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1 Introduction 

In this paper we continue the study started in [1] of the properties of Moufang loops using 

their relation to groups with triality. Our main purpose now is to give a classification of 

the maximal subloops of the unique finite simple non-associative Moufang loops M(q). It 

was shown in [1] that there exists a correspondence between the subloops of M(q) and 

certain subgroups of the simple group with triality Pnt(q). This correspondence becomes 

more natural when we bring into consideration the simple alternative algebra 0( q) and its 

automorphism group Gl(q). As a corollary to our results, we have the following description: 

Theorem A The maximal sub/oops of the simple Moufang loop M(q), q = pn, are as 

follows: 

(i) q2
: PSL2 (q), maximal parabolic; 

(ii) (PSL2(q),2), q =/- 3; 

(iii) M(qo), q = qt k prime, (q,k) I (odd,2); 

{iv) PGL(O(q0 )), q = qJ odd; 

(v) M(2), q = p odd. 

Moreover, all isomorphic maximal sub/oops of M(q) are conjugate in Aut(M(q)). 

The paper is organized as follows. The next section explains the notation a.nd basic 

definitions. In Section 3, we describe the general relation between Moufang loops and 

groups with triality, and a classification of the subgroups of POt(q) that correspond to 

certain important subloops of M( q) including all maximal subloops. In Section 4, we state 

some necessary facts about the Cayley algebra O(q) and the loops and groups associated 

with it. Section 5 contains a description of the automorphism group Aut(O(q)) and some 

characterization of its elements. The geometry of triality related to the algebra O(q) is 

introduced in Section 6. We use it to define explicitly the triality automorphisms of Pnt(q). 

The la.st section contains a description of the maximal subloops of M(q), the statement of 

the main result, which is included in Table 5, and a proof of the main theorem of this article. 

This theorem implies, in particular, the above Theorem A. 
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2 Preliminaries 

We mostly use standard notation. F = Fq denotes the field of q = pn elements, p prime, 

and F• is the multiplicative group of F. Throughout put d = (2, q - 1 ). For elements x, y 

in a group G, we put [x,y] = x-1y- 1xy, x11 = y-1xy, x-v = (x- 1 ) 11 • If r.p is an automorphism 

of G and x E G then x"' is the image of x under rp. Expressions like xr.p, [x, r.p], etc. are 

to be regarded in the semidirect product G: Aut(G). In particular, x'P = r.p- 1xcp. The 

commutator subgroup and the center of Gare G' and Z(G). If G acts by permutations on 

a set X then xG denotes the G-orbit of an x E X and we say that the elements of xG are 

G-conjugate to x. If X0 ~ X then Na(Xo) = {g E GI X 0g = X0}. 

A vector space V over F equipped with a quadratic form Q V -+ F is called an 

orthogonal space. The form Q is called non-degenerate if 

{vEV\fQ(v,w)=O forall wEV} n {vEVIQ(v)=O} 

contains only the zero vector of V, where JQ is the bilinear form associated with Q, i.e., 

fo(v, w) = Q(v + w) - Q(v) - Q(w). For v EV, we call Q(v) the norm of v and say that 
vis {non-)singular if it has a (non-)zero norm. If X <;;;; V then x1. = {v E V I fq(v,x) = 
0 for all x E X}. A set of vectors v1 , ... , vn of V satisfying f Q( v;, Vj) = 0 for all i =I- j is called 

Jo-orthonormal (Q-orthonormal) if fo(v;, v;) = 1 (Q(v;) = 1) for all i. A subspace W ~ V 

is called non-degenerate if Qlw is a non-degenerate quadratic form on Wand totally singular 

(t.s .) if Q vanishes on W. A non-degenerate orthogonal space (V, Q) of even dimension 

2m is said to have type 1 +' or '-' if all maximal t.s. subspaces of V have dimension m or 

m -1, respectively. By definition, an m-subspace of Vis a subspace of dimension m. If mis 

even then an fm-subspace W of V, where f = ±, is a non-degenerate m-subspace such that 

(W,Qlw) is an orthogonal space of type t.. For q odd, a +1-subspace (-1-subspace) is the 

I-subspace spanned by an element of V whose norm is a square (non-square) in F•. For q 

even, a +1-subspace is an arbitrary non-degenerate 1-subspace. A decomposition V = ffi; V; 

of V into the orthogonal sum of fm-subspaces V; is called an fm-decomposition. 

An involution a >--+ a of a ring A is an anti-automorphism of A satisfying ii = a for 

all a E A. Let V be a left A-module, where A is a commutative ring with involution. A 
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transformation f: V-+ Vis called A-semilinear if it is additive and J(av) = af(v) for all 

v E V, a E A. A form k : V x V -+ A is called A-sesquilinear if it is A-linear in the first 

argument and k(v,w) = k(w,v) for all v,w E V. In particular, k is A-semilinear in the 

second argument. The form k is called non-degenerate if k( v, w) = 0 for all w E V implies 

v = 0. An A-linear m-form f : V x ... x V -+ A is called alternating if/( V1, ••• , vm) = 0 

whenever v; = v; for some 1 ~ i < j ~ m. 

All groups (loops) we consider are finite. All vector spaces have finite dimension. The 

subgroup (subspace) generated by a set X is denoted by (X). When a field F is to be 

specified, we write (X)F- The inverse transpose of a matrix A is A-T. The cyclic and 

dihedral groups of order n are Zn and 11)),.. 

A reference of form "(8.iv)" means "item (iv) of Lemma 8". 

3 Groups with triality and Moufang loops 

A set M with a binary operation M x M 3 ( x, y) t-+ xy E M is called a loop if the following 

two conditions hold: 

1. for every a E M, the mappings x t-+ ax and x t-+ xa are bijections of M, 

2. there exists an identity e E M satisfying ex= xe = x for all x EM. 

An associative subloop of a loop M is called a subgroup. A subloop H of M is normal if 

xH = Hx, (Hx)y = H(xy), y(xH) = (yx)H 

for all x, y E M. A loop is called simple if it does not have proper normal subloops or, 

equivalently, does not have proper homomorphic images (seep. 60 in [6]). 

A loop M is called a M oufang loop if, for all x, y, z E M, one (hence, any) of the following 

identities hold: 

(xy)(zx) = (x(yz))x, ((xy)x)z = x(y(xz)), x(y(zy)) = ((xy}z)y. 

A group G possessing automorphisms p and u that satisfy p3 = u2 = (pu )l = 1 is called 

a group with triality {relative to p and u) if the following relation holds for every x in G: 
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(3.1) 

Denote S = (p, o-). The triality is called non-trivial if S -::/- l. The relation (3.1) does not 
depend on the particular choice of the generators p and u of S (see [2]) and w~ will thus 
speak of a group with triality S. 

Let G be a group with triality S = (p, o-). Put 

M = {[x,o-] Ix E G}, H = Ca(o-). (3.2) 

It was shown in [1) that M endowed with the multiplication 

(3.3) 

becomes a Moufang loop of order IG : HI which is isomorphic to the loop previously con­
sidered by Doro [2). We denote by M(G) the loop (M,.) constructed in this way from a 
group G with triality. 

Lemma l Jn the above notation, we have 

{i) MP2 
is both left and right transversal of H in G, 

{ii} for every g E G, we have g = 1J(g)((g)P
2
, where 

TJ(g) = gg-"PgP' E H and ((g) = (g, a-] E M, 

{iii} for every m E M, the elements m, mP, mP
2 

pairwise commute. 
{iv} for every m,n EM, we have m-Pnm-P' = n-P'mn-P. 

Proof. See Lemma 2 in [1] and [2]. • 

If G0 ~ G is an S-invariant subgroup of G (shortly, S-subgroup) then M(Go) is a subloop 
of M(G). The reverse correspondence is expressed in the following lemma: 

Lemma 2 Let G be a group with triality S. Then, for every sub loop Mo ~ M ( G), there exist 
uniquely defined S-subgroups Gain and Go"" of G such that M(Goin) = M(G;;'=) = Mo 
and, for every S-subgroup Go~ G with M(Go) = Mo, we have Ggiin ~Go~ ~a~. 
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Proof. Denote Gain = (Mo, MC, MC°). Clearly, Gain is an S-subgroup and it is known 

that M(Gain) = M0 (see proof of Theorem 1 in [11). Observe that, for every S-subgroup 

Go with M(G0 ) = Mo, we have G0in = [G0 ,S]. Indeed, the sets [Go,o-], [Go,pu], [Go,up] 
coincide with M, MP, MP2

, respectively. Moreover, [G0 ,p2
] = [G0 ,p]". Thus, it suffices to 

show that (G0 ,p] ~ Gain. Since Go= 11(G0 )Mg' by (l.ii) and since [xy,p] = [x,p] 11 [y,p], 

we only have to show that [11( Go), p] ~ a;t" = 1/( G•;t" )Mt. This will follow once we prove 

that 1/([11(G0),p]) ~ 77(Gij"'). However, for every h E 71(Go), we have 

since h" = h by (I.ii), and the claim follows. Thus, Gain = [Go, SJ ~ Go. 
Now show that any $-subgroups G1 and G2 with M(Gi) = M(G2) = Mo satisfy 

M((G1 , G2)) = M0• This will imply that G0az is the subgroup generated by all S-subgroups 

Go with M( G0 ) = Mo. It suffices to prove that [g1g2, u] E Mo for all 91 E G1 and 
92 E G'J., Put m1 = [g1,cr] and m2 = [92,cr]. Then m1,m2 E Mo, Write 92 = hm;

2

, 

where h = 71(g2) E G2 n H (see Lemma 1). Using (3.1), (3.3), and Lemma 1, we have 

(3.4) 

where mo= mt. Note that M~ = Mo, since Mo= {(u,9] I g E G2} and h E G2 n H. In 

particular, mo E Mo, Then (3.4) and Lemma 1, (iv) imply that [g192,u] = mo.m2 E Mo, .l 

A subgroup of G is called S-mazimal if it is maximal a.mong the S-subgroups of G. We 

obta.in the following obvious corollary to Lemma 2. 

Corollary 3 J/G1 # G'J. are S-maximal subgroups of G then M(G1 ) # M(G2 ). 

It is well known that the finite simple group G = Pnt ( q) is a group with triality relative 

to its group of graph automorphisms S ~ S3 and the corresponding Moufang loop M(G) is 

a simple loop (see also Lemma 16 below). We will denote by M(q) the abstract Moufang 

loop isomorphic to M(P!lt(q)). As was shown by Liebeck (see [4]), the loops M(q) for 

q = p" are the only simple non-associative Moufa.ng loops and Pnt(q) are the only simple 

groups with triality. Namely, the following result holds: 
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Lemma 4 If G is a finite rwn-abelian simple group with non-trivial triality S = (p, <1) then 

G = POt(q) and Sis conjugate in Aut(G) to the group of graph automorphisms of G which 
is isomorphic to S3 • If this is the case then M(G) is isomorphic to M(q). 

Proof See [4] and Lemma 4 in [1] . .& 

In [l], all S-ma.ximal subgroups Go of G = PO;(q) were determined up to conjugacy and, 

for ea.ch conjugacy class, the orders of the corresponding subloops in M( q) were found. We 

reproduce these subgroups here in Table 1. Column I lists representatives of the conjugacy 

classes in G that contain S-maximal subgroups. The notation here is carried over from [5). 

The structure of the subgroups will be explained later in detail, see proof Theorem 1 below. 

Column II tells for which q (with "-" meaning "for all q") the corresponding subgroup is 

defined and is S-maximal. Column III shows " ✓" ("-") if Go is always (never) maximal 

in G, or indicates specific values of q for which it is maximal. Columns JV and V give the 

orders of Go and the corresponding subloop M(G0 ). We remark that it was proven in [1] 
that the latter order does not depend on the choice of an S-maximal representative in the 

conjugacy class of G0 • 

A subgroup of GS that is G-conjugate to S is called a triality Sa-complement. An 

involution in GS is called a triality involution if it lies in a triality S3-complement. 

Lemma 5 For every S-maximal subgroup Go ~ G, the number of triality S3-complements 

in G0 S is equal to IM(Go)l2. 

Proof. When considering each type of S-maximal subgroups Go ~ G in the proof of 

Theorem 2 in [1], we showed that all triality involutions in Go(o-) are Go-conjugate and, 

in particular, there are exactly IM(Go)I of them in each of the cosets Gou, Goup, Gopu. 
Moreover, every pair of triality involutions from different cosets in GoS : Go generates a 
triality S3 complement, as was explained in the proof of Lemma 6 in [1]. The claim follows 

from these remarks. .& 

Let D = Ca(S). By Proposition 3.1.1 in [5], we have D ~ G2(q). It is clear form (3.2) 

and (3.3) that the loop M(G) is D-invariant and D acts by automorphisms on M(G). 

Denote by [Go] the G-conjugacy class of Go ~ G. Note tha.t if Go is S-ma.ximal then so 

is every S-subgroup in (G0]. Moreover, Nc(Go) = Go for every S-maximal Go. 
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Table 1. S-maximal subgroups of Pnt(q) 

I II III IV V 

restrictions maximality 
Go on q in Pnt(q) IGol IM(Go)I 

1. A -;b-ql2(q _ 1)4(q + 1) ¼ir(q-1) 
2. R.2 ✓ t,ql2(q-1)4(q+ 1)3 ¼ir(q2 - 1) 
3. N1 iJ,rq3(q3 + 1 )(q + 1)3(q- 1) ~(q + 1) 
4. N2 q~4 frq3(q3 - l)(q- 1)3(q + 1) ¼(q - 1) 

5. Nt q=p~3 212 • 3. 7 8 
6. I+2 q~7 q~7 W(q-1)4 ¾(q- 1) 
1. L2 q # 3 q I- 3 W(q + t)4 ¾(q + 1) 
8. /+4 q~3 q~3 -Jrq4(q2 -1)4 ¾q(q2 - 1) 
9. G~ q6(q6 _ l)(q2 _ 1) 1 

10. POt(2) q=p~3 ✓ 212 . 3s . 52 . 7 120 
11. POt(q0) q = q~, k prime, ✓ jiqJ2(q5 - l)(q~ - l)2(qg- 1) ¼q~(q~ - 1) 

(d,k)=1 

12. Pnt(qo).22 q = q5 odd ✓ q6(q - l)(gl -1)2(qa -1) qJ(q~ -1) 

Lemma 6 Let Go be an S-maximal subgroup of G. Then the following conditions are 

equivalent: 

{i) for all S-subgroups PE (Go], the sub/oops M(P) ~ M(G) are cnnjugate by automor-

phisms in D, and hence are isomorphic, 

{ii) all S-subgroups in (Go) are D-conjugate, 

(iii) ID : Go n DI is the number of S-subgroups in [Go}, 
{iv) all triality S3 -complements in G0 S are G0 -conjugate, 

(v) IGo : Go n DI= IM(Go)l2
-

Proof. Let Pi,A E [Go] be S-subgroups. If Pi= Pf for g ED then M(Pi)=M(P2 ) 9 , 

since, for every p1 E Pi, we have [pi, u) = W, u] = ~, o-]9 for suitable P2 E Pl. Conversely, 

let M(Pi)=M(A) 11 and put Po= Pf. Then Po is S-maximal and, by the above, M(Po) = 
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M(P2 ')R = M(P1 ). Corollary 3 now implies P0 = P1• This shows equivalence of (i) and (ii). 
Clearly, (iii) is equivalent to (ii) . Equivalence of (iv) and (v) follows from Lemma 5. Show 
that (ii) a.nd (iv) are equivalent. Let (ii) hold. If S0 is a triality S3-complement in G0S then 
sg = S for some g E G and Gg is an S-subgroup in [Go]- By (ii), Gt= Go for some h ED. 
But then gh E G0 , since Na(Go) = G0 , and Sg" = S" = S. Now let (iv) hold. If PE [Go] 
is S-invariant and P9 = G0 for suitable g E G then Go is S9-invariant. By (iv), S9" = S for 
some h E Go . But then gh ED and P9" =Ga= G0 • .t. 

We intend to study in detail what subloops of M(q) arise from S-ma.ximal subgroups 
of G and determine which of them are maximal. Using Lemma 6 we will show that all 
such subloops are isomorphic and conjugate by automorphisms for every type of S-maximal 
subgroups of G. To do this we will need to know explicitly the action of the triality auto­
morphisms on G and it is for this reason tha1. we invoke the Ca.yley algebra. 

4 The split Cayley algebra 

An algebra A is called alternative if (xx)y = x(xy) and (yx)x = y(xx) for all x,y E A. 
These identities imply (xy)x = x(yx), which allows us to write xyx without ambiguity. For 
every x EA, introduce the linear transformations U.,, L.,, R,., of A as follows: 

yU., = xyx, yL., = xy, yR,., = yx for all y EA. 

Lemma 7 Let A be an alternative algebra. Then, for all x, y, z E A, we have: 
{i} (xy)(zx) = x(yz)x, 

{ii) (xyx)z = x(y(xz)) or, equivalently, L.,.,,:r: = L.,LyL:r:, 

{iii} z(xyx) = ((zx)y)x or, equivalently, R,.,IP' = R,.,flvR,.,, 
{iv) (xy)z(xy) = (x(yz)x)y or, equivalently, U"ll = L,Pz:flv, 
(v) (xy)z(xy) = x(y(zx)y) or, equivalently, U,:y = R,.,U,L.,. 

(4.1) 

Proof. The identities (i) - (iii) a.re well-known (see, e.g., Lemma 2.7 in [3]). For (iv) 
and (v), see relation (8) in [7] . ..l 
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Given a group Z, a decomposition A= ffizez A. is called a Z-grading of A if A,, A., ~ 

A.,., for all zi, z2 E Z. Given an algebra A over a field F with involution, denote by A0 the 

Cayley-Dickson duplication of A, which is the vector F-space A EB A with multiplication 

(a1, b1)(a2, 1'2) = (a1a2 - ~b1, ~a1 + b1a2). (4.2) 

Then A0 is an algebra with involution (a, b) = (a, -b). 

Let O = O(q) be the 8-dimensional Cayley algebra over F. This algebra can be defined 

as set of all Zorn matrices 

( 
a V) 3 w b , a,b E F, v, w E F (4.3) 

V · W = V1W1 + V2W2 + V3W3 E F, 

V X W = (v2W3 - V3W2,V3W1 - V1W3,V1W2 - V2W1) E F 3 . 

w; choose the standard basis ( e1 , ... , e4 , fi, ... , / 4) of O as follows 

(1 0) (0 i) (0 j) (0 k) · ei = 0 0 , e2 = 0 0 , e3 = 0 0 , e4 = 0 0 , 

(4.5) 

ft= ( 
0 0

) , 12 = ( o_ o), h = ( o_ 0
), 14 = ( o o) , 

0 1 -l 0 -J 0 -k 0 

where O = (0, 0, 0), i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1). Then 1 = e1 + Ji is the unit of 

O. We identify F with (1). The basis elements of O multiply as shown in Table 2. 

Fot x E O define its conjugate x by 
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Table 2. Multiplication table of the algebra 0 

e1 e2 e3 e4 I Ii h h f4 

e1 e1 e2 e3 e4 

e2 -/4 h e2 -e1 

e3 f4 -fz e3 -e1 

e4 -h h e4 -e1 

/1 Ji fz h f4 

fz h -/1 -e4 e3 

h h -/1 e4 -e2 

f4 f4 -Ji -e3 e2 

Then conjugation is an involution of 0. Introduce a quadratic form Q ; 0 ➔ F by 

Q 
i----=-+ ab-v-w, 

and and denote by ( , ) the associated bilinear form JQ- Then (4.5) is a standard basis for 

these forms, i.e. 

In particular, the norm of an arbitrary element of O is 

If the characteristic of Fis not 2 then O possesses another equally useful basis. Namely, 

suppose for the moment that q is odd and let a, b E F satisfy a2 + b2 = -1. Then the 

elements 

(4.6) 

together with 1, form a basis of O and multiply as shown in Table 3. This table is uniquely 
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Table 3. An alternative multiplication table of O in odd characteristic. 

1 t:1 t:2 €3 €4 t:5 €6 €7 

£1 -1 €4 £7 -t:2 £5 -€5 -£3 

£2 -£4 -1 £5 t:1 -€3 £7 -£5 

t:3 -€7 -es -1 £5 e2 -€4 e1 

e:, e2 -e:1 -cs -1 €7 e3 -e5 

€5 -€5 e3 -€2 -e:1 -1 e1 e4 

es €5 -t:7 e4 -t:3 -£1 -1 £2 

€7 e3 Cfl -€1 es -£4 -€2 -1 

restored from the relations 

E~ = -1, Er+1iE=r+3 = Cr-t2ert-0 = e.-+4Cr+~ = t:,., 
(4.7) 

tr+Jer+l = er+6er+2 = er+ser+◄ = -er, tr+7 = er, 

where 1 ~ r ~ 7. This new basis is Q-orthonorm.al and satisfies 

eo = eo, €i = -£;, for 1 ~ i ~ 7, (4.8) 

where we denoted c:0 = 1. In particular, for any a0 , ••• , a7 E F, 

(4.9) 

Let q be arbitrary. The following properties of the Cayley algebra O are well-known. 

Lemma 8 We have 

{i) 0 is an alternative algebra. 

(ii} the space (0, Q) is a non-degenerate orthogonal space of type'+' . 

For all x,y,z,w E Owe have 

(iii) Q(xy) = Q(x)Q(y), 

(iv)¥= x and xy = yx, 
(v} Q(x) ==xx= xx, 
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(vi) (x,y)=xy+yx, 

{vii} x(xy) = (yx)x = Q(x)y, 

(viii) (zx,y) = (x,zy) and (xz,y) = (x,yz), 

(ix} (x,y)(z,w) = (xz,yw) + (xw,zy). 

Proof. See chapter 2 in (3]. • 

Introduce some important subalgebras of 0. Let s E F be such that t 2 
- st + 1 is an 

irreducible polynomial over F. Define 

( 4.10) 

These are subalgebras of O with involution induced from 0. The mapping 

( (a,~:,o) (a,~~,O) ) e-t ( :: :: ) 

is an isomorphism between O and the algebra Ml( F) of 2 x 2-matrices over F with involution 

Moreover, F is isomorphic to Fq, whose involution is the Frobenius automorphism a= aq 

and Pis isomorphic to FEB F whose involution is (a, b) = (b, a). 

Denote w; = e, + f;, i = 1, ... , 4. Observe that ttJ = { w1 , ••• , w4 } is a Q-orthonormal 

set. It is directly verified that 

0 = M(f)Mw3, 

and, for every triple ( A, B, w) E { ( 0, M, w3 ), (M, F, w2 ), (M, IP', w2)}, the mapping 

is an isomorphism between the algebras A and B EB B preserving involution, where the 

multiplication in B (f) B is as in ( 4.2). In other words, 0 9:: M 0
, M 9:: F°, and M e: P0

. 

Hence, we have the decompositions 

0 = Fw1 EB Fw2 EB Fwa EB Fw4, 

0 ::::: Pw1 EB IP'w2 EB Pw3 EB Pw4. 

13 

(4.11) 



Lemma 9 Let A be a su.balgebra of O that contains 1. Then 

(i) AAL ~ A.L, A.LA~ A.L. 

For all a, b E A, v, w E A.L, we have 

{ii} v = -v, va = av, 
(iii} a(bv) = (ba)v, (vb)a = v(ab), 

{iv) (av)w = (vw)a, w(va) = a(wv). 

Proof. 

(i)-(iii) See Lemma 6 in chapter 2 of [3]. 

(iv) For every c E A, we have by (ii) and (8.viii- ix) 

((av)w -(vw)a,c) = (av,cw)-(vw,ca) =; (va,cw) + (vw,ca) = (v,c)(a,w) = 0, 

since a E A and w E A 1.. By non-degeneracy of ( ·, • ), we obtain the first relation in (iv). 
The second one is obtained by conjugating. .l 

This lemma implies that 

0= MEBMw3 (4.12) 

is a Zz-grading of O and ( 4.11) are Z 2 x ZTgradings of 0. 
Introduce the projective space PG(O) = { (x} I x E O}. By analogy with the standard 

notation, we put 

GL(O) = {x E O I Q(x) # O}, PGL(O) = {(x} E PG(O) I Q(x) # O}, 
SL(O) = {x E O I Q(x) = l}, PSL(O) = {(x) E PG(O) I Q(x) E (F•)2}. 

(4.13) 

In particular, PSL(O) is the set of all +I-subspaces of 0. By (8.i) and (7.i), we see that 
GL(O), SL(O), PGL(O), and PSL(O) are Moufang loops with multiplication induced from 
0. Note that {±1} is a normal subgroup of SL(O) and SL(0)/{±1} e:! PSL(O). Similarly, 
GL(0)/(1) ~ PGO(O). It is easy to see that 

IGL(O)I = (q4 
- q3)(q4 -1), IPSL(O)I = ~q3(q4 

- 1), 

IPGL(O)I = ISL(O)I = q3 (q4 
- 1). 
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Let GO(O) be the group of all linear transformations of O that preserve the quadratic 

form Q. We also introduce the groups 

SO(O) = {g E GO(O) I detg;::: 1}, 0(0) = GO(O)', 

PGO(O) = GO(O)/Z(GO(O)), Pf!(O) = PGO(O)'. 

Then PO(O) is a finite simple group isomorphic to POt(q). We denote the image in 

PGO(O) of an element g E GO(O) by g. 

A reflection r,, in a non-singular vector v EI() is the linear transformation of I() given by 

(x,v) 
xrv = X - Q( v) v for all x E 0. 

Lemma 10 Let v, w EI()) be non-singular. Then we have 

(i) Tv is an involution in GO(IO) and detrv = -1, 

{ii) r., = rw <=? (v) = (w}, 

(iii) (rv)9 = rvg for every g E GO(O), 

(iv) g E GO(O) centralizes rv if and only if (v}g = (v}. 

Proof. Immediate consequence of the definition. A 

Using (8.vi-vii), we can rewrite 

(xv)v+(vx)v 1 _ 
xr.,=x- Q(v) =-Q(v)vxv. 

(4.14) 

( 4.15) 

This expression is fundamental in that it relates the action of GO(O) (which is generated 

by reflections) with the multiplication in I()). In particular, the conjugation in O is -r1. The 

projective action of generators of PGO(O) on PG(O) is then written as 

(x)r,, = (vxv) for all x E 0 . (4.16) 

We also introduce, for every (v} E PG(O), the projective analogs U{v), L(v), R(u) of the 

operators ( 4.1) as follows: 

(x)UM = (vxv), (x)L{v) = (vx), (x}R{v) = (xv} for all (x) E PG(O). 
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Note that 
U<.,> E PGO(O) {=} (v} E PGL(O), 

L(v),R(v) E PGO(O) <=> (v} E PSL(O). 

In fa.ct, whenever (v} E PGL(O), we have U(v) = iyi'., by (4.16), which implies U(t!) E 
PSO(O). Therefore, UM E PO(O) iff (v) E PSL(O) and we will show later (see 6.7) that 

the same is true for L(v) and RM· 

The following lemma will be very useful. 

Lemma 11 Let x, y E O be singular elements. Then 

(i) xO and Ox are t.s. ,I-subspaces of 0, 

{ii) every t.s. ,I-subspace has form xO or Ox for some x, 

(iii) (x) = (y) {=} xO = yO {=} Ox = Oy, 

{iv) a E xO <=> xa = 0, and a E Ox <=> ax= 0, 
(v) (x,y) f, 0 ~ dim(xOn yO) = 0, 

{vi) (x,y) = 0 and (x)-/- (y) if and only if dim(xO n yO) = 2, 

in which case xO n yO = x(yO) = y(xO), 

(vii) xy = 0 <=> dim(xO n Oy) = 3, 

(viii) xy ¥, 0 <=} dim(xOn Oy) = 1, 

Proof. These properties are well known. For proofs, see, e.g., §2 in [10). ~ 
This lemma shows that all t.s. 4-subspaces of O a.re naturally divided in two equal families: 
those of form xO and Ox, any two members belonging to the same family iff they intersect 
in a. subspace of even dimension. 

5 Automorphisms -of the Cayley algebra 

Every x E O satisfies xl - (x + x )x + xx = 0, where x+ x and xx = Q(x) are in F. Clearly, if 

x </. F, the coefficients of a monic quadratic equation satisfied by x are uniquely determined. 

Therefore, every automorphism f of O must preserve the form Q, since lf = 1 also holds. 
These requirements however do not characterize the automorphisms 0. We obtain certain 
sufficient conditions for a. linear transformation of I() to be an automorphism. 
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Let A E {F, P} be a commutative subalgebra of O defined by (4.10). By lemma 9 and 

( 4.11 ), 0 is a 4-dimensional left and right A-module with basis ro = { w1, ..• , w4}. Every 

left A-(serni)linear transformation f of A.Lis also right A-(semi)linear, since by (9.i) 

(va)f = (av)f = (aT)(vf) = (vf)(aT) (5.1) 

for every v E A .1. and a E A, where T is the identity mapping or the involution of A according 

as f is A-linear or A-semilinear. Put 

if A= F, 

if A= lP', 
(5.2) 

Wheres, t E F are such that the polynomial x2 - sx + 1 is irreducible over F and t generates 

F*. Then A has order q + 1 and q - 1 in the respective cases A = IF and A = P. Note that 

.A - X is invertible in A unless A = lP' and q = 2, 3. We will assume that q ~ 4 in this case. 

For arbitrary x, y E tO define 

Lemma 12 We have 

(i) kA is an A-sesquilinear form on 0, 

(ii) kA(x,x) = Q(x), 

(iii) It> is a kA-orthonormal A-basis of 0. 

{iv) kA is non-degenerate. 

(5.3) 

Proof. (i) Let x, y E 0. Additivity of kA in both arguments is obvious. By (8.vii-viii), 

AkA(x,y)(.A - X)= .A 2(x,y) - A(x, Ay), 

kA(kc, y)(A -1)= >.(>.x, y) - (>.x, ,\y) = ,\(x, 1y) - AX(x, y). 

Subtracting the right-hand sides, we obtain 

Hence, kA(Ax,y) = AkA(x,y). Also, 

k,4(y,x)(,\- 1)= ,\(y,x)- (y,>.x) = >.(x,y)- (>.x,y), 

k,4(x,y)(1- >.)= X(x,y)- (x,>.y) = X(x,y)- (Xx,y). 
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Summing the right-hand sides, we obtain (>.+X)(x, y)-((>.+3:)x, y) = 0. Hence, kA(x, y) = 

kA(y,x). These remarks imply that kA is A-sesquilinear. 

(ii) Using (8.viii), we have 

(iii) Since Aw,l.Aw; for i-:/ j, we have kA(w;,w;) = 0. Also, kA(w;,w;) = Q(w;) = 1 

for l ~ i ~ 4 by (ii). Thus, ltJ is r A-orthonormal. 

(iv) This follows from (iii). A 

Although >. appears in the definition (5.3), the form kA depends only on A. Indeed, if 

A= (1,>.o)F for some >.0 =a>.+ b EA with a,b E F, a=/ 0, then substitution >.0 for>. 

in (5.3) defines the same form. This remark allows one to define kA in the excluded cases 

A = IP and q = 2, 3 as well. However, we will not be using this. 

Note also that Al. = (w2 , w3 , w4)A is a 3-dimensional A-module. For all u, v, w E A.L 

define 

(5.4) 

Lemma 13 tA is an alternating A-trilinear form on A.L. 

Proof. Additivity of tA in all arguments is obvious. Take u, v, w E A.L. We have 

tA(au,v,w) = atA(u,v,w) for a E A, since kA is A-linear in the first argument. Also, 

(9.ii) implies tA(u,v,v) = · kA(u,-vv) = -Q(v)kA(u,1) = 0. It remains to show that 

tA(u,v,w) = tA(v,w,u). By (9.vi), we obtain 

kA(u,vw)(>.-3:) = >.(u,vw)-(u,>.(vw)) = >.(vu,w)-(3:u,vw) = ->.(vu,w)+(Xu,vw), 

kA(v,wu)(>.-X) = >.(v,wu)-(v, >.(wu)) = >.(vu,w)-(v,w(u>.)) = ->.(vu,w)-(wv,u>.). 

Subtracting the right-hand sides gives 

(Xu, vw) + (wv, u>.) = (u>., vw) + (u>., wv) = (u>., vw + wv) = (v, w)(u>., 1) = O, 

since u>. E A.L. Thus, tA(u,v,w) = tA(v,w,u) . .& 

If V is an A-submodule of O then the orthogonal complement V l. is the same whether 

considered with respect to Q or kA. In particular, a non-degenerate A-(semi)linear tran&­

formation f of O that preserves the form kA and leaves V invariant also leaves invariant 

v.L. 
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· Lemma 14 A non-degenerate A-{semi)linear transformation f of O that satisfies If= 1 

and preserves the forms kA and tA is an automorphism of 0. 

Proof. Let f be as stated. Then both A and A.L are /-invariant; hence, it is correct to 

say that f preserves tA. For arbitrary x, y, z E A.L, we have 

Since f is non-degenerate, xf runs through A.L as x does. By non-degeneracy of kA, we 

have (yz)f = (yf)(zf). For arbitrary y, z E O the claim holds by A-(semi)linearity and by 

(5.1). _. 

This lemma gives a sufficient condition for f to be an automorphism. However, not every 

a.utomorphism of I()) leaves A invariant. To obtain a criterion, we could similarly introduce 

the trilinear form t( u, v, w) = ( u, vw) on the 7-dimensional F-space F.L. Then any F-linear 

transformation f of l[JI is an automorphism if and only if it satisfies lf = 1 and preserves 

both (,,-) and t. This is proved as Lemma 14. 

The full group of automorphisms Aut(O(q)) is known to be isomorphic to the Chevalley 

group G2(q) of order q6 (q6 - l)(q2 -1) (see chapter 2 in [23]). We will require the explicit 

form of this 8-dimensional representation of G2(q). Introduce some basic automorphisms of 

0. For every CE SL3 (q), define 

(5.5) 

and, for every c E F 3 , put 

~ 
( 

a v ) + ( -w · c (a - b)c ) + ( 0 -(w · c)c ) _ 
w b -v x c w · c O 0 
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Then <50, c51, <52 a.re automorphisms of 0 . Note that c51 and c52 are the exponents (in the 
sense of §3 in [24]) of the following derivations of 0. 

) ( a v) ( v•c wxc) ~~: ~ ; 
w b (b- a)c -v · c (

a v) (-w·c (a-b)c) d2(c): i-+ . 
w b -v X C w. C 

Let 

be a root system of type G2 . We may choose the following root subgroups: 

x..,. (t) = 81 (ti), 

x_..,1 (t) = c52(ti), 

XW'J(t) = '51(tj) 1 

X-W'J(t) = <52(tj), 

Xw,(t) = '51(tk); 

X_wa (t) = c52(tk); 
X..,,-w,(t) = i50 (E + tE;,;), 1:,;; i,j:,;; 3, i =f=-j; 

(5.6) 

where t E F-, E is the identity 3 x 3-ma.trix, and E,,; a.re the 3 x 3 matrix units. These 
root subgroups generate D = Aut(O). Define the short and long fundamental roots to be 
a= w2 and f3 = w1 - w2 • Then the system of positive roots of <Ii is 

{ 

W1=0 + /3, W2=a, -W3=2o + /3, } Il= . 
W1 - W3=3o + 2/3, W1 - W1=/3, ~-= W3=3a + /3 

(5.7) 

In particular, the unipotent subgroup U = U.,en Xw(t) of D contains '50(C) for all upper 
uni triangular C. Define also the diagonal subgroup 

(5.8) 

(For a.ll these notions, see [17]. See also pp. 142- 143 in [14).) 

The group D = Aut(O) lies in !l(O) and induces automorphisms of all loops (4.13) 
associated with 0. We identify D with its image/) in PO(O). Note that D co=utes with 
S and thus coincides with the D = Ca(S) introduced after Lemma 5. Indeed, for every 
0-point (x} and every f E D, we have 

(x)/u = (xf)u = (x/) =(xi)= (x}f = (x)uf, 

(x)f p = (xf)p = (x/0) = (xO)f = (x)pf. 
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The two actions of Don PSL(O) and M(Pfl(O)) are respected by the isomorphism (6.5), 

since, for every m = [g, u] E M(Pfi(O)), we have 

We also note that in general D does not conta.in all automorphisms of PSL(O). As follows 
from [20), the full group Aut(M(q)) is the extension of G2(q) by its field automorphisms. 

For our purposes, we need to know certain maximal subgroups of G2(q). Table 4 is a 
consequence of the papers [21, 22). The notation is mostly preserved. 

Table 4. Some maximal subgroups of G2(q) 

Type Order Comments 

Pa q6 (q - 1)2(q + l) pa~abolic, short root 

Pp q6(q ,;_ 1)2(q + 1) parabolic, long root 

(SL2 (q) o SL2(q)).d q2(q2 _ 1)2 q =I 2 
23·PsL3(2) 8 · 168 q = p odd 

G2( qo) q3(q3 - l)(qJ - 1) q = q~, k prime 

G2(2) 26 • 33 . 7 q = p odd 

SL3(q): 2 2q3(q3 - l)(q2 - 1) q arbitrary 

SUJ(q): 2 2q3(q3 + l)(q2 
- 1) q arbitrary 

6 The geometry of triality 

Let c:p be the polar geometry associated with Q. It is the geometry that consists of objects 
of four types: all t.s. I-subspaces (x) of O called 0-points of c:p, all t.s. 2-subspaces of 0 
called lines of 'l!, all t.s. 4-subspaces of form xO called I-points, and all t.s. 4-subspaces of 
form Ox called r-points of c:p. The incidence between these objects is natural except that 
an /-point is incident with an r-point iff they intersect in a 3-space. 
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An automorphism of 'l! is a transformation of 'l! that preserves the type of objects and 

the incidence relation between them. The group Pil(O) acts naturally by automorphisms 

on ~ and it is known th~t the full group Aut(~) is just the extension of Pil(O) by its field 

and diagonal automorphisms (see, e.g., [8], p. 203). 

Remark 15 The group P!1(0) is faithfully represented as group of permutations on each 

of the four types of objects of~- In particular, an element g E Pfl(O) is identity if and 

only if it stabilizes all 0-points of '°+J. 

The remarkable property of the geometry '"+!, often called triality, is that it also admits 

transformations that preserve the incidence but permute the three types of points. These 

can be defined in the following way. Let p be the transformation of ~ that acts on the 

points by the rule 

(6.1) 

i.e., p bijectively maps 

{0-points} 8 {/-points} 8 {r-points} 8 {0-points}. 

This action is uniquely extended to the lines of '°+J to preserve incidence: for example, if (x) 

and (y} are 0-points on a line l then lp = xO n yO. We also define o- = i-1 E PGO(O), i.e. 

the action of o- on all objects is induced by conjugation: 

{x) rl {x), xO ~ Ox, Ox rl xO, {x,y) rl (x,y}. (6.2) 

For details, see [10, 11]. Clearly, p and o- normalize Aut(~) and, in particular, its charac­

teristic subgroup Pfl(O). We henceforth denote S = (p, o-), where p and u are defined by 

(6.1) and (6.2). 

Lemma 16 Pn(O) is a group with triality S . 

Proof. The fact that p3 = o-1 = (po-)2 = l (identical mappings of '"+J) is obvious from the 

definitions (6.1) and (6.2). Take g E Pil(O) and let v E O be such that (l)g = (v). Note 
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that vis non-singular. Then [g,a] = aRa = r.,r1 by (10.iii). Hence, for all points (x), xO, 

O.z: ofl.p, _we have 

(x)[g, a] = (x)f,,r1 = (vxv), 

(xO)[g,a} = (v(Ox)v)r1 = (IO{xv))r1 = (vx)O, 

(O.z:)[g,a] = (v(xO)v)r1 = ((vx)O)r1 = O(xv), 

where we have used (4.16), (7.i), and the fact that vis non-singular. Then we have 

Therefore, 

(x}[g,a]P = (x)p-1[g,a]p = (Ox)[g ,a]p = (O(xv))p = (vx) , 

(x)(g,a]P
2 = (x)p[g,uJp-1 = (xO)[g,uJp-1 = ((vx)O)p-1 = (xv). 

(6.3) 

(6.4) 

for every 0-point (x) by (8.vii). Remark 15 now implies [g, ul[g, u]P[g, u)P' = 1 for all 

g E P!l(O). A 

There are now two ways to associate the simple Moufang loop M(q) with the Cayley 

algebra O; namely, taking the loops PSL(O) and M(P!l(O)). We construct an explicit 

isomorphism between these loops. Define the mapping 

0 : M(P!l(O)) -+ PSL(O) (6.5) 

as follows: given an m = [g, a] E M(Pn(O)), put mB = (l}g. Then mB E PSL(O), since 

(l)g is a +1-subspace. Note that 

by (10.iv) . This implies that 0 is well-defined and injective. It is also surjective, since P!l(O) 

is transitive on +I-subspaces (see [9], Lemma 2.10.5). Therefore, for every m E M(P!l(O)), 

we have 

mB = (v) -<===} (x)m = (vxv) for all 0-points (x) E l.p 

by the first equality in (6.3). 
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Lemma 17 The mapping(} is an isomorphism of loops M(PQ(O)) and PSL(O). 

Proof. Take m,n E M(P!1(0)) a.nd write m = [g,cr), n = [h,u] for suitable g,h E 
P!1(0). Let (l)g = (v} and {l)h = (w). Note that m-1 = (g .. , u] a.nd 

{l)ga = (l)crgu = (l)ga = (v}cr = (v) . 

Therefore, using (6.3), (6.1), a.nd (7.iv), we have 

(x)(m.n) = (x)m-Pnm-p2 = ((w(vx)w)v) = ((vw)x(vw)) 

for every 0-point (x) E '.Jl. By (6.6), we ha.ve (m.n)8 = (vw) = (m8)(n8). A 

As a consequence, we have the following description: 

Corollary 18 Let Go be an arbitrary S-subgroup of PQ(O). Then M(G0)8 = (1)00 , where 
multiplication on the orbit {l)G• is induced from O . 

We can also write the action of p on M(P!1(0)) in terms of the operators U(v), L(v}, 

RM· Using (6.6),(6.4), a.nd Remark 15 we have 

. and 

M(P!"!(O)) = {UM I (v) E PSL(O)}, 

M(P!"!(O)}P = {L<.,> I (v) E PSL(O)}, 

M(P!1(0})P3 = {R{v) I {v) E PSL(O)}, 

7 The maximal subloops of M(q) 

First, we introduce some subloops of the simple loop PSL(O) £!! M(q). 
1. Maximal parabolic subloop, q arbitrary. Consider all Zorn matrices of the form 
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It can be verified using (4.4) tha.t they form a subloop of SL(O) whose order is ,f(q2 -1). 

Its ima.ge Pin PSL(O) will be called a parabolic subloop of PSL(O). We will later show 

that it is a maximal subloop. Note that IPI = ~q3(q2 
- 1) and P = q2 : PSL2(q), i.e., 

P has a normal elementary abelian subgroup of order q2 that corresponds to the matrices 

(7.1) with a1 = a 2 = l, a3 = a4 = O; extended by a subgroup isomorphic to PSL2 (q) that 

corresponds to the ma.trices (7.1) with r1 = r2 = 0. Even though the composition factors 

of P are groups, it is non-associative. 

2. (PSL2(q), 2), q =/= 3. Recall the process of duplication of a group introduced by Chein 

in Theorem 1 of [12]. Let H be a group. The set of 2IHI symbols { h, h jh E H} with a new 

multiplication' · ' defined by 

(7.2) 

for all g,h EH becomes a Moufang loop. We denote it by (H,2). Clearly, His embedded 

a.s a normal subgroup of (H, 2) of index 2. Fixing an arbitrary u E (H, 2)\H, every element 

of (H,2) is uniquely written ash or h • u for suitable h E H. Then, suppressing the' · ', 

(7.2) can be rewritten as 

-!.. 
g(hu) = (hg)u, (gu)h = (gh- 1 )u, (gu)(hu) = hg•. (7.3) 

It can be seen that (H, 2) is non-associative iff H is non-abelia.n. 

Now consider the Zorn ma.trices of the two types 

, a 1a4-a2a3 = l; , r1r2+r3r4 = -1. (7.4) 
( 

a 1 (a2,0,0)) ( 0 (O,r1,r3)) 

(a3,0,0) a4 (0,r2,r4) 0 

They form a subloop of S0(0) which has a subgroup of index 2 isomorphic to SLz(q) 
formed by the matrices of the first type. It can be verified that the image of this subloop 

in PSL(O) is isomorphic to the duplication (PSLz(q),2) of order ¼q(q2 -1). 

3. Field subloop M(q0 ), q = q~ for prime k and k # 2 if q is odd. Clearly, PSL(O) 

contains a naturally embedded copy of the loop PSL(O(_qo)) with respect to the standard 

basis {e1, ••• ,/4 } of 0. 
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4. PGL(O(qo)), q = q~ odd. The field subloop PSL(O{q0 )) of PSL(O) is of index 2 in 
a larger subloop: Namely, consider the mapping <p : GL(O(qo)) ➔ PSL(O(q)) defined by 
·x 8 (x)F,· It is well defined as every element in F:O is a square in Fq*• It is easy to see that 
<pis a homomorphism of loops with kernel (l)F..,. Therefore, PGL(O(qo)) is embedded in 

PSL(O(_q)) as a subloop of order qJ(qt - 1). 

5. M(2), q = p is an odd prime. Consider the real Cayley algebra O(IR), which can 

be defined as an 8-dimensional algebra over R with a unit spanned by the elements {1 = 
c:0,e1, ... ,e7} that multiply as in Table 3. The quadratic form defined by (4.9) turns O(R) 
into a Eucledia.n space. We_ define the conjugation on the basis by ( 4.8) and extend it by 

linearity. Then O(IR) satisfies (8.iii-vii). It was shown in [16] that O(IR) contains a certain 
set <I> of 240 elements of norm 1, called the units of integral Cayley numbers, which is 
multiplicatively closed, contains 1, and such that ~ = <I>. In other words, fl> is a loop. This 
set can be defined in terms of an fQ-orthonormal basis {Ii, ... , ls} of O(R), where 

as follows: 

/1 = ½(eo + ea), la = ½(c:2 + es), ls = ½(c:1 +er), 11 = ½(es+ e4), 
l2 = ½(c:o - ea), /4 = ½(c:2 - es), ls= ½(c:1 - £1 ), ls= ½(c:s - £4), 

{ 
±1. ± 11; 1 ~ s, t ~ 8, s # t, } 

<I>= ½(i1l1 + i2l2 . . . + isls); i, = ±1, i1i2 . .. is= 1 · 

(7.5) 

(7.6) 

We have changed here the sign of one of Coxeter's l;'s (see §10 in [16]) so that the product 
i1il ... is in (7.6) be equal to 1. Then (7.6) coincides with the standard definition of a root 
system of type Es. Call a subset Il C <I> a fundamental system of roots if 

1. Il is a basis of O(R), 

2. The coefficients every u E ~ in 11 are either all non-negative or all non-positive. 

The standard fundamental system IT of <I> is shown in the Dynkin diagram (7.7), in which 
tw~ elements a, b E Il are joined iff ( a, b) = -1 and disjoint iff ( a, b) = 0 (for all of this, see, 
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e.g., [17]). 

l1 -12 h- l3 la-l,. l4 - ls ls - l6 /5 +h -½(l1 + ... +ls) 
• • • • 

I 
• • 

(7.7) 

ls-h 

Let W be the Wey! group of <I>, which is by definition the group generated by the reflections 

r,, for all u E <I>. It is known that Wis in fact generated by r,, for u E II and is isomorphic 

to the double cover 2.Pflf (2).2 (see §4 of chap.VI in [18]). Let W0 = W' ~ 2.PS1i(2). Note 

that 

Wo = (r,,r1 I u E II) = (U,;- I u E II). (7.8) 

Lemma 19 W 0 acts transitively on <I>. 

Proof Take u E <I>. First of all, every u is W-conjugate to a fundamental root in II (see 

Proposition 2.1.8 in [17]). Let w E W be such that uw = a E II. If w (/. W0 , take b E 4> 

orthogonal to a, e.g. a fundamental root not joined with a by an edge in (7.7). Then 

uwrb = a and wrb E W0 • Now if a,b E II are joined by an edge in (7.7) then (a,b) = -1 

and arb = a - (a, b)b =a+ b. Similarly, br0 =a+ b. Hence, arbra = b. Since r.,r& E W0 and 

(7.7) is connected, all fundamental roots are W0-conjugate and the claim follows . .t 

Lemma 20 W = Nao(o(R))(<I>). In particular, L,,, R,. E W for all u E <I>. 

Proof Let g E GO(O(R)) leave <I> fixed. It is easy to see tha.t Ilg is also a. fundamental 

system of <I>. However, all fundamental systems are W-conjugate by Theorem 2.2.4 in [17], 

i.e., llgw = II for some w E W. Since gw preserves the scalar product a.nd the diagram 

(7.7) has no non-trivial symmetries, gw acts identically on II, i.e., g = w-1 E W. Clearly, 

L,,, R,. E Nao(O(R))( <I>) for all u E <I> and the claim follows. J. 

Note that all coefficients of every u E <I> in the original basis { t:0 , ••• , €1} belong to 

{O, ±1, ±½}. Moreover, it can be seen from (4.15) that all matrix coefficients of every w E W 
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in the basis {t:0 , ••• ,t:7 } are in Z[½], since 4> is multiplicatively closed and -¥ = 4>. These 
remarks show that 4> is a subloop of SL(O(Z[½])) and Wis a subgroup of GO(O(Z[½])), We 
can now perform the p-reduction Z[½] ® Zp ~ Fp to identify 4> and W with their respective 

images in SL(O) and GO(O). Denote by cl> the image of 4> in PSL(O). Clearly, it is a 

subloop there of order 120. It is now easy to determine its isomorphism type. Note that 

W0 ~ Pnt(2) is an S-subgroup of P!l(O). Indeed, Wo is o--inva.riant since o- = r1 E W. It 
is also p-invariant by (7.8), (6.8) , and Lemma 20. Finally, the Moufang loop M(Wo) ~ M(2) 
is isomorphic by Corollary 18 to (l)Wo ~ PSL(O) which is exactly ~ by Lemma 19. In 
other words, we have demonstrated an explicit embedding of a simple loop M(2) of order 

120 into PSL(O(p)) ~ M(p) for every odd prime p. 

It is our purpose to show that the above 5 types of subloops are maximal and the only 

maximal subloops of M(q) up to isomorphism, provided the indicated restrictions on q a.re 

satisfied. 

Lemma 21 The set of element orders of the loop M(q) is the set of all divisors of the 

numbers ¼(q- 1), ¼(q + 1), and p. 

Proof. For every pair of vectors v, w E F3, we can find a matrix C E SL3 (q) such that 
both vC and wc-T are in (i), where i = (1, 0, 0). Then the automorphism 80 ( C) sends an 
arbitrary z E SL(O) of form (4.3) to an element of the first form in (7.4). This shows that 
every element of PS L( 0) is conjugate by an automorphism to an element of the subgroup 
PSL2(q) ~ PSL(O). Hence the set of element orders of M(q) is equal to that of PSL1(q), 
which is known to consist ofall divisors of the numbers ¼(q-1), ¼(q+ 1), and p (see [15]). A 

Lemma 22 The su.bloops of PSL(O(_q)) of types 1-5 above are not embedded into each 

other, provided the indicated restrictions on q are satisfied. 

Proof. Suppose that M and N are subloops of types 1-5 and M < N. By Lagrange's 

theorem (see [l]), IMJ divides jNJ. It can be seen that only the following cases are possible: 

a) q is even, N is parabolic, and either M = (PSL2(q),2) or q = qi and Mis a. field 
subloop of order ifo(qt - 1). Then M must intersect non-trivially the normal 2-subgroup of 
N. However, M itself does not have normal 2-subgroups, a contradiction. 
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b) q =pis an odd prime, M ~ M(2) and N is either parabolic or (PSL2(q),2) such 

that 120 divides JNJ. The embedding M < N is impossible, since the composition factors 

of N are groups a.nd M is simple a.nd non-associative. 

c) q = q5, M = (PSL2(q),2) and N is a field subloop PSL(O(qo)) or PGL(O(q0 )) 

according as q is even or odd. In both cases PSL2 (q) must be a subgroup of PSL(O(q0 )). 

However, the group PSL1 (q) contains an element of order ¼(q + 1) which PSL(O(qo)) does 

not by Lemma 21, a contradiction. 

d) q = p = 5, N = M(2), and M = (PSL2(5), 2). Although both N and M have order 

120, they are non-isomorphic as the former is simple and the latter has a normal subloop 

of index 2. ~ 

We note that when q = 3, the subloop (PSL2(3), 2) ~ M(3) is isomorphic to a parabolic 

subloop of M(2) ~ M(3) and thus is not maximal (see [13]) . 

We will need several auxiliary facts. Given a +4-decomposition O = V0 EB V1, define 

.C(Vo EB½) = {I E ',Jlj l <;; Vo U Vi} (7.9) 

Given a.n t:2-decomposition O = Vi EB ½ EB ½ EB Vi, where f = ±1, define 

.C(Vi EB ... EB Vi) = {l E '.Jll I ~ V; EB V; for l ~ i < j ~ 4}. (7.10) 

Let d be a +4- or e:2-decomposition of 0. Then d is ca.lled S-invariant if the set of lines 

.C(d) is S-inva.riant. 

Lemma 23 We have 

{i} If a +-,-decomposition O = Vo EB Vi is a Zrgrading then it is S-invariant. 

{ii) If an f2-decomposition O = ½ EB ... EB ¼ is a Z2 x Z2-grading then it is S -invariant. , 

Proof. (i) Let x E V; for i E Z2• Write x = Yo+Y1, where Y; E V;. Then xx= xyo+xy1 E 

V0. Thus xy;+l = 0. In partieular, if x is invertible then Yi+l = 0 and x = Yi E V;. Note 

that V; contains a basis consisting of invertible elements. By linearity, we have V; = V; for 

i E Z2• Hence, .C(Vo EB Vi) is u-invariant. 

Let l = (x,y} ~ V;. First, suppose xy :/: 0. By Lemma 11, if l <;; Oz for some singular 

z then (z) <;; /P, Moreover, xz = yz = O; hence, (x,z) = (y,z) = 0 and z <;; lJ. = l EB ¼+1, 
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Write z =ax+ by+ w, where a,b E F, w E Vi+i • Then 

xz = bxy + xw = 0, yz = ayx + yw = 0. 

By the first part of the proof, xy, yx E Vo and xw, yw E Vi. Hence, bxy = ayx = 0. By 

assumption, a= b = O; i.e., z E Vi+i and ls;;; Vi+i• 
Now, suppose xy = 0. By Lemma 11, x E Oy and y E Ox. Hence, l = Oz n Oy. It 

follows that /P = (x, '!7) = lu s;;; (V;)u = V; by the first part. 

(ii) Let l E £(Vi EB ... EB ¼). Then .X E V;1 EB V;1 for some 1 ~ i1 < j1 ~ 4. Let 

{i1 ,il} = {1,2,3,4}\{i1,j1}. Put Wt= V;~ ff! V;~, k = 1,2. Clearly, 0 = W1 EB W2 is a. 
ZTgra.ding of O and l E .C(W1 EB W2). By (i), ls E .C(W1 EB W2) ~ £(½EB ... EB¼) for every 

s ES . .l 

We can now describe the main result of this paper which is contained in Table 5 and 

proved in Theorem 1 below. We show that, for every type of S-maximalsubgroups Go from 
Table 1, the corresponding subloops M(Go) of M(q) are D-conjugate and hence isomorphic. 

(Recall that Dis the subgroup of Aut(M(q)) isomorphic to G2 (q).) The isomorphism type 

of M(Go) is shown in column III of Table 5. For convenience, we repeat in columns II and 

IV the restrictions on q and the order IM (Go) I from Table 1. Column V shows " ✓" (" -") 
if M(Go) is always (never) maximal in M(q) or gives the specific values of q for which it is 

maximal. The normalizer in D of M(Go) is given in column VI. The number of subloops of 

M(q) of a given type is shown in column VII. 

In particular, all maximal subloops of M(q) are classified up to isomorphism. 

Henceforth, we denote G = PO(O). 

Theorem I Table 5 holds. 

Proof. W,e proceed with a case-by-case analysis of the groups from Table 1. 

I. Go is a. Prsubgroup. The parabolic subgroup P2 is the normalizer in G of thre.e totally 

singular subspaces Po, p,, p,. of 0, where Po ~ p1 n p,., dim Po = 1, dim Pl = dim p,. = 4, and 

dim Pl n p,. = 3. By Lemma. 11, P2 has a nice interpretation in terms of the polar geometry 

~- It is exactly the normalizer of a triple (Po,Pl,Pr) of pairwise incident 0-, r-, and l-points 

of l.lJ. For brevity, call such a triple a triangle. Clearly, if a triangle is S-invaria.nt then so is 
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Table 5. Subloops of M(q) associated with S-maximal subgroups of P!l;(q) 

II III IV V VI VII 

restrictions isomorphism maximality number 
Go on q type of M(Go) IM(Go)I in M(q) Nv(M(Go)) of subloops 

non-ma.ximt1l 
1. P2 parabolic ¼q3(q - 1) - pf) (q6 

- 1)/(q - 1) 
maximal 

2. R.2 - parabolic ¼q3(q2 - 1) ✓ pot (q6 -1)/(q- 1) 

3. N1 z¼<q+iJ ¼(q+ 1) SU3(q): 2 ½q3(q3 - 1) 

4. N2 
c.., 

q~4 z¼<q-1) ¼(q-1) - SL3(q): 2 ½t(q3 + 1) 
..... N4 q=p~3 Z2 X Z2 X Z2 8 23 ·PSL3(2) 1f44qs(qs - l)(q2 - 1) 6. -4 

6. l+2 q~7 (D~(q-t)• 2) l(q-1) (q - 1)2.(S3 X 2) fi'qs(q4+ q2+ l)(q + 1)2 

1. L2 q ::/= 3 (D>~(q+I)• 2) Hq+ 1) q=2 (q + 1)2.(S3 X 2) fi'qs(q4+ q2+ l)(q _ 1)2 

8. I+4 q~3 (PSL2(q), 2) ¾q(q2 - 1) q~4 (SL2(q)oSL2(q)).d q4(q4 + q2 + 1) 

9. G~ - (1} 1 - D 1 

10. Pn;(qo) q = q~, k prime, 
(d, k) = 1 

M(qo) ¼<fo(qt-1) ✓ G2(qo) IG2(q~): G2(qo)I 

11. Pn;(qo).22 q = qJ odd PGL(O(qo)) qJ(q~ - 1) ✓ G2(qo) qg(qg + l)(qJ + 1) 

12. P!1;(2) q=p~3 M(2) 120 ✓ G2(2) 1ioooqs(qa - l)(q2 -1) 



the corresponding parabolic subgroup. By (11.iv), (6.1), and (6.2), it is easy to see that a 
triangle is S-invariant iff it has the form ( (x}, xO, Ox) for every non-zero x E O satisfying 

I x2 = 0. Now put x = e4• Then, by Table 2, we have Po = {e4), p1 = e40 = (e1, e4,, h, h), 
p, = Oe4 = {e.,fi, h,h}. We _may assume that Go is the parabolic subgroup corresponrung 

to this triangle. Thus, Go 'is S-invariant. In the proof of Theorem 2, item I in [lj, we showed 

that Go acts transitively on the +I-subspaces in 

(7.11) 

(The choice of Go and the notation of [1) were different, but it is irrelevant.) Note that (I} is 
in (7.11). By Corollary 18, the subloop M(Go) is isomorphic to the orbit (I}Go ~ PSL(O), 
i.e. the set of all +1-subspaces contained in (7.11). Hence, this subloop is the image in 
PSL(O) of the subloop of SL(O) consisting of all elements of (7.11) of norm 1, i.e. the 
Zorn matrices of the form 

(7.12) 

This is obviously a subloop of (7.1). We call this subloop non-mcuimal parabolic. It has the 
structure q2

: q: (q -1)/d. 

Show that up to isomorphism it is a unique subloop arising from S-subgroups in [G0]. 

It is directly verified that { 4'Js stabilized by the following subgroups of D: the positive 
root subgroups Xw(t) for w E II (see 5.7), the diagonal subgroup H (see 5.8), and the 
subgroup X_13(t). In particular, the parabolic subgroup P13 = (U, H,X_13 (t)) of D stabilizes 
the triangle (Po,P1,p,). However, Pp is maximal in D by Table 4. Therefore, P13 = Go n D. 
Since 

1 q12(q-1)4(q + 1) l 
IGo: P13I = ;pq6(q _ l)l(q + l) = <Pq

6
(q- 1)

2 = IM(Go)I\ 

Lemma 6 and. Corollary 3 imply D-conjugacy and isomorphism of all subloops arising from 

S-subgroups in [Go] and that the number of such subloops in M(q) is ID : Go n DI = 
(q6 -1)/(q- 1). Note that this coincides with the number of 0--points (x} of <.p with :c2 = 0 

(the so-called absolute points of the geometry llJ) and the above discussion enlightens the 
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one-to-one correspondence between such points and the non-maximal parabolic subloops of 

M(q). / 

2. Go is an R.rsubgroup. The parabolic subgroup R,z is the normalizer in G of a 

totally singular 2-subspace of 0, i.e. a line l of \lJ. Thus S-invariant lines of \lJ correspond 

to S-invariant subgroups in [G0]. Let l = (x, y). Since l" = (x, y) and JP = xO n yO, it can 

be seen from Lemma 11 that l is S-invariant iff x 2 = y2 = xy = 0. In particular, we may 

put l = {h, e4) and Go = Na(l). Then Go is S-invariant. We showed in [l] (see item 2 of 

proof of Theorem 2) that Go is transitive on +1-subspaces in J.l. = (e1 , e3 , e4 , J1 , /2, h). By 

Corollary 18, the subloop M(Go) ~ (1)00 is the image in PSL(O) of the set of elements of 

1.1. of norm 1, which are precisely the Zorn matrices (7.1). 

As in the previous case, it is directly verified that / is normalized by the following 

subgroups of D: all positive root subgroups Xw(t), the diagonal subgroup H, and X_a(t). 

Since the parabolic subgroup Pa= (U,_H,X_a(t)) is maximal in D, we have Go n D = Pa. 

As above, we have !Go : Pal = IM(Go)l2; hence, all subloops arising from S-subgroups 

in [Go] are D-conjugate by Lemma 6. Corollary 3 implies that the number of maximal 

parabolic subloops in M(q) is ID: G0 n DI = (q6 
- 1)/(q - 1). Also, there exists a one-to-­

one correspondence between the S-invariant lines (which are the absolute lines of \13') and 

ma.ximal parabolic subloops of M(q). 

3-4. G0 is an N 1- or Nrsubgroup. In the latter case, assume q ~ 4. To treat these two 

cases uniformly, we slightly change the notation used i.n [5]. Let f = ±1. By definition, an 

R,2 -subgroup of G is the normalizer Na(W) of an t2-subspace W of 0. An F_rsubgroup is 

the image in G of the normalizer of an irreducible subgroup of !1(0) isomorphic to SU,.(q). 

An F+2-subgroup ( called J,4-subgroup in [5]) is the stabilizer of a decomposition of O into 

the direct sum of two t.s. 4-subspaces. If K is either an R,2 subgroup or an F,rsubgroup 

then TJ(K) denotes the unique cyclic normal subgroup of K of order r, where r is the largest 

prime divisor of (q - t)/d. By definition, a subgroup N ~ G is an N.i-subgroup (called 

N1 -subgroup for t = -1 and Nrsubgroup for t = + 1 in (5]) if N = Rn F, with R an R,z 

subgroup, F an F,rsubgroup, and [11(R), TJ(F)] = 1. 

We explain a geometric interpretation of F,2- and R,2-subgroups of G. Let A = IF if 
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, = -1 and A= P if f = +L By (4.11), 0 is a left A-module of dimension 4 with A-basis 

n:, = { w1 , ••. , w4}. We denote this module by W,1. Introduce a form k,1. on W.i defined by 

(5.3). By Lemma 12, tu is k,1.-orthonormal and kA(w,w) = Q(w) for all w E W,1. Hence, 

the subgroup G<l of GL(W,1) consisting of A-linear maps that preserve k,1. is naturally 

embedded into G0(O). We identify G.i with its image in G0(O). Observe that G_1 is the 

unitary group GU(W-1) ~ GU4(F). Also, there is an obvious natural isomorphism between 

GL(W+1) = GL4 (P) and GL4 (F) x GL4(F) under which G+i is mapped onto the subgroup 

{(C,G-T) ICE GL4(F)} ~ GL.(F). Shortly, Gd~ GL4(F). 

Since the involution in A is induced by -r11111 the element 6 = -rw1rwar....,r,.,, E fi(O) 

normalizes Gc1 and induces in it the contragredient automorphism C ➔ c-T of order 2. 

Let 

By (12.ii), the elements of .C(W1) are lines in ';Jl and the normalizer F,, = Na(.C(W.,)) is 

exactly an F,rsubgroup of G. Indeed, G,1 clearly normalizes .C(W,1) and so does o. However, 

the images in G of G.i n 0(0) and o generate an F,2-subgroup which coincides with F,1. 

Note that 77(F,1) lies in the image in G of (diag10 (A, A, A, A)}, where A is defined by (5.2). 

Since O is also a right A-module W,r with the same basis l'O, we can similarly define 

the set of lines .C(W.,.) of form xA for all singular x E W,r, and see that the normalizer 

F,r = Na(.C(Wcr)) is an F,2-subgroup of G. 

Note that A is an ,2-subspace of 0. Hence, the normalizer R. = Na(A) is an R,2- · 

subgroup. We have O = A EB A.L and A.L is an £6-subspa.ce. Observe that 11(R.) lies in the 

image in G of (diag.,,(A, 1, 1, l)}, which ip-iplies [77(R,), T/(Fc1)] = 1. Define 

Clearly, R. = Na(.C(A.1)), since the lines in .C(A.1) span A.1. We show that 

for which it suffices to show that 

(7.13) 
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Let l = Ax E .C(W,1). Then l = (x, >.x)F- Since (>..x)x = x(>..x) = 0, (11.vi) gives >..x E Ox 

and x E O(>..x), i.e. l = Ox n O(.>.x). By (6.1), we have lp = (x,.>.x} = xA E C(W.,) and 

lp2 = xO n (>..x)O = x((>.x)O) = (>..x)(xO) by (11.vi). Note that a line of form a(bO) is 

orthogonal to v E O if and only if b(av) = 0, since 

(a(bO),v) = (00,av) = (O,b(av)) 

by (8.viii). Hence, we have lp2 .Ll, since (.>.x)(xl) = (.>.x)x = O; and also lp2 .L.>., since 

x((,\x)>.) = x(Q(>.)x) = Q(>.)Q(x) = 0. Thus, ,\p2 .LA and (7.13) holds. 

Denote N,1 = R, n F,1 n F,r· The above remarks show that N,1 is p-invariant. Since 

Aa=A = A, we have~ = R, and FJ = Rt;' = ~P
1 = Rt = F,r• Hence, N,1 is a-invariant 

and S-invariant. Show that Nci = R,nF,1. This will imply that N,1 is an N,1-subgroup of G 

in the sense of the definition given above. By triality, it suffices to show that F,1 n F,r ~ R,. 

Every g E Fd n F,r normalizes £0 = C(W,1) n C(W,r), If we show that 

(7.14) 

this will imply that g E Na((Co)F) = Na(A.L) = R, as is required. By triality, (7.14) is 

equivalent to .C(W,1) n C(A.L) ~ C(W,, ). However, every line l = Ax in A .L has form l = xA 

by (9.ii) and the claim follows. 

Therefore, N,1 is an S-invariant N,1-subgroup of G and we may assume that G0 = N.i. 

It was shown in [1] (see there items 3 and 4 of the proof of Theorem 2) that the only triality 

involutions normalizing Go are those of form r.,, where (v}F ~ A is a +I-subspace, and that 

all such involutions are G0-conjugate. By Corollary 18, M(Go) ~ (1}00 is the set of all such 

+ 1 subspaces. Clearly, >., which has order q - t, generates the subgroup of all elements 

with norm 1 in A. Since>.. has the first form in (7.4), the subloop M(Go) ~ Z¼{q-,) lies in 

(PSL 2(q),2) and thus is not maximal. 

We find G0 nD. Consider the group SL<(A.L), which consists of A-linear transformations 

of O of determinant 1 that centralize A and preserve the form kA, and also consider o = 
-r,..,1 rw.,r""lr,.,4 , which is an A-semilinear transformation of O that centralizes the A-basis ro. 

Then the elements of SL'(A.L), together with o, preserve the alternating A-trilinear form tA 

defined in (5.4). This is because for any A-(semi)linear transformation f of A.L with matrix 
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(a;;);.;=2 ,3 ,o& in the basis {w2,w3,w,}, we have tA(wd,w3J,w,.f) = det(a;;)rtA(w2,w3,w,.), 
where r is the identity mapping or the involution of A according as f is A-linear or A­
semilinear. Therefore, f preserves tA iff det(f) = det(a;;) = 1. By Lemma 14, the elements 
of SL'(A.1.), together with §, are automorphisms of 0. Hence, their images in G lie in 
Go n D and generate a subgroup isomorphic to SLMq) : 2. Since this group is maximal in 
D by Table 4, it must coincide with Go n D. 

We now have 

By Lemma 6, all subloops of M(q) arising from S-invariant N,1-subgroups of G are D­
conjugate and isomorphic. The number of such subloops is ID: Go n DI= ½q3(q3 + t). 

5. Go is an NJ-subgroup. Suppose q =pis odd. Let b = (1 = t:0, t:1, ... , t:1) be the basis 
of O defined by ( 4.6). By definition, an N1-subgroup is conjugate in G to the normalizer 
Na(P) of the subgroup P of order 8 generated by the involutions ii, i 2, i 3 , where 

Z1 = diag&(-1, -1,-1, 1, -1, 1, 1, 1), 

z2=diagb(-l, 1,-1,-1, 1,-1, 1, 1), 
Z3 = diag&(-1, 1, 1, -1, -1, 1, -1, 1) 

a.re elements of !l(O). We show that N0 (P) is S-invariant. 

Sin°: z; = r.0 r.J·.,+1 f.,+s• for i = 1,2,3, we have (z;)o- = r,0 f./e,+i"e,+s =·z; by (4.8). 
Hence u centralizes P. For brevity, put j = i + 1, k = i + 3. Then, for every 0-point (x} ,' 
(4.16) and (4.8) imply 

By (6.1) and (7.i), we also have 

(x)(i;)P = (x)p-1.i;p =(Ox),\r.J.,r •• p = (xO)r.,r.jr •• p = 
(O(xe;))r.,r,.p= ((e;(e;x))O)r •• p = (O(((xe;)e;)e.1c))p = (e.1c(e;(e;x))). 

Note that (e;t:,)e.1c = (t:;e;+1)e;+3 = -1 by (4.6) for i = 1,2,3. Hence, we have 
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Therefore, (i;)P = i; by Remark 15; i.e., p centralizes P. 

Thus S centralizes P and so NG(P) is S-invariant. We may therefore assume that 

G0 = NG(P). We showed that G0 is transitive on the 8 basis vectors in b. (see item 6 

of the proof of Theorem 2 in (l]). By Corollary 18, the subloop M(Go) ~ (t}Go consists 

of the +I-subspaces (c:;}, i = 0, ... , 7. It is clearly isomorphic to the elementary abelian 

group Z2 x Z2 x Z2 generated by (c:1}, (c:2}, (c:3}. Returning to the original basis { e1, ... , f4} 

of 0, we see by (4.6) that c:1 , c:2, c:3 have form (7.4). Hence, M(Go) lies in the subloop 

(PSL 2(2),2) of M(G) and thus is not maximal. 

Since S centralizes P, we have P ~ D (see the remarks before Table 4). The group P 
can be characterized as the group of automorphisms of O that centralize the set of basis 

+I-subspaces {(e:) I e: Eb}. Consider the group Po of automorphisms of O that normalize 

this set. Define two transformations a 1 and a 2 of O on the basis by 

€; ~ c;.,-1' i = 1, ... , 7, TJ = (1234567); 

€; 4 -€;.,_,, j = 1, ... , 6, €7 4 €7, T2 = (12)(36). 

A direct verification shows that a 1 and a 2 belong to P0 and generate (modulo P) a group 

isomorphic to the non-split extension 23 ·PS L3 (2) of order 8· 168. Since this group is maximal 

in D by Table 4, it must coincide with Po (see also discussion in section 1 of [161). Hence, 

we have Go n D = Nv(P) = Po and 

\Go: Go n D\ = (212 
• 3 · 7)/(8 · 168) = 64 = \M(Go)\2. 

Hence, by Lemma 6, all subloops of M(q) arising from S-invariant N!-subgroups of G are 

D-conjugate and isomorphic, and \D: Go n D\ = 1; 44 q6 (q6 
- l)(q2 

- 1) is the number of 

such subloops. 

6-7. Go is an 1,rsubgroup, t: = ±1. If t = +l then assume that q ~ 7 and if t: = -1 

then assume that q -:/ 3. An l,2-subgroup G0 is the normalizer in G of an t2-decomposition 

0 = Vi EB ... $ ¼. Denote this decomposition by d. Observe that Go also normalizes the set 
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of lines .C(d) (see 7.10). Conversely, suppose g E G normalizes .C(d). Then g also normalizes 

the set of +4-subspaces that can be represented as 11 EB i2 for 11, 12 E £( d). Clearly, these 

are the subspaces V; EB V; for 1 ~ i < j ~ 4. Since their nontrivial pairwise intersections 

are the components V;, i = 1, .. . , 4, it follows that g normalizes d. In particular, if d is 

S-invariant then so is Go. 

Now let d be the first decomposition in (4.11) if f = -1 and the second one if f = +l. 
Since d is a Z2 x Zz-grading, (23.ii) implies that d is S-invariant. Hence, we may assume 

that Go = Na(d). We showed (see items 7-8 of the proof of Theorem 2 in [1]) that the 

only tria.lity involutions normalizing G0 a.re those of form i\ where (v) runs through a.II+!­

subspaces in ut=i V; and that Go is transitive on such subspaces. Hence, by corollary 18, the 

subloop M(G0 ) ~ (1)00 is exactly the set of such subspaces. Since V; = Aw;, i = 1, ... , 4, 

where A= lF or I" according as f = -1 or f _= +l, the elements of M(G0 ) have form (>.iw,), 
where >. is as in (5.2). In particular, M( Go) is generated by (>.), (w2), and (w3). Since >., 
w2, and w3 have form (7.4), we see that M(Go) is a subloop of (PSL2(q),2) and thus is not 

maximal unless f = -1 and q = 2, in which case M(Go) = (PSL2 (q),2). Also, it is ea.sy to 

see that M( G0 ) is the duplication of the dihedral group ll))~(g-,) generated by (>.) a.nd (w2 }. 

We find Go ti D = Nv(d). Let g E G0 n D. Since lg= 1, we have Ag= A and thus g 

is A-(semi)linea.r.· Then g preserves the A-sesquilinear form (5.3) on O and the A-trilinear 

form (5.4) on A.L. Therefore, det(g) = 1 and g E SL"(A.L); 2 = SL~(q); 2. However, the 

normalizer of the decomposition Al.= Aw2 EB Aw3 EB Aw4 in SL'(Al.) has form (q-tY.S3 

(see Proposition 4.2.9 in [9]). Consequently, Nv(d) = (q - f) 2 .(S3 x 2). We now have 

192 16 
IGo: Go n DI= -;p(q - t:}4/12(q - t? = d2 (q - t)2 = IM(Go)l2. 

By Lemma 6, all subloops of M(q) arising from S-invariant I,rsubgroups of G are D­

conjugate. The number of such subloops is ID: G0 n DI= fiq6(q4 + q2 + l)(q + f) 2• 

8. Go is an !+4-subgroup. Let q ;;::: 3. An IH-subgroup Go is the normalizer in G of a 

+4-decomposition O = Vo EB Vi. Note that Go normalizes the set of lines .C(¼ EB½) (see 

7.9). The converse is also true. Indeed, let g E G normalize .C(¼ e ½). Since V; = l1 El) l2 

for some lines l1 , l2 E £(Vo EB½), it follows that both l1g a.nd l2g are either in Vo or in Vi 
(otherwise, (l1g, l2g) = V;g would be a t.s. 4-subspa.ce, which it is not). As every x EV; ha.s 
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form X1 + xl for x; E I;, j = 1, 2, we see that the decomposition Vo$ V1 is g-invariant. 1n 

particular, if Vo tB ½ is S-invariant then so is G0 . 

Now, put Vo = (e1, e2, Ji, /2), ½ = (e3 , e4, h, f4). Obviously, both V0 and ½. are +4-
subspaces and the decomposition O = Vo ffi ½ is a Zrgrading by Table 2. By (23.i) and 

the above remarks, we may assume that Go is the normalizer of this decomposition. Thus 

Go is S-invariant. We showed that Go acts transitively on the +I-subspaces in Vo U V1 (see 

item 9 of the proof of Theorem 2 in [l]). By corollary 18, the subloop M(Go) ~ (1)00 is 

the image in PSL(O) of the set of elements of Vo U ½ of norm 1, which are precisely the 

Zorn matrices (7.4). Hence M(Go) ~ (PSL2 (q),2). 

Let A= (X..,,(t),X_..,,(t)) ~ D and let B consist of all oo(C) (see 5.5) with 

It is directly verified that A and B normalize the decomposition O = Vo EB½. Moreover, by 

considering the action of A and Bon Vo and½, it can be seen that A~ SL2(q), B ~ GL2(q), 
An Bis the diagonal subgroup of A of order q - 1, and AB ~ (SL2(q) o SL2(q)).d. By 

Table 4 this subgroup is maximal in D provided q ~ 3. Hence, in this case, Go n D = AB 

and !Go : Go n DI = J.q4 (q2 - 1)4 /q2(q2 
- 1)2 = -j,q2(q2 - 1)2 = jM(Go)l2 . By Lemma 

6, all subloops of M(q) arising from S-invariant I+4-subgroups of G are D-conjugate and 

isomorphic. The number of such subloops is ID: G0 n DI = q4 (q4 + q2 + 1). 

9. G0 is a G½-subgroup. A G~-subgroup is a subgroup Go of G isomorphic to G2(q) and 

such that GN0 s(G0 ) = GS. Since D = Ca(S) ~ G2(q) is S-invariant, we may put Go= D. 
Thus, G0 has trivial triality relative to Sand M(Go) = {I) is the identity subloop of M(q). 
The fact that G0S contains no other triality Sa-complements follows from Lemma 4. By 

Lemma 6, Go is the unique S-subgroup in [G0]; i.e., only the identity subloop arises in this 

case. 

10-11. G0 is a POt(q0 )- or a Pnt(q0 ).22-subgroup. Suppose that q = q~, with k 

prime. Let Ho ~ G and Ob ~ 0 be the naturally embedded subgroup Pflt(q0 ) and the 

F11o-suba.lgebra O(qo) with respect to the standard basis (4.5) of 0. Show that Ho is S-
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invariant. Indeed, since <J' = f 1 and the entries of the matrix of r 1 in the standard basis are 
in {O, ±1} ~ F90 , it follows that Ho is <J'-invariant. Note that Ho is generated by elements of 
the form U(v), with {v) E PSL(Oo), and U(wt}U(.,,.), with (w1), (w2) E PGL(Oo)\PSL(Oo) . 
By (6.8), U(v) = L(v) and (U(wi)U(w-J))P = L(wi)Lr,»,)· Since L(ii), L(",Ih)Lr,»3 ) E Ho, it follows 
that H0 is p--invaria.nt. 

Now, if (q , k) =/; (odd,2) then we put Go= H0 • If q = q~ is odd then we put Go= 
Na(Ho) ~ lnnDiag(Pflt(q0)), i.e. the group of inner-diagonal automorphisms of Pnt(qo), 
see [5], Proposition 2.2.9. By Lemma 4 we see that all triality S3°complements in GoS are 
Go-conjugate in view of the structure of Aut(P!ll(q0 )) . By (6.iv) we obtain D-conjugacy 
and isomorphism of all subloops M(P) for all S-subgroups P E [Go] , Note that Go n D = 
Ca0 (S) = Cy0 (S), since GoS/H0 ~ S4 when q = qi is odd. Therefore, GonD ~ G2(qo) and 
the number of subloops is IG2(q): G2(<1o)I by Lemma 6. 

If (q,k) # (odd,2) then M(Go) = M(q0 ) by definition. Let q = qJ be odd. Determine 
the isomorphism type of M(Go) in this case. Note that Go is generated modulo Ho by b 
and c, where 

b = dia.g(µ , µ, µ, µ, µ-1, µ - 1, µ-1, µ-t ), 

c= dia.g(A-1,1,1,1,A,l,l,l) 

written in the standard basis, with µ a non-square in F and A = µ 2• Note that A is a 
non-square in F90 • By Corollary 18, M(Go) ~ ({1)F)a0 • Hence, M(G0 ) is isomorphic to 
the extension of M(Ho) ~ PSL(Oo) by {l)Fb and (l)Fc. However, 

(l)pc = (A-1e1 + A/i)p E PSL(Oo), 

(l}Fb = (µe1 + µ-1J1}F = (Ae1 + f1}ir E PGL(Oo)\PSL(Oo). 

Therefore, M(Go) ~ PGL(Oo). 

12. Go is a P!lt(2)-subgroup. Let q = p be odd. In the beginning of this section, we 
explained that Wo is an S-subgroup of G isomorphic to Pnt (2), where W0 is the commutator 
subgroup of the Weyl group of type E8 . Hence, we may put Go= W0 • Then M(Go) ~ M(2). 
Moreover, all triality S3-complements in G0 S axe G0-conjugate by Lemma 4. Therefore, all 
subloops M(2) of M(q) are fl-conjugate by Lemma 6. We also have Go n D = Ca0 (S) ~ 
G2(2) and ID: Go n DI= IG2(q): G2 (2)1 is the number of subloops in this case. 
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We ca.n now make the concluding remarks of the proof. Every maximal subloop of M(q) 

has form M(Go) for some S-maximal subgroup Go of P!lt(q) (see Corollary 1 in [l]). In 

view of fl-conjugacy of a.11 subloops M(Go) in each of the above cases, the subloops in the 

cases 1, 3- 7, 9 are non-maximal unless q = 2 and Go is an Lrsubgroup. By Lemma 22, 

the subloops M(Go) in all of the remaining cases are maximal (unless q = 3 a.nd G0 is an 

/+.,-subgroup) and thus column V of Table 5 holds. The other columns hold by the above 

discussion. A 
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