





1 Introduction

In this paper we continue the study started in [1] of the properties of Moufang loops using
their relation to groups with triality. Our main purpose now is to give a classification of
the maximal subloops of the unique finite simple non-associative Moufang loops M(q). It
was shown in [1] that there exists a correspondence between the subloops of M(g) and
certain subgroups of the simple group with triality PQ$(q). This correspondence becomes
more natural when we bring into consideration the simple alternative algebra O(q) and its

automorphism group Ga(g). As a corollary to our results, we have the following description:

Theorem A The maximal subloops of the simple Moufang loop M(q), ¢ = p*, are as
follows:

(i) ¢ : PSLy(q), mazimal parabolic;

(i) (PSLi(9),2), ¢ #3;

(i) M(ao), 4 = ¢, k prime, (g, k) # (0dd, 2);

(iv) PGL(Q(g)), g = g5 odd;

(v) M(2), g=p odd.
Moreover, all isomorphic mazimal subloops of M(q) are conjugate in Aut(M(q)).

The paper is oréa.nized as follows. The next section explains the notation and basic
definitions. In Section 3, we describe the general relation between Moufang loops and
groups with triality, and a classification of the subgroups of PQ)f(q) that correspond to
certain important subloops of M(q) including all maximal subloops. In Section 4, we state
some necessary facts about the Cayley algebra O{q) and the loops and groups associated
with it. Section 5 contains a description of the automorphism group Aut(Q(q)) and some
characterization of its elements. The geometry of triality related to the algebra O(q) is
introduced in Section 6. We use it to define explicitly the triality automorphisms of P} (q).
The last section contains a description of the maximal subloops of M(q), the statement of
the main result, which is included in Table 5, and a proof of the main theorem of this article.

This theorem implies, in particular, the above Theorem A.



2 Preliminaries

We mostly use standard notation. F = F, denotes the field of g = p" elements, p prime,
and F™ is the multiplicative group of F. Throughout put d = (2,g—1). For elements ,y
in a group G, we put [z,y] = 27"y lay, 2¥ = y~lay, oV = (z~}). If p is an automorphism
of G and z € G then z¥ is the image of z under ¢. Expressions like zyp, [z,¢], etc. are
to be regarded in the semidirect product G : Aut(@). In particular, ¢ = ¢ lzp. The
commutator subgroup and the center of G are G’ and Z(G). If G acts by permutations on
a set X then 2% denotes the G-orbit of an z € X and we say that the elements of £ are
G-conjugate to z. If Xo C X then Ng(Xo) = {g € G | Xog = Xo}.

A vector space V over F equipped with a quadratic form Q : V — F is called an

orthogonal space. The form Q is called non-degenerate if
eV |fo(v,w)=0 forall weV} N {veV|Q()=0}

contains only the zero vector of V, where fg is the bilinear form associated with @, ie.,
fa(v,w) = Q(v + w) — Q(v) — Q(w). For v € V, we call Q(v) the norm of v and say that
v is (non-)singular if it has a (non-)zero norm. If X C V then Xt = {v e V | folv,z) =
0 for all z € X}. A set of vectors vy, . .., v, of V satisfying fo(uvi, v;) =0 for all i # j is called
fq-orthonormal (Q-orthonormal) if fo(vi,v;) = 1 (Q(v;) = 1) for all 5. A subspace W < V
is called non-degenerate if Q|w is a non-degenerate quadratic form on W and totally singular
(t.s.) if @ vanishes on W. A non-degenerate orthogonal space (V, Q) of even dimension
2m is said to have type '+’ or '~ if all maximal t.s. subspaces of V have dimension m or
m —1, respectively. By definition, an m-subspace of V' is a subspace of dimension m. If m is
even then an em-subspace W of V, where ¢ = &, is a non-degenerate m-subspace such that
(W,Q|w) is an orthogonal space of type e. For g odd, a +1-subspace (-1-subspace) is the
1-subspace spanned by an element of V whose norm is a square (non-square) in F*, For q
even, a +1-subspace is an arbitrary non-degenerate 1-subspace. A decomposition V = @), V
of V into the orthogonal sum of em-subspaces V; is called an em-decomposition.

An involution a ++ @ of a ring A is an anti-automorphism of A satisfying @ = a for

all @ € A. Let V be a left A-module, where A is a commutative ring with involution. A



transformation f : V — V is called A-semilinear if it is additive and f(av) = af(v) for all
veV,ac A Aformk:V x V = Ais called A-sesquilinear if it is A-linear in the first
argument and k(v,w) = k(w,v) for all v,w € V. In particular, k is A-semilinear in the
second argument. The form k is called non-degenerate if k(v,w) = 0 for all w € V implies
v=0. An A-linear m-form f: V x ... x V — A is called alternating if f(vi,...,vm) =0
whenever v; = v; for some 1 i< j < m.

All groups (loops) we consider are finite. All vector spaces have finite dimension. The
subgroup (subspace) generated by a set X is denoted by (X). When a field F is to be
specified, we write (X)p. The inverse transpose of a matrix A is A”T. The cyclic and
dihedral groups of orde; n are Z, and D,. .

A reference of form ”(8.iv)” means "item (iv) of Lemma 8”.

3 Groups with triality and Moufang loops

A set M with a binary operation M x M 3 (z,y) — zy € M is called a loop if the following
two conditions hold:

1. for every @ € M, the mappings = — az and = — za are bijections of M,

2. there exists an identity e € M satisfying ex = ze =z for all z € M.
An associative subloop of a loop M is called a subgroup. A subloop H of M is normal if

zH = Hz, (Hz)y=H(zy), y(zH)= (yz)H

for all z,y € M. A loop is called simple if it does not have proper normal subloops or,
equivalently, does not have proper homomorphic images (see p. 60 in [6]).

Aloop M is called a Moufang loop if, for all z,y,z € M, one (hence, any) of the following
identities hold:

(zy)(22)=(x(y2))'r, ((zy)z)z = z(y(z2)),  z(y(2y)) = ((zy)2)y.

A group G possessing automorphisms p and o that satisfy p® = 6% = (po)? = 1 is called

a group with triality (relative to p and o) if the following relation holds for every z in G:



[z,0]-[z,0)" - [z,0]" =1, (38.1)

Denote § = (p,0). The triality is called non-trivial if S # 1. The relation (3.1) does not
depend on the particular choice of the generators p and o of § (see [2]) and we will thus
speak of a group with triality S.

Let G be a group with triality § = {p,o). Put

M = {[z,0] |z € G}, H =Cg(o). (3.2)
It was shown in [1] that M endowed with the multiplication
m.n=m " nm=*" for all m,ne M (3.3)

becomes a Moufang loop of order |G : H | which is isomorphic to the loop previously con-
sidered by Doro [2]. We denote by M(G) the loop (M,.) constructed in this way from a
group G with triality.

Lemma 1 In the above notation, we have
(1) M7 is both left and right transversal of H in G,
(i) for every g € G, we have g = n(g)é(g)”’, where
n(9) = 9977°¢*" € H and £(g) = [g,0] € M,
(iti) for every m € M, the elements m, m?, m?" pairwise commute.

. _ 2 _ -
(tv) for every m,n € M, we have mPnm=*" = n="mn=".

Proof. See Lemma 2 in [1] and [2]. A
If Go < G is an S-invariant subgroup of G (shortly, S -subgroup) then M(G,) is a subloop

of M(G). The reverse correspondence is expressed in the following lemma:

Lemma 2 Let G be a group with triality S. Then, for every subloop My < M(G), there exist
uniquely defined S-subgroups Gg* and G7** of G such that M(G}™) = M(GP**) = M,
and, for every S-subgroup Go < G with M(Go) = Mo, we have G Q G, < GIo=,



Proof. Denote GJ™ = (M,, M, M{,”). Clearly, GP" is an S-subgroup and it is known
that M(G") = M, (see proof of Theorem ! in [1]). Observe that, for every S-subgroup
Go with M(Go) = M,, we have GJ™ = [Gy, S). Indeed, the sets [Go, o], [Go, po], [Go,op]
coincide with M, M?, M*", respectively. Moreover, [Go, p?] = [Go, p]°. Thus, it suffices to
show that [Go,p] C G, Since Gp = 7(Go)MZ by (1.i) and since [y, p] = |z, p)¥[y, o],
we only have to show that [7(Go), p] C G = n(Gm")MZ". This will follow once we prove
that 7([7(Gbo), p]) C n(GF™). However, for every h € 7(Gp), we have

n(lh, p]) = R7RP (R A?) P (h™1RP)P" = R 1RPR~TPRo P = 1,

since h” = h by (1.ii), and the claim follows. Thus, GJ*" =[Gy, S] < Go.

Now show that any S-subgroups G; and G, with M(G,) = M(G2) = M, satisfy
M((G1, G3)) = M,. This will imply that G** is the subgroup generated by all S-subgroups
Go with M(Go) = M,. It suffices to prove that [g:1g2,06] € M, for all g, € Gy and
92 € Gz. Put my = [g,0] and m, = [gs,0]. Then my,m; € M,. Write g, = hmg’,
where & = n(g;) € G, N H (see Lemma 1). Using (3.1), (3.3), and Lemma 1, we have

2 2 2
— 92 - P p—1 14 — P 7]
[glgg,a] =m;my =, h m1h1'n2 my =m," memy”, (3.4)

where mg = m$. Note that M} = Mo, since My = {[o,9) | g € G2} and h € G,N H. In
particular, mg € Mo. Then (3.4) and Lemma 1, (iv) imply that [g192, 0] = mo.mz € Mo. &
A subgroup of G is called S-mazimal if it is maximal among the S-subgroups of G. We

obtain the following obvious corollary to Lemma 2.
Corollary 3 If G, # Gi are S-mazimal subgroups of G' then M(G,) # M(G,).

It is well known that the finite simple group G = P (q) is a group with triality relative
to its group of graph automorphisms § 2 S; and the corresponding Moufang loop M(G) is
a simple loop (see also Lemma 16 below). We will denote by M(q) the abstract Moufang
loop isomorphic to M(P§}(g)). As was shown by Liebeck (see [4]), the loops M(q) for
q = p" are the only simple non-associative Moufang loops and P9 (g) are the only simple

groups with triality. Namely, the following result holds:



Lemma 4 If G is a finite non-abelian simple group with non-trivial triality S = (p, o) then
G = PO} (q) and S is conjugate in Aut(G) to the group of graph automorphisms of G which
is isomorphic to S3. If this is the case then M(G) is isomorphic to M(q).

Proof. See (4] and Lemma 4 in [1]. A

In [1], all S-maximal subgroups Go of G = P( (g) were determined up to conjugacy and,
for each conjugacy class, the orders of the corresponding subloops in M (q) were found. We
reproduce these subgroups here in Table 1. Column T lists representatives of the conjugacy
classes in G that contain S-maximal subgroups. The notation here is carried over from [5].
The structure of the subgroups will be explained later in detail, see proof Theorem 1 below.
Column I tells for which ¢ (with ”—" meaning "for all ¢”) the corresponding subgroup is
defined and is S-maximal. Column III shows ”v” ("—") if G, is always (never) maximal
in G, or indicates specific values of q for which it is maximal. Columns IV and V give the
orders of Gy and the corresponding subloop M(Gy). We remark that it was proven in [1]
that the latter order does not depend on the choice of an S-maximal representative in the
conjugacy class of Gg.

A subgroup of GS that is G-conjugate to S is called a triality Ss-complement. An

involution in G is called a triality involution if it lies in a triality Ss-complement.

Lemma 5 For every S-mazimal subgroup Go < G, the number of triality Ss-complements
in GoS is equal to |M(Gy)/%.

Proof. When considering each type of S-maximal subgroups Gy € G in the proof of
Theorem 2 in [1], we showed that all triality involutions in Go{o) are Go-conjugate and,
in particular, there are exactly |M(Go)| of them in each of the cosets Goo, Goop, Gopo.
Moreover, every pair of triality involutions from different cosets in GoS : Gy generates a
triality 53 complement, as was explained in the proof of Lemma 6 in [1}. The claim follows
from these remarks. A

Let D = Ce(S5). By Proposition 3.1.1 in {5], we have D = G;(g). It is clear form (3.2)
and (3.3) that the loop M(G) is D-invariant and D acts by automorphisms on M(G).

Denote by [Go] the G-conjugacy class of Gy < G. Note that if Gy is S-maximal then so
is every S-subgroup in [Gp]. Moreover, Ng(Gy) = Gy for every S-maximal Gy,
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Table 1. S-maximal subgroups of P (q)

1 II I v \"
restrictions maximality

Gy on q in PQF(q) [Gol IM(Go)
1. P — — #9%g~1)*g+1) (g -1)
2 Ry — v #3(g-1)*g+1)° i -1)
s N = — ZA(@+D@+1)%g-1)  lg+1)
. N g4 — 2@ -D@-1%g+1)  ig-1)
5. N} g=p>3 — 212.3.7 8
6. Iy g7 a7 Bg—1)* 2g-1)
7. I q#3 q#3 Fl+1)p $a+1)
8. Iy 723 g>3 #d'(¢ - 1) 2a(g* - 1)
0. G} —_ — ®(g® - 1)(g* - 1) 1
0. PQE(2) q v 212.35.52.7 120

11. PQ;-(QO)

12. P (q0).22

v o #eiE - e -G~ 1)

v ¢*(q - 1)(¢* - 1)*(¢* - 1)

(@~ 1)

g(gh — 1)

Lemma 6 Let Gy be an S-mazimal subgroup of G. Then the following conditions are

equivalent:

(i) for all S-subgroups P € [Gy), the subloops M(P) < M(G) are conjugate by automor-

phisms in D, and hence are isomorphic,

(1) all S-subgroups in [Go] are D-conjugate,

(i) |D : GoN D) is the number of S-subgroups in [Go),
(iv) all triality Ss-complements in G,S are Go-conjugate,
(v)|Go : Gon D| = |M(Go)[2.

Proof. Let Py, P; € [Go] be S-subgroups. If P, = P{ for g € D then M(P)=M(R,)s,
since, for every p; € P, we have [p;, 0] = [p3, 0] = [p2, 0]? for suitable p, € P;. Conversely,
let M(P)=M(P;)* and put P, = P{. Then P, is S-maximal and, by the above, M(PR) =



M(P,) = M(P,). Corollary 3 now implies P, = P,. This shows equivalence of (1) and (ii).
Clearly, (iii) is equivalent to (ii). Equivalence of (iv) and (v) follows from Lemma 5. Show
that (i) and (iv) are equivalent. Let (ii) hold. If Sy is a triality Ss-complement in Gy S then
5§ = S for some g € G and G} is an S-subgroup in [G,]. By (i), G&" = G, for some h € D.
But then gh € Gy, since Ng(Go) = Go, and S§* = $* = S. Now let (iv) hold. If P € [Gy)
is S-invariant and P? = Gy for suitable g € G then Gy is $%-invariant. By (iv), S = S for
some h € Gy. But then gh € D and P = Gk = G,. 4

We intend to study in detail what subloops of M (q) arise from S-maximal subgroups
of G and determine which of them are maximal. Using Lemma 6 we will show that all
such subloops are isomorphic and conjugate by automorphisms for every type of S-maximal
subgroups of G. To do this we will need to know explicitly the action of the triality auto-

morphisms on G and it is for this reason that we invoke the Cayley algebra.

4 The split Cayley algebra

An algebra A is called alternative if (zz)y = z(zy) and (yz)z = y(zz) for all z,y € A.
These identities imply (zy)z = z(yz), which allows us to write zyz without arnbiguity. For

every ¢ € A, introduce the linear transformations Uy, L;, R, of A as follows:

yU.=zyz, yl.==zy, yR.,=uyzx for all y € A. (4.1)

Lemma 7 Let A be an alternative algebra. Then, for all z,y,z € A, we have:
(i) (zy)(zz) = z(yz)z,
(it) (zyz)z = 2(y(zz)) or, equivalently, L. . = L,L,L,,
(1ii) z(zyz) = ((2z)y)z  or, equivalently, R.,. = R.R R,
(iv) (zy)z(zy) = (z(yz)z)y or, equivalently, U, = L,U.R,,
(v) (zy)z(zy) = z(y(2z)y) or, equivalently, U,, = R.U,L,.

Proof. The identities (i) — (iii) are well-known (see, e.g., Lemma 2.7 in [3]). For (iv)
and (v), see relation (8) in [7]. A



Given a group Z, a decomposition A = @, 4, is called a Z-grading of A if A, A,, C
Az, for all 2),2; € Z. Given an algebra A over a field F' with involution, denote by A°® the
Cayley-Dickson duplication of A, which is the vector F-space A @ A with multiplication

(@1,b1)(a2, b2) = (6103 = byby, byt + by733). (42

Then A° is an algebra with involution (a,b) = (@, —b).
Let O = O(g) be the 8-dimensional Cayley algebra over F. This algebra can be defined

as set of all Zorn matrices

w

a v
( b)’ a,be F, v,we F*? (4.3)

with the natural structure of a vector space over F and multiplication given by the rule

a v a3 vz | [ aa2+vi-w2 ayva +byvy + 0 —wi xw; (4.4)
wy b wz by azwy + bywy,  wi-vz+bibg Vi X Vg 0 T
where, for v = (v1,v2,v3) and w = (wy, ws, w3) in F3, we denoted

V- W = vw; + vows + vsws € F,

V X W = (vaws — Vs, Vawy — v1W3, Viwy — vaw; ) € F3,

We choose the standard basis (ey, ..., es, f1,- .-, f1) of @ as follows

(o)== (20) = (32)+-(2%)
€1 = ) €2 = y 3= ) €4 = )
00 00 0 0 00
00 0 O 0 0 0 0
fl_(01)’f2_(—i0),f3=(—j0)’f4=<—k0)’

where 0 = (0,0,0), i = (1,0,0), j =(0,1,0), k = (0,0,1). Then 1 = e; + f; is the unit of
0. We identify F' with (1). The basis elements of @ multiply as shown in Table 2.
For x € O define its conjugate T by

CHEEN

(4.5)



Table 2. Multiplication table of the algebra @

& @ e elh Lo fi fa
€€ € €3 €4 | . .
€2 | . . —fa f3 i € —€
es| . Ja . —fales . —g

€| . — fa fa . olea . -

il .. . - h fo fs fa
Pl =i . . ‘ . - 64 €
fslfs - —fi . | . e . —er
falfe . . =fi] . —es e

\

Then conjugation is an involution of Q. Introduce a quadratic form @ : @ — F by

a v Q
— ab—V-W,
w b

and and denote by (, ) the associated bilinear form fg. Then (4.5) is a standard basis for

these forms, i.e.
(e, f) =1, Qle) =Q(fi) = (e, fj) = (eire;) = (fi, f;) =0 for 1<i#j<4,
In particular, the norm of an arbitrary element of O is
Qarer + ...+ ages + b fi+ ...+ bafs) = arbi + ... + ads.

If the characteristic of F is not 2 then O possesses another equally useful basis. Namely,
suppose for the moment that ¢ is odd and let a,b € F satisfy a? + b2 = —1. Then the

elements

eir=e+fi, e2=e+fi, e =ales— fi)+blea— f2),

E4 = E1E9, &5 = E9€3, Eg = E3E4, E7 = E4Es,

(4.6)
together with 1, form a basis of @ and multiply as shown in Table 3. This table is uniquely
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Table 3. An alternative multiplication table of @ in odd characteristic.

1 € €z €3 €4 €s Eg Er

€1 _ —1- E4 Ey —€3 Eg —E5 —E€E3
Ey|—€s -1 € € —€3 €r —¢€g
€3 | —€7r —€s —1 €¢ €3 —€4 €
€4 | €2 —€1 —€g —1 Er €z —€p
Es | —€s €3 —€3 —€7 -1 ¢ €4

€| €5 —€7 E4 —E€3 —E€&1 -1 €g

€7 | €3 € —€1 €& —E4 —& -1

restored from the relations

53 =-1, Er+18r+3 = Er42€r+6 = Er+4€r45 = Er, (4 7)
Er43Er41 = Ery6Ept2 = Epy5Eras = —Ep, Erp7 = E&ry
where 1 < r £ 7. This new basis is Q-orthonormal and satisfies
g =¢€0, &=—&, for 117, (4.8)
where we denoted €9 = 1. In particular, for any aq,...,ar € F,
Qacco +a1e1+ ...+ arer) =aZ + a2+ ... + ak. (4.9)

Let g be arbitrary. The following properties of the Cayley algebra O are well-known.

Lemma 8 We have

(1) O is an alternative algebra.

(i) the space (0, Q) is @ non-degenerate orthogonal space of type '+'.
For all z,y,z,w € O we have

(i) Q(zy) = Q(=)Q(y),

(iv)T=z and TH=79T,

(v) Q(z) = =T = Zz,
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(vi) (z,y) = 2§ + v,

(vit) T(zy) = (yz)z = Q(2)y,

(viti) (22,y) = (2,Zy) and (zz,y) = (z,y%),

(iz) (2,9)(2,w) = (22, yw) + (2w, zy).

Proof. See chapter 2 in [3]. &

Introduce some important subalgebras of 0. Let s € F be such that t? — st + 1 is an
irreducible polynomial over F'. Define

M=<€1,€2,f1,f2>, F= <1562+f2+3f1>7 ]P=(61,f1). (410)

These are subalgebras of @ with involution induced from ©. The mapping

ay (ag, 0, 0) ay dp
L 4
(a3, 0, 0) a4 asz a4

is an isomorphism between @ and the algebra M,(F') of 2x2-matrices over F with involution

ay dg _ Q4 —03
asz 4aq —a3 ay .
Moreover, F is isomorphic to Fj2 whose involution is the Frobenius automorphism @ = a?
and P is isomorphic to F @ F whose involution is (a,b) = (b,4a).
Denote w; = ¢; + fi, ¢ = 1,...,4. Observe that to = {w,...,w,} is a @-orthonormal
set. It 1s directly verified that
0O = M & Muws, M = F & Fuw,, M =P & Puws,,
and, for every triple (A4, B,w) € {(Q,M, w3), (M, F,w,), (M, P, w,)}, the mapping
A9a=b1+bgw»—+(b1,bz)€B®B
is an isomorphism between the algebras A and B @ B preserving involution, where the
multiplication in B @ B is as in (4.2). In other words, O = M°, M = F°, and M = P°.
Hence, we have the decompositions
O = Fuy & Fw; © Fws © Fuw,,

(4.11)
O = Puw,; & Pwy; @ Pus @ Pw,.
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Lemma 9 Let A be a subalgebra of O that contains 1. Then
(i) AAL C AL, AtAC AL

For all a,b € A, v,w € A', we have
(i) ¥ = —v, va=av,
(i) a(bv) = (ba)v, (vb)a = v(abd),

(iv) (av)w = (vw)a, w(va) = a(wv).

Proof.
(i)-(iii) See Lemma 6 in chapter 2 of [3].
(iv) For every ¢ € A, we have by (ii) and (8.viii-ix)

((av)w — (vw)a, ¢) = (av, c®) — (vw, c8) = (v, cB) + (v, c&@) = (v,c)(a, W) = 0,

since @ € A and W € A'. By non-degeneracy of (-,-), we obtain the first relation in (iv).
The second one is obtained by conjugating. A
This lemma implies that
0 = M @ Muws (4.12)

is a Zo-grading of O and (4.11) are Z; x Z rgradings of O.
Introduce the projective space PG(0) = {(z) | z € O}. By analogy with the standard

notation, we put

GLO)={z € 0| Q(z) #0}, PGL(O) = {(z) € PG(0) | Q(x) # 0}, (4.13)
SL(0) ={z € 0| Q(z) =1}, PSL(O) = {(z) € PG(O) | Q(z) € (F*)*}.

In particular, PSL(0) is the set of all +1-subspaces of @. By (8.i) and (7.1), we see that
GL(0), SL(0), PGL(V), and PSL(Q) are Moufang loops with multiplication induced from
O. Note that {1} is a normal subgroup of SL(0Q) and SL(0)/{£1} = PSL(0). Similarly,
GL(O)/(1) = PGO(Q). It is easy to see that

GLO)] = (¢* - (g - 1), IPSL(O)] = 3¢'(a* - ),
IPGL(O)] = [SL(O)} = *g* - 1)
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Let GO(O) be the group of all linear transformations of O that preserve the quadratic
form Q. We also introduce the groups

SO(0) = {g € GO(0) | detg =1}, Q(O) = GO(OY,

PGO(0) = GO(0)/2(GO(0)),  PQUO) = PGO(0Y.

Then PQ(0) is a finite simple group isomorphic to P} (g). We denote the image in
PGO(Q) of an element g € GO(Q) by g.

A reflection r, in a non-singular vector v € O is the linear transformation of O given by
(2,0)
Q(v)
Lemma 10 Let v,w € O be non-singular. Then we have

(i) rv is an involution in GO(Q) and detr, = —1,

(#) ry =71y < (v) = (W),

(tii) (r4) = ryy for every g € GO(0),

(iv) g € GO(O) centralizes r,, if and only if {v)g = (v).

Tr, =z —

v for all z € Q. (4.14)

Proof. Immediate consequence of the definition. A

Using (8.vi-vii), we can rewrite

i T 1
oy — o — (zT)v + (vT)v _

- vZv.
Q(v) Q(v)
This expression is fundamental in that it relates the action of GO(0) (which is generated

(4.15)

by reflections) with the multiplication in @. In particular, the conjugation in O is —r;. The

projective action of generators of PGO(Q) on PG(Q) is then written as

(z)F, = {vEv) forall z € O (4.16)

We also introduce, for every (v) € PG(0), the projective analogs Uy, Ly, Ry of the

operators (4.1) as follows:

() = (vzv),  (2)Lpy = (vz), (2)Ryy ={zv) forall (z) € PG(O).
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Note that
Uwy € PGO(0) «= (v) € PGL(0),

Ly, Ry € PGO(0) < (v) € PSL(D).
In fact, whenever (v) € PGL(Q), we have Uyy = 717, by (4.16), which implies Uty €
PSO(D). Therefore, Uyy € PQ(O) iff (v} € PSL(O) and we will show later (see 6.7) that
the same is true for L,y and Ry,.

The following lemma will be very useful.

Lemma 11 Let z,y € O be singular elements. Then

(i) 20 and Oz are t.s. {-subspaces of O,

(i) every t.s. 4-subspace has form zQ or Oz for some z,

(ii) (2) = (y) <= 20 = yO <= Oz = Oy,

(iv)a€z0 < TFa=0,anda € Or < aT =0,

(v) (z,y) # 0 <= dim(z0N y0) =0,

(vi) (z,y) =0 and (z) # (y) if and only if dim(z0 N yO) = 2,
in which case 0N yO = 2(FO) = y(z0),

(vii) zy =0 <= dim(z0NOy) =3,

(viii) zy # 0 <= dim(z0NQy) =1,

Proof. These properties are well known. For proofs, see, e.g., §2 in [10]. A
This lemma shows that all t.s. 4-subspaces of @ are naturally divided in two equal families:
those of form z@ and Oz, any two members belonging to the same family iff they intersect

in a subspace of even dimension.

5 Automorphisms of the Cayley algebra

Every z € O satisfies 2 — (Z+ z)z +Zz = 0, where T+ z and ZFz = Q(z) are in F. Clearly, if
z ¢ F, the coefficients of a monic quadratic equation satisfied by z are uniquely determined.
Therefore, every automorp]-l.ism f of O must preserve the form @, since 1f = 1 also holds.
These requirements however do not characterize the automorphisms ©. We obtain certain

sufficient conditions for a linear transformation of Q@ to be an automorphism.
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Let A € {F,P} be a commutative subalgebra of O defined by (4.10). By lemma 9 and
(4.11), O is a 4-dimensional left and right A-module with basis v = {w,...,w,}. Every

left A-(semi)linear transformation f of A* is also right A-(semi)linear, since by (9.i)

(va)f = (@v)f = (@r)(vf) = (vf)(ar) (5.1)
for every v € A* and a € A, where 7 is the identity mapping or the involution of A according
as f is A-linear or A-semilinear. Put

A= (5.2)

e+ fatsh, FA=F,
tey +t71 fy, ifA=P,

Where s,t € F are such that the polynomial z~ sz +1 is irreducible over F' and t generates
F*. Then X has order ¢ + 1 and g — 1 in the respective cases 4 = F and A = P. Note that
A — X is invertible in A unless A = P and g = 2,3. We will assume that ¢ > 4 in this case.

For arbitrary z,y € O define

Mzoy) = (2, 09)

kA(zv y) = 2 — X (53)

Lemma 12 We have
(i) ka is an A-sesquilinear form on ©,
(ii) ka(z,2) = Q(z),
(tii) vo is a ka-orthonormal A-basis of O.
(iv) k4 is non-degenerate.
Proof. (i) Let z,y € ©. Additivity of k4 in both arguments is obvious. By (8.vii-viii),
)‘kA(zv y)(A - X)= /\2(1.’ y) - A(I, ’\y)v
ka(Az,y)(A — X)= A(Az,y) — (Az, My) = Az, My) — AX(z, ).
Subtracting the right-hand sides, we obtain
Xo(z,y) = M=, (A +2)y) + AX(z,9) = (A = AA +3) + M)(=,y) = 0.
Hence, ka(Az,y) = Aka(z,y). Also,
kA(yax)(’\ - —): ’\(yaz) - (yv /\17) = )‘('7"1 y) - (/\l',y),
kA('t: y)(X_ ’\)= X(.’L‘, y) - (I, ’\y) = X(5’:’?/) - (;\_173/)‘
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Summing the right-hand sides, we obtain (A+2)(z,y) — (A+X)z,y) = 0. Hence, ka(z,y) =
k4(y,z). These remarks imply that k4 is A-sesquilinear.

(ii) Using (8.viii), we have
ka(z,z)(A=X) = A(z, 2)—(z, Az) = 22Q(2)—(1, (A2)Z) = 22Q(2)—Q(z)(1, 1) = Q(z)(A-X).

(iii) Since Aw; L Aw; for ¢ # j, we have ka(w;,w;) = 0. Also, ka(w;,w;) = Q(w) =1
for | €z €4 by (i1). Thus, tv is r4-orthonormal. ’

(iv) This follows from (ii1). A

Although A appears in the definition (5.3), the form k4 depends only on A. Indeed, if
A = (1,A)r for some Ag = a) + b € A with a,b € F, a # 0, then substitution Ay for A
in (5.3) defines the same form. This remark allows one to define k4 in the excluded cases
A =P and g = 2,3 as well. However, we will not be using this.

Note also that A% = (ws, w3, w4), is a 3-dimensional A-module. For all u,v,w € A*
define

ta(u,v,w) = ka(u, vw). (5.4)
Lemma 13 t, is an alternating A-trilinear form on AL.

Proof. Additivity of t4 in all arguments is obvious. Take u,v,w € A*. We have
ta(au,v,w) = ats(u,v,w) for a € A, since k4 is A-linear in the first argument. Also,
(9.ii) implies £4(u,v,v) = ka(u,—vv) = —Q(v)ka(u,1) = 0. It remains to show that
t4(4,v,w) = 14(v,w,u). By (9.vi), we obtain .

Ea(u,vw)(A=2X) = Mu, vw)— (u, A(vw)) = ATy, w)— (A, vw) = — vy, w)+(u, 5w),
ka(v, wu)(A=23) = A(v, wu)— (v, M(ww)) = AvT, w)— (v, w(ul)) = —A(vy, w)— (v, ul).
Subtracting the right-hand sides gives

(Au, Dw) + (To, u) = (u), Tw) + (ud, Bv) = (ul, 7w + wv) = (3,W)(uA, 1) =0,

since ul € A*. Thus, ts(u,v,w) = t4(v,w,u). A
If V is an A-submodule of O then the orthogonal complement V+ is the same whether
considered with respect to @) or k4. In particular, a non-degenerate A-(semi)linear trans-

formation f of O that preserves the form k4 and leaves V invariant also leaves invariant

Vi
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"Lemma 14 A non-degenerate A-(semi)linear transformation f of Q that satisfies 1f = 1

and preserves the forms ka and t4 is an automorphism of O.

Proof. Let f be as stated. Then both A and A' are f-invariant; hence, it is correct to

say that f preserves t4. For arbitrary z,y,z € A, we have

kA(zfa (yz)f) = kA(zv yz) = tA('T1 Y, Z) = tA(zf! yfv Zf) = kA("l:f’ (yf)(zf))

Since f is non-degenerate, zf runs through A' as z does. By non-degeneracy of k4, we
have (yz)f = (yf)(zf). For arbitrary y, 2 € O the claim holds by A-(semi)linearity and by
(53.1).

This lemma gives a sufficient condition for f to be an automorphism. However, not every
automorphism of Q leaves A invariant. To obtain a criterion, we could similarly introduce
the trilinear form ¢(u, v, w) = (u,vw) on the 7-dimensional F-space F'. Then any F-linear
transformation f of @ is an automorphism if and only if it satisfies 1f = 1 and preserves
both (-,-) and ¢. This is proved as Lemma 14.

The full group of automorphisms Aut(Q(g)) is known to be isomorphic to the Chevalley
group G3(q) of order ¢8(¢® — 1)(g® — 1) (see chapter 2 in [23]). We will require the explicit
form of this 8-dimensional representation of G,(q). Introduce some basic automorphisms of
Q. For every C' € SL3(q). define

a v a v(C
8o(C) : (w b) — (WC_T ; ), (5.5)

and, for every c € F?, put

5 ) a v a v + vee WXC + 0 0 )
o) w b — w b (b—a)e —v-c —(v-c)e 0 ’



Then 6o, 61, &; are automorphisms of Q. Note that §; and &, are the exponents (in the
sense of §3 in [24]) of the following derivations of O:

fa v v-e wxc) fa v -w-c (a—d)c
dl(c).(w b)H((b—a)c —v-c)’ dz(c)‘(w b)H(—vxc w-e )
Let

® = {Lw, s, tws, t(wi — we), H(wy — ws), £(ws — wy) | wy +w; + wg = 0}

be a root system of type G,. We may choose the following root subgroups:

Xu() =a(t), X,(t)=at), Xu,(t)=b&(k);
Xow () = &(t),  Xouy(t) = 0(t]),  Xous(t) = &(tk); (5.6)
Xuimw;(t) = 0(E+tE;;), 1<4,j<3, i#7;
where ¢ € F*, E is the identity 3 x 3-matrix, and E;; are the 3 x 3 matrix units. These
root subgroups generate D = Aut(0). Define the short and long fundamental roots to be

a =uw; and B = w; — wy. Then the system of positive roots of ® is

Tlir= { wi=a+ B, . } . (5.7)

wy —ws=da + 2B, w1 —wy=h, w; —wi=3a+f

In particular, the unipotent subgroup U = [T.en Xu(t) of D contains §(C) for all upper
unitriangular C. Define also the diagonal subgroup

H = {6(C) | C = diag(hy, k2, hs) € SLa(g)}. (5.8)

(For all these notions, see [17]. See also pp. 142-143 in (14].)

The group D = Aut(0) lies in Q(0) and induces antomorphisms of all loops (4.13)
associated with @. We identify D with its image D in PS)(0). Note that D commutes with
S and thus coincides with the D = C¢(S) introduced after Lemma 5. Indeed, for every
0-point (z) and every f € D, we have

(2)fo = (zf)o = (zf) = (2f) = @] = (a)o,
(2)fp = (2f)p = (zFO) = FOVf = (a)pf.
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The two actions of D on PSL(Q) and M(PQ(0)) are respected by the isomorphism (6.5),
since, for every m = [g, 0] € M(PQ(0)), we have

(m) =lg’,016 = (1)f 7 gf = (1)gf = (mb)f.

We also note that in general D does not contain all automorphisms of PS L(0). As follows
from [20], the full group Aut(M(q)) is the extension of Ga(g) by its field automorphisms.
For our purposes, we need to know certain maximal subgroups of G2(q). Table 4 is a

consequence of the papers [21, 22]. The notation is mostly preserved.

Table 4. Some maximal subgroups of Gy(q)

Type Order - Comments
Pe ®lg—1)*{g+1) pa.ra.bolic, short root_
Fg ¢®(¢-1)*(g+1) parabolic, long root
(SLa(g)o SLa(g))d (g~ 1) 9#2
23 PSL3(2) 8.168 g=podd
G2(0) %(% — 1% —1)  q=g5, k prime
G(2) 26.3%.7 g=podd
SLs(q):2 2¢*(g® — 1) (g2 - 1) q arbitrary
SUs(q) : 2 ‘ 2¢%(¢® + 1)(12 — 1) q arbitrary

6 The geometry of triality

Let P be the polar geometry associated with Q. It is the geometry that consists of objects
of four types: all t.s. i-subspaces (z) of O called 0-points of B, all t.s. 2-subspaces of Q@
called lines of B, all t.s. 4-subspaces of form =Q called [-points, and all t.s. 4-subspaces of
form Qg called r-points of B. The incidence between these objects is natural except that

an [-point is incident with an r-point iff they intersect in a 3-space.
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An eutomorphism of ‘B is a transformation of B that preserves the type of objects and
the incidence relation between them. The group PQ(Q) acts naturally by automorphisms
on P and it is known that the full group Aut(P) is just the extension of PQ(O) by its field
and diagonal automorphisms (see, e.g., [8], p. 203).

Remark 15 The group PQYO) is faithfully represented as group of permutations on each
of the four types of objects of B. In particular, an element g € PQQ) is identity if and
only if it stabilizes all 0-points of B.

The remarkable property of the geometry B, often called triality, is that it also admits
transformations that preserve the incidence but permute the three types of points. These
can be defined in the following way. Let p be the transformation of § that acts on the
points by the rule

(z) 2 20 +2 O 5 (), (6.1)
i.e., p bijectively maps
{0-points} ++ {l-points} &+ {r-points} +Z3 {0-points}.

This action is uniquely extended to the lines of 8 to preserve incidence: for example, if (z)
and (y) are 0-points on a line ! then Ip = O N FO. We also define o = 7, € PGO(Q), i.e.

the action of o on all objecté is induced by conjugation:

(z) v F), 20+ Oz, Oz +% 70, (z,y) v (Z,7). (6.2)

For details, see {10, 11]. Clearly, p and o normalize Aut() and, in particular, its charac-
teristic subgroup P(0). We henceforth denote S = (p, o), where p and o are defined by
(6.1) and (6.2).

Lemma 18 PQ(O) is a group with triality S.

Proof. The fact that p* = 0% = (po)? = 1 (identical mappings of B) is obvious from the
definitions (6.1) and (6.2). Take g € PQ0) and let v € O be such that (1)g = (v). Note
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that v is non-singular. Then [g,0] = 090 = #,#; by (10.iii). Hence, for all points {z}, =0,
Oz of B, we have

(2)lg, 0] = (2)7uf1 = (P2),
(z0)[g, 0] = (v(OF)v)Fy = (KTv))# = (z)0, (6.3)
(Oz)lg, 0] = (v(z0)v)?1 = ((v7)0)F1 = O(27),

where we have used (4.16), (7.1), and the fact that v is non-singular. Then we have

(z)g, )" = (z)p7 (g, 0lp = (OF)[g, 0]p = (O(ZT T))p = (vz),

; (6.4)
(z)lg, 01" = (z)plg,alo™! = (z0)g,01p™" = (FTIO)p™! = (o).

Therefore,
(2)lg, 0llg,ol9, 01" = (5aD)g, o)’[g, o) = (v(FaT))lg, 0" = (v(Ta)) = (z)

for every O-point (z) by (8.vii). Remark 15 now implies [g,0][g,0]"g,0]” = 1 for all
g € PO). A

There are now two ways to associate the simple Moufang loop M(q) with the Cayley
algebra Q; namely, taking the loops PSL(Q) and M(PH0)). We construct an explicit

isomorphism between these loops. Define the mapping
6: M(P{O)) — PSL(0) (6.5)

as follows: given an m = [g,0] € M(PQ(0)), put mé = (1)g. Then mé € PSL(O), since
{(1)g is a +1-subspace. Note that

[91,0] = [92.0] <= @g;" € Cpao)(0) <= (1)g1 ={(1)g2

by (10.iv). This implies that 8 is well-defined and injective. It is also surjective, since PQ(0)
is transitive on +1-subspaces (see [9], Lemma 2.10.5). Therefore, for every m € M(PQ(0)),
we have

mé = (v) <= (z)m = (vzv) for all O-points (z) € P (6.6)

by the first equality in (6.3).
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Lemma 17 The mapping § is an isomorphism of loops M(PQ(0)) end PSL(D).

Proof. Teke m,n € M(PQ(0)) and write m = [g,0], n = [, o] for suitable g,k €
PQ(0). Let (1)g = (v) and (1)h = (w). Note that m~* = [¢°, o] and
(1)g” = (1)ogo = (1)g0 = (v)o = (v).

Therefore, using (6.3), (6.4), and (7.iv), we have

(z)(m.n) = (2ym~*nm ™" = ((W(F)T)B) = ((T0)=(7%))

for every 0-point (z) € B. By (6.6), we have (m.n)f = (vw) = {(m0)(nh). A

As a consequence, we have the following description:

Corollary 18 Let Gy be an arbitrary S-subgroup of PQ(O). Then M(Go)8 = (1)%, where
multiplication on the orbit (1)%° is induced from ©.

We can also write the action of p on M (PQ(0)) in terms of the operators Utvys Liwys
Ry,). Using (6.6),(6.4), and Remark 15 we have

M(PYO)) = {U4y | (v) € PSL(O)},
M(PQB)) = {L¢) | (v} € PSL(D)},
M(PQ(O))”" = {Ry, | (v} € PSL(O)},

L3

(6.7)

" and

Um += Loy ¥ By v2s Upmy. (6.8)

7 The maximal subloops of M (q)

First, we introduce some subloops of the simple loop PSL(0) = M(q).

1. Mazimal parabolic subloop, q arbitrary. Consider all Zorn matrices of the form

0, as,
( ' (0,a3,71) ) , G163 —azay=1. (7.1)

(7'2, a4, 0) az
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It can be verified using (4.4) that they form a subloop of SL(Q) whose order is ¢°(q% — 1).
Its image P in PSL(Q) will be called a parabolic subloop of PSL(Q). We will later show
that it is a maximal subloop. Note that |P| = ¢*(¢* — 1) and P = ¢* : PSLay(q), i.e.,
P has a normal elementary abelian subgroup of order ¢* that corresponds to the matrices
(7.1) with a; = a3 = 1, as = a4 = 0; extended by a subgroup isomorphic to PSL,(q) that
corresponds to the matrices (7.1) with r; = r, = 0. Even though the composition factors
of P are groups, it is non-associative.

2. (PSLy(q),2), q # 3. Recall the process of duplication of a group introduced by Chein
in Theorem 1 of [12]. Let H be a group. The set of 2| H| symbols {h,k |h € H} with a new
multiplication ’ - / defined by

g-h=gh, g-h=hg, G-h=gh™!, G-h=h"lg (7.2)

for all g,h € H becomes a Moufang loop. We denote it by (H,2). Clearly, H is embedded
as a normal subgroup of (H,2) of index 2. Fixing an arbitrary u € (H,2)\ H, every element
of (H,2) is uniquely written as h or k - u for suitable ~ € H. Then, suppressing the ’ - /,

(7.2) can be rewritten as
-4
g(hu) = (hg)u, (gu)h =(gh™")u, (gu)(hu) = hg®. (7.3)

It can be seen that (H,2) is non-associative iff H is non-abelian.

Now consider the Zorn matrices of the two types

,0,0 0 (0,m,
@ (02 ) , G1G4—Qza3 = 1; ( 1 T3) , T1T2 +1‘3T4 =—1. (7.4)
(a3, 0, 0) [+ 73 (0, T2, 7‘4) 0

They form a subloop of SO(0) which has a subgroup of index 2 isomorphic to SL,(q)
formed by the matrices of the first type. It can be verified that the image of this subloop
in PSL(0) is isomorphic to the duplication (PSLa(q),2) of order 2¢(¢* —1).

3. Field subloop M(qo), ¢ = g& for prime k and k # 2 if ¢ is odd. Clearly, PSL(0)
contains a naturally embedded copy of the loop PSL{0(g)) with respect to the standard
basis {e1,..., fa} of O.
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4. PGL(O(q)), ¢ = ¢¢ odd. The field subloop PSL(0(gy)) of PSL(0) is of index 2 in
a larger subloop.” Namely, consider the mapping ¢ : GL(®(go)) — PSL{Q(q)) defined by
z+% (z)F,. It is well defined as every element in F, is a square in F}. It is easy to see that
¢ is a homomorphism of loops with kernel (1), . Therefore, PGL(Q(g)) is embedded in
PSL(0(q)) as a subloop of order ¢3(qd — 1).

5. M(2), ¢ = p is an odd prime. Consider the real Cayley algebra O(R), which can
be defined as an 8-dimensional algebra over R with a unit spanned by the elements {1 =
€0,€1,...,€7} that multiply as in Table 3. The quadratic form defined by (4.9) turns O(R)
into a BEucledian space. We define the conjugation on the basis by (4.8) and extend it by
linearity. Then O(R) satisfies (8.iii-vii). It was shown in [16] that O(R) contains a certain
set ® of 240 elements of norm 1, called the units of integral Cayley numbers, which is
multiplicatively closed, contains 1, and such that & = &. In other words, @ is a loop. This

set can be defined in terms of an fq-orthonormal basis {ly,...,/s} of O(R), where

h=3{eotes), la=Xeates), L= ier+er), lr=1Y(es+ea),

(7.5)
Lbh=Yeo—€3), U= jlea—es), lo= jler—er), lz= Hee — €4),
as follows:
Lxl; 1<3,t1K t,
oo | HhEls 1<s1<8, 54 ' 8)
%(illl + ‘izlg e + 1'318); i, —_— :i:l, iliz .o .is = 1

We have changed here the sign of one of Coxeter’s I;'s (see §10 in [16]) so that the product
#133...15 in (7.6) be equal to 1. Then (7.6) coincides with the standard definition of a oot
system of type Eg. Call a subset Il C ® a fundamental system of roots if

L. II is a basis of O(R),

2. The coefficients every u € ® in II are either all non-negative or all non-positive.
The standard fundamental system II of @ is shown in the Dynkin diagram (7.7), in which
two elements g, b € II are joined iff (a,5) = —1 and disjoint iff (a,b) = 0 (for all of this, see,
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e.g., [17]).

L—1 lo—1s ls—1, li—1s Is—1g le + 1y —%(l|+.--+ls)

(7.7)

le—17

Let W be the Weyl group of ®, which is by definition the group generated by the reflections
ry for all u € ®. It is known that W is in fact generated by r, for u € II and is isomorphic
to the double cover 2. PQ%¥(2).2 (see §4 of chap.V1in [18]). Let Wo = W’ & 2.PQf(2). Note
that

Wo=(ryr1 |[uell)=(Uz | uvell) (7.8)
Lemma 19 W, acts transitively on ®.

Proof. Take u € ®. First of all, every u is W-conjugate to a fundamental root in II (see
Proposition 2.1.8 in [17]). Let w € W be such that uw = a € Il. fw € W), take b € @
orthogonal to a, e.g. a fundamental root not joined with a by an edge in (7.7). Then
uwry = a and wr, € Wy. Now if a,b € II are joined by an edge in (7.7) then {a,b) = —1
and ary = a — (¢,b)b = a + b. Similarly, br, = a +b. Hence, aryr, = b. Since rary € W5 and

(7.7) is connected, all fundamental roots are Wo-conjugate and the claim follows. &
Lemma 20 W = Ngo(o®))(®)- In particular, Ly, Ry € W for allu € .

Proof. Let g € GO(O(R)) leave ® fixed. It is easy to see that Ilg is also a fundamental
system of ®. However, all fundamental systems are W-conjugate by Theorem 2.2.4 in 17,
i.e., llgw = II for some w € W. Since gw preserves the scalar product and the diagram
(7.7) has no non-trivial symmetries, gw acts identically on II, i.e., g = wt € W. Clearly,
Ly, Ry € Neoomy(®) for all u € @ and the claim follows. &

Note that all coefficients of every u € ® in the original basis {¢o,...,€7} belong to
{0, 1,1}, Moreover, it can be seen from (4.15) that all matrix coefficients of everywe W
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in the basis {eq,...,e7} are in Z[3], since ® is multiplicatively closed and —® = . These
remarks show that @ is a subloop of SL(O(Z[}])) and W is a subgroup of GO(O(Z[1])). We
can now perform the p-reduction Z[}] ® Z, = F, to identify ® and W with their respective
images in SL(0) and GO(0). Denote by ¢ the image of & in PSL(0). Clearly, it is a
subloop there of order 120. It is now easy to determine its isomorphism type. Note that
Wo & PO} (2) is an S-subgroup of PI0). Indeed, W, is o-invariant since o = 7, € W. It
is also p-invariant by (7.8), (6.8), and Lemma 20. Finally, the Moufang loop M(W,) 2 M(2)
is isomorphic by Corollary 18 to (1)W° < PSL(O) which is exactly & by Lemma 19. In
other words, we have demonstrated an explicit embedding of a simple loop M (2) of order
120 into PSL(O(p)) = M(p) for every odd prime p.

It is our purpose to show that the above 5 types of subloops are maximal and the only
maximal subloops of M(q) up to isomorphism, provided the indicated restrictions on q are

satisfied.

Lemma 21 The set of element orders of the loop M(q) is the set of all divisors of the
numbers §(q— 1), 1(g+ 1), and p.

Proof. For every pair of vectors v,w € F3, we can find a matrix C € SL3(q) such that
both vC' and wC=T are in (i), where i = (1,0,0). Then the automorphism &(C) sends an
arbitrary z € SL(0) of form (4.3) to an element of the first form in (7.4). This shows that
every element of PSL(Q) is conjugate by an automorphism to an element of the subgroup
PSLy(q) < PSL(0). Hence the set of element orders of M(q) is equal to that of PS La(q),
which is known to consist of all divisors of the numbers $(g—1), §(g+1), and p (see [15]). &

Lemma 22 The subloops of PSL(O(q)) of types 1—5 above are not embedded into each

other, provided the indicated restrictions on q are satisfied.

Proof. Suppose that M and N are subloops of types 1—5 and M < N. By Lagrange’s
theorem (see [1]), [M| divides [N|. It can be seen that only the following cases are possible:

a) ¢ is even, N is parabolic, and either M = (PSLy(g),2) or ¢ = gg and M is a field
subloop of order ¢3(gs — 1). Then M must intersect non-trivially the normal 2-subgroup of

N. However, M itself does not have normal 2-subgroups, a contradiction.
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b) ¢ = p is an odd prime, M = M(2) and N is either parabolic or (PSL,(g),2) such
that 120 divides |N|. The embedding M < N is impossible, since the composition factors
of N are groups and M is simple and non-associative.

¢) ¢ = g3, M = (PSLy(q),2) and N is a field subloop PSL(O{(gs)) or PGL(Q(qo))
according as ¢ is even or odd. In both cases PSL,(g) must be a subgroup of PSL(®(go)).
However, the group PSLy(g) contains an element of order (g + 1) which PSL(Q{go)) does
not by Lemma 21, a contradiction.

d)g=p=35 N=M(2),and M = (PSLy(5),2). Although both N and M have order
120, they are non-isomorphic as the former is simple and the latter has a normal subloop
of index 2. A

We note that when g = 3, the subloop (PS5 L(3),2) < M(3) is isomorphic to a parabolic
subloop of M(2) < M(3) and thus is not maximal (see [13]).

We will need several auxiliary facts. Given a +4-decomposition O = V; @ W, define

LVoaWV)={leP|ICWUW} (7.9)
Given an €2-decomposition @ = V; @ Vo @ Vs @ Vi, where € = +1, define
LVi®...oV)={leBlICV.iaV, for 1<i<j<4). (7.10)

Let d be a +4- or €2-decomposition of @. Then d is called S-invariant if the set of lines
L(d) is S-invariant,.

Lemma 23 We have
(1) If a +4-decomposition O = Vp ® V, is a Zy-grading then it is S-invariant.
(1i) If an €2-decomposition O = Vi B...® Vj is a Zg x Zy-grading then it is S-invariant.

Proof. (1) Let z € V; for i € Zy. Write T = yo+11, where y; € V. Then 2% = zyo+2y, €
Vo. Thus zy;41 = 0. In particular, if = is invertible then y;4; = 0 and T = y; € V;. Note
that V; contains a basis consisting of invertible elements. By linearity, we have V; = V; for
i € Zy. Hence, L(V, ® V1) is o-invariant.

Let [ = (z,y) C V;. First, suppose z§ # 0. By Lemma 11, if [ C Q% for some singular
z then (z) C {*. Moreover, zz = yz = 0; hence, (z,%) = (‘y,E) =0and ZC I+ = 1@ Vy,.
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Write 2z = aT + bj + W, where a,b € F, w € Vi;;. Then
zz=brj+ 2w =0, yz=ayz+yw=0.

By the first part of the proof, 2%, yZ € V; and =%, yw € V;. Hence, bz7 = ayZ = 0. By
assumption, a = b=0; i.e., 2 € V;y; and | C Vy;. )

Now, suppose zj = 0. By Lemma 11, ¢ € Oy and y € Oz. Hence, [ = Oz NOy. It
follows that I* = (%,7) = lo C (Vi)e = V; by the first part.

() Letl e L(Vi®...0Vi). Then A € V,, ®V}, for some 1 < 43 < 51 < 4. Let
{iz 42} = {1,2,3,4}\{i1,51}. Put Wy = V;, ©Vj,, k = 1,2. Clearly, 0 = W, & W, is a
Zyrgrading of O and | € L(W, @ W,). By (i), ls€ LW, 0 W) C LV ©... 0 V,) for every
SES. A A

We can now describe the main result of this paper which is contained in Table 5 and
proved in Theorem 1 below. We show that, for every type of S-maximal subgroups Gy from
Table 1, the corresponding subloops M(Go) of M(q) are D-conjugate and hence isomorphic.
(Recall that D is the subgroup of Aut(M(q)) isomorphic to Gz(g).) The isomorphism type
of M(Go) is shown in column III of Table 5. For convenience, we repeat in columns II and
IV the restrictions on ¢ and the order [M(Go)| from Table 1. Column V shows ”v'” ("—")
if M(Go) is always (never) maximal in M(q) or gives the specific values of q for which it is
maximal. The normalizer in D of M(G)) is given in column VI. The number of subloops of
M(q) of a given type is shown in column VII.

In particular, all maximal subloops of M(q) are classified up to isomorphism.

Henceforth, we denote G = PQ(Q).

Theorem 1 Table 5 holds.

Proof. We proceed with a case-by-case analysis of the groups from Table 1.

1. Gy is a Py-subgroup. The parabolic subgroup P; is the normalizer in G of three totally
singular subspaces po, p1, pr of O, where py < p; N p,, dim po = 1, dim o1 = dim p, = 4, and
dim p; N p, = 3. By Lemma 11, P; has a nice interpretation in terms of the polar geometry
B. It is exactly the normalizer of a triple (po, p1, p,) of pairwise incident 0-, r-, and I-points

of P. For brevity, call such a triple a triangle. Clearly, if a triangle is S-invariant then so is
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1€

Table 5. Subloops of M(q) associated with S-maximal subgroups of PQ3f(q)

1 1I III v \"% VI VII
- 4 isomorphism maximality number
Go restictions peof M(Go)  |IM(Go)l in M(q)  Np(M(Go)) of subloops
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the corresponding parabolic subgroup. By (11.iv), (6.1), and (6.2), it is easy to see that a
triangle is S-invariant iff it has the form ((z),z0, Oz) for every non-zero z € O satisfying
z? = 0. Now put z = e;. Then, by Table 2, we have po = (e4), o1 = €40 = {ey, €4, f2, f3),
pr = Qeq = (€4, f1, f2, f3). We may assume that Gy is the parabolic subgroup corresponding
to this triangle. Thus, Gy is S-invariant. In the proof of Theorem 2, item 1 in [1], we showed

that Gy acts transitively on the +1-subspaces in

(Pr npl)L = (81,64, fhfZafS)' (711)

(The choice of Go and the notation of [1] were different, but it is irrelevant.) Note that (1) is
in (7.11). By Corollary 18, the subloop M(Go) is isomorphic to the orbit (1) < PSL(0),
i.e. the set of all +1-subspaces contained in (7.11). Hence, this subloop is the image in
PSL(0) of the subloop of SL(O) consisting of all elements of (7. 11) of norm 1, i.e. the

Zorn matnces of the form

0,0
v 0,0,m1) y Gbrira€F, a#0. (7.12)
(re,0,0) a7t

This is obviously a subloop of (7.1). We call this subloop non-mazimal parabolic. It has the
structure ¢ : g : (¢ — 1)/d.

Show that up to isomorphism it is a unique subloop arising from S-subgroups in [Gy).
It is directly verified that ‘e, /is stabilized by the following subgroups of D: the positive
root subgroups X, (?) for w € II (see 5.7), the diagonal subgroup H (see 5.8), and the
subgroup X_4(¢). In particular, the parabolic subgroup Ps = (U, H, X_5(t)) of D stabilizes
the triangle (po, pi, p,). However, Ps is maximal in D by Table 4. Therefore, Ps = GoN D.
. Z0g-De+1) 1 ¢ 2 2
‘Fa-1p+D) ~ B9 (g—1)* = |M(Go)/’,
Lemma 6 and Corollary 3 imply D-conjugacy and isomorphism of all subloops arising from
S-subgroups in [Gp] and that the number of such subloops in M{q) is |D : GoN D| =
(¢ —1)/(g—1). Note that this coincides with the number of O-points (z) of P with 22 =0

(the so-called absolute points of the geometry B) and the above discussion enlightens the

IGQ 3 Pgl =
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one-to-one correspondence between such points and the non-maximal parabolic subloops of
M(g). -~

2. Gy is an R,y-subgroup. The parabolic subgroup R,; is the normalizer in G of a

totally singular 2-subspace of O, i.e. a line [ of B. Thus S-invariant lines of B correspond
to S-invariant subgroups in [Go]. Let { = (z,y). Since I° = (z,7) and ¥ = ZONFO, it can
be seen from Lemma 11 that { is S-invariant iff z? = y? = zy = 0. In particular, we may
put I = {fa,eq) and Go = Ng(l). Then Gy is S-invariant. We showed in [1] (see item 2 of
proof of Theorem 2) that Gy is transitive on +1-subspaces in I+ = (ey, €3, €4, f1, f2, f3). By
Corollary 18, the subloop M(Gp) 2 (1)% is the image in PSL(0) of the set of elements of
I* of norm 1, which are precisely the Zorn matrices (7.1).
As in the previous case, it is directly verified that [ is normalized by the following
subgroups of D: all positive root subgroups X, (t), the diagonal subgroup H, and X_,(t).
Since the parabolic subgroup P, = (U, H, X_,(t)} is maximal in D, we have Go N D = P,.
As above, we have |Go : P,| = |M(Go)}?; hence, all subloops arising from S-subgroups
in [Go) are D-conjugate by Lemma 6. Corollary 3 implies that the number of maximal
parabolic subloops in M(q) is |D : Go N\ D| = (¢® — 1)/(g — 1). Also, there exists a one-to-
one correspondence between the S-invariant lines (which are the absolute lines of ') and
maximal parabolic subloops of M(q).

3-4. Gy is an N)- or Np-subgroup. In the latter case, assume g > 4. To treat these two
cases uniformly, we slightly change the notation used in [5). Let ¢ = 1. By definition, an
Rep-subgroup of G is the normalizer Ng(W) of an ¢2-subspace W of Q. An F_;-subgroup is
the image in G of the normalizer of an irreducible subgroup of Q(0) isomorphic to SU,(q).
An Flp-subgroup (called I,4-subgroup in [5]) is the stabilizer of a decomposition of O into
the direct sum of two t.s. 4-subspaces. If K is either an Re; subgroup or an Fe;-subgroup
then n(K) denotes the unique cyclic normal subgroup of K of order r, where r is the largest
prime divisor of (g — €)/d. By definition, a subgroup N < G is an N, -subgroup (called
Ny-subgroup for ¢ = —1 and N,-subgroup for ¢ = +1 in {5]) if N = RN F, with R an R,
subgroup, F' an F-subgroup, and [p(R),n(F)] =1.

We explain a geometric interpretation of Fio- and R;-subgroups of G. Let A = F if
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€¢=-—1and A=Pif ¢ = +1. By (4.11), O is a left A-module of dimension 4 with A-basis
0 = {wy,...,ws}. We denote this module by W,,. Introduce a form k4 on Wy defined by
(5.3). By Lemma 12, 1 is k4-orthonormal and ka(w,w) = Q(w) for all w € W,. Hence,
the subgroup Ge of GL(W,) consisting of A-linear maps that preserve k4 is naturally
embedded into GO(0). We identify G with its image in GO(0). Observe that G_, is the
unitary group GU(W_;) 2 GU4(F'). Also, there is an obvious natural isomorphism between
GL(W,;) = GL4(P) and GL4(F) x GL4( F) under which G, is mapped onto the subgroup
{(C,C-T) | C € GL4(F)} = GL4(F). Shortly, Gy = GL;(F).

Since the involution in A is induced by —ry,, the element § = —ry,ry, Ty, T, € HO)
normalizes Gy and induces in it the contragredient automorphism C' — C~7 of order 2.
Let

L(Wa) = {Az| z € Wy, ka(z,z) =0}
By (12.ii), the elements of L(W)) are lines in 9B and the normalizer Fuy = Ng(L(W.)) is
exactly an Fy-subgroup of G. Indeed, G, clearly normalizes L(Wy) and so does §. However,
the images in G of G N N(O) and & generate an Fea-subgroup which coincides with Fi.
Note that n(Fq) lies in the image in G of (diag,(}, A, A, A)), where ) is defined by (5.2).

Since @ is also a right A-module W,, with the same basis v, we can similarly define
the set of lines L(W,) of form zA for all singular z € W,,, and see that the normalizer
For = Ng(L(W,,)) is an Fp-subgroup of G.

Note that A is an e2-subspace of @. Hence, the normalizer R, = Ng(A) is an Reo- .
subgroup. We have @ = A® A* and A' is an c6-subspace. Observe that n(R.) lies in the
image in G of (diag,,(},1,1,1)), which implies [7(&.),7(Fa)] = 1. Define

LAY)={leP|IC A}
Clearly, R. = Ng(L(A"Y)), since the lines in £(A+) span AL. We show that
R+ Fy v*+ F. +* R,
for which it suffices to show that
LAY VB L(Wa) W2 L(W.,) L5 L(AY). (7.13)
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Let | = Az € L(Wy). Then ! = (z,Az)p. Since (Az)T = z(Az) = 0, (11.vi) gives Az € Oz
and z € O()z), i.e. [ = Oz NO(Az). By (6.1), we have lp = (7, z) = TA € L(W,,) and
lp* = 20N (Az)0 = z((Az)0) = (Az)(ZO) by (11.vi). Note that a line of form a(50) is
orthogoral to v € O if and only if b(av) = 0, since

(a(b0), v} = (b0,av) = (O, b(av))

by (8.viii). Hence, we have lp?L1, since (Az)(Z1) = (A\z)Z = 0; and also [p? L), since
z((Az)A) = 2(Q(N)F) = Q(N)Q(z) = 0. Thus, \p?> LA and (7.13) holds.

Denote Nq = R.N Fy N F,;. The above remarks show that N is p-invariant. Since
Ao=A = A, we have R =R.and F§= R = R‘e’”2 = R52 = F,,. Hence, N, is o-invariant
and S-invariant. Show that N, = R.NF,;. This will imply that N, is an N-subgroup of G
in the sense of the definition given above. By triality, it suffices to show that F,y,nF.. C R..
Every g € Fy N F,, normalizes £y = £(Wy4) N L(W,,). If we show that

Lo = L(W4) N L(AY) (7.14)

this will imply that g € Ne({Lo)r) = No(At) = R. as is required. By triality, (7.14) is
equivalent to L(Wy)NL(AL) C L{W,,). However, every line | = Az in A* has form [ = 24
by (9.i1) and the claim follows. .

Therefore, N, is an S-invariant N -subgroup of G and we may assume that Gy = N,;.
It was shown in [1] (see there items 3 and 4 of the proof of Theorem 2) that the only triality
involutions normalizing Gy are those of form 7,, where (v} < A is a +1-subspace, and that
all such involutions are Go-conjugate. By Corollary 18, M(Gp) = (1)% is the set of all such
+1 subspaces. Clearly, A, which has order ¢ — ¢, generates the subgroup of all elements
with norm 1 in A. Since A has the first form in (7.4), the subloop M(Gb) = Z1(,_ lies in
(PSLy(q),2) and thus is not maximal.

We find GoN D. Consider the group SL¢( A1), which consists of A-linear transformations
of O of determinant 1 that centralize A and preserve the form k4, and also consider § =
— Ty Ty Tun Twy , Which is an A-semilinear transformation of @ that centralizes the A-basis ro.
Then the elements of SL¢( A1), together with &, preserve the alternating A-trilinear form ¢4

defined in (5.4). This is because for any A-(semi)linear transformation f of AL with matrix
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(@:5)i5=2,3,4 in the basis {w,, ws,wy}, we have t4(wsf, wsf, waf) = det(ai;)rta(wa, wa, wy),
where 7 is the identity mapping or the involution of A according as f is A-linear or A-
semilinear. Therefore, f preserves 4 iff det(f) = det(a;;) = 1. By Lemma 14, the elements
of SL¥(A*), together with §, are automorphisms of ©. Hence, their images in G le in
Go N D and generate a subgroup isomorphic to SL§(q) : 2. Since this group is maximal in
D by Table 4, it must coincide with Gy N D.

We now have

2. 3 3_¢ — —€)?
IGD : Gon DI = z}_q (zqqa(qa )_(q:)(qnl?_(ql) ) = dl_z(Q" 6)2 = ’AI(GO)I2

By Lemma 6, all subloops of M(q) arising from S-invariant N, -subgroups of G are D-
conjugate and isomorphic. The pumber of such subloops is |D : Go N Dl =3¢%¢® +¢).

5. Go is an N¢-subgroup. Suppose g = pis odd. Let b = (1 = eo, €1,- . .,€7) be the basis
of O defined by (4.6). By definition, an N#-subgroup is conjugate in G to the normalizer
Nc(P) of the subgroup P of order 8 generated by the involutions Z,, %, 73, where

z = diagy(~-1,-1,—-1, 1,-1, 1, 1, 1),

z = diagy(-1, 1,-1,-1, 1,-1, 1, 1),

23 = diagy(~1, 1, 1,-1,-1, 1,~1, 1)
are elements of Q(0). We show that Ng(P) is S-invariant.

Since Z; = Fofie,feyyy Foyyys for i = 1,2, 3, we have (&) = i s, Te,s = % by (4.8).
Hence o centralizes P. For brevity, put J=1+41, k =1+43. Then, for every 0-point {z),
(4.16) and (4.8) imply

(2)2 = (@)F1Fe T, o= (T)e,Fe; ey = (€iTE e, Foe, =
{ei(eTei)es)ey = (enlej(eizei)e;)en).

By (6.1) and (7.i), we also have

(-"’)(i’i)p = (3’)!’_15:'1’ =(05)7v'17‘=.'7"e;7:su/’ = (zo)"'z.'"'sji'ekp =
(O(Fe))ie, Ferp= ((e5(ei2))O)e p = (O((Tei)es)er)) p = (e(es(eic)))-

Note that (ge;)ex = (£i€is1)eips = —1 by (4.6) for ¢ = 1,2,3. Hence, we have
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(ex(eileizes)es)er) = (ex((e(ein)) (eie;))er) = {((exles(e:2))) (i )en))) = (enleslein)))-

Therefore, (2,)? = % by Remark 15; i.e., p centralizes P.

Thus S centralizes P and so Ng(P) is S-invariant. We may therefore assume that
Go = Ng(P). We showed that Gj is transitive on the 8 basis vectors in b. (see item 6
of the proof of Theorem 2 in [1}). By Corollary 18, the subloop M(Gy) 2 (1)% consists
of the +1-subspaces (e;), # = 0,...,7. It is clearly isomorphic to the elementary abelian
group Zy x Zy x Zy generated by (e1), (e3), (€3). Returning to the original basis {ey,.. ., f4}
of O, we see by (4.6) that e, &5, €3 have form (7.4). Hence, M(Go) lies in the subloop
(PSL3(2),2) of M(G) and thus is not maximal.

Since S centralizes P, we have P < D (see the remarks before Table 4). The group P
can be characterized as the group of automorphisms of @ that centralize the set of basis
+1-subspaces {(e) | € € b}. Consider the group Ps of automorphisms of @ that normalize

this set. Define two transformations a; and oy of @ on the basis by

€Y Ein, 1=1,...,7, T = (1234567);
Eivd —Cim, i=1,...,6, & B, 7= (12)(36).

A direct verification shows that a; and «; belong to Py and generate (modulo P) a group
isomorphic to the non-split extension 2** P.S L3(2) of order 8-168. Since this group is maximal
in D by Table 4, it must coincide with Py (see also discussion in section 1 of [16]). Hence,
we have Go N D = Np(P) = P, and

|Go: GoN D| = (2'%-3-7)/(8-168) = 64 = |M(Gy)|*.

Hence, by Lemma 6, all subloops of M(g) arising from S-invariant N{-subgroups of G are
D-conjugate and isomorphic, and |D : Go N D| = 35;¢%(¢° — 1)(g* — 1) is the number of
such subloops.

6-7. Go is an Ip-subgroup, € = +1. If ¢ = +1 then assume that ¢ 2> 7 and if e = —1
then assume that ¢ # 3. An lp-subgroup Gy is the normalizer in G of an 2-decomposition

O =W®...® Vs Denote this decomposition by d. Observe that Gy also normalizes the set
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of lines £(d) (see 7.10). Conversely, suppose g € G normalizes £(d). Then g also normalizes
the set of +4-subspaces that can be represented as I ® [; for {1,l; € £(d). Clearly, these
are the subspaces V; ® V; for 1 € ¢ < 7 € 4. Since their nontrivial pairwise intersections
are the components V;, { = 1,...,4, it follows that g normalizes d. In particular, if d is
S-invariant then so is Go.

Now let d be the first decomposition in (4.11) if € = —1 and the second one if € = +1.
Since d is a Z; x Zygrading, (23.ii} implies that d is S-invariant. Hence, we may assume
that Go = Ng(d). We showed (see items 7-8 of the proof of Theorem 2 in [1}) that the
only triality involutions normalizing Gy are those of form #, where (v) runs through all +1-
subspaces in Ui, V; and that Gj is transitive on such subspaces. Hence, by corollary 18, the
subloop M(Gp) = (1)% is exactly the set of such subspaces. Since V; = Aw;, i =1,...,4,
where A = F or P according as € = —1 or ¢ = +1, the elements of M(G)) have form (M w;},
where A is as in (5.2). In particular, M(Go) is generated by (\), (w;), and {(w3). Since A,
w;, and w3 have form (7.4), we see that M(Go) is a subloop of (PSLy(g),2) and thus is not
maximal unless ¢ = —1 and ¢ = 2, in which case M(G,) = (PSL;(g),2). Also, it is easy to
see that M(G)) is the duplication of the dihedral group Dg(,_.) generated by (A) and (ws).

We find Go N D = Np(d). Let g € GoN D. Since 1g = 1, we have Ag = A and thus g
is A-(semi)linear.' Then g preserves the A-sesquilinear form (5.3) on © and the A-trilinear
form (5.4) on A*. Therefore, det(g) = 1 and ¢ € SL*(A*) : 2 = SL5(q) : 2. However, the
normalizer of the decomposition A = Aw, ® Aws & Aw, in SL¢(A*) has form (g — ¢).5;
(see Proposition 4.2.9 in [9]). Consequently, Np(d) = (g — €)*.(Ss x 2). We now have

Go: Gon Dl = "2 (g — ©*/12(q — o = “o(g— & = |M(GH)L.
By Lemma 6, all subloops of M(q) arising from S-invariant I,;-subgroups of G are D-
conjugate. The number of such subloops is |D : Go N D| = £¢%(¢* + ¢* + 1)(g + €)%

8. Go is an I 4-subgroup. Let q > 3. An I, 4-subgroup Gy is the normalizer in G of a
+4-decomposition O = V @ V. Note that G, normalizes the set of lines £(Vp @ V;) (see
7.9). The converse is also true. Indeed, let g € G normalize L(VodW). SinceVi=La
for some lines 3,1, € L(Vo ® V1), it follows that both lyg and l,g are either in V; or in V4
(otherwise, {i,g, lag) = Vig would be a t.s. 4-subspace, which it is not). Asevery z € V; has
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form z; + z; for x; € I;, § = 1,2, we see that the decomposition Vo @ Vj is g-invariant. In
particular, if ¥, @ V] is S-invariant then so is Gy.

Now, put Vo = (e1, €2, fi, f2), Vo = (es, €4, fa, f4). Obviously, both V; and V; are +4-
subspaces and the decomposition @ = V, @ V; is a Zs-grading by Table 2. By (23.i) and
the above remarks, we may assume that Gy is the normalizer of this decomposition. Thus
Go is S-invariant. We showed that Gy acts transitively on the 41-subspaces in V5 UV} (see
item 9 of the proof of Theorem 2 in [1]). By corollary 18, the subloop M(Go) = (1)% is
the image in PSL(0) of the set of elements of V5 U V; of norm 1, which are precisely the
Zorn matrices (7.4). Hence M(Go) = (PSL,(g),2).

Let A= (X.,(t),X_.,(2)) < D and let B consist of all §o(C) (see 5.5) with

¢l 00
C=1| 0 ey e |s (cjij=r2 € GLa(q), c = det(c;).

0 ca con

It is directly verified that A and B normalize the decomposition @ = V, @ V4. Moreover, by
considering the action of A and B on V; and V4, it can be seen that A & SLy(q), B = GLs(q),
AN B is the diagonal subgroup of A of order ¢ — 1, and AB = (SLa(q) o SLa(g)).d. By
Table 4 this subgroup is maximal in D provided ¢ > 3. Hence, in this case, Go N D = AB
and |Go : Go N Dl = 5¢*(¢* ~ 1)*/¢*(¢* — 1)* = £4*(¢* — 1)* = |[M(G,)|*. By Lemma
6, all subloops of M(g) arising from S-invariant /,4subgroups of G are D-conjugate and
isomorphic. The number of such subloops is |D : Gy N D} = ¢*(¢* + ¢° + 1).

9. Go is a G}-subgroup. A G}-subgroup is a subgroup G, of G isomorphic to Gz(g) and
such that GNgs(Go) = GS. Since D = C(S) = Ga(q) is S-invariant, we may put Gp = D.
Thus, Gp has trivial triality relative to S and M(Gp) = (1) is the identity subloop of M(q).
The fact that GoS contains no other triality Ss-complements follows from Lemma 4. By
Lemma 6, Go is the unique S-subgroup in [Gy}; i.e., only the identity subloop arises in this
case,

10-11. Go is a PQf(go)- or a PQ}(qo).2%-subgroup. Suppose that g = ¢f, with &
prime. Let Hy < G and @y < O be the naturally embedded subgroup P} (g,) and the
Fy-subalgebra O(go) with respect to the standard basis (4.5) of @. Show that Hj is S-
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invariant. Indeed, since o = #; and the entries of the matrix of v, in the standard basis are
in {0,+1} C F, it follows that Hj, is o-invariant. Note that Hp is generated by elements of
the form Uy,), with (v) € PSL(Qb), and Upw,)Uluy), with (w1}, (w;) € PGL(Go)\PSL(Gy).
By (6.8), U(’;) = Ly and (Ui, )Utuyy)® = L) Lmyy. Since Ly, Lm,)Lew,) € Ho, it follows
that Hy is p-invariant.

Now, if (g,k) # (odd,2) then we put Gy = Hp. I ¢ = ¢ is odd then we put G =
Ng(Ho) = InnDiag(PQF (go)), i-e. the group of inner-diagonal automorphisms of PQF (q0),
see [5], Proposition 2.2.9. By Lemma 4 we see that all triality Ss-complements in GoS are
Go-conjugate in view of the structure of Aut(P{J(q0)). By (6.iv) we obtain D-conjugacy
and isomorphism of all subloops M(P) for all S-subgroups P € [Gy]. Note that GoN D =
Co,(S5) = Cp,(S), since GoS/Ho = Sy when ¢ = ¢2 is odd. Therefore, GoN D = G>(qo) and
the number of subloops is |G2(q) : G2(¢)| by Lemma 6.

If (q,k) # (0dd,2) then M(G,) = M(go) by definition. Let g = g2 be odd. Determine
the isomorphism type of M(Go) in this case. Note that G is generated modulo Hy by b
and &, where

b= diag(u, p, p, p, p~t o7 07 w7t
c=diag(A71,1,1,1,),1,1, 1)
written in the standard basis, with 4 a non-square in F and A = u#?. Note that A is a
non-square in Fy,. By Corollary 18, M(Go) % ((1)F)%. Hence, M(G,) is isomorphic to
the extension of M(Ho) = PSL(Gy) by (1)pb and (1) zé. However,

(pé={A"le1 + A1) € PSL(Cy),
(1)pb=(uer + u ™ fi)p = (Aey + fi)w € PGL(Go)\PSL(Qy).

Therefore, M(G,) = PGL(Oy).

12. Go is a PQ¥(2)-subgroup. Let ¢ = p be odd. In the beginning of this section, we
explained that Wy is an S-subgroup of G isomorphic to PSYf (2), where Wy is the commutator
subgroup of the Weyl group of type Es. Hence, we may put Go = Wy. Then M (Go) = M(2).
Moreover, all triality S3-complements in GyS are Go-conjugate by Lemma 4. Therefore, all
subloops M(2) of M(q) are D-conjugate by Lemma 6. We also have Go N D = Cg(5) =
Ga(2) and |D : Go N D| = |Ga(g) : G2(2)} is the number of subloops in this case.
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We can now make the concluding remarks of the proof. Every maximal subloop of M(q)
has form M(Gy) for some S-maximal subgroup Go of P}f(g) (see Corollary 1 in [1]). In
view of D-conjugacy of all subloops M(Go) in each of the above cases, the subloops in the
cases 1, 3-7, 9 are non-maximal unless ¢ = 2 and Gy is an I_,-subgroup. By Lemma 22,
the subloops M(Gy) in all of the remaining cases are maximal (unless ¢ = 3 and Gy is an
I, 4-subgroup) and thus column V of Table 5 holds. The other columns hold by the above

discussion. A
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