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Abstract

A smooth foliation is Riemannian when its leaves are locally equidistant. The
closures of the leaves of a Riemannian foliation on a simply connected manifold,
or more generally of a Killing foliation, are described by flows of transverse
Killing vector fields. This offers significant technical advantages in the study of
this class of foliations, which nonetheless includes other important classes, such
as those given by the orbits of isometric Lie group actions. Aiming at a broad
audience, in this survey we introduce Killing foliations from the very basics,
starting with a brief revision of the main objects appearing in this theory, such
as pseudogroups, sheaves, holonomy and basic cohomology. We then review
Molino’s structural theory for Riemannian foliations and present its transverse
counterpart in the theory of complete pseudogroups of isometries, emphasizing
the connections between these topics. We also survey some classical results and
recent developments in the theory of Killing foliations. Finally, we review some
topics in the theory of singular Riemannian foliations, including the recent proof
of Molino’s conjecture, and discuss singular Killing foliations.

Key words: Riemannian foliations, Killing foliations, isometry pseudogroups,
singular Riemannian foliations, singular Killing foliations, Molino theory,
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1. Introduction

A foliation on a Riemannian manifold is called Riemannian if its leaves are lo-

cally equidistant. Alternatively, the leaves of a Riemannian foliation are locally
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defined by fibers of a Riemannian submersion. These objects, first presented
by B. Reinhart in [69], form a very relevant class of foliations, whose research
has been quite active since their introduction [80, Appendix D]. As noted by
G. Thorbergsson in his survey [81], in the last two decades the theory of sin-
gular Riemannian foliations started to play an important role in the theory of
submanifolds and isometric actions. In addition, singular Riemannian foliations
appear naturally in all non-compact spaces of non-negative curvature, having
played a fundamental role in the proof of the smoothness of the metric projection
onto the soul, as noted in the work of B. Wilking [83].

There is a rich structural theory for Riemannian foliations, due mainly to
P. Molino, that asserts, among other results, that a complete Riemannian fo-
liation F admits a locally constant sheaf @# of Lie algebras of germs of local
transverse Killing vector fields whose action describes the dynamics of F, in the
sense that for each leaf L, € F one has

Trzx - {Xx | X e (%.F)J‘} GBT’EL.?:’

where L, denotes the closure of L,. Using this one verifies that the partition
F :={L| L € F} of M is a singular foliation, meaning that it is a smooth
partition into embedded submanifolds of varying dimension.

In this work we are primarily interested in the so-called Killing foliations,
that is, those Riemannian foliations which are complete and whose Molino sheaf
€ is globally contant. In other words, for a Killing foliation F there exists trans-
verse Killing vector fields X1, ..., Xq such that TF = TF @ (X1,...,X4). This
class of foliations includes Riemannian foliations on simply-connected manifolds
and foliations given by orbits of isometric Lie group actions. This motivates the
study of the class of Killing foliations, since it contains important subclasses of
Riemannian foliations whilst presents relevant technical advantages, in compar-
ison to general Riemannian foliations.

The main goal of this article is to survey the classical theory of Rieman-
nian and Killing foliations, including Molino’s structural theory and the pseu-
dogroup approach to the transverse geometry of these foliations due mostly to
A. Haefliger, and present some recent developments on Killing foliations via a
deformation technique. In addition, we present the basics on singular Rieman-
nian foliations and introduce the concept of singular Killing foliations. Recent
developments regarding leaf closures of singular Riemannian foliations and the
solution of Molino’s conjecture indicate that relevant classes of singular Rie-
mannian foliations are Killing.

This article is organized as follows. In Section 2 we introduce the basics of fo-
liation theory and transverse geometry, including the language of pseudogroups
to treat holonomy and the notion of basic cohomology. In Section 3 we define
Riemannian foliations and see some examples and classical results, including
the structural theory for pseudogroups of local isometries. For this end, we also
briefly review the basics of sheaf theory in this section. Next, we survey Molino’s
structural theory for Riemannian foliations in Section 4, establishing some rela-
tions of it with the structural theory for pseudogroups of isometries. Section 5



introduces Killing foliations and presents its main examples. This section also
brings a deformation technique for Killing foliations that allows one to deform
such a foliation into a Riemannian foliation with all leaves closed, whilst some
topological and geometric transverse properties are maintained. Sections 6 and
7 survey recent applications of these techniques, which allows one to reduce the
study of the transverse geometry of these foliations to classical geometry and
topology of orbifolds. We then move to the second part of this paper, consisting
of singular foliations. In Section 8 we revisit the concept of singular Riemannian
foliation as a natural generalization of the regular case, and introduce some of
the technical machinery from this area. After that, Section 9 is dedicated to
survey the recent results concerning the proof of Molino’s conjecture and in-
troduce the analog notion of the Molino sheaf in the singular setting. Finally,
in Section 10 we propose the concept of singular Killing foliations and see that
this class contains relevant subclasses (such as that of homogeneous Riemannian
foliations), which motivates its study.

2. Foliations

Let M be a smooth n-dimensional connected manifold. A regular foliation of
M is a partition F of M into p-dimensional, connected, immersed submanifolds,
called leaves, such that the module X(F) of smooth vector fields that are tangent
to the leaves is transitive on each leaf. This means, more precisely, that for each
L € F and each z € L one can find smooth vector fields X; whose values at x
form a basis for T, L. We denote the distribution defined by the tangent spaces
of the leaves by T'F and the leaf containing x by L,. The number ¢ =n —p is
the codimension of F. In Section 8 we will introduce singular foliations, which
drop the requirement that all leaves have the same dimension. Until then we
will often omit the word “regular” when referring to regular foliations.

There are several equivalent definitions for regular foliations (see for instance
[57, Section 1.2]). Here we recall the following one, which will be specially
useful. A regular foliation F is equivalently defined by an open cover {U;}ier
of M, submersions 7; : U; — 5;, with S; C R? open, and diffeomorphisms
Yij - ’/Tj(Ui N UJ) — ’/T,L(U, n U]) satisfying

Yij © Tj|U;nU; = Ti|lU;nU;

for all 4,5 € I. The collection (U;,m;,v:;) is a Haefliger cocycle representing F
and each U; is a simple open set for F (see Figure 1). We will assume without
loss of generality that the fibers 7, 1(f) are connected, in which case they are
called plaques. Plaques glue together to form immersed submanifolds, the leaves
of F.

Example 2.1 (Products). If (M,F) and (N, G) are foliations, then F x G =
{L1 X Ly | L1 € F, Ly € G} is a foliation of M x N.

Example 2.2 (Pullbacks). Let F be a foliation of M and f : N — M a
smooth map that is transverse to each leaf. Then f defines a foliation f*(F) on



Figure 1: A foliation is locally defined by submersions.

N as follows. If (U, m;,7i;) is a cocycle representing F, then f*(F) is given by
the cocycle (V;, 7}, vij), where V; = f=Y(U;) and 7} = m; o f|v,. Observe that
Tf*(F) = df Y(TF) and that codim(f*(F)) = codim(F). Notice also that
the leaves of f*(F) are the connected components of the preimages f~1(L), for
LeF.

Example 2.3 (Homogeneous foliations). Lie group actions constitute a main
source of foliations. Precisely, recall that when p : G x M — M is a smooth
action, each orbit Gz is the image of an injective immersion G/G, — M (see, for
instance, [7, Proposition 3.14]). Thus, if we suppose that dim(G;) is a constant
function of z, it follows that the connected components of orbits of G decompose
M into immersed submanifolds of constant dimension. This decomposition F
is easily seen to be a foliation, because T (Gz) = d(jiz)(g), so the fundamental
vector fields V# € X(M), for V € g, induced by the action generate TF,
showing that this is an involutive distribution.

A specific example is the following. Consider the flat torus T? = R? /Z2. For
each X € (0,400), we have a smooth R-action

RxT? —s T2
t[z,9]) — [z+ty+ A

with dim(R,,,;) = 0. The resulting foliation is the A-Kronecker foliation of the
torus, F(\). Observe that when \ is irrational each leaf is dense in T?, while a
rational A yields closed leaves.

When a foliation F is given by the action of a Lie group we say that F is
homogeneous.



Example 2.4 (Suspensions). Another class of examples of foliations comes
from suspensions of homomorphisms, a useful construction originally due to
A. Haefliger [38]. Let B and S be smooth manifolds, let h : m1 (B, x0) — Diff (5)
be a group homomorphism and denote by p : B — B the projection of the
universal covering space of B. On M = Bx S, the fibers of the second projection
M — S determine a foliation F. Define a right action of (B, zo) on M by
setting, for [v] € m1 (B, z0),

(b.)- 2] = (02 (017 ()

where b-[y] denotes the image of b by the deck transformation associated to [4].
There is a manifold structure on M = M/Wl(B,l‘o) [62, p. 28] such that the
orbit projection m : M — Mis a covering map and, if 7 : M — B is given
by 7(m(b,t)) = p(b), then it is the projection of a fiber bundle with total space
M, base B, fiber S and structural group h(mi(B,x¢)). The action of (B, x¢)
preserves the leaves of F , SO projecting through 7 we obtain a foliation F on M
with codim(F) = dim(S), constructed by suspension of the homomorphism h.
For example, the Kronecker foliation F(\) (see Example 2.3) can be obtained

by suspension of the homomorphism 7 (S, 1) = Z — Diff(S!) given by k
e—27ri/\k.

As the Kronecker foliation shows, a leaf L of a foliation F need not to be
closed as a subspace of the ambient manifold M. We denote the set of leaf
closures by F := {L | L € F}. Different leaf closures can overlap, so F may not
be a partition of M, but, as we will see later, this is the case for Riemannian
foliation. Understanding F is part of the study of the dynamics of the foliation.
In the simple case when F = F, that is, when all the leaves of F are closed, we
say that F is a closed foliation. A submanifold N C M is saturated if it is a
union of leaves.

A foliation (M, F) is tangentially orientable if TF is orientable, and trans-
versely orientable if its normal bundle vF := TM/TF is orientable. In this
case, choices of orientations for T'F and v F give, respectively, a tangential ori-
entation and a transverse orientation for F. It is always possible to choose
an orientable finite covering space M of M such that the lifted foliation F is
transversely (and hence also tangentially) orientable [18, Proposition 3.5.1]. In
terms of a Haefliger cocycle, F is transversely oriented if and only if there is a
cocycle {(U;, mi,7i5)} representing F that satisfies det(dy;;) > 0 as a function
on m;(U; N U;), for all 4,5 € I.

Let (M, F) and (N, G) be foliations. A foliate morphism between (M, F) and
(N,G) isamap f: M — N that sends leaves of F into leaves of G. When there
is a foliate diffeomorphism f : M — N (that is, F is foliate and admits a foliate
inverse), the foliations F and G are often said to be congruent. In particular,
we may consider F-foliate diffeomorphisms f : M — M. The infinitesimal
counterparts of this notion are the foliate vector fields of F, that is, vector fields
in the subalgebra

LF)={XeX(M) | [X,X(F)] Cc x(F)}.



These are precisely the fields whose local flows send leaves to leaves. Another
characterization is that X € £(F) if and only if for each submersion 7 : U — S
locally defining F we have that X | is m-related to some vector field X g € X(5)
[62, Section 2.2].

The Lie algebra £(F) also has the structure of a module, whose coefficient
ring consists of the basic functions of F, that is, functions f € C°°(M) such
that X f = 0 for every X € X(F). We denote this ring by Q°(F). A smooth
function is basic if and only if it is constant on each leaf and also if and only if
it factors through each submersion 7 : U — S locally defining F to a smooth
function on the quotient S [62, Section 2.1].

The quotient of £(F) by the ideal X(F) yields the Lie algebra [(F) of trans-
verse vector fields. For X € £(F) we denote its induced transverse field by
X € I(F). Notice that each X defines a unique section of v.F and that [(F) is
also a Q°(F)-module.

2.1. Holonomy

We start this section by recalling the language of pseudogroups. Let S be a
smooth manifold. Recall that a pseudogroup 7 of local diffeomorphisms of S
consists of a set of diffeomorphisms h : U — V, where U and V are open sets
of S, such that

(i) Idy € A for any open set U C S,
(ii) h € 2 implies h=1 € H#,
(iii) if hy : Uy — Vi and hg : Uy — Va5 are in S, then their composition

ho o hy : h;l(Vl n UQ) — hg(vl n UQ)

also belongs to 72,

(iv) if h: U — V is in 42, then its restriction to each open set U’ C U is also
in 7, and

(v) if U C Sisopen and k : U — V is a diffeomorphism such that U admits
an open cover {U;} with k|y, € ¢ for all 4, then k € 2.

The JZ-orbit of x € S consists of the points y € S for which there is some
h € S satisfying h(z) = y. The quotient by the corresponding equivalence
relation, endowed with the quotient topology, is the space of orbits of 7, that
we denote S/ .

If we have two pseudogroups of local diffeomorphisms 57 and ¢ of S and T,
respectively, a smooth equivalence between 7 and % is a maximal collection ®
of diffeomorphisms from open sets of S to open sets of T such that {Dom(y) | ¢ €
@} covers S, {Im(p) | p € D} covers T and, for all p,vp € &, h € H# and k € K,
we have " tokop € S, pohop ™t € # and ko poh € ® whenever these
compositions make sense.

The collection of all changes of charts of an atlas A of a smooth manifold
defines a pseudogroup 724 on the disjoint union of the images of the charts. If
B is a compatible atlas then one has a smooth equivalence ¢4 = . More
generally:



Example 2.5 (Orbifolds). An n-dimensional smooth orbifold is an equivalence
class O = [(S, )] of pseudogroups of local diffeomorphisms, with S an n-
dimensional manifold, satisfying that |O| := S/ is Hausdorff and paracom-
pact and each € S has a neighborhood U such that J#|y is generated by
a finite collection of diffeomorphisms of U. Orbifolds are generalizations of
manifolds that appear naturally in many areas of mathematics, for instance
as quotients of manifolds by properly discontinuous actions, the so-called good
orbifolds. We refer to [19], [1, Chapter 1], [57, Section 2.4] and [47] to detailed
introductions.

Equivalently, an orbifold O is usually defined, in analogy with the classical
definition of manifolds, as a Hausdorff paracompact space |O| admitting an orb-
ifold atlas. Each chart of this atlas consists of an open subset UcC R"”, a finite
subgroup H of Diff(U) and an H-invariant map ¢ : U — |O] that induces a
homeomorphism between U/H and some open subset U C |O]. That is, orb-
ifolds are locally modeled in finite quotients of Euclidean spaces, thus generaliz-
ing manifolds by allowing this type of singularity. If we consider Uy := | |;c; Ui
and ¢ := | ];c; ¢ : Ua — |O|, a change of charts of A is a diffeomorphism
h:V — W, with VW C U4 open sets, such that goh = ¢|y. The collection of
all changes of charts of A generates a pseudogroup 4 representing [(S, 7)].

Now let (M, F) be a foliation represented by the cocycle {(U;, m;,v:5)}. The
pseudogroup of local diffeomorphisms generated by v = {;;} acting on

S,y = |_|Sz

is the holonomy pseudogroup of F associated to v, that we denote by JZ,. If
0 is another Haefliger cocycle defining F then % is equivalent to J%,, so we
can define, up to equivalence, the holonomy pseudogroup of F. We will write
(Sx, #F) to denote both this equivalence class and a specific representative in
it, for it seldom leads to confusion. It is clear that Sx/ % is precisely M/F
endowed with the quotient topology. Notice also that there is an isomorphism
[(F) — X(S7)”* sending X € [(F) to the vector field in X(Sz)”* given, on
each S;, by Xg,. In general, the study of the transverse geometry of F is the
study of the J#r-invariant geometry of Sr.

Example 2.6 (Holonomy of suspensions). If (M, F) is given by the suspension
of a homomorphism h : 71 (B, zo) — Diff(S) (see Example 2.4) we can choose a
cocycle {(U;,m;, i)} representing F where each U; is the domain of a trivial-
ization of 7 : M — B and 7; : U; — S is the trivial projection. Then J¢7F is just
the pseudogroup generated by h(m (B, o)) < Diff (S), encoding the recurrence
of the leaves on S.

The notion of fundamental group can be generalized to pseudogroups by
considering homotopy classes of #7°-loops, that is, sequences of continuous paths
¢t [tic1,t] = S, for 1 < i < n, and elements h; € S such that h;c;(t;) =
civ1(t;), for 1 < i < n—1, and ¢1(0) = hpen(l) = . We refer to [73] and



Figure 2: Sliding along the leaves.

[19, Section 2.2] for details. In particular, for the holonomy pseudogroup #F a
foliation (M, F) this furnishes an invariant 1 (F, T), the transverse fundamental
group of F, which captures information of both the topology of F and the
holonomy of the leaves. Its isomorphism class does not depend on the Haefliger
cocycle representing F nor on the base point, when M is connected (in this case
we omit it, denoting simply 7 (F)).

If L := L, = Ly, choose a path c: [0,1] — L joining z to y. Fix a cocycle
{(Us, 7, 7i;)} representing F and a subdivision 0 = t; < -+ < t;41 = 1 such
that s([tk, tk+1]) C Us, for some U;, . Then, there is a diffeomorphism

Vimitm-1) © Vitm-1)itm—2) © " © Vigis = Vimis

between small enough neighborhoods of T = 71 (z) and y = 7, (y). If we identify
S., with a total transversal | |, S; for F containing x and y, this becomes the
“sliding along the leaves” notion from [62], Section 1.7 (see Figure 2). Let us
denote the germ of v;, ., at T by h.. This germ actually depends only on the
9]0, 1]-relative homotopy class of ¢ [18, Proposition 2.3.2], hence, if we consider
in particular the holonomy group of L at x, that is, the group

Hol, (L) = {h. | ¢:[0,1] = L is a loop},

we have a surjective homomorphism h : m(L,z) — Hol,(L). If one changes
the section S at x to a section S’, the corresponding holonomy groups are
conjugated, so it is often useful to consider this object as an equivalence class
of groups of germs of diffeomorphisms.

As the isomorphism class of Hol,(L) does not depend on x, we often omit =
in this notation. In particular, we can say that L is a leaf without holonomy (or a
generic leaf) when Hol(L) = 0. It follows immediately from the surjectivity of h
that simply-connected leaves are without holonomy. Also, it can be shown that
leaves without holonomy are generic, in the sense that {x € M | Hol,(L) = 0}
is residual in M [18, Theorem 2.3.12].

Suppose Hol, (L) is finite and identify it with a subgroup of Diff(S), where
S is a small local transversal of F passing through z. With this in mind we can
state the famous Reeb Stability Theorem as follows (see [57, Theorem 2.9] or
[18, Theorems 2.4.3 and Theorem 3.1.5]).



Theorem 2.7 (Generalized local Reeb stability). Let F be a smooth foliation
with a compact leaf L,. If Hol, (L) is finite then there is a saturated tubular
neighborhood pr : Tub(L,) — L, restricted to which F is congruent to the
foliation given by the suspension of h : m(L,x) — Hol, (L) < Diff(S), where
S =pr!(z).

In particular, for every y € Tub(L) the projection pr : L, — L, is a
finitely-sheeted covering map, the number of sheets being the index |Hol, (L) :
Hol,(L,)|. This indicates that leaf holonomy plays the same role of the stabi-
lizer in the case of group actions. In fact, using Theorem 2.7 one proves the
following [57, Theorem 2.15].

Proposition 2.8 (Leaf space of closed foliations with finite holonomy). Sup-
pose (M, F) is a q-codimensional foliation whose every leaf is compact and with
finite holonomy. Then M/F has a canonical q-dimensional orbifold structure,
relative to which the local group of a point in M/F is the holonomy group of the
corresponding leaf.

When F is as in Proposition 2.8 it is convenient to adopt a specific notation
for the leaf space, so that we are promptly reminded that it is being considered as
an orbifold: we will denote it by M //F in this case. So to recap, M/F will denote
the (topological) leaf space, with the quotient topology, and M //F will denote
it endowed with its canonical orbifold structure. The holonomy pseudogroup
(Sr,#F) is then a representative of M//F, viewed as an equivalence class of
pseudogroups (see Example 2.5). Notice that we have

M/F = |MJ/F| 2 S/ #5.

Moreover, in this case 71 (F) coincides with the orbifold fundamental group
7P (M//F), as defined by Thurston [82].

2.2. Basic Cohomology

Let (M, F) be a smooth foliation. A covariant tensor field £ on M is F-basic
if £(Xq,...,X;) =0, whenever some X; € X(F), and Lx& =0 for all X € X(F).
In particular, we say that a differential form w € Q¢(M) is basic when it is basic
as a tensor field. By Cartan’s formula, w is basic if and only if, ixw = 0 and
ix(dw) = 0 for all X € X(F). These are the differential forms that project to
differential forms in the local quotients S and are invariant by the holonomy
pseudogroup of F [62, Proposition 2.3]. We denote the Q°(F)-module of basic
i-forms of F by Q/(F). Then

QF) = @Qi(f)

is the A-graded algebra of basic forms of F.
By definition, Q(F) is closed under the exterior derivative, so we can consider
the complex

Lo E) L ol(F) L ot (r) L



The cohomology groups of this complex are the basic cohomology groups of F,
that we denote by H'(F). A foliate map f : (M, F) — (N, G) pulls basic forms
on N back to basic forms on M and hence induces a linear map f* : HY(G) —
Hi(F).

When the dimensions dim(H*(F)) are all finite (see Example 3.8), we define
the basic Euler characteristic of F as the alternate sum

X(F) =Y (=1)" dim(H'(F)).

7

In analogy with the manifold case, we say that b'(F) := dim(H*(F)) are the
basic Betti numbers of F. When F is the trivial foliation by points we recover
the classical Euler characteristic and Betti numbers of M.

Since we have an identification between F-basic forms and .7#%-invariant
forms on Sx and an identification between differential forms on an orbifold O
and J#p-invariant forms on Up, Proposition 2.8 gives us the following.

Proposition 2.9. Let (M,F) be a foliation such that every leaf is compact
and with finite holonomy. Then the projection w : M — M//F induces an
isomorphism of differential complexes * : Q(M//F) — Q(F). In particular,
H(F) = Har(M//F).

2.8. Foliations of Orbifolds

Let O be an orbifold with atlas A = {(U;, Hy, ¢;)} and associated pseu-
dogroup (Ua, #4) (see Example 2.5). Following [40, Section 3.2], we define
a smooth foliation F of O as a smooth foliation of U4 which is invariant by
€. The atlas can be chosen so that on each U; the foliation is given by a
surjective submersion with connected fibers onto a manifold S;. The holonomy
pseudogroup of F, therefore, will be generated by the local diffeomorphisms
of the disjoint union | J,.; S; that are projections of elements of 7. All no-
tions defined so far for foliations on manifolds therefore extend to foliations on
orbifolds.

3. Riemannian foliations

Let F be a smooth foliation of M. A transverse metric for F is an F-basic
(2,0)-tensor field g7 on M (recall Section 2.2) which is

(i) symmetric: gT(X,Y) = gT(Y, X) for any X,Y € TM, and
(ii) (transversely) positive: g? (X, X) > 0 whenever X is not tangent to F.
In this case (M,F,gT) is called a Riemannian foliation. A Riemannian
metric (in the usual sense) g on M is called bundle-like for F if for any open set U
and any Y, Z € £(F|y) perpendicular to the leaves we have g(Y, Z) € Q°(F|y).

In this case, setting
gl (X,Y) =g(X",Y")

10



defines a transverse metric for F, where we write X = X T + X' with respect
to the decomposition TM = TF @ TF+. Conversely, given g7 one can always
choose a bundle-like metric on M that induces it [62, Proposition 3.3]. With a
bundle-like metric chosen, we will identify the bundles v.F = TF*.

Example 3.1 (Products of Riemannian foliations). If (M, F,gT)and (N, G, hT
are Riemannian foliations, then g” @ hT (via the isomorphism T'(M x N) =
TM @®TN) is a transverse metric for F x G, which is then Riemannian.

Example 3.2 (Homogeneous Riemannian foliations). If a foliation F on M is
given by the action of a Lie group G (i.e, such that all orbits have the same
dimension, see Example 2.3) and g is a Riemannian metric on M such that G
acts by isometries, then g is bundle-like for F [57, Remark 2.7(8)]. In other
words, a foliation induced by an isometric action is Riemannian.

In foliation theory one is usually interested in studying (M, F,g?), which
could be called the “differential geometric approach” to F. On the other hand,
in Riemannian geometry it is also interesting to fix a Riemannian manifold
(M, g) and study the foliations for which g is bundle-like, which would be the
“Riemannian approach”.

Example 3.3 (Gromoll-Grove [31, Theorem 5.4]). The 1-dimensional foliations
of the euclidean sphere S™ for which the canonical metric of S™ is bundle-like
where classified by D. Gromoll and K. Grove. They exist only if n is odd, say
n = 2k + 1, and are all homogeneous, given (up to isometric congruence) by
R-actions of the type

2771>\otz 271'1)\ktzk)7

t-(z0,...,2K) = (e 0y---,€

where \; € (0,1] and z; € S* € CFF1. We will call these foliations generalized
Hopf fibrations, since we get the usual Hopf fibration when \; = 1 for each i.
In particular, such an action correspond to a closed Riemannian 1-foliation F
of S™ precisely when all \; are rational, say A; = p;/q;. Notice that in this
case we can equivalently assume that A\; € N, by changing the parameter ¢ to
lem(qy, ..., qr)t, hence S™//F is a weighted projective space CP* Aoy -y Ak
Let us visualize these foliations in the case of the 3-dimensional sphere, that
is, for k£ = 1. Consider the action of T? = S' x S! on S? by (to,t1) - (20, 21) =
(toz0,t121). This action has two singular orbits, T?(1,0) and T?(0, 1), that are
diffeomorphic to S'. The other orbits are tori and coincide with the distance
tubes of the two singular orbits. The 1-dimensional Riemannian foliations of S3,
up to congruence, can be identified with the 1-dimensional Lie subalgebras of
R? 22 lie(T?) via the induced action of the corresponding 1-parameter subgroup.
They restrict to Kronecker foliations on each regular T2-orbit (see Figure 3).

Still concerning Riemannian foliations of spheres, more recently A. Lytchak
and B. Wilking proved in [54] that the dimension of the leaves of a Riemannian
foliation on a topological n-sphere is 1 or 3, unless n = 15, and moreover the
foliation is given by the fibers of a Riemannian submersion to an 8dimensional
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Figure 3: The 1-dimensional foliations of S? (via stereographic projection).

sphere. This leaded to a classification of Riemannian foliations on round spheres
up to metric congruence.

In this paper we focus in the “differential geometric approach”, so we are
most interested in properties involving g” only. In this vein, notice that g’
projects to Riemannian metrics on the local quotients S; of a Haefliger cocycle
{(U;, m,7i;)} defining F (see [62, Section 3.2], and also [57, Remark 2.7(2)]).
Therefore the holonomy pseudogroup %% becomes a pseudogroup of local isome-
tries of Sx. Moreover, by choosing a bundle-like metric on M, the submersions
7; become Riemannian submersions.

Example 3.4. Let (S, g) be a Riemannian manifold. A foliation F defined by
the suspension of a homomorphism (see Examples 2.4 and 2.6) h : m1 (B, zg) —
Iso(S) is naturally a Riemannian foliation [62, Section 3.7].

Example 3.5. By its description via Haefliger cocycles, the pullback of a Rie-
mannian foliation is obviously a Riemannian foliation (see Example 2.2).

We now associate a canonical transverse connection for a Riemannian fo-
liation (M, F,gT). Choose a bundle-like metric for (F,g?) and denote its
Levi-Civita connection by V. Via the identification vF = TF*, we define a
connection VZ on vF by

(X, Y]+ if X e (TF) = X(F),

(VxY)* if X e T(TFH). M

Gy = {

This connection on vF does not depend on the choice of the bundle-like metric,
being completely determined by g”. It is in fact the unique g”-metric and
torsion-free connection on vF [80, Theorem 5.9], so in analogy with the classical
case of Riemannian manifolds we call it the basic Levi-Civita connection of
F. The partial connection on vF defined only for X € T'(TF) by [X, Y]+
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is called the Bott connection on vF. The connection VZ induces a covariant
derivative on [(F), which in terms of a submersion 7 : U — S locally defining
F corresponds to the effect of the Levi-Civita connection V* of (S, . (g7)),
that is, 7.(VEY) = VI ymY, for Y € [(F|y) and X € TU. The following
characterization of bundle-like metrics — which establishes that the leaves of a
Riemannian foliation are locally equidistant — is related to this property:

Proposition 3.6 ([69]). A Riemannian metric g is bundle-like for (M,F) if
and only if a geodesic that is perpendicular to a leaf at one point remains perpen-
dicular to all the leaves it intersects. Moreover, geodesic segments perpendicular
to the leaves project to geodesic segments in the local quotients S.

Given the relationship between V2 and a local V¥, the following definition
makes sense if one wants to focus on the transverse geometry of a Riemannian
foliation F.

Definition 3.7 (Transverse curvatures). Let (M, F,g”) be a Riemannian fo-
liation and Sr be the total space of a Heafliger cocycle {(U;, m;,7;;)} defining
F. The transverse curvature tensor of F (with respect to Sr) is the curvature
tensor the Levi-Civita connection of Sr endowed with the Riemannian met-
ric induced by g7. The transverse sectional and Ricci curvatures are defined
accordingly, and denoted by secr and Ricr, respectively.

In Section 3.1, in this vein, we will study pseudogroups of local isometries
in general and in Section 7 we will explore many results involving bounds in
transverse curvature. For now, it will be useful to end this section with the
following observation: contrarily to the classical case of Riemannian metrics
on manifolds, not every smooth foliation admits a transverse metric so that it
becomes a Riemannian foliation. For instance, if F is given by suspension of a
homomorphism h : w1 (B, z9) — Diff(S), then a transverse metric for F must
induce a metric on S that is invariant by h(mi(B,zo)) (which is not always
possible). In the general case, this fact will also become apparent when we
study Molino’s structural theorem in Section 4. This fact can also be seen in
the level of basic cohomology: the basic cohomology of Riemannian foliations on
compact manifolds have finite dimension (Theorem 3.9 below). The following
example illustrates this discussion.

Example 3.8 ([27]). Consider

A= G ?) € SLy(2)

and its induced diffeomorphism A : R?/Z%* = T? — T2. Then we have a
homomorphism h : Z = 71 (S') — Diff(T?2) given by n — A". Consider the
1-dimensional foliation F given on the torus bundle T3 — S! by the suspension
of this homomorphism. If 7 had a transverse metric, then h(Z) would act by
isometries on the slice T? with a fixed point p = [(0,0)]. Differentiating at p,
the isotropic action on 7,T? would give us a subgroup G of O(2). But this
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action coincides with the action generated by A on R? 2 T, T?, which clearly
has unbounded orbits, which would be a contradiction.

Basic cohomology provides another proof that F is not Riemannian, as fol-
lows. Ghys shows in [27] that the 1-dimensional foliation F given on the torus
bundle T3 — S! by the suspension of this homomorphism has dim(H?(F)) = oo
(see Examples 2.4 and 2.6). In fact, it can be verified by direct calculations that
an A-invariant 1-form on T? (corresponding to a basic 1-form) is of the type
f(x)dz, thus closed, while an A-invariant 2-form is of the type g(z)dz A dy.
Therefore H2(F) must be infinite-dimensional.

Theorem 3.9 (Alaoui-Sergiescu-Hector [4, Théoréme 0]). Let F be a Rieman-
nian foliation of a compact manifold M. Then dim(H*(F)) < cc.

As remarked in [29, Proposition 3.11], the hypothesis that M is compact can
be relaxed to F being transversely compact — that is, M /F being compact —
provided that F is a complete Riemannian foliation in the following sense.

Definition 3.10 (Complete Riemannian foliation). A Riemannian foliation F
of a manifold M is complete if M is a complete Riemannian manifold with
respect to some bundle-like metric for F.

Hence x(F) is always defined for transversely compact, complete Rieman-
nian foliations.

Basic cohomology of Riemannian foliations can also be studied via the basic
Laplacian Apg. Let F be a transversely oriented Riemannian foliation of a
compact oriented manifold M endowed with a bundle-like metric g. Consider
the scalar product (-,-) 5 in Q(F) given by the restriction of the usual scalar
product in Q(M) (see, e.g., [67, Section 2 of Chapter 7]). The basic laplacian
is the operator Ap : Q{(F) — Q(F) given by Ap = dd + dd, where § is the
formal adjoint of d with respect to (-,-) 5. We denote by H*(F) the space of
basic harmonic i-forms, that is, basic i-forms « satisfying Apa = 0. For a
thorough introduction to this objects, we refer to [80, Chapter 7].

There is a basic version of Hodge’s decomposition theorem for Ap that gives
an orthogonal decomposition (see [80, Theorem 7.22])

Q'(F) = Im(d) ® Im(8) & H"(F)
and so provides an isomorphism (see also [80, Theorem 7.51])
H'(F) = H'(F).

This leads to duality theorems for the basic cohomology. Poincaré duality in its
expected form, however, is only available for the so-called taut foliations: a (not
necessarily Riemannian) foliation F of M is taut it there exists a Riemannian
metric on M with respect to which every leaf of F is a minimal submanifold
(that is, with vanishing mean curvature field). When F is a taut Riemannian
foliation, tautness can be achieved with a bundle-like metric (see [44, Corollary
2.31)).
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Theorem 3.11 ([43], [3] and [76]). Let F be a transversely oriented Riemannian
foliation of codimension q of a compact manifold M. Then F is taut if and only

if HY(F) =2 HI7'(F).

Tautness is also characterized in [50, Theorem 6.4] by the vanishing of a
degree 1 basic cohomology class, the mean curvature class of 7. We also mention
the following characterization for tautness by Rummler.

Proposition 3.12 ([71]). A p-dimensional orientable smooth foliation F of M
is taut if and only if there exists 0 € QP(M) which is non-singular along the

leaves and satisfies
d@(vl, ce ,Up+1) =0

whenever p of the p + 1 vectors v; are tangent to F.

Although tangent orientability appears in Rummler’s criterion, tautness is
a transverse property: it depends only on the holonomy pseudogroup 7% (see
[39, Theorem 4.1]). We refer to [18, Section 10.5] for more on taut foliations.

3.1. Complete Pseudogroups of Local Isometries

As we mentioned earlier, the transverse information of a Riemannian folia-
tion corresponds to the holonomy-invariant information on a total transversal,
S0, in considering transverse geometry, one can focus on the later. In this section
we survey this point of view, pioneered by A. Haefliger, focusing mainly on the
study the closures of the orbits of a complete pseudogroup of isometries. The
main references are [37], [72] and [73].

Definition 3.13 (Complete pseudogroups). We say that a pseudogroup of local
isometries (A2, S) is complete when, given x,y € S, there exists neighborhoods
U > z and V > y such that every germ of an element of 7 with source in U
and target in V is the germ of an element of .7# defined on the whole of U.

This property is invariant by differentiable equivalences [73, p. 278]. It is
also independent of the concept of completeness in the sense of Riemannian
manifolds, as the following example shows.

Example 3.14 ([73, Example 2.8]). Suppose 5 is a pseudogroup of local
diffeomorphisms of S whose equivalence class represents an orbifold @. One can
always choose a Riemannian metric on O, which corresponds to an .7-invariant
Riemannian metric on S. Then O is not necessarily complete as a Riemannian
orbifold, but we claim that J# is a complete pseudogroup of local isometries. In
fact, for every point € S one can find an JZ-invariant neighborhood U > .
Hence, if z,y € S are in the same J#7-orbit then every germ of an element of S
with source and target in U is the germ of an element defined on the whole of U
(here we take V = U 3> y to be the neighborhood of y used in the definition of
completeness). On the other hand, if z and y are in different orbits, then since
S/ is Hausdorfl one can separate the orbits .z and 'y by two disjoint
open neighborhoods U D J#x and V' O y. Therefore there are no germs of
elements of J# with source in U and target in V.
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The example below establishes the connection between complete Riemannian
foliations and complete pseudogroups of local isometries. A proof can be seen
in [73, p. 281]. It follows essentially from Proposition 3.6.

Example 3.15 ([37, Example 1.2.1]). The holonomy pseudogroup of a complete
Riemannian foliation is a complete pseudogroup of local isometries. The the
converse is not true, that is, there are non-complete foliations whose holonomy
pseudogroups are complete; for instance, the product of a complete foliation
and the trivial foliation by points on a non-complete manifold.

Let 4 be a complete pseudogroup of local isometries. Its closure J7 is
defined as the pseudogroup on S whose elements are locally the limits, in the
C' topology, of elements of 7.

Proposition 3.16 ([37, Proposition 3.1]). The closure F# of a complete pseu-
dogroup of local isometries F is a complete pseudogroup of local isometries,
unique up to equivalence. Moreover, S/ is Hausdorff and, for any x € S,

Hx = Hx.
We say that S is closed when S = .

Example 3.17 ([73, Example at p. 279]). Let G < Iso(M), for a Riemannian
manifold M. If S is the pseudogroup generated by the restriction of elements
of G to open sets, then /7 is the pseudogroup generated by the closure G <
Iso(M), in the compact-open topology.

3.2. A brief interlude on sheaves

Before we continue it will be convenient to recall the notion of sheaves, which
are tools for working with locally defined data on topological spaces. A presheaf
& on a topological space (X, 7) consists of an assignment of a set Z(U), to
each U € 7, and a restriction map res¥ : 2(U) — P(V), to each U,V € 1
with V C U, such that res is always the identity map and resl;; ores{) = resy,
whenever W C V C U. An element s € &(U) is a section over U.

One often is interested in local data (the sets Z(U)) that have additional
structure, such as algebraic operations. In this case one requires that the re-
striction maps preserve the additional structure. This leads to the definition of
presheaves of groups, rings and so on. For example, if each U is assigned to a
(real) Lie algebra Z(U) and each res!] is a Lie algebra homomorphism, then &
is a presheaf of Lie algebras.

Example 3.18. Let M be a smooth manifold. The assignment U — C*°(U),
of an open set U to the ring of smooth functions f : U — R, together with the
usual restriction of functions is a presheaf of rings €yy.

Given a presheaf &2 on (X,7) and = € X, let U, be the collection of open
sets that contain z. For Uy,Us € U, declare s1 € P (Uy) and sy € P (Us) to
be equivalent if there exists V' € U, such that V C U; N Uy and resg] (s1) =
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reng (s2). The equivalence class of s € Z(U) is the germ of s at x, denoted by
res! (s) or simply by [s].. The set &, of germs at x is called the stalk of &
at x. Notice that the stalks of a presheaf of structured sets (say groups or Lie
algebras) inherit that structure in a natural way.

A sheaf on a topological space on (X, 7) is a presheaf . on (X, 7) such that,

for any U € 7 and any open covering {U, };er of U,
(i) if s,t € S (U) satisfy resy] (s) = resg (t) for every i, then s = t, and
(ii) if s; € L (U;) satisfy resgxmwz (si,) = 1resgjiji2 (si,) for every iy,is € I,
then there exists s € &(U) with resf (s) = s;.

A sheaf of groups (or rings, Lie algebras etc.) is just a presheaf of groups
(or rings, Lie algebras etc.) that is a sheaf in the above sense.

Example 3.19. It is not difficult to check that, for a smooth manifold M, the
presheaf €5y is a sheaf of rings. Now let 7 : E'— M be a smooth vector bundle.
The presheaf that assigns to each open set U the space of smooth local sections
of E over U, with the usual restriction maps, is a sheaf of €5y-modules.

Sections of a sheaf . can be realized as (usual) sections of its étalé space.
In fact, given a presheaf & on (X, 1), its étalé space is the space

Et(2):= | | 2.

zeX

endowed with the (in general non-Hausdorff) topology whose basis is given by
the sets of the form Vi, = {[s]s | x € U}, for U € 7 and s € Z(U). There is a
canonical projection

7w tEt(P) D [s], — e X,

which is a local homeomorphism, by construction. The presheaf I'(Et(4?)) of
local sections of w4 (that is, continuous maps s : U — Et(2?) with mgos = idy)
is a sheaf, called the sheafification of 2, or the sheaf of germs of sections of 2.
When £ is already a sheaf, it is isomorphic to I'(Et(2?)).

Example 3.20 (Constant sheaves). A sheaf .# on X is constant when all its
stalks are equal to the same set Z. In this case we can identify Et(2?) = X x Z,
where Z is given the discrete topology, and 7 : X X Z — X is just the
projection on the first factor. Under this identification a section s € .#(U) is
identified with a locally constant map U — Z. More generally, a sheaf .7 is
called locally constant when every x € X admits an open neighborhood U 3
where .|y is constant. In this case the identification Et(|y) 2 U x Z is a
local trivialization of ..

It is instructive to compare this notion with the case of a presheaf &2 on X
that satisfies Z(U) = Z for all U. In this case & is usually not a sheaf, since
the “gluing property” (ii) does not hold in general (unless 7 has the peculiar
feature that all open sets are connected, or #2Z < 1). In fact, the constant sheaf
- with stalk Z is the sheafification of 2.

17



Sheaves can be “transported” through continuous maps, as follows. Suppose
f X — Y is continuous and Z is a sheaf on X. Then we define the direct image
of Z by f as the sheaf f.Z onY given by f.Z(U) = %Z(f~*(U)) (which is in fact

-1
a sheaf on V). The restriction maps f, res of f.Z satisfy f,resl = res}c_lggg.

On the other hand, if we have a sheaf . on Y then we can also obtain a sheaf
f~1 on X, called the inverse image of ¥ by f, which consists of the sheaf of
germs of sections of the étalé space f~1 Et. := {(z,[s],) € X xEt(¥) | f(z) =
y} over X. It is instructive to try to understand f~1.%(U) in terms of the values
of . on open sets of Y, although this is a little involved since f(U) is not
necessarily an open set. To circumvent this, we need to generalize the notion of
germ, as follows. For any subset A C Y, let U; and U, be open neighborhoods of
A. We will say that two sections s; € #(U;) and sg € . (Us) are equivalent if
there exists a neighborhood W C Uy N Us of A such that res (s1) = res}? (ss).
We denote the set of equivalence classes by .4, and an equivalence class by
[s]a. Notice that if B C A we can define a restriction res$[s]4, since any open
neighborhood of A will also be an open neighborhood of B. With this concept
we can now consider the presheaf p_r,lejﬂ on X given by fp_réY(U) = S5
It can fail to be a sheaf (even when . is a sheaf) but f~!. is isomorphic to
its sheafification T'(Et(f,,l.#)). The restriction maps f~!res of f~1.7 satisfy

pre
—1 pegl J W)
[ resy = resy v)-

3.8. Infinitesimal sheaf of a complete pseudogroup

There is a structural theorem for complete pseudogroups of local isometries,
due to E. Salem [72], which describes the closures of the orbits of such a pseu-
dogroup as orbits of a sheaf of Lie algebras on it. This result can also be seen as
a generalization of Myers—Steenrod Theorem for closed, complete pseudogroups
of local isometries.

Let 47 be a pseudogroup of local isometries of S. We consider the sheaf
which to each open set U C S associates the space is0(U) of vector fields X
on U with the property that for all x € U there exists a neighborhood V, > =
and € > 0 such that exp(¢X) is defined on V,,, when |{| < &, and exp(tX) € 2.

Definition 3.21 (Sheaf of infinitesimal transformations). With the notation
above, the sheaf is0 is called the sheaf of infinitesimal transformations of .

Notice that is0_» plays an analog role, in the context of pseudogroups, as the
Lie algebra of Killing vector fields induced by an isometric Lie group action on
a manifold (cf. Example 3.22). For a complete pseudogroup of local isometries
¢ the infinitesimal the sheaf iso» is a locally constant sheaf of Lie algebras of
germs of Killing vector fields on S (see [72, Proposition]).

Example 3.22 ([72, Example at p. 188]). If 2 is generated by a closed
subgroup G of isometries of a Riemannian manifold M, then iso_ is the sheaf
whose sections are the restrictions of the fundamental Killing vector fields of
the action, that is, elements in the Lie algebra isog which is the image of the
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map g > X +— X% € X(M), where

d
X#(2) = % exp(tX)x
=0

Notice that the sheaf is0 is isomorphic to the constant sheaf with stalk g=!

on M.

In view of the facts above, the following definition is natural. A complete
pseudogroup of local isometries 7 is a Lie pseudogroup when any element of
2 that is close enough to the identity is of the form exp(X), for a local section
X of is0_ close to 0.

Theorem 3.23 (Myers—Steenrod theorem for pseudogroups [72, Théoréme]).
Every complete pseudogroup of local isometries ¢ which is closed in the C*
topology is a Lie pseudogroup.

As a corollary, it follows that the orbits of the closure J# are closed sub-
manifolds of S, since they are given by the orbits of its sheaf of infinitesimal
transformations. Combining this with Proposition 3.16 we have the following.

Corollary 3.24 (Structural theorem for complete pseudogroups). Let S be a
complete pseudogroup of local isometries of a manifold S. Then there is a locally
constant sheaf € := iso5; of Lie algebras of germs of local Killing vector fields
on S whose orbits describe the closures of the orbits of .

We will call € the Molino sheaf of 7. Since it is locally constant, if S/ #

is connected all stalks of € are isomorphic to a Lie algebra g~!.

Definition 3.25 (Structural Lie algebra). The Lie algebra g will be called the
structural Lie algebra of 2.

We are specially interested in the case of the holonomy pseudogroup of a
complete Riemannian foliation, for which we can use Theorem 3.23 to similarly
describe the closures of the leaves as orbits of a sheaf, since we have M/F =
S/ by Proposition 3.16. To make this more precise, we need the following
definition.

Definition 3.26 (Transverse Killing vector field). A field X € X(M) is a
foliate Killing vector field if £Lxg” = 0. This condition implies that X is foliate
(see [62, Lemma 3.5], recall Section 2), so these fields form a Lie subalgebra
A(F,gl) < £(F) and there is, thus, a corresponding Lie algebra of transverse
Killing vector fields, that we will denote by iso(F,g?) = &(F,gT)/X(F). We
will omit the transverse metric when it is clear from the context, writing just
is0(F). In a similar way we define local foliate/transverse Killing vector fields
on an open set U and denote the corresponding algebra by iso(F|y)

In terms of the holonomy pseudogroup 7%, the vector fields in iso(F) are
precisely those that project to JZ-invariant Killing vector fields on Sx. Local
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Figure 4: The orbits of the Molino sheaf are the closures of the leaves.

Killing vector fields are more flexible: if 7 : U — S is a submersion locally
defining F, the elements of iso(F|y) are the transverse fields that project to
Killing vector fields on S (not necessarily J#z-invariant). The inverse images
T, Y(€,) of the Molino sheaf of #% hence patch together on M to form a
sheaf €r of Lie algebras of germs of local transverse Killing fields (see [73, §3.4],
also [40, Remark at p. 711]).

Definition 3.27 (Molino sheaf). The sheaf @ is called the Molino sheaf of F.

For X € iso(F|y), we define the orbit X -z of x € M as the saturation of the
orbit of z under the flow of a representative X € £(F) (notice that this is well
defined, i.e., it is independent of the choice of the representative, since different
representatives differ by a vector field in X(F)). We define the orbits of €'
similarly: the orbit of x consists of all leaves that can be reached by continuous
paths starting at x and contained in orbits of sections of the sheaf. We see that
the closures of the leaves of a complete Riemannian foliation F are the orbits
of € (see Figure 4). In Section 4 we will revisit this result from a completely
different approach, obtaining Molino’s original definition of €.

Example 3.28 (Molino sheaf of suspensions [61, Exemple I11.1]). Let S be a
complete Riemannian manifold and let 7 be the Riemannian foliation of M =
B X+, (p) S defined by the suspension of h : 71(B) — Iso(S) (see Examples 2.4
and 3.4). Denote G = h(m1(B)), let 5 be the pseudogroup of local isometries of
S generated by G and consider its sheaf is0 ;- of infinitesimal transformations,
which is the constant sheaf given by the restrictions of the fields in the Lie
algebra isog (recall Example 3.22). Then the inverse image of is0,- via the
projection M — S is a constant sheaf iso ¢ 01 M whose sections are restrictions
of the transverse fields in the pullback isog < [(F) of isog. The Molino sheaf

%= coincides with the direct image, by 7 : M— M , of 150 4.
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4. Molino Theory

Molino theory consists of a structural theory for Riemannian foliations de-
veloped by P. Molino and others in the decade of 1980. In this section we
summarize it, following mostly the brief presentations in [29, Section 4.1] and
[78, Section 3.2]. A thorough introduction can be found in [62]. Roughly speak-
ing, the fundamental underlying idea is that one can “uncoil” the holonomy of
a Riemannian foliation by considering its action on the transverse frames. One
obtains this way a simpler foliation, with trivial holonomy, which is intimately
related to the original foliation.

More precisely, let 7* : M* — M be the principal O(g)-bundle of F-
transverse orthonormal frames®, which we call the Molino bundle of F. We
lift F to a foliation F* of M* as follows. The flow of a foliate vector field
X acts by foliate diffeomorphisms on M and thus induces a flow vF — vF
of bundle automorphisms. If X is a foliate Killing vector field this flow further
preserves g7, hence maps transverse orthonormal frames to transverse orthonor-
mal frames, naturally inducing an O(g)-equivariant flow on M*. The associated
fundamental vector field X* € X(M*) of this flow is the natural lifting of X.
Notice that, in particular, every X € X(F) is automatically a foliate Killing
vector field and can be lifted. The image of X(F) under natural liftings spans
an involutive bundle T'F*, whose integral foliation is the lifted foliation F* we
wanted.

Alternatively, F* can be described as follows: if z = 7*(z*) and y = 7*(y*)
then y* belongs to the leaf L, . € F* if and only if the orthonormal frame y* of
vy F is the parallel transport of the frame z*, with respect to the Bott connection
on vF (or V® instead, recall the definition in (1)), along some smooth path in
L, from x to y.

The partial connection on M* given by natural liftings can be extended
to a unique F*-basic torsion-free principal connection [62, Lemma 3.3], whose
associated O(g)-invariant connection 1-form we denote by wr € Q(M*,s0(q)).
The lifted foliation F* is, again, given by the horizontal liftings of the leaves of F
with respect to the O(g)-invariant horizontal distribution H = ker(wz). Let us
provide a local description of wx. A locally defining submersion p : U — S for F
induces a submersion p* : U* — S* whose fibers describe the restriction of F* to
U* = (7*)"YU) (here 7§ : S* — S is the O(g)principal bundle of orthonormal
frames of (S, p.gT)). Note that these maps commute, i.e., pon* = mg o p*. If
wg is the linear Riemannian connection induced on S*, then wr = (p*)*wg (see
Figure 5, keeping in mind that U* should be 4-dimensional there).

The Molino bundle also comes equipped with the tautological form 6r :
vF* — RY defined by 07(X,+) = (z*)~1(dn*(X,+)), where z* is an orthonor-
mal basis of v, F, understood as an isomorphism z* : R? — v, F, and X 1 €

3When F is transversely orientable, M* consists of two SO(q)-invariant connected com-
ponents that correspond to the possible orientations. In this case we will assume that one
component was chosen and, by abuse of notation, denote it also by M*. Everything stated in
this section then will carry over to this case by changing O(g) to SO(q).
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Figure 5: The lifted foliation.

v F*. The tautological form 6x is F*-basic [62, Lemma 2.1(i)], therefore (re-
garding wr as a map vF* — s0(q)) we get an F*-basic, O(g)-equivariant map
wr ® 0 : vF* — s0(q) @ R? which restricts to an isomorphism at each fiber
Vga ]:* .

This allows us to define a natural transverse metric for the lifted foliation, as
follows. The pullback of the sum of an arbitrary (which is unique up to scalar
A) bi-invariant scalar product on so(gq) with the standard scalar product on R?
by wr @ 07 yields an O(g)-invariant transverse metric (g?)* for F*, which is
hence a Riemannian foliation. We can fix A by requiring that the fibers of 7*
satisfy vol((m*)~!(z)) = 1.

The advantage of lifting F to F* is that the latter admits a complete global
transverse parallelism, that is, vF* is parallelizable by fields in [(F*) [62, p
82 and p. 148]. In fact, via wr @ 07, to choose such a transverse parallelism
amounts to choosing bases for s0(q) and R?. If we assume that F is complete,
then those fields admit complete representatives® in £(F*), since M is complete
and they have constant length with respect to (g7)* [29, Section 4.1]. From the
theory of transversely parallelizable foliations it then follows that the partition
F* of M* is a simple foliation, that is, W := M*/F* is a manifold and F* is
given by the fibers of a locally trivial fibration b : M* — W [62, Proposition
4.1'], the basic fibration. Since F* is O(q)-invariant, by continuity so is F*,
hence the action of O(g) on M* descends to an action on W such that b is now
O(q)-equivariant. A leaf closure L € F is the image by 7* of a leaf closure of
F*, which implies that each leaf closure is an embedded submanifold of M [62,

4Compare this with the definition of complete Riemannian foliations of Molino [62, Remark
on p. 88].
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Figure 6: The Molino construction.

Lemma 5.1]°. Moreover, the leaf closures in F* projecting by b to the same
O(g)-orbit in W all project over the same leaf closure in F. This induces an
identification M/F = W/O(q) and gives a commutative diagram (see Figure 6,

again keeping in mind that M* is 4-dimensional)

(M*, F*,0(q)) —— (W,0(q))

Jﬂ* |

(M, F) —— M/F = W/O(q).

We now study the restriction of F to a leaf closure through this construction.
Fix L* € F*, denote J = L*, consider the foliation (.J, F*|;) and define g :=
[((F*]7). The restriction of F* to the closure of a different leaf is isomorphic to
(J,F*|s), so g is an algebraic invariant of F.

Definition 4.1 (Structural algebra). The Lie algebra g is the structural algebra
of F. We will always denote dim(g) by d.

The foliation F*|; is a complete g-Lie foliation in the terminology of E. Fe-
dida [23], that is, it admits a complete transverse parallelism {Z;,...,Z4}

5Molino’s results are usually stated for a compact M, but completeness of F is sufficient
(see [29, Section 4.1] and [78, Section 3.2].
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such that the Lie algebra it spans is g. Equivalently, for a real Lie algebra
g, a complete g-Lie foliation F on a manifold J is given by an g-valued 1-
form o € Q'(J,g) such that a, : T,J — g is surjective for each 2 € J and
do + %[a, a] = 0. For example, in the previous case J = L* the 1-form « is
given by

ax(Xm) = €1Z1 + o+ EdZda

where X, = £, 7y + -+ &3Z4+ X, is the unique expression of X, € T,J with
X eT, L

Fedida’s work establishes, by a classical argument of C. Ehresmann, that
complete g-Lie foliations are developable, that is, they lift to simple foliations
on some covering space (see [62, Theorem 4.1]). In fact, let G be the unique
simply connected Lie group with Lie algebra g and consider J x G with projec-
tions pr; and pry on the first and second factors, respectively. Let £, := {X €
L(F) | a(X) is constant} be the subalgebra of foliate vector fields whose corre-
sponding transverse fields are in g. Via the identifications T(J x G) 2 TJ TG
and g 2 T.G, define the lift of X € £, by

X = (X, a(X)),

which is a G-invariant vector field on J X G, with respect to the natural left
action of G. This lifting is R-linear and commutes with the Lie brackets, so
the lift of £, is a Lie algebra of left invariant vector fields which defines a left
invariant integrable distribution A of rank dim(J) on J x G. Let J be a leaf of
the corresponding foliation.

Theorem 4.2 (Fedida’s theorem [62, Theorem 4.1]). With the notation estab-
lished above, pry : J — J is a covering map and pry : J — G is a locally trivial
fibration. Moreover, the foliation pri(F) on J agrees with the simple foliation

defined by the fibers of pr,.

We see that a complete g-Lie foliation admits a Haefliger cocycle (U;,7; :
U; — G,7;;) such that the transitions ;; are restrictions of left translations
on G. Moreover, since pry is G-equivariant, the holonomy pseudogroup of F is
equivalent to the pseudogroup generated by the induced action of the group I'
of deck transformations of pr; on G.

Let us now return to a complete Riemannian foliation (M, F,g?). Consider
on M* the sheaf of Lie algebras ¥z« that, to an open set U* C M*, associates
the Lie algebra @zx(U*) of the transverse fields in U* that commute with all
the global fields in [(F*). The orbits of ¥zx are the closures of the leaves of
F* [62, Theorem 4.3’] and all stalks of €. are isomorphic to the Lie algebra
g~ ! opposed to the structural algebra g of F [62, Proposition 4.4]. Each field
in €7+ (U*) is the natural lift of a local F-transverse Killing vector field on
7*(U*) [62, Proposition 3.4], which in turn is the lift of a section of the sheaf
of infinitesimal transformations of 7. So we conclude that the direct image
75 (€F+) coincides with the Molino sheaf €= (recall Definition 3.27). In fact,
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this is how €= was originally defined by Molino®.

The stalks of €7 and €, are isomorphic, so the structural algebra of F
coincides with the structural algebra of J7%. As we already stated, the main
motivation for the study of €= is that its orbits describe the closures of the
leaves of F. In other words, this means that

that is, for a small open set U, fixing a basis X,..., Xy for €#(U) we have
TL|y = TL|y ® span{X1,..., Xy} for any L € F, where Xy,..., X, € £(F)
are representatives for that basis.

Let us summarize the properties seen in this section in the following theorem,
known as Molino’s structural theorem.

Theorem 4.3 (Molino’s structural theorem). Let F be a complete Riemannian
foliation of codimension q of M. Then:

(i) The lifted foliation F* on the transverse frame bundle M* is transversely
parallelizable, hence F* is simple foliation, given by the fibers of the basic
fibration b: M* — W.

(ii) The restriction of F*|; to a leaf closure J = L* is a complete g-Lie folia-
tion.

(iii) The closures of the leaves of F are embedded submanifolds and coincide
with the projections of the closures of the leaves of F*.

(iv) The quotient M/F can be identified with the orbit space W/O(q) of the
O(q)-action on W induced by its natural action on M*.

(v) There is a locally constant sheaf €x of Lie algebras of germs of transverse
Killing vector fields whose stalks are g~' and whose orbits are the closures

of the leaves of F.

5. Killing foliations

From now on we will be mostly interested in the subclass of complete Rie-
mannian foliations consisting of those foliations F for which % is globally
constant. Such foliations are called Killing foliations, following the terminology
of W. Mozgawa in [63]. In other words, if F is a Killing foliation then there
exists global fields Xi,..., Xy € €7(M) < iso(F) (global sections of =) such
that

TF =TF @span{Xy,..., Xq}.

In particular, notice that any closed Riemannian foliation is Killing.

Let us understand what the definition means from the point of view of the
holonomy pseudogroup 7. Since €= is obtained from the gluing of the pull-
backs of the Molino sheaf of €, of 7 by the local submersions defining F,

6In Molino’s terminology %’r is called the commuting sheaf [62], also sometimes referred
to as the central transverse sheaf [60].
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for €’r to be constant €. has to admit a global trivialization which is invariant
by holonomy. That is, the global sections given by the trivialization have to be
Jr-invariant so that they lift to global F-transverse fields on M.

The existence of an J¢F-invariant trivialization for €. can be expressed
more elegantly as follows. There is a natural action of a complete pseudogroup
of local isometries 72 on its Molino sheaf €/ = isoz, the action of h € 7 on
a local section X € € being given by

hex = Lao exp(tX)oh™?

dt =0

We say that S is a Killing pseudogroup if € admits a global trivialization
which is invariant by the above action of . For the holonomy pseudogroup
of a Riemannian foliation, we therefore have that F is a Killing foliation if and
only if 5% is a Killing pseudogroup.

Let us see this in detail in the case of a pseudogroup generated by the action
of a Lie group G (recall Example 3.22).

Proposition 5.1. Let 57 be the pseudogroup of local isometries generated by a
connected subgroup G of isometries of a Riemannian manifold M. Then S is
a Killing pseudogroup if and only if G is Abelian.

Proof. First recall from Examples 3.17 and 3.22 that the sections of € =
505, are the restrictions of the fundamental fields of the action of the closure
G < Iso(S). Hence € admits an invariant global trivialization if and only if
dg.X# = X?, forallz e M, ge G and X €.

Using that exp(t Ady X) = gexp(tX)g~! one verifies that in general

dgo X7 = (Ady X)¥,. (2)

Recall also that a connected Lie group is Abelian if and only if its adjoint
representation is trivial (see, e.g., [7, Section 1.3]). Therefore, if G (hence G) is
Abelian, it follows from equation (2) that dg, X# = X7, hence # is Killing.
Conversely, assume . is Killing. Then equation (2) together with G-
invariance gives us dg, X7 = (Ady X)#, = dg,(Ady X)#, hence, as dg, is an
isomorphism,
XF = (Ad, X )

forallz € M, g € G and X € §. Recall that X7 = du, X, where j, is the orbit
map G 3 g + gr € M. Therefore we have from (3) that du, X = du, Ad, X,
hence X — AdyX € ker(du,) = T.Gy, for all z € M. It then follows that X =
Ady X, since (¢, TeG» = {0} because the G-action is effective. Therefore the
adjoint representation is trivial and G (hence G) is Abelian. O

Proposition 5.1 provides a criterion for a Riemannian foliation given by a
suspension to be Killing.
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Example 5.2 (Killing foliations given by suspension). Let F be the Riemannian
foliation of M = B X7, (B) S defined by the suspension of h : 71 (B) — Iso(S),
where S is complete (recall Examples 2.4 and 3.4). Denote G = h(m(B)) <
Iso(S) and let J# be the pseudogroup generated by G on S. As we saw in
Example 3.28, the Molino sheaf @r is the image by 7 : M — M of the constant
sheaf iso o, which in turn is the inverse image of is0 5. Therefore €’ is globally
constant if and only if the constant sheaf is0 v is m1(B)-invariant, which in turn
happens if and only if is0,, is JZ-invariant, i.e.,  is a Killing pseudogroup.
Thus, by Proposition 5.1, in order for F to be Killing it is sufficient that G be
connected and Abelian.

As Example 5.2 suggests, the structural algebra of any Killing foliation is
necessarily Abelian. This can be seen via €. by generalizing the arguments
in Proposition 5.1 (e.g. using [2, Chapter 2]) or, more quickly, by using the fact
that €F is the direct image of the sheaf €z+ of the lifted foliation F*. Then
one sees that a complete Riemannian foliation is a Killing foliation if and only
if €. is constant, and in this case, by definition, €7+ (M*) is the center of
[(F*). Hence €= (M) is central in [(F) (but not necessarily its full center). The
structural algebra of F is thus Abelian, because g~! = (¥'7), = (M) for any
x € M. For this reason, when F is Killing we will often denote its structural
algebra by a.

Example 5.3 (Riemannian foliations on simply-connected manifolds). A com-
plete Riemannian foliation F of a simply-connected manifold is automatically a
Killing foliation [62, Proposition 5.5], since in this case ¥ cannot have holon-
omy. In fact, for F to be Killing it is sufficient that 71 (%) be trivial (i.e.,
that & be simply connected). The fundamental group of a pseudogroup is a
generalization of the usual notion of fundamental group, defined in terms of J#-
homotopy classes of s-loops in S., i.e., finite collections of paths on S whose
endpoints are glued by elements of 5 (details can be seen in [73, Sections 1.11
and Remark 3.8]). For the case of a foliation there is a surjective homomorphism
w1 (M) — 71 (%), hence the condition on m (%) for F to be Killing is weaker
than that of M being simply connected.

Example 5.4 (Isometric homogeneous foliations [61, Lemme III]). Homoge-
neous Riemannian foliations provide another important class of examples. In
fact, if F is a Riemannian foliation of a compact manifold M given by the foli-
ated action of H < Iso(M), then F is a Killing foliation because its Molino sheaf
r(M) consists of the transverse Killing vector fields induced by the action of
H < Iso(M), hence is constant. Notice the contrast with Proposition 5.1: here
H is not necessarily Abelian, since we are not interested in the pseudogroup
of local isometries generated by H, but rather the holonomy pseudogroup of
F. We already saw specific examples in this class of Killing foliations: the A-
Kronecker foliations (see Example 2.3) and the Riemannian 1-foliations of the
round sphere (see Example 3.3).

One can construct examples of Killing foliations which are not homogeneous
and whose ambient manifolds are not simply connected by using suspensions.

27



For example, take S to be an inner product vector space and B a negatively
curved compact Riemannian manifold whose fundamental group has a non-
trivial Abelian subgroup (v) (which is infinite cyclic, by Preissman’s theorem).
Define h on the generators by mapping v to an irrational rotation and any
other generator to the identity. The foliation defined by suspension of A is then
a Killing foliation, by Example 5.2. It is non-homogeneous, since it has the
zero section Lo = B as one of its leaves, which is a non-homogeneous manifold
(since Iso(B) is finite), and the total space M is not simply connected, since it
deformation retracts to Lg.

Finally, we cite the following example of a non-homogeneous Killing foliation
on a non-simply connected manifold which is moreover not constructed by the
suspension method.

Example 5.5 ([63, p. 287]). Consider T = T? x T?. For A € SLy(Z), if v
is an eigenvector of A, the foliation given by lines in R? that are parallel to v
projects to a Kronecker foliation F, of T? (see Example 2.3). We choose A so
that F, is not closed, e.g. by requiring that tr(A4) > 2. Seeing this torus T2
as the second factor of T', the product foliation of the trivial foliation {T?} on
the first factor with F, gives us a codimension 1 foliation Fr of T" with dense
leaves. Consider the diffeomorphism ®4 :=id x A: T — T, where A : T2 — T?
is the diffeomorphism determined by A. The suspension of the homomorphism
m1(S') — Diff(T) given by n + ®7 furnishes us a fiber bundle 7 : M — S! with
fiber T and structural group (®4). Here we are not interested in the foliation
given by this suspension, but rather the foliation F induced fiberwise on M by
Fr, which is well defined since Fr is invariant by ®4. One sees immediately
that F is Riemannian and its leaf closures are the fibers of 7.

Since ® 4 acts trivially on [(Fr), one sees that Fr is transversely paralleliz-
able and it follows that €r is globaly trivial, that is F is a Killing foliation.
Notice, however, that M is not simply connected, by construction. It only re-
mains to verify that F is also not homogeneous. In fact, if this were the case,
F would be given by the orbits of a connected Lie subgroup H < Iso(M,g),
with respect to some Riemannian metric g on M. Then F, given by the fibers
of 7, would coincide with the orbits of H, hence one could conclude that 7 is
associated to a principal H-bundle E — S'. Since H is connected, E should
be trivial, hence also M — S' would be trivial. But this does not happen by
construction: the map ®* : H(T) — H(T) induced by the generator ® 4 of its
structural group on the homology of the fibers is non-trivial, hence M — S is
not topologically trivial.

In [63] W. Mozgawa establishes some implications of Molino’s structural
theorems in the case of Killing foliations:

Theorem 5.6 (Mozgawa’s Theorem [63, Théoreme]). Let F be a Killing folia-
tion of M with codim(F) = q and dim(M) = p+q. If r + p = ming 7 dim(L)
then:
(i) There exists v commuting transverse Killing vector fields X1,..., X, €
i50(F) which are everywhere linearly independent, and
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(ii) The orbits of the Lie algebra span(X,...,X,.) define a Riemannian foli-
ation F' of M of codimension q —r which has at least one closed leaf and
satisfies F' = F.

We note that this result is proved in [63] for a compact manifold M, but the
same argument given there applies for a Killing foliation in general. It follows
easily from this theorem that if x(M) # 0, then every Killing foliation F of
M has at least one closed leaf: in that case, by the Hopf index theorem any
vector field (hence any X € [(F)) must vanish at some point, where it is thus
not linearly independent. When M is compact, a much stronger conclusion was
shown recently in [20]: if x(M) # 0 then every leaf of F is closed (see Theorem
6.4).

5.1. Transverse structure of Killing foliations

The transverse structure of a Killing foliation coincides with that of an
(Abelian) homogeneous foliation on an orbifold, as established by A. Haefliger
and E. Salem in [40]. More precisely, by comparing the local models of the
transverse structure of a Killing foliation on a neighborhood of a leaf closure
and the local model of an orbit of a torus action on an orbifold, the authors
obtain the following.

Theorem 5.7 (Haefliger—Salem Theorem [40, Theorem 3.4]). There are canon-
ical correspondences between:

(i) The set Ay of equivalence classes of Killing foliations F with compact
leaf closures on a manifold M, two foliations being equivalent when their
holonomy pseudogroups are equivalent,

(ii) The set Ay of equivalence classes of Killing pseudogroups € such that
FC restricted to a generic orbit closure is equivalent to the pseudogroup
generated by a rank N subgroup T' of translations of R?,

(iii) the set A of equivalence classes of quadruples (O, TN, H, 1), where O is
an orbifold, 11 : TN x O — O is an effective action and H < TV is a
dense, contractible subgroup whose action is locally free, two quadruples
(O, TN H,p) and ((’)’,'JI‘N/,H’7M’) being equivalent if there is an isomor-
phism between TN and TN (sending H to H') and a diffeomorphism of
O onto O' that conjugates p and p'.

Moreover, for a foliation (M,F) whose class is in Ay, there is a smooth map
T: M — O, for O a corresponding orbifold whose class is in Az, such that
F =Y*(Fu), where Fy is the foliation of O given by the orbits of H.

The correspondences A; — Az and A3 — As are just [F] — [#F] and
[Fu| — [5,], respectively. Notice that A; indeed maps to Ag: the restriction
of F to a generic leaf closure is a complete a-Lie foliation, since €=(M) restricts
to a complete transverse parallelism for it, so it follows from Theorem 4.2 that
¢ restricted to a generic orbit closure is generated by subgroup I' of translations

of R?%. The isomorphism
'oR

rez’

1%

TN
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Figure 7: Generators of I'.

where I is the corresponding subgroup of translations of R in A, helps clarifying
the relation between T™ and F. Note, in particular, that N > d.

The existence of Y follows non-trivially from the theory of classifying spaces
of pseudogroups, developed by Haefliger in [36]: the classifying space of % is
a space B with a foliation BF such that the holonomy covering of each leaf
is contractible and % = #5Br. As in the classical case of classifying spaces
in homotopy theory, there is a map T : M — BJZ%, whose homotopy class is
unique up to homotopy along the leaves, which is transverse to BJF and such
that F = T*(BF). The point is that A; — As associates the class of F to a
canonical representative (O, Fy) of [(B#F, BF)].

Example 5.8. In the simple case of an irrational generalized Hopf fibration F
of S* (see Eaxample 3.3), the construction of (O, TV, H, u) is trivial: O = S?
with the action of TV = T2 by restriction of the multiplication on C?, and
H is the subgroup determined by the R-action that defines the foliation. To
also illustrate item (ii) of Theorem 5.7, recall that the restriction of F to the
closure of a generic leaf is an irrational Kronecker foliation F(A) (see Example
2.3). Notice that F()) is a Lie R-foliation, so in view of Theorem 4.2, 77y
is equivalent to the pseudogroup generated by the group I' of translations of R
induced, via projection along the lifted foliation F(X) of the universal covering
R?, by the action of 71(T?) by deck transformations. Notice that in fact we
have rank(T') = 2 = rank(7(T?)), since the generators of m(T?) project to
rationally independent translations a; and as of R (see Figure 7).

More generally, for a Killing foliation with compact leaf closures F, if L € F
is a generic leaf, the authors establish in [40, Theorem 1.4] that dim(L)—N > 0,
with equality holding if and only if L is contractible, and in this case O is a
manifold, dim(M) = dim(Q©), and T is a homotopy equivalence.

5.2. Deformations of Killing foliations

Two smooth foliations Fy and F; of M are C°°-homotopic if there is a
smooth foliation F of M x [0, 1] of the same dimension such that M x {t} is
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saturated by leaves of F, for each ¢ € [0, 1], and
Fi = Flamx{iys

for i = 0,1. Here we will simply say that F; is a deformation of Fy into Fi.

For a Riemannian foliation F on a simply connected, compact manifold
M, E. Ghys showed in [26, Théoréme 3.3] that is possible to deform F into a
closed foliation G, in such a way that the deformation respects F, that is, it
occurs within the closures of the leaves of F. As remarked by the authors in
[40], Theorem 5.7 generalizes this result: for a Killing foliation F on a compact
manifold M, consider a corresponding orbifold (O, TV, H, ) and the map Y :
M — O such that F = Y*(Fpg). Let b be the Lie algebra of H and slightly
perturbate it into a Lie subalgebra & < Lie(TV) = R¥, with dim(¢) = dim(h),
such that its corresponding Lie subgroup K < T¥ is closed. If £ is close enough
to b (as points in the Grassmannian Gr4™ " (Lie(T™N))), it is possible to choose
a smooth path h(t) connecting b to £ such that for each ¢ the action p|g (s of
the corresponding Lie subgroup H(¢) is locally free and the induced foliation
Fr(+) remains transverse to Y. Then F; := T*(Fp ) defines a deformation of
F = Fointo G = F. It is possible to prove that /7, is equivalent to /%, ,, for
each t. Moreover, since K is closed, G is a closed foliation and, by construction,
the deformation respects F.

The “transverse homogeneous” nature of this deformation allows one to pre-
serve some geometric properties of F in G. This was investigated in [20]:

Theorem 5.9 (20, Theorem B)). Let (F,g") be a Killing foliation of a compact
manifold M. Then there is a deformation F; of F respecting F into a closed
foliation G which can be chosen arbitrarily close to F, such that

(i) for each t there is an injection v : T(F) — T(F;) that smoothly deforms
transverse geometric structures given by F-basic tensors, such as the met-
ric g7, into respective transverse geometric structures for F,

(ii) the orbifold M//G admits an effective isometric action of a torus T¢, with
respect to the metric induced from 1gT, such that M/F = (M/G)/T4,
where d = dim a is the dimension of the structural algebra of F.

(ili) T (F) is isomorphic to the algebra T(M//G)™ of T4-invariant tensor fields
on M//G, the isomorphism being given by m. o 1, where 7, : T(G) —
T(M//G) is the pushforward by the canonical projection.

In particular, if G is chosen sufficiently close to F, non-strict upper and lower
bounds on transverse sectional and Ricci curvature of F are maintained.

We will refer to a deformation given by this result as a regular deformation.
The point of this theorem is that one can use the Riemannian geometry and
topology of M//G to study F. In the next sections we will summarize some
applications of this technique.
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6. Transverse topology of Killing foliations

In this section we will survey some recent results concerning the transverse
algebraic topology of Riemannian and Killing foliations. We begin with results
on the basic Euler characteristic of a Riemannian foliation F of a compact
manifold M. Recall from Section 2.2 that

F) = S (1) dim(H (F))
7

is always well defined for such an F (see Theorem 3.9) and generalizes the
usual Euler characteristic in the sense that x(F) = x(M) when F is the trivial
foliation by points. In this particular case the classical Hopf index theorem
states that for a vector field X € X(M) with isolated zeros one has x(M) =
>, ind,(X), where the sum ranges over the set Zero(X) of zeros of X. This
theorem was generalized to Riemannian foliations in [12, Theorem 3.18]. To
state it precisely we will need some definitions. Endow M with a bundle-like
metric and fix a foliate vector field X € £(F). A leaf closure J = L is critical
for X if X = 0 over J (which by continuity happens if and only if X is tangent
to L at all its points). We say that X is F-non-degenerate when its linear part
Xiin : vz — v J, given by v — [V, X]+ (where V € X(M) is any extension of
v), is an isomorphism for every point x of each critical leaf closure. In this case
the leaf closures are isolated (hence finite) and we define the index of X at J
by ind;(X) = sgn(det(Xpin)). It coincides with the classical index of a vector
field when F is the trivial foliation by points.

One could then expect that the transverse version of the Hopf index theorem
would simply state that x(F) = 3 ;ind;(X) for an F-non-degenerate X, but
this is not the case. Since the transverse analog of a classical critical point
is a leaf closure, some information from its topology must also be taken into
account. This information is encoded in x(J, F, Or;(X)), the alternate sum of
the cohomology groups of the complex of F|;-basic forms with values in the
orientation line bundle of X at J (for more details, see [12, Section 3]). We can
now state:

Theorem 6.1 (Basic Hopf index theorem [12, Theorem 3.18]). Let F a Rie-
mannian foliation of a compact manifold M. If X € £(F) is F-non-degenerate,
then

X(J:) = ZlndJ(X)X(J7~F7 OrJ(X))v

where the sum ranges over all critical leaf closures J of F.

By constructing an appropriate X € £(F), one can use Theorem 6.1 to show
that x(F) localizes to the strata of closed leaves:

Theorem 6.2 ([20, Theorem D]). If F is a Killing foliation of a compact
manifold M, then .
X(F) = x(Z4F/F).

In particular, if F has no closed leaves, then x(F) = 0.

32



In fact, in [20, Theorem 7.1] the authors prove something stronger: if X €
is0(F), then x(F) = X(F|zer0(x))- This is in analogy to the classical localization
of the Euler characteristic of a Riemannian manifold to the zero set of a Killing
vector field (see, e.g. [67, Theorem 40]) or, alternatively, to the fixed point set
of a torus action.

Combining Theorems 6.2 and 5.9, if G is a closed foliation approximating F,
then we have that

d .
X(G) = X(M/) = x (M/@)™") = (5P F) = ().
In fact, this holds for any ¢, so it proves the following.

Theorem 6.3 ([20, Theorem 7.4]). Let F be a Killing foliation of a compact
manifold M and let F; be a regular deformation. Then x(F;) is constant in t.

In particular, for the closed foliation G = F;, Theorem 6.3 reduces questions
about x(F) to questions about x (M //G), which also coincides with x(M/G) (in
the sense of singular homology, see [75, Theorem 3]). An interesting application
is the following.

Theorem 6.4 ([20, Theorem 9.1]). Let F be a Killing foliation of a compact
manifold M. If x(M) # 0 then F is closed.

Proof outline. We use the results in [36], where Haefliger studies the classifying
space BJr. It follows from his work that, similarly to the case of fiber bundles,
x(M) has the product property

X(M) = x(L)x(9), (4)

for L € G a generic leaf (see [36, Corollaire 3.1.5]). Now assume F is non-closed
and, by Theorem 5.6, fix a closed leaf L. By regular deformations, choose a
sequence G; of closed foliations approaching F. Then L € G; for each ¢, since
the deformations preserve F. In particular, using Theorem 2.7 we can rewrite
equation (4) as

X(M) = hi(L)x(L)x(F), (5)

where h;(L) = |Holg,(L)| < oo. But since F is non-closed and G; — F, one
verifies that h(G;) — oo (see [20, Lemma 4.3]) which violates equation (5). O

Theorem 6.4 is in fact a slight improvement of [20, Theorem 9.1] (which is
stated for a simply-connected M), but the proof is essentially the same. By
lifting to the universal covering, one has the following corollary for Riemannian
foliations:

Corollary 6.5 ([20, Theorem F]). Any Riemannian foliation of a compact
manifold M with |m1(M)| < oo and x(M) # 0 is closed.

For a non-compact M, related to these results we also mention the following
theorem. Recall that a topological space is rationally contractible when all its
homology groups are torsion groups.

33



Theorem 6.6 ([24, Theorem 1.1]). Let F be a complete Riemannian foliation
of a simply connected, rationally contractible manifold M. Then there is ra-
tionally contractible closed leaf L € F. Moreover, if F has a closed leaf with
finitely generated fundamental group, then F is closed and M/F is rationally
contractible.

In the particular case of a contractible M, the authors also prove that if the
integral homology of the universal covering L is finitely generated, then F is
simple, given by the fibers of M — M /F, and all leaves are contractible (see
[24, Corollary 1.2]).

We end this section by noticing that, although x(F) is preserved through-
out regular deformations, the basic Betti numbers are not, in general, as the
following example shows.

Example 6.7 ([64, Example 7.4]). Consider M = S3x S! with the T? = S! xS!-
action given by

((s1,52), (21, 22), 2)) = ((5121, 8122), 522),

and let F be the Killing foliation of M by the orbits of a dense 1-parameter
subgroup of T2. As we saw in Example 5.8, the construction of the corresponding
orbifold (Oz, TN, H) is trivial: O = M and H is the l1-parameter subgroup
defining F. It is clear that F can be deformed to both the foliations G; and
Go, defined by the actions of St x {1} and {1} x S!, respectively. But we have
H(G:) = H(M//G") = H(S* x §') and H(Ga) = H(M//Ga) = H(S®). That s,
bz(gl) 75 bz(gg) for i = 1,2

We conclude from Example 6.7 that the basic cohomology groups H (F) are
not preserved by deformations. In the next section we will see, however, that
there is a cohomological invariant, namely, basic equivariant cohomology, that
is preserved. This will, in particular, provide sufficient conditions for the basic
Betti numbers to be preserved as well.

6.1. Equivariant basic cohomology

When a group G acts on a space M, there is a cohomology theory that
captures information on both the topological space M and the action of G on
it. It is called equivariant cohomology, and defined as the singular cohomology
of the Borel construction:

EG x M
He(M,R) ::H(GX,R>,

G

where EG is a contractible space on which G acts freely (e.g., the total space of
the universal G-bundle EG — BG). The motivation for this is that the diagonal
action of G on EG x M is free, so the quotient is a well-behaved space (in contrast
to M/@G). A remarkable feature of equivariant cohomology, with no counterpart
in classic cohomology, is that the torsion-free part of the module structure of
Hrp(M), for a torus space M, can be recovered from the fixed point set MT.
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This is known as Borel localization. We will see a transverse counterpart of
this result below. We refer to [30] and [55] for more detailed introductions to
the classical equivariant cohomology theory, and to [11] and [35] for thorough
treatments of this topic.

It turns out that when G is compact and connected and M is a G-manifold,
there is another way to compute Hg(M,R). It is due to H. Cartan (actually
before Borel’s definition of Hg(M, R)), who defined a cohomology Hy(M) in
terms of the de Rham complex Q(M) and the Lie algebra g. The fact that
Ha(M,R) = Hg(M) is considered as the equivariant analog of the classical de
Rham theorem (see, e.g., [35, Theorem 2.5.1]). We are interested in Cartan’s
model for equivariant cohomology because its algebraic nature makes it readily
generalizable to our transverse setting.

Recall that a differential g*-algebra is a Z-graded-commutative differential
algebra (A4, d) endowed, for each X € g, with derivations L£x and ¢x, of degree
0 and —1, respectively, satisfying

L‘QX = 07 [,Cx,ﬁy] = ﬁ[xyy], [,Cx,by] = L[ny] and ,CX = dLX + Lxd.

If A and B are g*-algebras, an algebra morphism f : A — B is a morphism of
g*-algebras if it commutes with d, Lx and ¢tx.

Example 6.8. An infinitesimal action of a Lie algebra g on an orbifold O is a
Lie algebra homomorphism p : g — X(O). A differential g*-algebra structure
on (€2(0),d) is then given by the usual Lie derivative Lx = £,(x) and interior
product tx = t,(x)-

In particular, if a Lie group G acts smoothly on O (on the left), there is an
induced infinitesimal action of its Lie algebra given by g > X + —X7# € X(0).
Recall that X + X# is a Lie algebra anti-homomorphism, that is why the
minus sign is needed.

Consider also the coadjoint action of a Lie algebra g on its dual algebra
g" given, for X,Y € g and ¢ € gV, by (ad%¢)(Y) = ¢(—[X,Y]). It extends
naturally to the symmetric algebra S(g¥) over g¥. The space

Ca(A) := (S(g") ® A)°

of those elements on S(g¥) ® A which are g-invariant, with respect to the coad-
joint action and the derivation £ on the first and second factors, respectively, is
the Cartan complex of A. Notice that an element w € Cy(A) can be identified
with a polynomial map w : g — A. Under this identification, g-invariancy of
w as an element of Cy(A) becomes g-equivariancy of w as a polynomial map
g— A:

w(adXY) = EXw(Y).

Notice that in the case of an Abelian Lie algebra g, for which the coadjoint
action is trivial, an element of Cy(A) is hence nothing but a polynomial map
g— AS.
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The equivariant differential dy of the Cartan complex is defined as
(dgw)(X) = d(w(X)) — tx (w(X)).

In order for it to be a derivation of degree 1, the grading on Cy(A) is defined by

i) = P (Sule”) @A)
2k+l=n

The Cartan model for the equivariant cohomology of A is
Hy(A) := H(Cy(A), dy).

A morphism f : A — B of g*-algebras induces f* : Hy(A) — Hy(B), by
[fw(X) = f*(w(X)). The ring Hy(A) becomes a S(g¥)%-algebra with module
multiplication induced by S(g¥)? > f — f®1 € Cy(A).

Example 6.9. In the case of a G-orbifold O, the S(g¥)?-module structure
S(g¥)? — Cy4(O) coincides with the cohomology map induced by the constant
map O — {x}.

A g*-algebra A is said to be equivariantly formal if S(g")®® H(A) as S(g")?-
modules. Equivalently, A is equivariantly formal when Hy(A) is a free S(aV)-
module. There are several relevant classes of equivariantly formal algebras.
For instance, for a manifold M with a torus action, and A = Q(M) with the
induced t*-structure, A is equivariantly formal when H°d(M) = 0, or when M
is symplectic and the torus action is Hamiltonian.

We now go back to the case of a foliation F on an orbifold O. A transverse
infinitesimal action of a Lie algebra g on F is a Lie algebra homomorphism

weg— I(F).

It induces a g*-algebra structure on Q(F), with d being the usual exterior deriva-
tive and the derivations Lx and ¢x defined as Lxw := Ljw and txw = 15w
(see [29, Proposition 3.12]). We can therefore define the g-equivariant basic co-
homology of F as the g-equivariant cohomology of Q(F), which we will denote

Hy(F) i= Hg(QAF)) = H(Cy(AUF), dg))-

Now consider a Killing foliation F on M. In this case we have a natural
transverse infinitesimal action of its structural algebra a, given by the isomor-
phism a = €z(M). Notice that the fixed point set M® = {x € M | a, = a} is
precisely the union of the closed leaves of F, since aF = F. These two facts,
that the infinitesimal a-action is canonical and that aF = F, makes the study
of Hy(F) very relevant.

The equivariant basic cohomology Hq(F) was first introduced in [29], where
the authors show that, in analogy to classical equivariant cohomology, it satisfies

a Borel-type localization. Before we state their result it will be useful to recall
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the notion of R-module localization from commutative algebra. Given an R-
module A and a multiplicative subset S C R we define the localization of A at
S by S71A = (A x S)/ ~, where (a,s) ~ (a’,s") if there is r € S such that
r(s'a — sa’) = 0. We can think of an equivalence class (a, s) as fraction a/s.
Notice S7!'A is an S~!R-module with the usual operation rules for fractions.
Additionally, map of R-modules ¢ : A — B induces a map of S~'R-modules
S7lo:S71A - STIB by a/s+— p(a)/s.

Theorem 6.10 (Borel localization [29, Theorem 5.2]). Let F be a transversely
compact Killing foliation. Then the inclusion i : M* — M induces an isomor-
phism

ST STVHG(F) — ST Ha(F|ae),

where S = S(a¥) \ 0.

This result was recently generalized to transverse actions of Abelian Lie al-
gebras on transversely compact Riemannian foliations in [49]. It follows from
Theorem 6.10 that the kernel of ¢* : Hq(F) — Ha(F|pa) is the torsion submod-
ule Tor(Hy(F)) of Hq(F), that is, the submodule consisting of those classes [w]
for which there is p € S with plw] = 0. Since M?® is the union of the closed
leaves of F, this gives algebraic conditions for the existence of closed leaves:

Corollary 6.11 ([29, Corollary 5.4]). Let F be a transversely compact Killing
foliation. The following are equivalent:

(i) F has a closed leaf, i.e., M® # (.
(ii) The map S(a¥) — Hy(F) that defines the S(av)-module structure is injec-
tive.

(iil) Hq(F) # Tor(Hq(F)).

For the next result, we recall that the transverse action of a on F is equiv-
ariantly formal when Q(F) is an equivariantly formal a*-algebra. In this case
we also say that F is equivariantly formal. A transversely orientable Killing
foliation F is equivariantly formal, for example, when some of the following
conditions hold (see [29]):

(i) H°Y(F) =0.
(ii) dim H(M*®//F) = dim H(F).
(iii) F admits a basic Morse-Bott function whose critical set is equal to M?®,

The dimension dim(H (F)) of basic cohomology can be studied via equivari-
ant cohomology, providing another consequence of Theorem 6.10:

Theorem 6.12 ([29, Theorem 5.5]). Let F be a transversely compact Killing
foliation. Then

dim(H (M® //F)) = dim(HF|y+)) < dim(H(F)),

and equality holds if and only if the a-action is equivariantly formal.
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The behavior of equivariant basic cohomology under regular deformations
was studied in [21]. Recall the construction of F; as a pullback Y*(Fp ) from
section 5.2. Notice there is a transverse action of t/h(t) on Fp ) for each t.
All those Lie algebras are isomorphic to a, although in a non-canonical way.
We define an a-action on Fp ) (and thus on Fy, since J2(F;) = A (Fuw))),
by passing through an isomorphism t/f(¢) — a, which amounts to identifying a
with a subalgebra of t complementary to each h(¢), that by abuse we will also
denote by a < t.

Proposition 6.13 ([21, Proposition 5.2]). The structural algebra a of F acts
transversely on each F; and its induced action on the quotient orbifold M//G
(for the closed foliation G = Fi) integrates to the T¢-action given by item (ii)
of Theorem 5.9.

It is now possible, therefore, to consider the a-equivariant basic cohomology
of Fy, that is, Hq(F). Of course, one will be specially interested in H,(G), for
which one has

Ho(G) = Ho(M//G) = Hya(M//G),
by the equivariant de Rham theorem for orbifolds [21, Theorem 3.5].

Theorem 6.14 ([21, Theorem A]). Let F; be a regular deformation of a Killing
foliation F. For each t there is an R-algebra isomorphism

Hy(F) = Hy(Fs).

In particular, for ¢t = 1 we have Hq(F) = Hqo(G) = Hra(M//G), as rings,
for a closed foliation G arbitrarily close to F, thus reducing the study of Hq(F)
to equivariant cohomology of torus actions on orbifolds. Moreover, the authors
show in [21, Proposition 6.2] that equivariant formality is preserved by regular
deformations, that is, if F is equivariantly formal, then each F; is equivariantly
formal with respect to the transverse a-action on given in Proposition 6.13.
Hence, in this case

S(a¥) @ H(F) = Hqo(F) = Ha(F;) = S(a”) @ H(F). (6)

Recall that the Poincaré series of an N-graded vector space V is the formal
power series Py (s) = > 77 (dim V¥)s¥ (provided dim V* finite for each k),
which has the following product property: Pygw(s) = Py (s) Pw(s). Passing
to the Poincaré series in equation (6) and canceling out Pg,v)(s) on both sides
yields P (7)(s) = P (x,)(s). This proves the following:

Theorem 6.15 ([21, Theorem B]). If F is equivariantly formal and F; is a
regqular deformation, then b;(Ft) is constant on t, for each i.

It is therefore possible to reduce, at least in the equivariantly formal case,
results concerning basic Betti numbers to results about Betti numbers of orb-
ifolds, since Theorem 6.15 gives b;(F) = b;(M//G) when ¢t = 1. An application
appears in Theorem 7.10.
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7. Transverse geometry of Killing foliations

Many techniques from classical Riemannian geometry can be used in the
study of the transverse geometry of Riemannian foliations, as Section 2.3 already
illustrates, and many classical theorems admit a transverse generalization. We
also cite here the following result by G. Oshikiri:

Theorem 7.1 (Oshikiri [66, Theorem 2]). Let F be a Riemannian foliation on
a compact manifold M with secpys > 0, with respect to a bundle-like metric.

(i) If codim(F) is even then F admits a closed leaf.
(ii) If codim(F) is odd then there is L € F with codim(L) = codim(F) — 1.

This is obtained by studying zeros of transverse Killing fields via classic
techniques. The existence of a closed leaf in item (i) corresponds to the existence
of a zero for a transverse Killing vector field, and thus is a transverse analog of
classical Berger’s theorem on zeros of Killing vector fields (see, e.g., [67, Theorem
38]). Notice that if secps > 0, with respect to a bundle-like metric for F, then
secr > 0, since by O’Neil’s formula [65] applied to a Riemannian submersion
locally defining F one has

secr(X,Y) =secpr(X,Y) + %H[X, Y]|?,

for X, Y € £(F). Also in positive transverse curvature, we mention the following
transverse analogue of the Bonnet—Myers Theorem due to J. Hebda, which
is obtained essentially by the study of focal points of leaves over horizontal
geodesics.

Theorem 7.2 ([42, Theorem 1]). Let F be a complete Riemannian foliation
satisfying Ricr > ¢ > 0. Then F is transversely compact and H'(F) =2 0.

In particular, since tautness is characterized by the vanishing of the mean
curvature class in H!(F), it follows from the above theorem that a complete
Riemannian foliation with Ricx > ¢ > 0 is taut. In the case of non-positive
transverse curvature, Hebda proves that leaves have no focal points, which then
leads to the following.

Theorem 7.3 (Hebda [42, Theorem 2]). Let F be a complete Riemannian
foliation of M with secr < 0. Then the universal covering of M is a product
M =LxN, for L € F and N a Hadamard manifold, and the lifted foliation F
is given by the fibers of the canonical projection L x N — N.

This result has a generalization to the realm of singular Riemannian folia-
tions (which we will introduce in 8) in [52, Theorem 1.2]. It is also instructive to
cite here that there are no singular (hence also regular) Riemannian foliations
on negatively curved compact manifolds, as it was shown by D. Tében in [79,
Theorem 3.10] for the case of polar foliations and later by A. Lytchak in [53,
Theorem 1.1] in the general case.
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7.1. Transverse geometry via deformations

An inherent difficulty often encountered in these aforementioned transverse
generalizations of classical theorems from Riemannian geometry is that the leaf
space of a Riemannian foliation has, in general, an ill-behaved topology which
in many cases renders direct generalizations of “local-to-global” theorems im-
possible. For Killing foliations this difficulty can in some cases be circumvented
by the deformation technique we presented in Section 5.2, since some aspects of
transverse geometry are preserved by regular deformations. In this section we
will see several applications of this approach, that appeared in [20] and [21]. For
instance, by combining the deformation method with the Synge—Weinstein the-
orem for orbifolds [85, Theorem 2.3.5] one can relax the hypothesis on Theorem
7.1:

Theorem 7.4 ([20, Theorem C]). Let (F,g") be an even-codimensional com-
plete Riemannian foliation of a manifold M satisfying |m (M)| < oo. If secxr >
¢ > 0, then F possesses a closed leaf.

If one assumes that F is a Killing foliation in the above result, then the hy-
pothesis |m1(M)| < oo is not necessary. That is, an even-codimensional Killing
foliation F with secz > ¢ > 0 must have a closed leaf (see [20, Section 5]).

There is also an application involving Bochner’s theorem on Killing vector
fields in the context of negative Ricci curvature [67, Theorem 36]. This result
adapts directly to orbifolds [21, Theorem 2.5] and, via deformations, implies
the nonexistence of transverse Killing fields for a Ricci negatively curved Killing
foliation, which is therefore closed (cf. Theorem 7.3).

Theorem 7.5 ([21, Theorem F]). Let (M,F) be a complete Riemannian folia-
tion with transverse Ricci curvature satisfying Ricy < ¢ < 0. If either

(i) F is a Killing foliation and M is compact, or
(if) F is transversely compact and |m(M)| < oo,

then F is closed.

For the next result, recall the notion of 71 (F) from Section 2.1. Recall also
that the growth function # of a finitely generated group I' = (g1, ..., gx) is the
function that associates to j € N the number of distinct elements in I' which can
be written, in the alphabet {g1,..., 9,97 ", - 7g,zl}7 as words with at most j
letters. Then T is said to have exponential growth if #(j) > o7 for some o > 1
(this property is independent of the set of generators [56, Lemma 1]). Milnor’s
theorem establishes that the fundamental group of a negatively curved compact
manifold has exponential growth [56, Theorem 2]. Milnor’s proof of this result
adapts to orbifolds [21, Theorem 2.6], and then the deformation method can be
used to show the following.

Theorem 7.6 ([19, Theorem G|). Let F be a Killing foliation on a compact
manifold M such that secr < 0. Then F is closed and m (F) grows exponen-
tially. In particular, m (M) grows exponentially.
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One should compare Theorem 7.6 with [42, Theorem 3|, which implies that
a compact manifold whose fundamental group is nilpotent does not admit a
Riemannian foliation with secx < 0, recalling Gromov’s theorem that states
that a finitely generated group has polynomial growth if and only if it has a
nilpotent subgroup with finite index [33, Main Theorem].

The classical Singe’s theorem also has an orbifold version, by D. Yeroshkin,
that appears in [85, Corollary 2.3.6]. By the deformation technique, it yields
the following transverse generalization:

Theorem 7.7 ([21, Theorem H]). Let F be a Killing foliation of a compact
manifold M, with secr > 0. Then

(i) if codim F is even and F is transversely orientable, then M/F is simply
connected, and

(ii) if codim F is odd and, for each L € F, the germinal holonomy of L pre-
serves transverse orientation, then F is transversely orientable.

Recall that the symmetry rank symrank(M) of a Riemannian manifold M
is the rank of its isometry group, that is, the dimension of a maximal torus in
Iso(M). It was proven by K. Grove and C. Searle in [34] that, for a positively
curved compact Riemannian manifold M, one has

dim(M) +1
symrank(M) < [m(Q)—~_J ,
with equality holding if and only if M is diffeomorphic to either a sphere, a
real or complex projective space or a lens space. A generalization of this result
for orbifolds was obtained recently in [41, Corollary E]. Now consider a Killing

foliation F with structural algebra a. By what we saw in Section 5, we have

dim(F) — dim(F) = dim(a) < symrank(F) := max { dim(b)},

where h runs over all the Abelian subalgebras of iso(F). Combining the defor-
mation technique with [41, Corollary E] one then obtains the following.

Theorem 7.8 ([20, Theorem A]). Let F be a q-codimensional, transversely
orientable Killing foliation of a compact manifold M. If secr > 0, then

dim(F) - dim(7) < | “HEL

and if equality holds, there is a closed Riemannian foliation G of M arbitrarily
close to F with M/G homeomorphic to either

(i) S9/A, where A is a finite subgroup of the centralizer of the mazimal torus
in O(q +1), or

(ii) |[CPY2[\]|/A, where A is a finite subgroup of the torus acting linearly on
CPY2[A].
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The symmetry rank symrank(M) also has a prominent role in the so-called
“Grove program” to investigate Hopf’s conjecture — that every even-dimensional
positively curved Riemannian manifold has positive Euler characteristic — for
manifolds with “large” symmetry group. It was proved by T. Piittmann and
C. Searle in [68, Theorem 2|, for instance, that Hopf’s conjecture holds true
for manifolds satisfying symrank(M) > dim(M)/4 — 1. This bound was sub-
sequently weakened in [70, Theorem A] and [45, Theorem A], and recently a
very significant progress on this topic was announced in [46, Corollary B], where
the authors prove that Hopf’s conjecture holds when symrank(M) > 5. In the
transverse setting, Theorem 6.3 guarantees that one can study the basic Euler
characteristic by the deformation method. A generalization of the Piittmann—
Searle theorem for orbifolds was proven in [20, Theorem 8.9], from which a
transverse version for Killing foliations follows by deformation:

Theorem 7.9 (|20, Theorem E]). Let F be a q-codimensional transversely ori-
entable Killing foliation of a compact manifold M. If q is even, secr > 0 and
symrank(F) > q/4 — 1, then x(F) > 0.

Finally, Theorem 6.15 shows that the basic Betti numbers of Killing foliations
can also be studied via deformations, provided the transverse action of the
structural algebra is equivariantly formal. For instance, a theorem by Gromov
establishes the existence of a constant C' = C(n) that bounds the total sum of
Betti numbers of any positively curved Riemannian manifold of dimension n [32,
§0.2A]. An analogous result holds for orbifolds, as it follows by [48, Theorem 1].
Thus, by deformations, one obtains the following transverse generalization:

Theorem 7.10 ([21, Theorem E]). There ezists a constant C = C(q) such
that every q-codimensional Killing foliation F of a compact manifold M with
secr > 0 and whose transverse action of the structural algebra a is equivariantly

formal satisfies
q

> n(F)<cC.

=0

8. Singular Riemannian foliations

In this section we will briefly present singular Riemannian foliations and
survey some classical and recent results about them. The notion of singular
foliation generalizes that of regular foliations by allowing the dimensions of
the leaves to vary. More precisely, given an n-dimensional connected manifold
M, a singular foliation of M is a partition F of M into connected, immersed
submanifolds, called leaves, such that the module X(F) of smooth vector fields
that are tangent to the leaves is transitive on each leaf. This means, as in
the regular case, that for each L € F and each z € L one can find smooth
vector fields X; whose values at x form a basis for T, L. We maintain most of
the notation from regular foliations, e.g. we denote the distribution of varying
rank defined by the tangent spaces of the leaves by T'F and the leaf containing
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x by L,. The algebra of foliate vector fields can also be defined similarly, as
L(F) ={X € X(M) | [X,X(F)] € X(F)}, and consists of those fields whose
flows take leaves to leaves. The transverse vector fields are the elements of
[(F) := £(F)/%(F). The dimension of F is defined as

dim(F) = max dim(L),

and its codimension by codim(F) = dim(M) — dim(F).

Example 8.1 (Homogeneous singular foliations). Consider a manifold M with
an action of a Lie group H. Then we have an induced infinitesimal action u of the
Lie algebra b of H (see Example 6.8). One easily verifies that T, Hz = u(h)|.,
that is, the space generated by the fundamental vector fields of the H-action at
x is the tangent space of the orbit Hz at x. This shows that the partition Fy
of M into the connected components of the orbits of H is a singular foliation.
In analogy with the regular case, such a foliation is an homogeneous singular
foliation. One also verifies that Fyg = Fpye, where H¢ < H is the connected
component of the identity, so supposing that H is connected usually does not
affect the study of Fi and has the advantage that in this case the leaves (which
are connected by definition) coincide with the orbits.

Singular Riemannian foliations are defined by generalizing Reinhart’s char-
acterization of bundle-like metrics (Proposition 3.6): if M can be endowed with
a Riemannian metric g such that every geodesic which is perpendicular to a
leaf of F remains perpendicular to all leaves it intersects, then we say that F is
a singular Riemannian foliation and that g is adapted to F. Any partition of
M into submanifolds (not necessarily a smooth singular foliation) having this
property is called a transnormal system on (M, g), following the terminology
of [14]. We can say, hence, that a singular Riemannian foliation F of M is a
singular foliation of M which is also a transnormal system with respect to some
Riemannian metric. If an adapted metric g can be chosen so that (M,g) is a
complete Riemannian manifold, we say that F is complete.

For a leaf L € F we denote the normal space at © € L by v,L = (T,L)*.
It is clear from Proposition 3.6 that every regular Riemannian foliation F is
a singular Riemannian foliation. Homogeneous singular Riemannian foliations
form another very significant class:

Proposition 8.2 ([62, Section 6.1]). Let (M,g) be a Riemannian manifold on
which a Lie group H acts by isometries. Then g is an adapted metric for Fy,
which is thus a singular Riemannian foliation.

It follows from Molino’s structural theorem (Theorem 4.3) that the closure
F of a complete regular Riemannian foliation is a singular foliation. One has,
in fact, the following.

Proposition 8.3 ([62, Proposition 6.2]). Let (M,F) be a complete (regular)
Riemannian foliation and g be a bundle-like metric. Then F is a singular Rie-
mannian foliation to which g is adapted.
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In Section 9 we will see that a similar result holds for a complete singular
Riemannian foliation F: the partition F of M into the closures of leaves of F
is again a singular Riemannian foliation.

One defines basic cohomology in complete analogy with the regular case:
for a singular Riemannian foliation F, a differential form w € Q¢(M) is basic if
txw =0 and Lxw =0 for all X € X(F). The d-subcomplex of F-basic forms
will be denoted by Q(F). It is a Z-graded differential algebra with respect to
the usual exterior derivative and wedge product. The basic cohomology of F is
the cohomology H(F) of ((F),d).

Theorem 8.4 ([84, Theorem 1]). If F is a singular Riemannian foliation of a
compact manifold M, then dim H(F) < oo.

8.1. Slice foliation, homothetic lemma and canonical stratification

In this section we review some basic technical notions that will be useful.
Let L € F be a leaf of a complete singular Riemannian foliation of M, and
consider a tubular neighborhood U := Tub.(P) of radius € > 0 of a connected,
relatively compact, open subset P C L. That is, U is the image of B :=
{V € vP | |V| < €} by the normal exponential map exp® : vL — M, where
¢ is taken small enough so that exp™ | pr 1s a diffeomorphism onto U. There
is an orthogonal projection mp : U — P. By decreasing ¢ and shrinking P if
necessary, we can further assume that U is a distinguished tubular neighborhood,
i.e., that it also satisfies the following:

(i) L, is transverse to the slice S, 1= 7p' (z) = expi(B.(0)), for each y € U,
z =mp(y), and
(ii) P is a leaf of a (regular) simple subfoliation of F|y given by the fibers of
a submersion p: U — 75" (2).
The connected component P, of L, NTub,(P) containing y is a plague through
y. Condition (ii) is a natural generalization of the definition of regular foliations,
and it is possible to check that the existence of distinguished tubular neighbor-

hoods is in fact equivalent to the transitivity of X(F) in each leaf, in definition
of singular foliations.

Definition 8.5 (Slice foliation). With the notation above, we define the slice
foliation at x as the foliation F|g, of S, given by the intersections P, N .S,, for
y € Tub.(P).

Given a distinguished tubular neighborhood Tub, (P), if 1,62 = Aey € (0,¢)
one can define the homothetic transformation

hy : Tub,, (P) 3 exp™(V) — exp(\V) € Tub,(P).

Lemma 8.6 (Homothetic transformation lemma [62, Lemma 6.2]). The map
hy sends plaque to plaque (see Figure 8).
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Figure 8: The homothetic transformation sends plaque to plaque.

Lemma 8.6 actually holds more generally when L is, instead of a leaf, a sub-
manifold N which is saturated by leaves of F, all of them of the same dimension,
and the definition on U is adapted accordingly. This result is fundamental for
the theory of singular Riemannian foliations. It is used to prove, for instance,
that each connected component X7, of the union X" of all leaves of F of dimen-
sion r is an embedded submanifold of M [62, Proposition 6.3], called a stratum.
This provides a stratification

M=| |

of M. We will omit r in ¥}, when it is not necessary, referring simply to a
stratum X,. The restriction F, := F|x, is a regular foliation, for each o. One
verifies (see item (iv) below) that the union of the leaves of maximal dimension
is connected (hence a stratum), called the regular stratum of F, which we also
denote by X;ce. All other strata are called singular. The union Xgn, of all
singular strata is the singular locus of F. The most singular strata — i.e., those
containing leaves of least dimension — are called minimal. Using Lemma 8.6
one proves moreover that:

(i) Each X, is transversely totally geodesic, meaning that a geodesic which
is perpendicular to a leaf L € ¥, and tangent to X, remains within >,
for some positive time, and hence is a geodesic of ¥, with respect to the
restriction of the metric g.

(if) Thus g, = g|s, is a bundle-like metric for F,, which is hence a (regular)
Riemannian foliation. The transverse metric it induces will be denoted by

T
8- b
(iii) If L C X, then L C X, [62, Lemma 6.4].
Furthermore, each X, is obviously saturated, so Lemma 8.6 can also be applied
for N = %, from what one concludes:

(iv) All singular strata have codimension at least 2, so ¥,¢ is a connected,
open, dense submanifold of M.
(v) For any snigular stratum ¥, one has codim(F,) < codim(F).

Definition 8.7 (Transverse Killing vector fields). We say that a transverse
field X € [(F) is a transverse Killing vector field of F if its restriction to each
stratum X, is a transverse Killing vector field for (F,,,gL) (see Item (ii) above).
The algebra of F-transverse Killing vector fields will be denoted by iso(F).
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8.2. Orbit-like, infinitesimally closed and linearized foliations

As we previously saw, for each x € M we have a slice foliation F|g, of a
slice S,.. Its pullback by the exponential map is a singular Riemannian foliation
of B.(0) C TS, with respect to g, and thus, by Lemma 8.6, can be extended
via homotheties to a singular Riemannian foliation F, on the whole of T,S,,
called the infinitesimal foliation at x. Notice that if F is regular, then F, is the
trivial foliation of T,.S, by points.

Definition 8.8 (Infinitesimally closed/homogeneous and orbit-like foliations).
A singular Riemannian foliation F is said to be:

o infinitesimally closed foliation if the infinitesimal foliations F, are closed
for all z,

o infinitesimally homogenous if the infinitesimal foliations F, are homoge-
nous for all z, and

o orbit-like if F is both infinitesimally closed and infinitesimally homoge-
nous.

The property of being infinitesimally homogeneous is invariant by foliate
diffeomorphisms, in the sense that if ® : (M, F) — (N, G) is a foliate diffeomor-
phism, then F is infinitesimally homogeneous if and only G is infinitesimally
homogeneous [9, Proposition 2.9]. The invariance under foliate diffeomorphisms
is also valid for infinitesimally closed foliations, and hence for the property of
being orbit-like. From Molino’s structural theorem (see Theorem 4.3) we know
that, for regular Riemannian foliation F, we can identify M/F = W/O(q),
hence we obtain the following.

Example 8.9 (Closures of regular Riemannian foliations [62, Theorem 5.1]).
The closure F of regular Riemannian foliation F is orbit-like.

The next example turns out to be very relevant in geometry (see [13] and
[83]).

Example 8.10 (Holonomy foliations). Examples of orbit-like foliations can
be constructed as follows. Suppose L is a Riemannian manifold, and F is an
Euclidean vector bundle over L, with inner product ( , ), on each fiber E,,
and suppose V¥ is a metric connection on E, that is, it satisfies X (£,n) =
(VEE ) + (¢, VEn). Then VF induces a Riemannian metric g¥ on E, the
connection (Sasakian) metric, and a parallel transport on E given as follows:
for X € E, and a curve v : [0,1] — L with 7(0) = z, there exists a unique lift
X(t), t €]0,1] with X(0) = X such that Vf,(t)X(t) = 0 for every t € [0,1]. We
define the holonomy foliation F¥ on E by declaring two vectors X,Y € E to
be in the same leaf if they can be connected to one another via a composition
of parallel transports with respect to VE (see Figure 9). This defines a singular
Riemannian foliation on E for which g¥ is adapted. For a point = along the
zero section L, the infinitesimal foliation F, coincides with the homogeneous
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Figure 9: The leaves of an holonomy foliation.

foliation given by the orbits of the holonomy group Hol, of the connection
V¥ acting by isometries on the fiber E,. Similarly, at a point X € E, the
infinitesimal foliation is given by the orbits in vx Lx of the stabilizer Hx C H,
of X. Therefore F¥ is infinitesimally homogeneous. In addition if the connected
component of Hol, is compact, then FF is orbit-like. This happens for example
it E=TLorif E=v(L) when L is an embedded submanifold of an Euclidean
space (see [13]).

We end this section with a technical construction which will be needed later.
Let U = Tub.(P) be a distinguished tubular neighborhood, for a plaque P. If
X € X(F|v) is given, we can produce another vector field X¢ on U given by

Xt = lim dhy H(X o hy),

which is called the linearization of X with respect to P. It is smooth, invariant
under homothetic transformations and coincides with X along P [59, Proposi-
tion 13]. The module X(F|y)¢ of linearized vector fields spans a foliation JF*
of U, in the sense that the leaves of F¢ are the orbits of the pseudogroup of
local diffeomorphisms (U, F) generated by the flows of the vector fields in
X(F|v)t. Let J be a closed saturated manifold contained in some stratum Y,
(e.g. a leaf closure), and U = Tub(J) a (saturated) tubular neighborhood of J.
The previous construction is also valid if we replace P with J, and the linearized
field has similar properties.

Definition 8.11 (Linearized foliation). The foliation F¢ of U is called the
linearization of F with respect to P (or J), or just the linearized foliation when
F and P (or J) are clear from the context.

The metric g in general is not adapted to the linearization F*, but it is pos-
sible to construct a new metric g on U turning F* into a singular Riemannian
foliation (see [9, Section 7] for details. Now let S, = 75" (2) be an F-slice and,
in analogy with the definition of the slice foliation F|g,, consider the partition
F¥|s, given by the connected components of L NS, as L ranges between the
leaves of F*. By construction, the pullback exp’(F*|s,) is invariant by rescal-
ings, so we can also extend it to a foliation (F*), of the whole T,.S,. One proves
that (F*), coincides with the linearization of (F,,g,) with respect to the origin
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in 7,5, [62, §6.4], that is (F*), = (F,)’, so it is safe to denote both of them by
F£. The next result is the main reason why we are interested in this object.

Proposition 8.12 (]9, Proposition 2.10]). Let F be a singular Riemannian
foliation, J = L be a leaf closure and U = Tub(J) a tubular neighborhood of J.
Then the linearized foliation F* with respect to J is the maximal infinitesimally
homogenous subfoliation of F|y. Moreover, for each x € U the foliation F. is
given by the orbits of the connected component of the identity of the Lie group
O(Fy) of linear isometries of (Ty;Sy,8x) sending each leaf of F, to itself.

9. Molino’s conjecture and its proof

In this section we address the question of whether the closure F of a singular
Riemannian foliation is again a singular Riemannian foliation. Molino made this
conjecture in the 1980’s, and it remained open until 2017, when it was proved
positive in [9]. Before we present the results in [9], let us see what can be
achieved by applying the structural theorem for regular foliations (Theorem
4.3) to each stratum of a singular Riemannian foliation.

9.1. Molino sheaf of a singular Riemannian foliation

Consider a complete singular Riemannian foliation (M,F). As we saw in
item (ii) above, the restriction of a singular Riemannian foliation F to each
stratum X, is a regular Riemannian foliation. Although F, is not necessarily
complete, one can still apply Theorem 4.3 to it because its holonomy pseu-
dogroup is complete. Alternatively, one can change the metric on ¥, so that
Fo is complete. It therefore follows that its leaf closures are submanifolds of
Ya, and in particular the leaf closures in F are submanifolds of M. Moreover,
the distance between two leaf closures is locally constant, since this is true for
the leaves themselves, hence the partition F is a transnormal system on M.

Each F, has a locally constant Molino sheaf €, := €x, of germs of local
transverse Killing vector fields that describes the closure F,. Consider, in pa-
ticular, the Molino sheaf @ce of the restriction Ficz to the regular stratum.
The opposite Lie algebra of its stalk is called the structural Lie algebra of F,
and denoted simply by g. The motivation for this is that ., extends con-
tinuously to a locally constant sheaf € on M, the Molino sheaf of F, with
stalk g=! [62, Lemma 6.5]. In fact, let us briefly present how this extension
is obtained. Suppose ¥, is the stratum of the singular leaves of maximal di-
mension and let P C ¥, be an open, relatively compact, simply connected
subset. If codim(X,) = 2, then by Lemma 8.6 one concludes that the restric-
tion of F to the boundary of a tubular neighborhood Tub,(P) is the pullback
T5(Fa). S0, Greg coincides with 75'(%,) on Tub.(P), hence the result. Now,
if codim(X3,) > 2, then Tub.(P) \ P is a simply connected open subset of g,
on which e is therefore constant and thus extends to Tub.(P) by continuity.
The extension of €rcg to the other strata is then done similarly.

One can think about the sections of ¥ somewhat more concretely as follows.
Let us denote by £°"8"(F) the space of continuous vector fields on M which are
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tangent to each stratum X, of F and whose restriction to each X, are foliate
Killing vector fields. Now take the space is0™"8"(F) of “rough” transverse
Killing vector fields (in the sense that they are only continuous) as the quotient
grough () /xroush(F) Then to each open set U C M, €7(U) consists of the
Lie algebra of germs of rough local transverse Killing fields on U which are
extensions (as in the previous paragraph) of fields in @reg (U N Lyeg)-

Example 9.1 (Molino sheaf of a homogeneous singular Riemannian foliation).
Suppose F is given by the connected components of the orbits of a Lie group
H < Iso(M) (see Example 8.1 and Proposition 8.2). Then, in analogy to the
regular case (see Example 5.4), € is the sheaf of germs of the transverse Killing
vector fields induced by the fundamental Killing vector fields of the action of
the closure H < Iso(M).

Furthermore, as the above example suggests, it is possible to prove that each
sheaf €, is a quotient of the sheaf induced on ¥, by €= [62, Proposition 6.8].
That is, one has to quotient out the subalgebra of sections whose restriction to
Y4 vanish. In particular, the structural algebra g, of F, is a quotient of g, for
each r.

9.2. Blow ups and desingularization

Let us review a useful technical tool for singular Riemannian foliations that
allows one to “desingularize” a singular Riemannian foliation F on a compact
manifold M by constructing from it another compact Riemannian manifold
(MB,gB), a regular foliation F2, and a foliate smooth map p : MB — M with
good geometric properties. For instance, p restricts to a foliate diffeomorphism
outside ¥B := p~ ! (Ssing) and to an isometry outside a narrow open neighbor-
hood of ¥B. This technique, inspired by the blow-up methods for resolution
of singularities in algebraic geometry, appeared in [61] for closures of regular
Riemannian foliations and was generalized to arbitrary singular Riemannian
foliations on compact manifolds in [6].

The foliation (MB, FB gB) is obtained by successively blowing it up along
the most singular strata. It is instructive to review this process in more detail.
Denote by ¥ a minimal stratum and by U := Tub.(X) a tubular neighborhood
of X. One proves the following [6, Theorem 1.2]:

(i) U = {(2,[X]) € U x P(wS) | & = exp”(tX) for |t| < &} is a smooth
manifold, called the blow-up of U along 3, and the blow-up projection
p: U — U defined by p(z,[X]) = z is smooth.

(ii) £ := p1(B) = {#([X],[X]) € U} = P(vX), where 7 : P(vX) — ¥ is the
canonical projection.

(iii) There exists a singular foliation F on U whose minimal leaves have dimen-
sion strictly greater than those in ¥ and so that p : (ﬁ\f]7 F) = (U\S, F)
is a foliate diffeomorphism. In addition, if F is homogeneous then the
leaves of F are also homogenous.

(iv) There exists a Riemannian metric g on U adapted to F.
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Let us briefly recall the construction of the metric in item (iv). Consider the
smooth distribution S on U given by S, = T}, S, where S, is a slice of L, at
with respect to the original metric and denote y = exp(X), for X € v, 3. Recall
that there exists a metric g so that the normal space P to S, is tangent to the
leaf L, and so that (U, F, g) has the same transverse geometry as (U, F, §), i.e.,
the distance between the plaques is the same regardless which metric we use.
Then we have the decomposition

T,M=P,&S,®&S,oS,,
where
o P, is orthogonal to S, with respect to g,
e S, C 8, is tangent to the spheres exp, (vX N B) x| (0)),
&, is the line generated by % exp, (tX)|i=1, and
& is the orthogonal complement of Sy & &y in Sy.

We now define a metric § on U \ ¥ which is adapted to F. Let f : (0,r) — R be
a smooth function so that f(t) = g—z for 0 <t < ¢ and f(t) =1 for 7 <t <3,
and set

By(ZW) =8(Z W)+ FIXIEZ*, W®) + B(Z", W) + §(Z°, W°).

It follows that exp(x) = Zexp(x) if i < X < % Notice that g is adapted to
F, because f(||exp~!(z)]|) is constant along L, and hence § is basic on each
stratum.

Since the distribution S, i.e., the normal distribution to P with respect to
g, can be deformed to the normal distribution to P with respect to g without
changing the transverse metric, we can extend the metric § on Tub, 4(¥) to a
new metric g on U so that gcxp(rX/4) = gcxp(rX/4) and gcxp(tX) = Bexp(tX)s for
r/2 < t and | X|| = 1. The pullback (p)*g defines a smooth metric on U so that
F turns into a singular Riemannian foliation on U. Finally we can extend the
metric g on U to a metric on the connected sum

M = (U,0U)#(M \ U,dU)

such that F is a singular Riemannian foliation on M.

We repeat this process to each stratum of minimal dimension, obtaining
a manifold My with a singular Riemannian foliation F; whose minimal leaves
have dimension strictly grater than those of F. We then continue inductively,
obtaining a manifold M}, with blow-up projection pg : My — Mjy_1 and blow-
up foliation Fi. Define (MB, FB ¢B) as the last blow-up space in this process
(which eventually ends since dim(F) is finite) and p : M® — M as p = p, o
.o py.
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Remark 9.2. The blow-up procedure was developed in [6] for a singular Rie-
mannian foliation of a compact manifold or for a closed singular Riemannian
foliation of a complete manifold. For technical reasons, these hypotheses were
used to ensure the existence of the open neighborhood U. If F is a non-closed
singular Riemannian foliation in a complete but possibly non-compact manifold
M, one can first consider 7 — which is now a closed singular Riemannian foli-
ation (see Theorem 9.9) — to obtain a neighborhood U as constructed above,
and then perform the blow up of F using U. We avoided this generality in order
to improve the readability of this paper.

Although in this survey we are interested in understanding singular Rieman-
nian foliations with non-closed leaves, we recall here the following result that
illustrates further geometric properties of blow-up’s.

Theorem 9.3 ([6, Theorem 1.5]). Let F be a closed singular Riemannian fo-
liation of a compact Riemannian manifold M. Then for each small positive
e > 0 there exists a reqular Riemannian foliation FB with compact leaves on
a compact Riemannian manifold M® and a smooth surjective desingularization
map p: MB — M that is induces an e-isometry between the leaf spaces, that is,
if x and y are points in MP then

|A(Lp(ays Log)) = d(Ly, Ly)| < e

In particular the metric space M| F is a Gromov—Hausdorff limit of a sequence
of Riemannian orbifolds.

We will be specially interested in the following property.

Proposition 9.4. Let F be an infinitesimally closed singular Riemannian fo-
liation of a compact Riemannian manifold M. Then every local F-transverse
Killing vector field X admits a lift to a local FB-transverse Killing vector field
XB, in the sense that the flows of X and XPB satisfy po oP = ¢ o p.

Remark 9.5. In the general case where F is not necessarily infinitesimally
compact one has a similar conclusion if in addition one supposes that the lo-
cal flows of the transverse isometries are contained in the closure of linearized
holonomies, a concept that we present below.

9.3. The proof of Molino’s conjecture

In [10] the authors establish Molino’s conjecture for orbit-like foliations using
Theorem 9.6. We already saw that F is a transnormal system, so it remained to
show that any vector X, € v,L,;NT,L, can be extended to a smooth vector field
X € X(F). Notice that this is a local problem since we can find an extension
X in a neighborhood of = and then use a partition of unity to extend it by 0 to
a vector field in X(F). The main ingredient in the proof of Molino’s conjecture
in [9] is the following smooth lifting of (metric) isometries between leaf spaces,
which uses in its proof the fundamental paper of G. Schwarz [77].
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Theorem 9.6. [10, Theorem 1.1] Let M be a complete Riemannian manifold
with a proper isometric action G x M — M of a Lie group G, and suppose
that ¢ : D — M/G is a continuous local flow of isometries, where D is an
open neighborhood of a point (Z,0) € M/G x R. Then ¢ is the projection of a
G-equivariant smooth flow on the preimage of D in M.

To comment on the proof we will need a generalization of the notion of
slice, which will also be useful later in the study of the dynamical behavior of
a singular Riemannian foliation (M,F). Recall we want to smoothly extend a
given X, € v,L, NT,L, to a vector field tangent to the leaf closures. Let ¥,
be the stratum containing x, S a slice for F|x_ at x, and J the saturation of S.

Definition 9.7 (Reduced space). We define the reduced space of F along S as
the manifold N := exp(v°J)|g, where (v°J)|s = {£ € (w])|s | €|l < €} and
€ > 0 is small enough so that exp is a diffeomorphism onto N.

With the footpoint projection, the reduced space is a fiber bundle ps : N — S
whose fibers contain the leaves of the foliation Fy defined by the intersections
of F with N. Furthermore, one can endow N with a metric g which is adapted
to Fn and preserves the transverse metric of F [10, Proposition 2.20].

The point of this construction is that when F is orbit-like, the foliation Fy
is homogeneous (although not necessarily isometric-homogeneous), given by the
orbits of a compact Lie group [10, Corollary 2.25]. Hence one can apply The-
orem 9.6 (or [77]) to continuous flows of isometries on N/Fy. Having this, it
is then a matter of finding such a flow that corresponds to X,. The authors
accomplish that by first generalizing the notion of (regular) holonomy pseu-
dogroup obtaining a pseudogroup of local metric isometries S (Fy) acting on
N/Fy and capturing the recurrence of the leaves on N. Now consider the desin-
gularization (NB, F¥) of Fy. Since F§ is regular, Theorem 3.23 implies that
L%”;,}“a is a Lie pseudogroup, so lifting the local projection of X, to a vector in

NB, which is tangent to the leaf closures, one concludes that it extends to a
local Killing vector field. But there is a bijection between local isometries in
Hrp and local isometries in the closure J#’(Fy) (in the compact-open topology)
[10, Lemma 4.2], so the authors obtain the desired continuous flow and hence a
smooth vector field on N that can then be extended to the desired vector field
on M extending X,.

Having Molino’s conjecture for orbit-like foliations, the conclusion for an
arbitrary singular Riemannian foliation is obtained by using the linearization
F*. More precisely, on a local neighborhood a leaf L € F the authors show in
[9] that there is an orbit-like foliation F*, obtained from F* by taking the “local
closure” of the leaves of F* (see details in [9, §6]), such that:

(i) F* coincides with F on L, and
(i) Ft=Flc F.
From this the proof of Molino’s conjecture is clear: by the orbit-like case X, can

be extended to a smooth vector field which is tangent to F* and hence tangent
to F, by item (ii).
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Remark 9.8. It is necessary to construct F¢ because F* may not be orbit-
like, since the foliations F% need not to be closed, although they are always
homogeneous (recall Proposition 8.12). Notice, hence, that the technical step

of constructing F* is not needed when F is infinitesimally closed.

9.4. Strong Molino conjecture

Combining the existence of the sheaf ¥ with the fact that Molino’s con-
jecture is true we can state the following structural theorem, which bears great
resemblance with the regular case (recall Theorem 4.3).

Theorem 9.9 (Structural theorem for singular Riemannian foliations [62, The-
orem 6.2],[9, Theorem]). Let F be a complete singular Riemannian foliation of
M and let g be an adapted metric. Then

(i) The closure F is a singular Riemannian foliation with adapted metric g,

(ii) There exists a locally constant sheaf of Lie algebras €r on M which induces
Greg ON Xrog and whose restriction to a singular stratum ¥, admits €, as
a quotient sheaf.

Unlike the regular case, however, it is not possible to conclude from what we
have seen so far that €= is a sheaf of Lie algebras of germs of transverse Killing
vector fields, since the extension of €cs to € is, in principle, only continuous.
That is, we do not know whether the sections of €.; extend smoothly to local
transverse Killing vector fields, only to “rough” transverse Killing vector fields
(recall Section 9). In fact, this would imply Molino’s conjecture, since in this
case for a small neighborhood U the (smooth) fields in €#(U) would be transitive
on the closures of the leaves. For this reason, we state the following;:

Conjecture 9.10 (Strong Molino conjecture). The sheaf € is a sheaf of Lie
algebras of germs of transverse Killing vector fields.

Molino proposes this conjecture in [62, p. 215]. It does not follow directly
from the already mentioned proof of Molino’s conjecture that appears in [9],
but from the results in [10] that we saw in Section 9.3 one can conclude that it
is true for orbit-like foliations.

10. Singular Killing foliations

In this section we propose a definition for singular Killing foliations. On
the one hand, as discussed in Section 9, we do not know whether in general
the Molino sheaf €r is a sheaf of germs of transverse Killing vector fields —
the strong Molino conjecture. On the other hand, the fact that € is indeed a
globally trivial sheaf of germs of transverse Killing fields when F is a regular
Killing foliation is of fundamental relevance for this class of foliations. So we
will assume this a priori in our generalization of Killing foliations to the singular
setting.
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Definition 10.1 (Singular Killing foliation). A complete singular Riemannian
foliation (M, F) is a singular Killing foliation if it’s Molino sheaf €’ is a globally
constant sheaf of Lie algebras of germs of transverse Killing vector fields.

Notice that the structural algebra of a singular Killing foliation F is Abelian,
since it is the structural algebra of the (regular) Killing foliation Freg. We will
therefore follow our notation of the regular case and denote it by a. We have an
isomorphism a = €=(M). Notice also that €x is globally constant if and only
if Gleg is globally constant, since € is the extension of €ce. In particular, the
condition of € being globally constant is independent of the adapted metric.
Finally, the restriction F, of a singular Killing foliation F to a stratum X, also
has a globally constant sheaf %, since it is a quotient of the sheaf induced by €
on X,. Hence, one can conclude that if (F, g) is a singular Killing foliation, then
each F, is a (regular) Killing foliation, although with respect to a transverse
metric which is different from that induced by g on X, (this is needed so that
Fo is complete).

In analogy with the regular case, if M is simply connected then €= is auto-
matically globally constant. Thus a singular Riemannian foliation of a simply
connected manifold is a singular Killing foliation, provided it satisfies the strong
Molino conjecture (cf. Proposition 10.4). Another important class of examples
is given by homogeneous foliations:

Example 10.2 (Homogeneous singular Riemannian foliations are Killing). As
we saw in Example 9.1, if F is homogeneous, given by the orbits of H < Iso(M),
then %r is induced by the fundamental Killing vector fields of the action of
H < Iso(M), hence F is a singular Killing foliation.

It seems therefore relevant to study this class of foliations and investigate
to what extent the results concerning regular Killing foliations that we saw
in Sections 6 and 7 generalize to the singular setting. This is intended to a
forthcoming paper. For now we point out, for instance, the following.

Proposition 10.3. Let (M, F) be a singular Killing foliation and a its struc-
tural algebra. Then we have a transverse infinitesimal action of a on F which
turns (UF),d) into an a*-algebra.

Proof. The proof is analogous to that of the regular case [29, Proposition 3.12].
The transverse infinitesimal action of a is given by the isomorphism a = €x (M),
so we will identify a = €=(M). For each X € a we define the derivations
Lx = Lz and 1y = tg, where X € £(F) represents X. Notice that these
operators are well defined, since we are restricted to forms on Q(F), and inherit
the needed a*-algebra relations from Q(M).

It thus only remains to show that Q(F) is closed with respect to each tx
and Lx. In fact, if Y € X(F), then tyigw = —t3tyw = 0, since tyw = 0,
and Lytgw = 13xLyw + vy gw = 0, since Lyw = 0 and [V, X] € X(F).
Hence txw € Q(F). Similarly, ty Lyw = Lgiyw — Ug YW = 0and LyLgw =
LiLyw =Lz yjw =0, so we conclude that Lxw € Q(F). O
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Therefore F possesses a natural equivariant basic cohomology, which we call
its a-equivariant basic cohomology, defined as the equivariant cohomology of the
associated Cartan complex Cq(Q(F)) (see Section 6.1):

Hu(}—) = Hu(Q(}—)) = H(CG(Q(}—)ada))'

In the aforementioned forthcoming paper we also intend to establish the
strong Molino conjecture for the case of infinitesimally closed complete Rie-
mannian foliations. This will directly lead to the following:

Proposition 10.4. Let F be a complete, infinitesimally closed singular Rie-
mannian foliation on a simply connected manifold M. Then F is Killing.

The idea of the proof is to use smooth liftings of metric isometries in local
quotients of F (cf. [10]) to obtain an alternative description of ¥#. In fact, this
approach can be formulated considering the pseudogroup generated by those
local metric isometries, which works as a singular version of % and enables
some adaptations of the constructions that we saw in Section 3 for the regular
case to the singular setting.
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