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ABSTRACT: The formulation of a structured framework
dedicated to the systematic review of the literature, identification
of potential compounds, theoretical quantum chemistry character-
ization, and assessment of the significance of stability descriptors is
essential for accelerating the discovery of two-dimensional
materials for technological applications. In this work, we selected
the two-dimensional monochalcogenides (MQ), which have
attracted increased interest due to their potential applications in
future devices, as prototype materials for the present investigation.
Our framework started with a natural language processing analysis
of more than 5400 articles, revealing a growing research interest in
the two-dimensional MQ compounds, especially in electronics,
energy, and fundamental studies. This led to the selection of 27
diverse MQ compounds across 13 distinct two-dimensional structural phases for density functional theory calculations, resulting in
an extensive database of physicochemical properties. We evaluated formation enthalpies, uncovering clear stability trends (e.g.,
stability declines with heavier chalcogens, dynamic robustness of GeSe), and evaluated equilibrium lattice parameters, noting
predictable expansions and significant anisotropies. Bader charge analysis offered insights into charge-transfer and ionicity trends.
Our electronic structure analysis identified band gaps (direct or indirect, depending on the M element group and the weight of the
chalcogen) and optical absorption anisotropies significantly influenced by crystal symmetry and spin orbit coupling. Importantly,
band alignment calculations classified all possible heterojunctions as type I, II, or III, underscoring their extensive potential for future
optoelectronic device development. Additionally, we incorporated machine learning, using a random forest approach, along with our
density functional theory calculations to accurately forecast trends in energetic properties. This analysis identified the electronic
charge as a highly significant stability descriptor among the 34 descriptors, underscoring its importance for future machine learning
endeavors. Hence, this study offers a streamlined framework for the characterization and discovery of promising two-dimensional
materials, highlighting the synergy between data-driven analysis and quantum-based simulations.

1. INTRODUCTION
The isolation of a monolayer of graphene1,2 has instigated the
emergence of a new research field focused on two-dimensional
(2D) materials, propelled by graphene’s exceptional properties,
which include an extremely high surface-to-volume ratio,3

macroscopic expressions of its hexagonal lattice symmetry,4

extraordinary charge carrier mobility,5 and other notable
attributes. However, the absence of an intrinsic band gap in
graphene6 constrains its utility in semiconductor applications,
presenting a significant obstacle to the development of practical
devices. Consequently, the exploration of alternative 2D
materials with tunable physicochemical properties has become
crucial for the advancement of the discipline.
In this context, transition-metal dichalcogenides (TMDs),

which are 2D materials consisting of a transition-metal atom
(M) interposed between two layers of chalcogen (Q = S, Se, Te)
species (MQ2), have emerged as promising semiconductor

candidates to complement carbon-based 2D materials. For
example, TMDs effectively address the electronic deficiencies
inherent in graphene while demonstrating additional functional
characteristics such as superconductivity,7 complex reciprocal
space topology,8 among other properties of high interest.
Among the MQ2 compounds, certain materials, such as MoS2
and WS2, are particularly significant

9,10 due to their applicability
in diverse fields, including biomedicine,11 sensing,12 photo-
voltaics,13 etc.

Received: July 3, 2025
Revised: September 4, 2025
Accepted: October 1, 2025

Articlepubs.acs.org/JPCC

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acs.jpcc.5c04625

J. Phys. Chem. C XXXX, XXX, XXX−XXX

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
SA

O
 P

A
U

L
O

 o
n 

O
ct

ob
er

 1
5,

 2
02

5 
at

 1
0:

18
:1

6 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.



An additional category of 2D semiconductors encompasses
the monochalcogenides,14,15 which have attracted considerable
research attention due to their unique physical−chemical
properties. These compounds are defined by a generalized
chemical formula MQ, where M represents a cationic element
derived from groups III, IV, or V of the periodic table, while Q is
a chalcogen element. The compositional adaptability provided
by the simple 1:1 ratio facilitates the creation of a diverse range
of 2D materials. For example, MQ are characterized by
substantial chemical tunability16 that allows the alteration of
electronic and optical properties by doping or alloying;
remarkable carrier mobility17 crucial for the development of
high-performance electronic circuits; and robust optical
absorption,18 making them promising contenders for photo-
detector and energy harvesting technologies.
Experimental investigations have highlighted the potential of

MQ compounds. For example, Wong et al.19 reported ultrahigh
plasticity in InSe, while Chang et al.20 elucidated its synthesis
through chemical vapor deposition. In addition to this, Hu et
al.21 developed GaSe nanosheets employing a combination of
mechanical exfoliation and solvent-assisted techniques, high-
lighting its promise for photodetector applications. Further-
more, Vaughn et al.22 achieved the synthesis of GeS and GeSe
nanosheets using a one-pot method, illustrating their aptitude
for light-harvesting applications. In a similar study, Zhang et al.23

produced SnS nanosheets by physical vapor deposition, while
Huang et al.24 employed liquid phase exfoliation to generate
SnSe, thus illustrating its relevance in the fields of optoelec-
tronics and photovoltaics.
In theoretical explorations, density functional theory (DFT)

calculations have become essential to elucidate the structure−
property relationships of 2D materials. For example, Akay and
Kocak25 analyzed the temperature-dependent carrier mobility in
GeSe, highlighting its potential as a high-performance nanoma-
terial. Xu et al.26 investigated the electrocaloric effect in group IV
monochalcogenides (GeS, GeSe, SnS, and SnSe), demonstrat-
ing their promise for solid-state cooling applications. Similarly,
Demirci et al.27 showed that group III monochalcogenides
possess highly suitable electronic and optical properties for
nanoelectronics and photonics. More recently, Sheng and
Wang28 identified TlX (where X = S, Se, Te) as a compelling
class of valleytronic semiconductors, expanding the range of
potential 2D materials for next-generation electronic applica-
tions. Collectively, these studies underscore the versatility of
DFT in guiding the design and discovery of novel 2D materials
with tailored functionalities.
Therefore, in recent 20 years, the volume of publications on

2D materials, using theoretical, experimental, or hybrid
approaches, has grown at an unprecedented rate. This rapid
expansion reflects both the increasing interest in novel low-
dimensional systems and the accelerated development of
computational and experimental methodologies. However, the
sheer number of studies now presents a significant challenge:
keeping up with the latest discoveries, assessing the reliability of
reported results, and identifying genuinely promising materials
have become increasingly difficult tasks. Traditional literature
surveys are often insufficient to maintain an up-to-date
understanding, particularly given the multidimensional nature
of material properties, synthesis methods, and application
domains. Thus, the rapidly increasing number of publications
on 2D materials requires the development of scalable computa-
tional tools for systematic literature characterization, data
extraction, and data analysis.29

To mitigate these limitations, natural language processing
(NLP) techniques have been implemented for automated
literature extraction, facilitating faster retrieval and broader
analytical insights.30,31 This methodology also helps prioritize
materials with significant experimental and theoretical potential.
To further elucidate the relationships between structure and
properties, explainable artificial intelligence (XAI) tools have
been integrated into the process.32 Although machine learning
(ML) models provide predictive capabilities, their “black-box”
nature can obscure comprehension of the underlying physical
principles. XAI techniques, particularly SHAP values (SHapley
Additive exPlanations),33 are used to interpret model outputs by
ascribing predictions to specific atomic-scale features. By
amalgamating NLP-derived bibliometric insights with feature
attribution via XAI, we have established a comprehensive
framework for the rational discovery of 2D monochalcogenides.
In this study, we integrate NLP algorithms with DFT

calculations to explore the physicochemical characteristics of
2D MQ materials. Through NLP-guided screening, we have
identified 13 crystal structures, pertaining to space groups (SGs)
Aem2, C2/m, P1̅α, P1̅β, P21/c, P3̅m1α, P3̅m1β, P4/nmm, P6̅m2,
Pbcm, Pmmn, Pmn21, and Pmna. Additionally, we considered 27
MQ compositions, with M corresponding to Al, Ga, In, Si, Ge,
Sn, P, As, Sb, and Q aligning with S, Se, Te. DFT calculations
were executed to assess their relative energetic stability, which
was further corroborated by phonon dispersion analysis to
ensure structural stability.
Our results indicate that group III monochalcogenides

stabilized predominantly in the crystal phases of the space
groups P1̅β and P6̅m2, while group IV elements exhibit a
preference for P3̅m1α, Pmn21, and Pmna. In contrast, the
elements of group V are predisposed to favor P1̅β and P21/c SGs
as their ground states. Bader charge analysis demonstrates that
charge transfer from M to Q diminishes sequentially along the
chalcogen series (S → Se → Te). Most compounds are
characterized by indirect band gaps within the energy range of
0.21−3.23 eV, which corroborates the formation of 166 type I,
177 type II, and 8 type III heterojunctions. Furthermore, optical
analyses reveal a redshift in absorption peak positions that
correlates with an increase in the chalcogen atomic number,
accompanied by pronounced anisotropy in group V compounds.
Moreover, data mining algorithms have identified critical
atomic-scale descriptors that impact energetic properties,
including total energy, relative energy, formation enthalpy, and
cohesive energy. An observed correlation between charge
transfer and the ionic character indicates a maximum ionic
contribution at 21%. Notably, both site and interstitial charge
densities have been recognized as the predominant descriptors
dictating energetic trends.

2. THEORETICAL APPROACH AND COMPUTATIONAL
DETAILS

This study focuses on the characterization and design of 2D
monochalcogenides for optoelectronic applications by integrat-
ing multiple computational methodologies: (i) A review of the
literature based on NLP to identify the most relevant
compositions and potential 2D structures for monochalcoge-
nides; (ii) DFT34,35 calculations to determine the most stable
structural configurations; (iii) DFT characterization of the most
significant physicochemical properties pertinent to optoelec-
tronic applications; (iv) ML models application in a set of
descriptors to identify their impact on thematerial stability. Each
step, along with additional details, is shown in the computational
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protocol depicted in Figure 1. Subsequently, we provide a
summary of the techniques employed in this research.

2.1. Total Energy Calculations.Our calculations are based
on the DFT34,35 framework, which is widely used in the
characterization and design of new materials.36,37 The projector
augmented-wave (PAW) method,38,39 as implemented in the
version 5.4.4 of the Vienna Ab initio Simulation Package
(VASP),40,41 was used to describe the interactions between the
core and valence electrons. Structural optimizations of the 2D
structures were performed using the generalized gradient
approximation (GGA) as proposed by Perdew−Burke−
Ernzerhof (PBE)42 for the exchange−correlation energy
functional. The characterization of the electronic properties,
including the density of states and band structures, was
conducted incorporating spin−orbit coupling (SOC) effects
for the valence states, which are crucial for accurately
determining electronic properties in compounds consisting of
heavy element species. To improve the accuracy of fundamental
band gaps, we used the hybrid exchange−correlation functional
proposed by Heyd−Scuseria−Ernzerhof (HSE06)43 and
applied scissors operators with SOC effects over the PBE
approximation to evaluate the optical properties of the dielectric
tensor.44,45

A total energy convergence criterion of 1 × 10−6 eV was used
to ensure convergence of the Kohn−Sham (KS) self-consistent
cycle, while the equilibrium structures for the investigated 2D
systems consider a force threshold for atomic forces in each
atom of 0.01 eV Å−1 by minimizing the forces and the stress
tensor simultaneously, but constraining the lattice parameter
perpendicular to the monolayer plane. The plane-wave energy
cutoff was set as twice themaximum recommended value among
the PAW projectors used in each compound to minimize errors
from the Pulay stress46 in structural optimizations. However, for
static calculations, a lower cutoff was used, set approximately

12.5% higher than the one recommended by the PAW
projectors.
A vertical vacuum distance of 20 Å was applied to prevent

spurious interactions, while the Monkhorst−Pack scheme
defines the k-points and weights sampling the reciprocal space
considering a k-length of Rk = 35 Å. To calculate phone band
structures, we considered the supercell approach as imple-
mented in the phonopy code.47 The tight convergence criterion
necessary for these calculations considers 1 × 10−8 eV to break
the KS cycle, while the size of the supercell ranged from 2× 2× 1
to 4 × 4 × 1 depending on the structure with atomic
displacements of 0.01 Å for the numerical evaluation of the
Hessian matrix. The electronic Supporting Information file
includes detailed information on all selected PAW projectors,
along with additional relevant computational parameters.

2.2. Physical−Chemical Descriptors. To identify the
physicochemical descriptors that most significantly influence the
energetic stability of 2D monochalcogenides, we performed a
correlation analysis between a broad set of structural and
electronic features derived from first-principles calculations.
Although our study focuses on monochalcogenides, the
methodology is general and may be extended to other families
of 2Dmaterials. The physicochemical descriptors were extracted
from DFT simulations considering PBE functional and include
lattice parameters, bond lengths, bond angles, valence electron
configurations, and charge distribution metrics such as Bader
charges and interstitial electron densities, among others. In
parallel, four energetic descriptors were considered: total energy,
relative energy (with respect to the lowest-energy polymorph),
formation enthalpy, and cohesive energy. The numerical values
for all physicochemical and energetic descriptors are provided in
Supporting Information File 2 (in CSV format), while
Supporting Information File 1 contains detailed definitions
and descriptions of each descriptor.

2.3. Explainable Machine Learning Analysis.To analyze
the relationship between descriptors and energetic and
electronic properties, we computed SHAP values33 using a
predictive model. SHAP values are a powerful tool for
interpreting the output of machine learning models, especially
when dealing with properties that have many nonlinearities,
such as structural, energetic, electronic, and excitonic properties.
Unlike correlation, which only measures the strength and
direction of a linear relationship between two variables, SHAP
values provide a detailed understanding of a model’s predictions
by quantifying the contribution of each feature to the final
output. This is particularly useful in materials science, where the
relationship between structural properties and material behavior
can be complex and nonlinear. Using SHAP values, researchers
can gain insight into how different structural parameters impact
the properties of a material.
SHAP values are based on game theory, specifically the

Shapley value concept. This concept was developed to fairly
distribute the payouts among players in a cooperative game. In
the context of machine learning, the features of a data set are
considered players, and the prediction function is the game. The
Shapley value for a feature is calculated as the average marginal
contribution of that feature in all possible permutations of the
other features. The marginal contribution of a feature is the
difference between the prediction with and without that feature.
By averaging the marginal contributions across all permutations,
the SHAP values provide a unique and consistent way to
quantify the importance of each feature in making a specific
prediction. This approach ensures that the Shapley values satisfy

Figure 1. Flowchart illustrating the sequence of steps in our theoretical
investigation. The process encompasses a thorough literature review,
selection of 2D monochalcogenide compounds, rigorous energy and
stability screening, and characterization of the most important
physical−chemical properties.
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several desirable properties, such as local accuracy, missingness,
and consistency, making them a reliable and interpretable
measure of the importance of features with respect to the target
variables.
In our analysis, we have chosen to use the Random Forest

algorithm as the predictive model to determine SHAP values.
This decision is based on several factors, including robustness,
relatively few parameters, and good performance of Random
Forest on tabular data. Random Forest is an ensemble learning
method that combines multiple decision trees to improve
prediction accuracy and reduce overfitting. Its robustness makes
it a reliable choice for handling complex and noisy data, while its
simplicity in terms of hyperparameters means that it is relatively
easy to tune and optimize. Furthermore, Random Forest has
been shown to perform well on a wide range of tabular data sets,
making it a versatile tool for predictive modeling. Using Random
Forest as the predictive model, we can ensure that our analysis is
accurate and reliable, providing valuable insights into the
relationships between descriptors and energetic and electronic
properties.
In addition to using Random Forest as the predictive model,

we also ensure the validity and reliability of our analysis by
computing the performance using data from the out-of-sample.
Specifically, we used stratified cross-validation, where the folds
were stratified according to the unitary chemical composition.
This approach ensures that each fold is a representative sample
of the overall data set with a similar number of unitary chemical
composition in each fold. This reduces the risk of bias and
improves the generalizability of the results. By evaluating the
performance using out-of-sample data, we can obtain a more
accurate estimate of the model’s predictive ability, which in turn
increases our confidence in the SHAP values and the insights
they provide.

3. RESULTS AND DISCUSSION
3.1. Bibliometric Analysis Using Natural Language

Processing. To review the literature, we query the Web of
Science database48 using the terms “(AlS OR AlSe OR AlTe OR
GaS OR GaSe OR GaTe OR InS OR InSe OR InTe OR SiS OR
SiSe OR SiTe OR GeS OR GeSe OR GeTe OR SnS OR SnSe
OR SnTe OR PS OR PSe OR PTe OR AsS OR AsSe OR AsTe
OR SbS OR SbSe OR SbTe) AND (“2D materials” OR “two-
dimensional materials” OR “2D layered materials”)”, and
retrieve all metadata information, including title, authors,
abstract, publication outlet, etc. This query returned a total of
5439 articles published before September 2023. Upon analyzing
the retrieved data, we notice that several papers are outside our
scope. The reason is the natural ambiguity of the language
mistake due to some chemical compound formula being also a
word with meaning (e.g., the chemical formula GaTe and the
word gate).
To address this issue, we developed an NLP classifier to

separate the articles that were suitable for our analysis from the
others. To this end, the title and abstract are converted to
numerical vectors using sentence transformers (ST).49 ST is a
natural language processing model that excels in understanding
the semantic meaning and relationships within the text using the
transformer architecture.50 The output of ST is a dense vector
suitable for downstream tasks, such as text classification. Then,
we use the Sentence Transformer Fine Tuning model (SetFit)51

to classify the articles into relevant and irrelevant ones. SetFit
uses a contrastive loss function to fine-tune the ST using pairs of
relevant and irrelevant examples. The computation of the

contrastive loss function depends on the relevance of the pair of
articles. For relevant (positive) pairs, the loss is simply the
squared distance between their vectors, creating an attractive
force to pull them closer. For irrelevant (negative) pairs, a
repulsive force is applied only if their distance is less than a
predefinedmargin (m); if they are already far enough apart, their
loss contribution is zero.51 For our study, we used the default
value m = 0.5 of the parameter. The training process then
minimizes the sum of these competing forces, effectively
organizing the feature space by clustering relevant items and
separating irrelevant ones. One positive characteristic of SetFit is
that it requires few labeled examples to be trained. By forming
pairs, the number of training examples grows quadratically with
the number of source documents, drastically reducing the need
for many initial labeled documents.51 We trained SetFit in two
rounds. First, we manually selected five articles in each category
(relevant and irrelevant). A first model is trained and used to
classify all the retrieved articles. Then, we manually inspect ten
articles classified as relevant or irrelevant, marking the incorrect
classifications. A secondmodel was trained and used to reclassify
all the recovered articles. We manually checked for 20 random
articles in each category and did not notice any further
misclassifications. The final list contains 1257 articles.
Lastly, we apply several NLP techniques to analyze the list of

relevant articles. We used the Google Gemini Pro large language
model (LLM) to classify the articles according to the application
area and type of study, as well as extract the mentions of
monochalcogenides in the titles and abstracts of the articles.
Gemini LLM is comparable to GPT4.0 in handling complex
language tasks,52 and offers a free level of 1500 API calls per day.
Figure 2 presents some insight into this analysis.
The top panel of Figure 2 shows a histogram of the articles

according to the area of application. Articles are classified into
eight main areas: biomedical applications, electronics and
devices, energy conversion and storage, fundamental studies
and characterization, heterostructures and composites, opto-
electronics, synthesis and processing, and tribology and
mechanical applications. The definition of each category is
included in the Supporting Information. In general, we can
observe a growing trend in publications related to mono-
chalcogenides. The areas of electronics and devices, energy
conversion and storage, synthesis and processing, and
fundamental studies and characterization also present a growing
trend over the years.
Regarding the type of study, we categorize articles in the

categories computational studies, experimental studies, inte-
grated experimental and computational studies, proof-of-
concept and prototype demonstrations, and review and
perspective articles. The definitions of the types of study are
also in the Supporting Information. The bottom panel of Figure
2 shows a co-occurrence graph with respect to the type of study
and the application area. In general, we can observe more
experimental studies in the areas of optoelectronics, electronic
devices, and fundamental studies and characterization. Compu-
tational studies show a high prevalence of fundamental studies
and characterization, followed by electronic devices, hetero-
structures, and composite and energy storage and conservation.
Mixed theoretical and experimental studies show a similar trend
in experimental studies, while proof-of-concept and prototype
demonstrations focus on electronic devices and optoelectronics.
Reviews and perspectives have a more homogeneous distribu-
tion, although few articles are related to biomedical and
mechanical applications.
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Finally, Figure 3 illustrates the temporal distribution of
monochalgonide occurrences. To optimize space, the figure
includes only those compounds that feature in a minimum of ten
articles. It is evident that there has been an upward trend in both
the quantity and variety of compounds analyzed over the years,
with a notable predominance of GaSe, and InSe. Additional
insights are provided in the Supporting Information, where a
topic modeling map delineates the main themes of the articles.

3.2. Selection of Two-Dimensional Structures. We
systematically investigated a set of 27 monochalcogenide
compounds with the general formulaMQ, whereM corresponds
to elements from groups III (Al, Ga, In), IV (Si, Ge, Sn), and V
(P, As, Sb) of the periodic table, while Q represents the
chalcogen atoms S, Se, and Te. For each compound, we
considered 13 candidates for the 2D structures identified in
previous theoretical studies and material databases. These
structures were categorized into three crystallographic families
on the basis of their symmetry:

• Hexagonal: including P3̅m1α,53 P3̅m1β,54 and P6̅m2;54

• Orthorhombic and Triclinic: comprising a variety of
lower-symmetry structures such as P1̅β, P1̅α, P21/c, P4/
nmm, Pbcm, Pmmn, Pmn21, and Pmna;55

• Triclinic: specifically, the Aem2 and C2/m structures.55

Figure 4 illustrates the initial geometries (both top and side
views) of all these prototype structures, providing insight into
their dimensionality and structure organization. The hexagonal
structures exhibit high symmetry and layered arrangements,
resembling the well-known trigonal prismatic or octahedral
coordination seen in TMD compounds. In particular, the
P3̅m1α phase displays a compact, highly symmetric honeycomb
pattern, while the β variant introduces a distortion along the out-
of-plane direction.
The orthorhombic family exhibits a diverse set of structural

features. For example, Pmn21 and Pmna show strong in-plane
anisotropy and puckered geometries, characteristic of materials
such as GeS and SnSe, which are known for their anisotropic
transport and ferroelectric properties. Structures like P21/c and
P1̅β possess more complex unit cells with multiple layers and
nontrivial stacking, often associated with stereochemically active
lone pairs from the elements of group IV and V. The presence of
such lone pairs can lead to significant structural distortions,
particularly in heavier compounds. In contrast, the triclinic
structures Aem2 and C2/m are characterized by low symmetry
and distorted lattices. These geometries accommodate flexible
coordination environments and may stabilize compounds under
specific electronic configurations or pressure conditions.

3.3. Energetic Stability via Formation Enthalpy. To
determine the energetic stability of the compounds, the
formation enthalpy (ΔH) is calculated as follows

=H E n n N( )/tot
MQ

M M Q Q fu (1)

where, Etot is the total energy of the MQ monolayer, while nM
and nQ denote the atom count in the unit cell from the group
III−V (M) and chalcogen (Q), respectively. The terms μM and
μQ represent the chemical potential (total energy) related to the
lowest energy bulk structures for the constituent elements:
group III Al (fcc, Fm3̅m), Ga (orthorhombic, Cmce), and In
(tetragonal, I4/mmm); group IV elements (Si, Ge, Sn) with
diamond-like cubic configurations; group V P (orthorhombic,

Figure 2. Histogram illustrating the number of articles published over
the years, categorized by application area, showing the growth and shifts
in research focus (top). Co-occurrence analysis of application areas and
types of studies, highlighting the interdisciplinary nature of research in
monochalcogenides (bottom).

Figure 3. Temporal distribution of publications on 2D monochalco-
genides (2013−2023). Only compounds with at least ten reported
studies are included, revealing the growth of the field and the variety of
monochalcogenides.
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Cmce), As (orthorhombic, Cmce), and Sb (rhombohedral,
R3̅m); as well as chalcogens S (rhombohedral, R3̅), Se (trigonal,
P3121), and Te (trigonal, P3121). Moreover, Nfu denotes the
number of formula units within the unit cell. According to the
definition, negative values of ΔH signify exothermic formation
and thermodynamically stable compounds relative to their bulk
elemental states. Figure 5 provides an illustration of the
calculated formation enthalpies for MQ compounds across
different space groups, categorized by group III (left panel),
group IV (central panel), and group V (right panel) M elements.
Several key trends emerge regarding the stability and

structural preferences. For example, a significant trend observed
across various material groups is the systematic increase in
formation enthalpy, that is, it becomes less negative or more
positive as the chalcogen element Q increases in atomic weight,
moving sequentially from sulfur (S) to selenium (Se) to
tellurium (Te). This indicates a general reduction in the
thermodynamic stability of MS→MSe→MTe. This observed
trend can be explained on the basis of the confluence of factors,
including differences in electronegativity and variations in
atomic size that directly affect the bond strength (equilibrium
lattice constants). For example, sulfur exhibits the highest
electronegativity among the chalcogens considered, i.e., S =
2.58, Se = 2.55, Te = 2.10 (Pauling scale).56 The descending

electronegativity from S to Te results in a diminished difference
in electronegativity with the M element, which can lead to a
weaker ionic character and an overall reduction in M−Q bond
strength. In addition, the increasing atomic radius of the
chalcogens in the group (S < Se < Te) affects both covalent and
ionic bonds. The larger and more diffuse p-states of the heavier
chalcogens (e.g., 5p-states of the Te versus 3p states of S) result
in less effective orbital overlap for covalent bonding. With regard
to ionic contributions, larger anion sizes augment interionic
distances, thereby diminishing the magnitude of lattice energy.
Both phenomena contribute to weaker overall bonds, thus
resulting in less negative ΔH.
With respect to the impact of the element M within each

classification, it is generally observed that among group III
monochalcogenides, compounds incorporating the M element
with the lowest atomic number (e.g., Al) tend to exhibit the
highest stability (characterized by the most negativeΔH), while
those with the highest atomic number (e.g., In) are the least
stable. In contrast, in the cases of group IV and group V
monochalcogenides, the opposite trend is manifest. Compounds
containing the element M with the lowest atomic number (e.g.,
Si in group IV, P in group V) are typically less stable, while those
with the highest atomic number (e.g., Sn in group IV, Sb in
group V) demonstrate increased stability (more negative ΔH).

Figure 4. Ball and stick representations of 13 MQ structures with different space groups studied in this work.

Figure 5. Formation enthalpy for (left panel) group III, (central panel) group IV, (right panel) group V MQ in the different space groups.
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This underscores a complex interaction between the electronic
structure, atomic size, and bonding properties, which varies with
the group. Furthermore, it is particularly notable for group III
and V monochalcogenides that compounds based on S display a
wider range ofΔH values across various polymorphs, in contrast
to compounds based on Te, which exhibit a more restricted
variation.
Group III monochalcogenides exhibit significant exothermic

formation enthalpies. We observed a notable energetic
competition among the P1̅β, P3̅m1β, and P6̅m2 space groups.
For example, the P6̅m2 structure typically manifests the lowest
energy for the majority of compounds within this group.
However, exceptions such as AlTe and GaTe demonstrate a
predilection for the P1̅β space group. It should be noted that all
of these preferred structures remain exothermic (ΔH < 0).
Most Group IV monochalcogenides exhibit exothermic

formation, with the significant exception of SiTe in certain
polymorphs considered. The preference for different space
groups is contingent on the M element. In particular,
compounds based on Si (e.g., SiS, SiSe) exhibit a predilection
for the Pmna structure, whereas those based on Ge (e.g., GeS,
GeSe) as well as SnTe, demonstrate a preference for the P3̅m1α
structure. In contrast, SnS and SnSe exhibit maximal stability in
the Pmn21 structure. Almost all stable configurations of Group
IV compounds show exothermic characteristics.
In the context of Group V monochalcogenides, those

compounds composed of lighter chalcogens (S, Se) are
predominantly exothermic. The P21/c structure emerges as
the preferred configuration for the majority of compounds. A
notable deviation is SbTe, which demonstrates a preference for
the P1̅β structure. A critical observation for this group is that all
compounds based on Te (i.e., MTe in conditions where M = P,
As, Sb) are projected to be endothermic (ΔH > 0), thereby
indicating a thermodynamic instability when compared to
decomposition into elemental bulk phases under standard
conditions.

3.4. Dynamical Stability via Phonons. Phonon band
structures for the configurations of each MQ compound,
characterized by the lowest formation enthalpy, were computed
to assess their dynamical stability. Structures such as P3̅m1α,
P6̅m2, and Pmn21 contain 4 atoms within the unit cell, resulting
in 12 phonon branches (3 acoustic and 9 optical); P21/c, Pmna,
and a variant Pmn21 incorporate 8 atoms within the unit cell,
giving rise to 24 branches (3 acoustic and 21 optical);
meanwhile, P1̅β comprises 12 atoms per unit cell, producing
36 phonon branches (3 acoustic and 33 optical). The outcomes
for MSe are illustrated in Figure 6, whereas the phonon-band
structures for the remaining systems are included in the
Supporting Information.
According to the widely recognized stability criterion that

allows imaginary acoustic modes up to 10% of the maximal
phonon frequency,53,57 most of the compounds evaluated
demonstrate dynamical stability. However, an exception is
observed in the Pmna phase of SiTe. This compound exhibits
significant imaginary frequencies within the acoustic region,
particularly along the Γ−X and X−S directions, implying robust
dynamical instabilities. Such characteristics typically imply the
presence of soft-phonon modes that may induce structural
distortions or phase transitions under conditions of finite
temperature or stress. In light of this instability, the second most
stable polymorph of SiTe, corresponding to the P3̅m1α phase,
was analyzed. This structure does not exhibit imaginary
frequencies throughout the Brillouin zone. The phonon

modes are well behaved, with clearly defined acoustic and
optical branches, attesting to their dynamical stability. In
particular, the optical branches are comparatively flat, suggesting
localized vibrational modes that may impact the thermal
transport properties. These phonon-band structures are
accessible in the Supporting Information.
An evident pattern emerges across the various main groups of

the periodic table: the maximum phonon frequency significantly
declines as the atomic number (and consequently the atomic
mass) of the M atom increases within a specific group. This is
apparent when comparing AlSe, GaSe, and InSe (Group 13),
where the maximum frequency diminishes from approximately
15 THz with 10 THz. Similarly, in Group 14 (SiSe, GeSe, SnSe)
and Group 15 (PSe, AsSe, SbSe), the maximum frequencies
consistently decrease with increasing atomic mass, despite
differences in their respective space groups. This decrease in
frequency is mainly attributed to the inverse relationship
between vibrational frequency and atomic mass, as heavier
atoms resonate at lower frequencies. Moreover, as the maximum
frequency declines, the optical phonon branches tend to exhibit
increased flatness, indicating an improved localization of the
vibrational modes. Concerning dynamical stability, it is observed
that for most systems, there are subtle imaginary frequencies in
proximity to the Γ-point, which are generally of very small
magnitude. In particular, GeSe emerges as the only compound
devoid of imaginary frequencies throughout its Brillouin zone,
corroborating its exceptional dynamical stability. This suggests
that while minor instabilities might be present in other
compounds near the center of the zone, GeSe maintains a
particularly robust and stable crystal structure.

3.5. Characterization of the Equilibrium Lattice
Parameters. Table 1 summarizes the optimized equilibrium
lattice parameters associated with the most stable phases for
each of the MQ monochalcogenides. These parameters are
compared with values documented in the literature, encompass-
ing theoretical predictions as well as experimental findings, when
available. Values in bold represent experimental data reported in
the literature.20 In general, the computational results derived
from our study demonstrate a strong concordance with previous
reports, with discrepancies generally remaining below 2%,

Figure 6. Stable lowest energy phonon band structures for the MSe
compounds.
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particularly for compounds in the group III and group IV
categories.
An evident and methodical trend is discernible in the

progression of the lattice parameters as a function of the atomic
species. For a constant chalcogen Q, the lattice constant a0
shows an increase concomitant with the atomic number of the
group III, IV or V element (i.e., Al→ Ga→ In, Si→ Ge→ Sn
and P → As → Sb). This trend is in alignment with the
increment in atomic radii down the groups of the periodic table,

resulting in larger interatomic distances and consequently
extended lattice vectors in the optimized structures. For
example, within the group-III chalcogenides with S, a0 extends
from 3.58 Å for AlS to 3.92 Å for InS, coherently following the
trend in atomic radii (Al: 1.18 Å, Ga: 1.26 Å, In: 1.44 Å).
Similarly, for a given metal M, the lattice parameter exhibits a

systematic increase from S to Se to Te. This progression is
attributed to the enlargement of the atomic size and the
decreasing electronegativity of chalcogens: S (1.05 Å), Se (1.20

Table 1. Lattice Parameters for the Stable Lowest Energy MQa

MQ phase a0 (Å) b0 (Å) ΔH (eV/f.u.) qB
M (e) EgPBE (eV) EgPBE+SOC (eV) EgHSE06+SOC (eV)

AlS P6̅m2 3.58 (3.5727) −1.82 1.50 2.10 2.09 2.86
AlSe P6̅m2 3.77 (3.7827) −1.44 1.40 2.01 2.00 2.70
AlTe P1̅β 4.12 12.09 −0.76 0.52 1.90 1.84 2.49
GaS P6̅m2 3.64 (3.6427) −1.37 0.76 2.33 2.33 3.23
GaSe P6̅m2 3.82 (3.8227) −1.20 0.62 1.82 1.80 2.63
GaTe P1̅β 4.14 12.13 −0.74 0.43 1.46 1.38 1.99
InS P6̅m2 3.92 (3.9427) −1.11 0.82 1.66 1.66 2.50
InSe P6̅m2 4.08 (4.0520) −1.04 0.70 1.39 1.37 2.10
InTe P6̅m2 4.38 (4.4027) −0.67 0.52 1.35 1.25 1.88
SiS Pmna 3.99 6.65 −0.89 1.21 0.45 0.45 1.18
SiSe Pmna 4.00 7.03 −0.57 0.95 0.63 0.62 1.35
SiTe P3̅m1α 3.89 (3.8853) 0.08 0.36 0.00 0.14 0.26
GeS P3̅m1α 3.65 (3.6653) −0.58 0.69 0.73 0.72 1.14
GeSe P3̅m1α 3.81 (3.8053) −0.38 0.53 0.54 0.53 0.94
GeTe P3̅m1α 4.06 (4.0653) −0.03 0.30 0.58 0.54 0.91
SnS Pmn21 4.08 (4.0758) 4.30 (4.2458) −0.87 0.98 1.53 1.45 2.04
SnSe Pmn21 4.28 (4.3058) 4.44 (4.3658) −0.78 0.84 0.99 0.93 1.38
SnTe P3̅m1α 4.33 (4.3353) −0.48 0.48 0.58 0.50 0.81
PS P21/c 6.16 6.71 −0.32 0.52 1.89 1.89 2.85
PSe P21/c 6.54 6.82 −0.13 0.23 1.66 1.65 2.53
PTe P21/c 7.09 7.01 0.21 −0.10 1.69 1.60 2.35
AsS P21/c 6.49 7.12 −0.29 0.55 1.22 1.21 2.03
AsSe P21/c 6.84 7.14 −0.22 0.35 0.97 0.96 1.70
AsTe P21/c 7.37 7.29 0.06 0.08 0.96 0.91 1.55
SbS P21/c 6.99 7.66 −0.23 0.73 1.06 0.99 1.65
SbSe P21/c 7.35 7.67 −0.25 0.57 0.75 0.70 1.34
SbTe P1̅β 6.00 10.86 0.01 0.35 0.17 0.13 0.21

aThe values in parentheses are reported in the literature, with the values reported in bold being experimental results. Formation enthalpy (ΔH).
Bader charge corresponding to the atoms of group III, IV, and V (qB

M). Band gap considering PBE functional (EgPBE), PBE + SOC functional
(EgPBE+SOC), HSE06 + SOC functional (EgHSE06+SOC).

Figure 7. Average Bader charge (qB
M). Groups III, IV, and V compounds are shown on the left, central, and right panels, respectively.
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Å) and Te (1.38 Å). With the inclusion of heavier chalcogens,
the bond lengths extend, resulting in the expansion of the unit
cell. For instance, the lattice constant of SnQ in the Pmn21 phase
increases from 4.08 Å (SnS) to 4.28 Å (SnSe) to 4.33 Å (SnTe).
The structural phase also plays a crucial role in the values of

the lattice parameters. For example, high-symmetry phases such
as P6̅m2 and P3̅m1 tend to produce more isotropic and compact
in-plane lattice constants, while lower-symmetry orthorhombic
and triclinic phases such as Pmn21, Pmna, or P21/c exhibit
anisotropy in a0 and b0 due to puckering or layer distortions.
This is particularly evident for group V chalcogenides, which
predominantly adopt the phase P21/c. These compounds show
significantly larger and anisotropic lattice constants, as seen in
SbSe with a0 = 7.35 Å and b0 = 7.67 Å. These features can be
attributed to the presence of stereochemically active lone pairs in
heavier group-V elements, which promote distorted bonding
environments and structural buckling. For group V, the
literature review did not yield theoretical or experimental lattice
parameters. However, the alignment of our results with existing
data for group III and IV compounds, together with the
observed systematic trends across different groups and the
chalcogen series, substantiates the reliability and physical
significance of our predictions for these systems.

3.6. Charge Transfer Analysis via Bader Charges. Figure
7 shows the Bader charge averaged for each species in
monochalcogenides where M belongs to Groups III, IV, or V
(qB

M), evaluated for their lowest-energy configurations. The
Bader charge quantitatively represents the extent of charge
transfer that occurs from the metal (M) to the chalcogen (Q),
thus providing an indirect measure of the ionicity associated
with the M−Q bond. A clear and systematic trend is observed
across all groups: for a specific M, qB

M decreases as the chalcogen

changes from S to Se to Te. This behavior is consistent with the
decreasing electronegativity of chalcogen atoms (Pauling scale:
S = 2.58, Se = 2.55, Te = 2.10),56 which weakens the driving
force for charge transfer and results in a more covalent character
for heavier chalcogens. For example, in group III, qB

M drops from
1.46 e in AlS to 0.73 e in InS, and continues to decrease for
heavier chalcogens.
The evolution of qB

M between each group is also notable. In
group III, the Bader charge decreases from Al to Ga, reflecting
the reduction in the effective nuclear charge and electro-
negativity (Al = 1.61, Ga = 1.81), which weakens the donor
ability of the metal. Interestingly, the charge increases slightly
from Ga to In, which could be attributed to the larger orbital
extension and polarizability of indium, allowing greater
interaction with the chalcogen p-states. In group IV, a
nonmonotonic trend is observed. The Bader charge generally
decreases from Si to Ge, and remains relatively stable or slightly
increases toward Sn, especially for heavier chalcogens. This
reflects a subtle balance between increasing the atomic radius
(leading to a more diffuse electron density and less charge
localization) and decreasing the electronegativity (Si = 1.90, Ge
= 2.01, Sn = 1.96), which affects the charge distribution in these
layered compounds.
The elements of Group V exhibit a different behavior: qB

M

increases consistently from P to As to Sb for all chalcogenides.
This trend is counterintuitive considering that electronegativity
decreases in this direction (P = 2.19, As = 2.18, Sb = 2.05).
However, the increase in Bader charge can be attributed to
structural distortions in the P21/c phase and the presence of
stereochemically active lone pairs, particularly in heavier
pnictogens such as Sb. These lone pairs influence electron
localization and can promote enhanced charge asymmetry,

Figure 8.Density of states calculated for the stable lowest energyMSe compounds. On the top panel of each subplot we have theM contribution, while
on the bottom panel we have the Se contribution. The other systems are accessible in the Supporting Information.
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particularly in distorted or low-symmetry structures. Another
important point is that the magnitude of qB

M is strongly
dependent on the crystal structure. High-symmetry phases such
as P6̅m2 and P3̅m1 typically show more pronounced charge
transfer due to higher orbital overlap and uniform coordination
environments. In contrast, low-symmetry phases like P21/c and
Pmn21 can suppress charge transfer due to bond anisotropy and
local distortions, as observed for some group V and group IV
chalcogenides.
Our calculated values are in excellent agreement with available

Bader charge analyzes from the literature. For example, in the
P3̅m1α phase, the calculated values for GeS and GeSe are 0.69 e
and 0.53 e, respectively, closely matching those reported by
Querne et al.59 Likewise, for the P6̅m2 phase, our values of 1.46 e
for AlS, 0.75 e for GaS, and 0.73 e for InS are consistent with the
data of Demirci et al.27 These results further validate the
accuracy of our computational approach and reinforce the
chemical trends discussed above.

3.7. Orbital-Resolved Density of States. Figure 8
illustrates the total density of states (DOS) for the lowest
energy configurations of the MSe compounds, alongside the
local DOS contributions from the M species, representative of
group III, IV, or V elements, in addition to Selenium (Se). The
top panels of each subplot delineate the contribution of the M
atom, while the bottom panels reveal the contribution of the Se
atom. From our analyses, we have identified consistent trends
across all MSe compounds concerning the composition of their
electronic states, which will be discussed below.
The maximum valence band (VBM) is primarily composed of

the p-states associated with the chalcogen atom (Se).
Specifically, the Se p-states dominate the DOS near the VBM,
underscoring their fundamental role in the valence band
bonding framework. The Se s-states, having lower energy,
contribute to the more profound regions of the valence band, as
expected. Regarding the M atom, its s-states are responsible for
deeper valence band energies, whereas its p-states are located
nearer to the VBM, and therefore participate in hybridization
with the Se p-states to establish covalent bonding. This orbital
configuration is emblematic of materials in which the chalcogen
p-states delineate the peak of the valence band.
In contrast, the conduction band minimum (CBM) generally

manifests contributions from both M and Se atoms. With regard
to the M atom, the lowest energy states in the conduction band
predominantly originate from its s orbitals, whereas its p-states
increasingly contribute at elevated energies within the
conduction band. Similarly, for the Se atom, its p-states also
contribute to the CBM, and notably, the contribution from Se d
becomes pronounced at higher energies within the conduction
band. This suggests the involvement of higher-energy
unoccupied states in the conduction band.
An essential trend identified across various groups pertains to

the development of the electronic band gap and the nature of
orbital contributions. As one progresses through a group in the
periodic table (for instance, fromAl to In in Group 13, Si to Sn in
Group 14, or P to Sb in Group 15), there is an increase in the
atomic size of the M atom, inducing a general decrease in the
band gap magnitude. This phenomenon is directly attributable
to the augmented atomic size and diminished effective orbital
overlap, which decreases the energy splitting between the
bonding and antibonding states. In compounds such as SnSe
and SbSe, the band gap becomes significantly narrow, indicative
of an increase in metallic characteristics down the group.

Moreover, for the heavier elements in Group 14 (Ge, Sn) and
Group 15 (As, Sb), their respective d-states become energeti-
cally more accessible. This results in more pronounced
contributions from M d-states in the DOS, particularly within
the conduction band, which affect the electronic structure and
potentially the transport properties.

3.8. Electronic Band Structure: Influence of Symmetry
and Spin−Orbit Coupling. Figure 9 depicts the electronic

band structures for each of the lowest-energy stable MSe
compounds. We considered the PBE + SOC+χ electronic band
structure calculated through the scissors operator (χ) of the PBE
+ SOC band gap, where χ = EgHSE06+SOC − EgPBE+SOC, this
approach has already been validated in previous studies reported
in the literature.60 Group III structures AlSe, GaSe, and InSe are
P6̅m2 structures and have indirect band gaps with the VBM
along the K−Γ direction, while the CBM is located at the K
point for the Al compounds and at Γ for the other compounds
for this space group. Group IV structure SiSe is part of the Pmna
space group and has direct band gap at Γ point, as for other
Pmna structures, while GeSe and others P3̅m1α structures have
indirect band gaps as for GeS, with a VBM displacement up to 2
eV as already reported in the literature.53 Furthermore, SnSe
compound belongs to Pmn21 space group and also has indirect
band gaps with the CBM and the VBM alongside Γ−X and Y−Γ
respectively, as previously reported in the literature.53 Finally,
group V P1̅β PSe, AsSe, and SbSe compounds have direct bang
gaps at the Γ point.
The structures P1̅β have indirect, but near direct, band gaps

for all compounds except GaTe, with the CBM and VBM
located at the Γ or Y-point for AlTe and GaTe, and near M for
SbTe. Furthermore, we investigated the effects of SOC and
observed reductions in band gaps up to 0.10 eV due to the
presence of heavier chalcogens, especially Sb and Te atoms.
However, SiTe was initially metallic and when submitted to the
SOC effects it opened the band gap to 0.14 eV when only
considering the PBE + SOC functional and 0.26 eV when
considering the HSE06 + SOC functional, the behavior for this

Figure 9. PBE + SOC + χ electronic bandstructures for the stable
lowest energy MSe compounds. The other systems are accessible in the
Supporting Information.
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compound is already known.61 Table 1 presents the band gap
values for various functionals.

3.9. Band Alignment and Heterojunction Classifica-
tion of Monochalcogenides via Anderson’s Rule. The
energy values for the VBM and CBM were also calculated
relative to the vacuum level of the materials, as depicted in
Figure 10, where the band gap values are also presented. The

band gap diminishes when M is maintained and Q is altered (S
→ Se→ Te), with the exception of Si-based compounds, where
the band gap initially increases from S → Se and subsequently
decreases from Se → Te. The most significant reductions in
band gap percentage occur when various space groups are
present for the same M, specifically Sn (60%), Si (81%), and Sb
(88%). Conversely, the Al-based materials exhibit the most Q
resistance, showing only a 13% reduction in the band gap.
The distinct configurations of the VBM and the CBM

facilitate the use of Anderson’s rule62 to discern various types of
heterojunction between two compounds. These heterojunctions
can be categorized into three distinct types: Type I
heterojunctions (straddling gaps), in which the CBM of
compound A is below and the VBM above that of compound
B. These are pertinent for optical devices due to the high
propensity for charge carrier recombination.63,64 Type II
heterojunctions (staggered gap) arise when the CBM of
compound A is higher than its VBM and lower than the CBM
of compound B, while the VBM of compound A is lower than
that of compound B.65 The condition where the VBM of
compound A surpasses the CBM of compound B typifies a Type
III (broken gap) heterojunction, exploitable in tunnel field effect
transistors due to charge tunneling from the VBM to the CBM.64

Through the application of Anderson’s rule to the examined
systems, we identified 351 heterojunctions, classified as 166 type
I, 177 Type II, and 8 type III as seen in Figure 11.

3.10. Anisotropic Optical Absorption: Directional
Dependence and Chalcogen-Induced Redshift. Figure
12 shows the absorption coefficient α(ℏω), derived from the
dielectric tensor, for the lowest energy compounds along the
orientations xx (solid line) and yy (dashed line). These
calculations incorporate the application of a scissors operator
correction derived from the disparity between the HSE06 +
SOC and PBE + SOC band gaps. A significant redshift in the
onset of absorption is discerned as one progresses from lighter to
heavier chalcogens (S → Se → Te), as demonstrated by the

transition of the absorption edge from InS to InTe. This
observable trend persists across all the studied compounds and
shows a correlation with the reduction in the band gaps as the
atomic number of the chalcogen increases.
The absorption spectrum of InS is predominantly located

within the ultraviolet region, while InTe demonstrates extended
absorption into the visible spectrum, making it more appropriate
for applications in optoelectronics. In the case of orthorhombic
compounds, exemplified by PTe, pronounced anisotropy is
observed: the xx component presents a more pronounced
absorption peak in the visible range as opposed to the yy
direction. Such a directional dependence is indicative of low-
symmetry crystal structures, contrary to the behavior in

Figure 10. Band offset for the stable lowest energy monochalcogenides
calculated using PBE + SOC + χ exchange−correlation functional.

Figure 11.Heterojunctions classification for the combination of groups
III−V monochalcogenides monolayers obtained through the applica-
tion of the Anderson’s rule in the HSE06 + SOC band offset.

Figure 12. Absorption coefficient for the stable lowest energy
compounds. The solid line represents the absorption coefficient for
the xx direction and the dashed line for the yy direction. The hexagonal
structures have the same values for both directions, therefore only one is
shown. The dotted lines indicate the fundamental band gap of the
compounds.
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hexagonal structures, where the xx and yy responses exhibit near-
equivalence due to the presence of in-plane isotropy.
Beyond these examples, general trends emerge across the

families of compounds. For example, SiS and SiSe exhibit
relatively low overall absorption coefficients, with xx absorption
dominating in the visible range, but yy becoming more
significant at higher energies. Group V materials, particularly
those with P, As, and Sb, present the highest degrees of
anisotropy in the optical response, with sharp directional
variation in their spectra. In contrast, materials such as AlTe,
SnS, and SnSe demonstrate a nearly isotropic behavior with
similar absorption in both directions. In particular, low-band gap
materials like SiTe and SbTe reach high absorption values even
at energies around 0.50 eV, making them promising candidates
for near-infrared applications.

3.11. Explainable Machine Learning Results. In this
study, we used Random Forest models to predict energies based
on descriptors. To assess the performance of these models, we
utilized both resubstitution and stratified cross-validation
techniques. The resubstitution method evaluates the model’s
performance using the same training data, while cross-validation
involves training and testing the model on multiple random
subsets of the training data. As described earlier, we used
stratified cross-validation, where train and test subsets are drawn
so that the proportion of Unitary Chemical Composition is
preserved. This approach provides a more robust estimate of the
model’s ability to generalize to unseen data. Furthermore, for the
cross-validation method, we adjust the parameter number of
estimators via internal cross-validation.
Table 2 shows the coefficient of determination (R2) for the

Random Forest models, calculated using resubstitution and

cross-validation techniques. R2 ranges from 0 to 1, with higher
values indicating that the model explains a greater proportion of
the variance in the dependent variable. The resubstitution R2
score and the cross-validation R2 score provide insights into the
model’s ability to fit the data and generalize to unseen data,
respectively. As can be seen in the table, the resubstitions R2 are
higher than 0.95 for all four energies.
The cross-validation R2 is higher than 0.9 for all but relative

energy, with a R2 ≈ 0.68. One potential reason is that, since the
relative energy is determined by subtracting one energy value
from another, the instance with the lowest value (zero) might be
absent from the training set. This situation could make it more
challenging for the model to accurately predict relative energies.
Figure 13 displays a scatter plot of real versus predicted values,
showcasing the model constructed using cross-validation.
Overall, the models effectively capture the general trend of
energy values, indicating that the insights derived from the
SHAP values (discussed next) are relevant and valuable.
For the model calculated using resubstitution, we utilized

SHAP values for eXplainable Artificial Intelligence (XAI). SHAP
provides insights into the importance and contribution of each
descriptor in predicting energies, enhancing the model’s

transparency and interpretability. Figure 14 shows a beeswarm
plot of SHAP values. This plot is a visualization used to display
the distribution of SHAP values for each feature for the most
important features of the model for a data set. For each feature
row, the SHAP value is represented by a single dot on each
feature row. Color is used to display the original value of a
feature using a single scale of low to high values. The vertical line
at x = 0 represents the median SHAP value for a given feature in
all instances in the data set. The points on each side of the
vertical line suggest that the corresponding feature tends to have
a positive or negative impact on the predicted energy. For
example, for the total energy (Etotf.u.), shown in the upper left panel
of Figure 14, the most important feature is the interstitial charge
(qI), with low values contributing to predict a lower energy value
andmedium to large values contributing positively. Similarly, for
the formation of the enthalpy (ΔH), shown in the lower left
panel of Figure 14, themost important characteristic is the group
in the periodic table of the element M, with elements of the
group III involved in the reduction of the prediction of ΔH,
group V increased in the prediction of ΔH and group IV
between.

4. INSIGHTS ON ELECTRONEGATIVITY AND
ENERGETIC STABILITY FROM MACHINE LEARNING

The character of the atomic bonds determines relevant features
for 2D materials, although it should be diverse and difficult to
characterize.66 In this spirit, Figure 15 depicts the correlation
between the ionic character67 (IC) of the M−Q atomic bond
calculated as = { [ ]} ×X XIC 1 exp (0.25)( ) 100M Q

2

(XM and XQ are the electronegativities for the elements), and
the average Bader charge transfer from M to Q for the most
stable investigated materials It is observed that the IC of the
compounds increases up to 21%while the qB

M increases up to 1.5
e. This correlation is not completely linear as it has some
deviations. Despite achieving high qB

M values, the bond character
in monochalcogenides is still the most predominant covalent

Table 2. Random Forest Model Performance: Resubstitution
and Cross-Validation R2 Scores

energy resubstition cross-validation

Etotf.u. 0.9948 0.9547
ΔEtotf.u. 0.9704 0.6776
ΔH 0.9924 0.9240
Ecoh. 0.9948 0.9585

Figure 13. Real data points (x-axis) and the predicted data points (y-
axis). The marginal histograms in the top and right panels depict the
distribution of the real and predicted data.
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(since only 21% is ionic). We identified that Te-based
compounds have the lowest ionic character among all
compounds and while varying M through groups III → IV →
V makes the ionic character decrease.

The Random Forest model was able to capture the trend to
predict the different energies calculated in this study. However,
we noticed a spread of the values when comparing the real values
and the predicted values, especially for the relative energy. This
spread raises concerns on the ability to use machine learning
models to predict properties values in desirable accuracy,
making the use of quantum simulations essential to obtain
accurate properties of these systems.
Furthermore, the SHAP analysis for the energetic descriptors

revealed that the most influential features in predicting the
energy values are related to the electronic charge distribution.
Notably, the interstitial charge consistently ranks among the top
two most impactful features across all energy-related targets.
Based on this observation, we recommend that future
investigations of 2D materials systematically incorporate
detailed analyses of electronic charge distribution, as these
descriptors provide essential insights into the energetic stability
and bonding characteristics of low-dimensional systems.

5. CONCLUSION
Our computational investigation started with a systematic
bibliographic analysis using NLP techniques, which extracted
1257 articles related to 2D MQ compounds from an initial
database that exceeded 5400 entries. This analysis identified a
pronounced and escalating research interest in monochalcoge-
nides, particularly in domains such as electronics and devices,
energy conversion, and storage, as well as fundamental studies.
Furthermore, NLP techniques were used for categorization by

Figure 14. SHAP values for descriptors and energetic and electronic properties�positive values (to the right of the vertical axis) indicate an above-
average contribution, while negative values (to the left of the vertical axis) indicate a below-average contribution to the target energy. The color of the
points corresponds to the value of the descriptor, with darker colors indicating higher values.

Figure 15. Ionic character versus Bader charge for all stable lowest
energy compounds. The trend is represented by the red line.
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application domain and study type, demonstrating that
experimental studies are predominant in optoelectronics and
electronics, while computational methodologies are more
prevalent in fundamental characterizations. The temporal
analysis of the references indicated a diversification and an
increase in the number of compounds under investigation, with
materials such as GaSe, InSe and SnS showing marked
prominence.
For the selected 27 MQ compounds, DFT calculations were

performed across 13 distinct 2D crystal structures, which
generated a large database of physical−chemical properties. This
extensive computational effort allowed for a detailed exploration
of their fundamental characteristics. For example, from the
formation enthalpy we identified clear trends: stability generally
decreases as the chalcogen becomes heavier. For group III M
elements, stability decreases down the group (e.g., Al > Ga > In),
whereas for groups IV and V, it increases down the group (e.g., Si
< Ge < Sn). Most of the group V tellurides were determined to
be endothermic, indicating potential instability. The consid-
eration of dynamical stability, assessed by phonon calculations,
corroborated that most low energy configurations exhibit
stability, with GeSe in the P3̅m1α phase demonstrating
exceptional dynamical robustness. In particular, the Pmna
phase of SiTe was an exception, exhibiting significant imaginary
frequencies, which led to further analysis of its more stable
P3̅m1α polymorph, highlighting the importance of thorough
stability assessments.
Our evaluation of equilibrium lattice parameters revealed

strong concordance with previously reported values, demon-
strating predictable expansions concomitant with increasing
atomic radii of both M and Q elements. Notable anisotropies
were observed in lower-symmetry phases, especially evident in
group V compounds within the P21/c structure, indicating
complex structural behavior. Bader charge analysis, which
measures charge transfer from M to Q, indicated a general
decrease in ionicity with heavier chalcogens, attributed to
decreased differences in electronegativity. Variations in Bader
charge on the M atom were observed across different groups: a
decrease from Al to Ga, followed by an increase to In for group
III; a nonlinear trend for group IV; and a consistent increase
within group V elements. This pattern was attributed to
structural distortions and the effects of single pairs of structurally
active individuals, as exemplified in phases such as P21/c,
emphasizing the intricate relationship between structure and
electronic properties.
ForMSe-based compounds, the VBM predominantly consists

of Se p-states, while the CBM contains contributions from both
M and Se s- and p-states. Descending a group for the M element
typically results in a decrease in the band gap, a valuable trend for
material design. Electronic band structures exhibit substantial
variation according to crystal symmetry; for example, structures
P6̅m2 (e.g., AlS) typically possess indirect band gaps, while
structures Pmna (e.g., SiS) and P21/c (e.g., AsS) manifest direct
band gaps at the Γ-point. SOC generally leads to a reduction in
band gaps, particularly up to 0.10 eV for InTe, although it
engenders a gap opening in the initially metallic SiTe,
demonstrating its crucial role in determining electronic
properties. Analyzes of optical absorption reveal a redshift
with heavier chalcogens, correlated with the reduction of the
band gap, and significant anisotropy in lower symmetry
structures, such as orthorhombic PTe, which is important for
optoelectronic applications.

The calculation of band alignments employing HSE06 + SOC
levels relative to the vacuum level (electrostatic potential)
provided the opportunity for the classification of prospective
heterojunctions according to Anderson’s rule. Among the
identified pairings 351, 166 were type I, 177 type II, and 8
type III, demonstrating considerable potential for application in
electronic and optoelectronic devices. The band gap typically
decreases as the chalcogen atom Q becomes heavier (S→ Se→
Te) for a constant M, with compounds based on Si deviating
from this consistent trend. An examination of the bonding
characteristics revealed that the ionic nature of the M−Q bond,
derived from differences in electronegativity, correlates with the
Bader charge of the M atom (qB

M). Although the ionic character

can approximate 21% as qB
M increases, the bonding within these

compounds remains predominantly covalent. Compounds
containing tellurium exhibit the least ionic character, providing
insights into their chemical stability and electronic behavior.
Finally, random forest models were used to forecast several

energy-related properties, including total energy per formula
unit, relative energy, formation enthalpy, and cohesive energy,
utilizing elemental and structural descriptors. These models
demonstrated elevated R2 scores (resubstitution >0.95; cross-
validation >0.9) for most of the energy properties, with the
exception of relative energy, which was ≈0.68, thus indicating a
high predictive capacity. Specifically, for the formation enthalpy,
the elemental group of the element M also played a significant
role. Although these models successfully captured general
trends, the observed discrepancy between predicted and actual
values, particularly for relative energy, emphasizes that quantum
simulations remain essential for achieving high precision in
predicting properties of these 2D materials. These findings
strongly suggest that electronic charge distributions serve as
essential descriptors for subsequent machine learning inquiries
in this domain, paving the way for accelerated materials
discovery.

■ ASSOCIATED CONTENT
Data Availability Statement
All DFT calculations were performed using the VASP40,41

software. For Bader charge analysis, the data generated by VASP
was processed using the Bader charge analysis code68 developed
by the Henkelman Research Group at the University of Texas at
Austin. Phonon calculations were performed using VASP in
conjunction with Phonopy,47 which was responsible for
generating supercells from the unit cell of each compound of
lowest energy, as well as preparing the necessary input files for
the VASP simulations. In addition, custom Python scripts were
developed to automate key processes in this study, available in
the SAbiM Group repository (https://github.com/Sabim-
UFSCar/projects). These scripts were used for the following
purposes: Generating input files and directory structures for
each simulation; checking for errors, warnings, and potential
issues in the simulations; extracting and analyzing simulation
results. Python was chosen for these tasks due to its
compatibility with tools such as VASPKIT.69 py4vasp and the
Atomic Simulation Environment,70 which streamline data
processing and analysis. Throughout all stages of this study,
rigorous verification procedures and detailed logarithms were
implemented to ensure the efficiency of the analysis of the 351
initial structures and the reliability of the results. A spreadsheet
detailing 30 specific descriptors is provided along with the values
of four target properties used in themachine learning analysis for
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optimized structures. In addition, three custom Python scripts
developed to facilitate simulation automation and data analysis
within this study are also included.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04625.

Additional computational details, computational con-
vergence tests, data used for the figures, and comple-
mentary analyzes are reported (PDF)
(CSV)
(ZIP)
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Blum, V.; Caliste, D.; Castelli, I. E.; Clark, S. J.; Dal Corso, A.; de
Gironcoli, S.; Deutsch, T.; Dewhurst, J. K.; Di Marco, I.; Draxl, C.;
Dułak, M.; Eriksson, O.; Flores-Livas, J. A.; Garrity, K. F.; Genovese, L.;
Giannozzi, P.; Giantomassi, M.; Goedecker, S.; Gonze, X.; Gran̊äs, O.;
Gross, E. K. U.; Gulans, A.; Gygi, F.; Hamann, D. R.; Hasnip, P. J.;
Holzwarth, N. A. W.; Iusa̧n, D.; Jochym, D. B.; Jollet, F.; Jones, D.;
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