other assemblages (Tables S2, S3). 
The high endemicity of the Antarctic Peninsula is likely 
originated from isolation of an epicontinental sea along its 
northern portion, which allowed a long standing evolution 
of the fauna (Marques and Peña Cantero 2010; Miranda 
et al. 2013). The region is known as a biodiversity hotspot 
(Grange and Smith 2013; Kerr et al. 2018), but anthropo-
genic impacts are increasing, especially invasive species and 
tourism (Frenot et al. 2005; Lynch et al. 2010).

Assemblage E7 encompass geographically disjointed 
Antarctic areas with similar hydroid faunas, suggesting a 
connection between the Wilkes Land coast (at east Antarc-
tica) and the Weddell and the Ross seas (at west Antarctica) 
(Figs. 1a, 7; Online Resource Table S2). This pattern was 
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previously described for sponges (Downey et al. 2012) and 
is likely to be related to the opening of the trans-Antarctic 
passage ~ 60 Ma (early Cenozoic), connecting east and west 
Antarctica through populations of the Weddell and the Ross 
seas, respectively (Linse et al. 2006; Marques and Peña Can-
tero 2010; Gili et al. 2016). The subsequent glacial event in 
Antarctica (~ 40–30 Ma; Lawver and Gahagan 2003) might 
have contributed to the partial biogeographic isolation of 
these areas and the formation of an endemic biota distrib-
uted in different categories of endemicity, as for the hydroids 
(Fig. 3; Online Resource Table S1).

BVSTEP results reinforce the importance of endemism in 
the biogeographic history of hydroids along SSA & A and 
emphasize the importance of the Magellan area as a center 
of endemism and transition area along the Pacific, Atlantic 
and Southern oceans. The ordination results underscore that 
the biogeographic patterning of hydroids along SSA & A is 
related to a combination of widely distributed species and 
those with restricted distribution ranges across the area.

The hotspots of biodiversity herein proposed (e.g., the 
southeastern Pacific, the Magellan area, and the Antarc-
tic Peninsula) were inferred mainly through the presence 
of endemic species and the level of environmental impact. 
Although endemism hotspots are more successful in captur-
ing a great proportion of endemic species, species richness 
and threatened species (Orme et al. 2005), there is very low 
congruence among different types of hotspots in their abil-
ity to be efficient for conservation efforts (Orme et al. 2005; 
Possingham and Wilson 2005; Thompson et al. 2020). The 
potential hotspots of biodiversity of hydroids herein defined 
for the assemblages of SSA & A may facilitate monitoring 
and conservation efforts within this broad region.

Conclusions

The hierarchical biogeographic patterns herein documented 
are scale dependent, reflecting an interaction of evolutionary 
and environmental factors, but also making them useful for 
investigating complex patterns of biodiversity (Willis and 
Whittacker 2002). For both spatial resolutions (i.e., ecore-
gions and provinces), we found a clear separation between 
assemblages of SSA & A, as well as different levels of 
faunistic affinities among their respective assemblages. The 
higher resolution analyses (ecoregions) show a more strati-
fied biogeographic structure, revealing critical regions sus-
ceptible to loss of faunistic and habitat diversity (e.g., the 
southeastern Pacific coast, the subantarctic islands, the east 
coast of Antarctica). The lower resolution analyses (prov-
inces) show a clear division between the Atlantic-Pacific, the 
Antarctic-Subantartic provinces, and the high biogeographic 
isolation of the subantarctic islands. Both resolutions show 

the Magellan area and the Scotia Arc as an important tran-
sition zone between SSA & A, although the Magellan area 
has a conflicting position concerning its faunistic affinities 
(Figs. 7, 8).

Using hydroids as a model allowed us to successfully 
examine biogeographic patterns and come to an improved 
understanding of species connectivity in the region. Their 
wide bathymetric and latitudinal distributions, their 
associations with different types of natural and artificial 
substrate, the high level of endemism across large-scale 
areas, and the high variability in their life cycle strategies 
(Cornelius 1992; Gili and Hughes 1995) make hydroids 
an interesting and useful model to explore biogeography, 
connectivity, and endemism. Despite exploring large-scale 
patterns through different spatial resolutions of SSA & A, 
this study is focused on coastal benthic areas. Additional 
integrative approaches involving data of the medusa stage 
and records from greater depths will further improve the 
biogeographic knowledge of hydrozoans inhabiting SSA 
& A. Similarly, expanding comparative studies to incor-
porate data from South Africa and Oceania are necessary 
to more thoroughly understand hydrozoan distributions in 
the southern hemisphere.
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