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On the first 7-Hochschild cohomology of an algebra

Claude Cibils, Marcelo Lanzilotta, Eduardo N. Marcos, and
Andrea Solotar

Abstract. In this paper, we introduce, according to one of the main ideas of r-tilting theory, the
7-Hochschild cohomology in degree one of a finite-dimensional k-algebra A, where k is a field. We
define the excess of A as the difference between the dimensions of the t-Hochschild cohomology
in degree one and the dimension of the usual Hochschild cohomology in degree one. One of the
main results is that for a zero excess bound quiver algebra A = kQ /I, the Hochschild cohomology
in degree 2 HH2(A) is isomorphic to the space of morphisms Homgo ko (I/I%,A). This is useful
to determine when HH2(A) = 0 for these algebras. We compute the excess for hereditary, radical
square zero and monomial triangular algebras. For a bound quiver algebra A, a formula for the
excess of A is obtained. We also give a criterion for A to be t-rigid.

1. Introduction

Let A be a finite-dimensional algebra over a field k£ that we will call an algebra for
short. Let M and N be finitely generated left A-modules, henceforth called left A-
modules. Let 7 denote the Auslander—Reiten translation (see, for instance, [3] or [16]) and
denote D(—) = Homg(—, k). We reproduce an extract from B. Marsh’s lecture notes in
Cologne [17]: “the Auslander—Reiten duality suggests that in contexts where Extj1 (M,N)
appears, we might investigate replacing it with D Homg (N, T M) and this can be regarded
as one of the main ideas of t-tilting theory.” While D is absent in the original text, D is
present in Auslander—Reiten’s duality formula for it to be functorial. Of course, adding D
does not change the dimensions. Recall that M is called t-rigid if Homgq(M,tM) = 0
(see, for instance, [16, Subsection 4.1]).

On the other hand, let A = A ®; A°P be the enveloping algebra of an algebra A.
Let X be a A-bimodule. The Hochschild cohomology of A with coefficients in X is
H'(A, X) = Ext’} . (A, X) (see [7, 15, 19]), and it is denoted by HH"(A) when X = A.
Moreover, Hochschild homology is H, (A, X) = Tor,‘l\e (A, X). Since left A¢-modules are
the same as A-bimodules, in the sequel, we often replace A with A — A.

According to the main idea of t-tilting theory mentioned above, we will investig-
ate in this paper the replacement of Ext} _, (A, X) by the t-Hochschild cohomology
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in degree one HL(A, X) = D Homp_A (X, tA). Note that here 7 is the Auslander—
Reiten translation of left A¢-modules, that is, of A-bimodules. When X = A, we denote
HHI(A) = HL(A, A). The excess e(A) is defined as dimg HHL(A) — dimy HH(A).

One of the main results of this paper is that for a zero excess bound quiver algebra
A = kQ/I, we have HH*(A) = Homgg_ro(I/1%, A) (see Corollary 4.8). This res-
ult will be useful in a future work to determine when an algebra with zero excess has
zero Hochschild cohomology in degree 2. The algebras A with HH?(A) = 0 are import-
ant since they are rigid in the following sense. Suppose that k is algebraically closed,
and let V' be a k-vector space of dimension n. Let Afg, be the affine open subs-
cheme of algebra structures with 1 of the affine algebraic scheme defined by §,(R) =
{associative R-algebra structures on R ®; V'}, where R is a commutative k-algebra. As
stated in [13, Corollary 2.5], HH?(A) = 0 if and only if the orbit of A € #/g, under the
general linear group GL(1) is an open subscheme of A/fg, — that is, by definition, A
is rigid. Moreover, P. Gabriel in [13, p. 140] mentions that it should be one of the main
tasks of associative algebra to determine for every n the number of irreducible compon-
ents of ALg,. The determination of open orbits makes it possible to obtain lower bounds
for the number of irreducible components of A/ g, as G. Mazzola did in [18, p. 100].

The paper is organised as follows. In Section 2, we give a more detailed definition,
as well as properties of the t-Hochschild cohomology and of the excess. Let Tr be the
transpose of a bimodule (see, for instance, [3]) and recall that X 5 denotes the coinvariants
of a A-bimodule X (see Remark 2.4). We prove that HH1(A) = (TrA) 4, and we give a
formula for the dimension of the vector space HH% (A). Note that in this article we use the
symbol = for the existence of a canonical isomorphism.

In Section 3, for a hereditary algebra A, we prove that the dimensions of HH%(A)
and HH!(A) are equal. We say that an algebra A has the H? cancellation properties
if HH2(A) = 0 = H?(A, r’) for all i > 0, where r is the Jacobson radical of A. For
instance, hereditary algebras have the H? cancellation properties. We obtain that e(A) = 0
whenever A has the H? cancellation properties, based on a formula for the dimension of
HHY(A) in [8].

In Section 3, we also consider radical square zero algebras and monomial algebras
whose quiver has no oriented cycles. For those algebras A, we prove that HH!(A) = 0 if
and only if HH!(A) = 0, and this occurs precisely when Q is a tree. This extends a result
of [5]. We provide examples where the excess is not zero.

In Theorem 4.5, we give a formula for the excess of a bound quiver algebra. Finally,
we provide a criterion for the algebra A to be t-rigid in terms of the dimension of its
Hochschild cohomology in degree 2.

In a future article, we will consider higher t-Hochschild cohomology in relation to
Happel’s question (see [14]).
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2. t-Hochschild cohomology in degree one

We begin this section by briefly recalling the definition of the Auslander—Reiten trans-
lation and the duality formula which are useful for our aims; for more details, see, for
instance, [3] or [1]. Let A be an algebra and M a left A-module.

First, the transpose Tr M is defined as follows. Consider a minimal projective
presentation of M

d d
P, — Py —> M — 0.

Applying to d; the functor Homy (—, A) which sends left A-modules to right A-modules,
we get

d*
Homy (P, A) LN Homg (P, A).

By definition, Tr M = Cokerdy".

This gives a bijection between the isomorphism classes of indecomposable non-
projective left A-modules and the isomorphism classes of indecomposable non-projective
right A-modules.

Next the exact functor D = Homy (—, k) sends right A-modules to left A-modules. We
obtain an exact sequence of left A-modules

pdf
0—> DTrM — DHomy(Pq, A) LN DHomy(Py, A).

Finally, by definition, tM =DTr M.

This gives a bijection between the isomorphism classes of indecomposable non-
projective left A-modules and the isomorphism classes of indecomposable non-injective
left A-modules.

Suppose that M and N are left A-modules. Let I Homy (M, N) be the k-subspace of
Homy (M, N') of morphisms which factor through an injective left A-module. The quotient
is denoted Hom4 (M, N). The Auslander—Reiten duality formula in [2] is

Ext}(M, N) = DHomu(N, tM).

As mentioned in the introduction, one of the main ideas of t-tilting theory is to replace
Ext}1 (M, N) with DHomyg (N, tM), which in a sense amounts to recover the missing
morphisms which factor through injectives.

Let A be an algebra. To define the t-Hochschild cohomology in degree one, recall that
H'(A, X) = Ext}_, (A, X). Note that this concerns bimodules; hence in the following, ©
is the Auslander—Reiten translation for bimodules or equivalently for left A¢-modules.

Definition 2.1. Let A be an algebra, and let X be a A-bimodule. The first T-Hochschild
cohomology of A with coefficients in X is

HL(A, X) = DHoma_a (X, TA).
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In this paper, we will focus on the case X = A:
HHI(A) = DHoma_A (A, TA).
Definition 2.2. The excess of an algebra A is
e(A) = dimg HHY(A) — dimg HH(A).
Lemma 2.3. The excess is a non-negative integer equal to dimy I Hompa_ (A, TA).

Proof. By definition,
HHI(A) = DHoma_A (A, TA),

while
HH'(A) = Exth_, (A, A).

The Auslander—Reiten duality formula is

Homa—_A (A, TA) )

1 _
Exta_A(AA) = D(I Homa—A (A, TA)

Next we recall some well-known facts about invariants and coinvariants.

Remark 2.4. Let A be an algebra, and let X be a A-bimodule.

* The subspace of invariants of X is
HOA,X) = X2 ={x € X | VA € A, Ax = xA} = Homa_a (A, X),

where the last canonical isomorphism sends ¢ € Homa_ (A, X) to ¢(1).

* The vector space of coinvariants of X is

Ho(A,X) =Xpa =X/(Ax—xA|A€Aandx € X) = A ®@p-_p X,

where the last canonical isomorphism sends A ® x € A ® o X to the class of Ax.

* Itis easy to show that D(X?) = (DX)4. Observe that more generally we have in all

degrees
DH"(A,X) = Hy(A, DX).

Proposition 2.5. Let A be an algebra. We have

HHI(A) = (TrA),.

Proof. LetY =DTrA. According to Remark 2.4 and using that D? is the identity, we have

the following chain of equalities and canonical isomorphisms of vector spaces:

HHL(A) = DHomp_A(A,Y) =D(Y2) = (DY)pA = (DDTrA)p = (TrA),.
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In this paper, a quiver Q is a finite oriented graph, given by a set of vertices Q, a set of
arrows @ and two maps called source and target s, : Q1 — Q. The quiver algebra kQ
is a vector space with basis the set B of all oriented paths in Q, including those of length 0,
that is, Q¢. The product of two paths is their concatenation if it is possible and O other-
wise. The algebra structure of kQ is obtained by extending linearly the product on paths.
Note that Qy is a set of orthogonal idempotents, and their sum gives the unit of kQ. The
set of paths of strictly positive length B~? is a basis of the ideal F = (Q1). An ideal [ is
admissible if there exists n > 2 such that F* C I C F?2. The quotient algebra kQ /I is
called a bound quiver algebra.

An algebra A is called sober if the endomorphism algebra of each simple left A-
module is reduced to k, which is always the case if k is algebraically closed. A well-known
result of P. Gabriel is that any sober algebra is Morita equivalent to a bound quiver algebra
kQ/I for a unique quiver Q. Note that the admissible ideal / is in general not unique.

Theorem 2.6. Let A = kQ /I be a bound quiver algebra, and let Z A be its centre. We
have

dim HHI(A) = dimg ZA — ) dimg xAx + Y dimg £(a)As(a).

x€Qop acQ

Proof. By Proposition 2.5, we have to compute dimg (Tr A) 5 . To begin with, we will con-
sider Tr A. Let E = kQ, which is a maximal commutative semisimple subalgebra of kQ.
The projective minimal presentation of A as A-bimodule is known to have the following
form (see [0, p. 324] and [4, p. 72]):

A®EkQ1®EA£>A®EA—>A—>O, 2.7
where A ® g A — A is given by the product of A. Fora € O, we have
ft@)®a®s(a) =a®s(a)—ta)Qa.
Consequently, for A, 4 € A, we obtain
fL®a®A) =pa®s(@r—put(a) @al.

We write ® instead of ®j. Also note that the enveloping algebra A€ viewed as a
A-bimodule is isomorphic to A ® A with action A(a ® b)u = Aa Q bu.

The functor Homp_A (—, A ® A) applied to (2.7) provides the exact sequence defining
TrA

Homa_a(A ®% A, A ® A) 2> Homa_a (A @5 k01 ®5 A, A @ A) —> Tr A —> 0.

Next we use that for an E-bimodule U and a A-bimodule X, there is a canonical
isomorphism
Hompa-A(A ®g U @ A, X) = Homg_g (U, X)
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and observe that A ® g A = A ® g E ® g A. We thus obtain the following exact sequence,
where we kept the same notation for the A-bimodule morphism f*:

HomE_E(E,A®A)f—>HomE_E(le,A(X)A)—)TrA—)O. (2.8)

In the following, we work out the exact sequence (2.8). Let y,x € Qo, and let ,k, be
the simple E-bimodule of dimension 1 given by the idempotent y ® x € E¢, namely
ykx = yE @ Ex.Let U be an E-bimodule. Clearly, we have a canonical isomorphism

Homg_g(ykx, U) = yUx.

Observe that as £-bimodules we have
E = @ xkx and le = @ t(a)ks(a)-
x€Qo acQ,

The exact sequence (2.8) becomes, by still keeping the same notation for f*,

D A @ a0) D> @ @ & As@) —> TrA —> 0. 2.9)
x€Qo a€Q
Let M be a right A-module and N be a left A-module, then M ® N is a A-bimodule
for the internal action A(m ® n)i = mu ® An. On the other hand, N ® M is a A-
bimodule for the external action A(n ® m)u = An ® mu. Of course, these A-bimodules
are isomorphic through the flip map o (n ® m) = m Q n.
We rewrite (2.9) using the flip maps

Ox : XA ® Ax > Ax ® xA and o, :t(a)A ® As(a) — As(a) @ t(a)A,

thus getting an exact sequence for bimodules with external action. By abuse of notation,
we still write f* instead of (B0, 0a) f* (Breg, 91 '):

P (Ax ® xA) EAR P (As(@) ® @A) — TrA — 0. (2.10)
x€Qo acQ;
It is an easy but rather meticulous computation to track the morphism of A-
bimodules f* along the previous steps. In the end, we obtain the following formula in
the context of (2.10):

ffx®x) = Z X®a— Z bR x. (2.11)
b
KRS (2

Recall that our aim is to compute the dimension of the coinvariants of Tr A, that is, of
A ®a—A Tr A by Remark 2.4. The functor A ® o—p — is right exact and preserves direct
sums, so we obtain the exact sequence

P (Ax @ xA)a Ii P (As(@) ® t(@)A)x — (TrA)x —> 0. (2.12)

x€Qo acQ;
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Moreover, as before, let N (resp. M) be a left (resp. right) A-module. Consider the
A-bimodule with external action N ® M. We have that (N ® M), is isomorphic
to M ®x N via the flip map. Note that this is the degree 0 instance of the graded
isomorphism (see, e.g., [7, Corollary 4.4, p. 170]):

He(A, N @ M) = Tor® (M, N).

Thus,
(Ax @ yA)Ap = yA ®p Ax = yAx

which leads to the exact sequence

P xax LS P t@As(@) — (TrA)s — 0. (2.13)

x€Qg acQ;

We underline that for y, x € Qy, the multiplicity of the vector space yAx in the second
direct sum is the number of parallel arrows from x to y.

Another easy and rather meticulous computation gives a formula for f in the context
of (2.13). For A € xAx, we have

fRQ) = > Aa— Y bA,

acQ; beQ,
t(a)=x s(b)=x
where Aa € t(a)As(a), that is, the direct summand corresponding to a. Similarly, bA €
t(b)As(b), that is, the direct summand corresponding to b.
LetC =} ,cp, @ € A. Note that for A € P, ¢, XAx, we have

fEQ) =AC = CA.

To show that Ker ¥ = ZA, it is convenient as usual to consider the k-category €
associated to A: its set of objects is Q¢, while the set of morphisms ,,€,, from u to v is
vAu; composition is given by the product of A. The centre of A viewed in this category
is

{(xkx)xEQo | vAv vQy = 0y yAy forall yoy, € v€u}
On the other hand, as already observed, in the case of parallel arrows, there is one direct
summand for each arrow in @ate t(a)As(a). Note also that Q¢ U Q1 is a set of gen-
erators of €4 as an algebra. Using these three observations, the proof of Ker f = ZA is
immediate. ]

3. Hereditary, radical square zero and triangular monomial algebras

In this section, we compute the excess (see Definition 2.2) of some families of algebras.
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3.1. Hereditary algebras and algebras with the H? cancellation properties

We first prove that the excess is zero for hereditary algebras. The proof is based on the fact
that the set of morphisms which do not factor through injectives is zero, and we believe it
provides a useful method in other contexts.

Later in Theorem 3.4, we generalise the result for algebras with the H? cancellation
properties (see the introduction for the definition). Its proof relies on the fact that for an
algebra A with the H? cancellation properties, a formula for the dimension of HH!(A) is
known (see [8]).

Theorem 3.1. Let Q be a finite connected quiver without oriented cycles. Let A = kQ
be the corresponding hereditary algebra. We have e(A) = 0.

Proof. We will show that if [ is an injective A-bimodule, then Homp_A (1, tA) = 0. A
fortiori, T Hompa_a (A, tA) = 0. By Lemma 2.3, it follows that e(A) = 0.

We have that pdy_, A < 1. Indeed, kQ is the tensor algebra Tip,kQ1. It is well
known (see, for instance, [9, Theorem 2.3]) that there is a minimal projective resolution
of kQ as a kQ-bimodule, as follows:

0— kQ ®kp, kO1 Qoo kQ — kO Qkp, kQ — kQ — 0. (3.2)

We recall [3, Proposition 1.7 (a), p. 319]: let A be an algebra, and let M be an
indecomposable left A-module. The projective dimension of M is at most 1 if and only if
Homy (D A, M) = 0. We will use this result for A-bimodules, that is, replacing A by the
enveloping algebra of A. We have supposed Q connected; therefore, A is indecomposable
as a A-bimodule, and the aforementioned proposition of [3] applies.

It follows that Homa —A (D(A ® A), tA) = 0. Of course, for an algebra A, every inject-
ive left A-module is isomorphic to a direct summand of a direct sum of copies of DA,
where A is viewed as a right A-module and DA as a left A-module. ]

Corollary 3.3 ([8, 11, 14]). Let B be the set of paths of Q, and let |yBx| be the number
of paths from x to y. For A = kQ, we have

dimg HH'(A) = 1—|Qo| + Y _ |t(a)Bs(a)| = dimi HH}(A).
acQ;

We provide in the following a generalisation of Theorem 3.1 for algebras having the H?
cancellation properties.

For a bound quiver algebra A with the H? cancellation properties, the dimension of
HH!(A) is known by [8, p. 647]. This allows us to prove the following.

Theorem 3.4. The excess of a bound quiver algebra A = kQ /I with the H? cancellation
properties is zero.
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Proof. Let B be the basis of paths of a bound quiver algebra.
We know from [8] that

dim HH'(A) = dimg ZA — > [xBx|+ > |yBx|lyQx|.

x€Qo x,y€Qo

Clearly, |yBx| = dimg yAx. Hence by Theorem 2.6, the equality of dimensions
holds. ]

Lemma 3.5. A hereditary algebra kQ has the H? cancellation properties.

Proof. Tt follows from (3.2) that pdgg_xokQ =< 1. Then for any kQ-bimodule X, we
have H2(kQ, X) = 0. n

Remark 3.6. We will show in Subsection 3.2 that not only hereditary algebras have the
H? cancellation properties.

3.2. Radical square zero algebras

A radical square zero algebra is a bound quiver algebra of the form kQ / F2.
Let P and P’ be two sets of paths of a quiver Q. The set of parallel paths is

P//P"={(p.p") € P x P"|s(p) =s(p')andt(p) =t(p)}.

For instance, Q1//Qy corresponds to the set of loops Q! = {a € Q; | s(a) = t(a)}.

We denote by Q; the set of paths of length i.

A c-crown is a quiver C with ¢ vertices cyclically labelled and ¢ arrows, each one join-
ing each vertex with the next one in the cyclic labelling. For instance, a 1-crown is a loop,
and a 2-crown is a two-way quiver - % -. The behaviour of the Hochschild cohomology
of kC/F? is exceptional (see [10]), and it will be considered separately.

Proposition 3.7. Let Q be a connected quiver which is not a crown. The radical square
zero algebra A = kQ/F? has the H? cancellation properties if and only if Q2// Q1 = 0.

Proof. Since r is a semisimple A-bimodule, the complex of cochains of [10, Section 2]
has zero coboundaries and dim; H2(A,r) = |Q2//01].
Consequently, if A = kQ/ F? has the H? cancellation properties, then |Q,// Q1| = 0.
Reciprocally, note first that if |Q5// Q1] = 0, then |Q1//Qo| = 0. From [10, The-
orem 3.1], we have

dimg HH2(A) = [Q2// Q11— Q1// Qol = 0.
Hence if 0»// 01 = 0, then H>(A,r) = 0 = HHZ(A). n

There are zero excess algebras which do not have the H? cancellation properties (see
Corollary 3.9). We first compute the excess of a radical square zero algebra.
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Proposition 3.8. Let Q be a connected quiver which is not a crown, and let A = kQ | F2.
We have e(A) = [Q1// Qol-

Proof. We will use the formula of Theorem 2.6. First we observe the following:

e Forx € Qp, we have dimg xAx = 1 4+ |Q1//{x}|. Therefore,

Z dimg xAx = [Qol + [Q1//Qol-

x€Qo

* Forae Q;\ Qll, we have dimy f(a)As(a) = |t(a)Q1s(a)|. Then

Y. dimei(@As(@) = (@1 \ QD//(Q1\ QD).
acQ\0}

e We have Zatel dimg s(@)As(a) = |Q%| + |Q}// Q! since the sum is over the
loops — not over the vertices which have loops.

* Finally,
> dimg (@) As(@) = [Q1//Qol + 101// Q1.

aeQ1

dimg HHE(A) = 1+ 101//Qol — |Qol —101//Qol + 1Q1// Qol + 101// 01l
=1—1[00l +101//Qol +101// 01l

On the other hand, we know from [10, Theorem 3.1], together with the observation in the
next paragraph, that the following formula holds:

dim HH'(A) = 1~ [Qol +101// Q1. .

In the proof of Theorem 3.1 in [10], it is stated that “D is injective for a positive n.”
This is right for n > 0. However, for n = 0, the kernel of D has dimension 1. Hence the
formula for dimy HH!(A) in the statement of [10, Theorem 3.1] has to be modified by
adding 1.

Corollary 3.9. Let Q be a connected quiver which is not a crown. If the quiver has no
loops and Q2 // Q1 # @, then the radical square zero algebra k Q | F? does not have the H?
cancellation properties and has zero excess.

Proposition 3.10. Let C be a c-crown, and let A = kC | F2.

e Ifc>1,thene(A) =0.

* Ifc = 1 and the characteristic of k is not 2, then e(A) = 1.
* Ifc = 1 and the characteristic of k is 2, then e(A) = 0.
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Proof. Observe that if ¢ > 1, by Theorem 2.6, we have
dimg HHL(kC/F?) =1 —c +c = 1.

If c = 1, then kC/F? = k[x]/(x?), the algebra of dual numbers, and
dimg HH! (k[x]/x*) =2 -2 +2=2.

On the other hand, it is easy to compute that if ¢ > 1, then dimg HH! (A) = 1, regardless
of the characteristic of k.

If the characteristic of k is not 2, then dimj; HH!(k[x]/(x?)) = 1, while if the
characteristic of k is 2, then dimg HH! (k[x]/(x?)) = 2. |

3.3. Triangular monomial algebras

A monomial algebra is a bound quiver algebra A = kQ/I where [ is generated by a
minimal set of paths denoted by Z. The algebra A is triangular if it is a quotient of a
finite-dimensional hereditary algebra kQ, that is, if Q has no oriented cycles. We set the
following:

* B s the set of paths of Q which do not contain any path of Z. Note that Z = @ if and
only if B is the set of all the paths of Q. Moreover, B gives a basis of A.

* (Q1//B)y is the set of pairs (a, ) € Q1//B such that for every y € Z, replacing each
occurrence of a in y by € gives a path which is 0 in A. Note that {(a,a) | a € 01} C

(Q1//B)u-

* (01//B)nu =(Q1//B)\ (Q1//B)u, that is, the set of pairs (a, ) € Q1// B such that
there exists y € Z where a occurs, verifying that at least one of the replacements of a

in y by € gives a non-zero path in A.
Theorem 3.11. Let A = kQ/(Z) be a triangular monomial algebra. We have
e(A) = [(Q1//B)nul-

Proof. When Q has no oriented cycles, the formula for the dimension of HH!(A) given
in [12] is as follows:

dim HH'(A) = dimg ZA — Qo + [(Q1//B)ul- (3.12)

Note that since Q has no oriented cycles, for all x € Q¢ we have xAx = k. Hence
Theorem 2.6 gives

dimg HH1(A) = dimg ZA — | Qo + [(Q1//B)I. (3.13)
This finishes the proof. ]

Theorem 3.14. Let Q be a connected quiver without oriented cycles, and let A =
kQ/(Z) be a triangular monomial algebra. The following are equivalent:
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(1) HHY(A) = 0.
2) Q isatree.
(3) HHl(A) =0,

Remark 3.15. The equivalence between (1) and (2) is proved without the triangular
hypothesis in [5, Theorem 2.2].

Proof. For (1) implies (2), the formula (3.12) gives

1—1Qol +[(Q1//B)ul = 0.

We have {(a,a) |a € Q1} C (Q1//B)y, hence 1 —|Q¢| + | Q1| < 0. The Euler charac-
teristic of the underlying graph of Q is y(Q) = |Qo| — | Q1/, hence y(Q) > 1. Any finite
graph has the homotopy type of a graph with 1 vertex and n loops, whose fundamental
group is free on n = 1 — x(Q) generators. We infer n < 0, hence n = 0, and Q is a tree.

Concerning (2) implies (3), since Q is a tree, we have y(Q) = |Qo| — |01| = 1.
On the other hand, (Q1//B) = {(a,a) | a € Q1}, and we have |Q1//B| = |Q1]|. The
formula (3.13) gives HHL(A) = 0.

The implication (3) = (1) follows from Lemma 2.3. ]

Example 3.16. Let O and R, respectively, denote the quivers

_— c
° o ——— S o
—>

b

and

[ ]
27N
> o p > ®

The following table lists the results for the corresponding monomial algebras:

a

Quiver Z (Q1//B)nu e(A) dimgHHI(A)  dimg HHL(A)
0 {ca}  {(a,b)} 1 2 3
R {ba} @ 0 2 2
R {da) {(d,bc)) 1 1 2

4. The excess

The proof of the next result relies on the calculation of the dimensions of two vector spaces
and the observation that they are equal. An explicit isomorphism between these two vector
spaces remains unknown to us.
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Proposition 4.1. Let A = kQ /1 be a bound quiver algebra. We have
dimg HY(kQ,kQ/I) = dimi HHL(A).
Proof. Let X be a kQ-bimodule. We assert that

dimi H' (kQ. X) = dim X*€ — > dimg xXx + Y dimg 1(@)Xs(a).  (4.2)

x€Qo a€Q

Recall the projective resolution of kQ as a kQ-bimodule (3.2):

0 —> kQ ®kg, k01 ®rgy kO > kO g, kQ —> kQ —> 0. 4.3)

The functor Homgg ko (—, X) gives the complex of cochains

0 —> Homig ko (kQ ®£ kQ, X) £ Homip o (kQ ®% kQ1 ® kO, X) —> 0,

where Ker g* = HO(kQ, X) and Coker g* = H!(kQ, X). The same way as we have
obtained (2.8) and (2.9) leads to an exact sequence

0— H°kO.X) — @ xXx g—*> @ t(a)Xs(a) — H' (KO, X) — 0,

x€Qo a€Q

which gives the equality (4.2).
We assert that if X is a kQ/I-bimodule, thatis, /X = XI = 0, then X¥2 = X*2/1
Indeed, we have

XkQ = Hoka_kQ(kQ,X) = Hoka/I_kQ/I(kQ/],X) = XkQ/I.
Note that for X = A, we have A® = ZA. We obtain the following:

dim H'(kQ.kQ/I) = dimi ZA — > dimg xAx + Y dim t(a)As(a)

x€Qo acQ;
which is the same formula as the one for dimy HH!(A) in Theorem 2.6. ]

Next we recall [9, Corollary 2.4].

Proposition 4.4 ([9]). Let A = kQ/I be a bound quiver algebra, and let X be a
A-bimodule. There is an exact sequence

0 —> H' (A, X) — H' (kQ, X) —> Homgg_ko(I/1% X) —> H*(A, X) — 0.

An immediate consequence of the above is a formula for the excess of an algebra,
which involves the dimension of the Hochschild cohomology in degree 2.
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Theorem 4.5. Let A = kQ/1 be a bound quiver algebra. We have
e(A) = dimy Hoka_kQ(I/IZ, A) — dimg HH2(A).

Remark 4.6. If I =0, then HH?(kQ) = 0, and so e(k Q) = 0. This confirms Theorem 3.1,
as well as Theorem 3.4 for a hereditary algebra.

We infer three corollaries for a bound quiver algebra A = kQ/I.

Corollary 4.7. If A verifies the H? cancelling properties, then
Homko—ko(I/1%, A) = 0.
Corollary 4.8. Ife(A) = 0, then
HH*(A) = Homgo—ko(I/17, A).

Corollary 4.9. The algebra A is t-rigid as a A-bimodule if and only if
« HH!(A) =0,
e dimg HH2(A) = dimy Hoka_kQ(]/Iz, A).
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