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Dynamic behavior of stall fluttering airfoils
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Abstract. Stall flutter is turning into a more likely condition to be encountered as the demand for increasingly more flexible
wings grows for HALE-like aircraft. Due to the various nonlinearities involved that can lead to complex motion, the
characterization of the dynamical behavior in the post-flutter condition becomes important. The dynamics of a pitch-plunge
idealized HALE typical section with aerodynamic, structural and kinematic nonlinearities in the stall flutter regime was
investigated using an aeroelastic state-space formulation which includes a modified Beddoes-Leishman dynamic stall
model. The results reveal that period-doubling was possible without stall, but chaos arose at discontinuity-induced
bifurcations due to dynamic stall.
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1. INTRODUCTION

Current engineering designs are pushing the limits towards high-span, flexible wings, such as those of HALE (High-
Altitude-Long-Endurance) aircraft, helicopter and wind turbine blades. Because of the operational conditions and structural
flexibility of these machines, it is likely they will at some point encounter stall flutter, a highly nonlinear aeroelastic
phenomenon of self-sustained oscillations, in which the wing is stalled during part of each cycle. These limit-cycle
oscillations (LCOs) are part favorable, part unfavorable. The fact that they bound the response above the flutter speed,
which is usually considered a stability limit for flight vehicles, is a positive outcome. However, structural fatigue, decreased
performance and control difficulties are adverse issues. HALE and other Unmanned Aerial Vehicles (UAVs), for instance,
may fly near their stability limits in order to maximize performance. This increases the chances of a disturbance prompting
an undesirable dynamical response. Therefore, it becomes of primary importance to characterize the post-flutter aeroelastic
behavior of such machines, assessing dangerous bifurcations and the possibility of chaos development. Even though
previous studies (Patil and Hodges, 2006; Su and Cesnik, 2011) have shown that the coupling of aeroelasticity and flight
dynamics is mandatory to analyze the behavior of very flexible aircraft like HALE, a simplified analysis like the present one
can be quite insightful from the aeroelastic perspective, more so due to the greater realism of aerodynamic nonlinearities
considered here, i.e., dynamic stall.

This so-called dynamic stall, upon which stall flutter is established, is a very complex fluid phenomenon and conse-
quently is extremely difficult to model. The most precise representations of the phenomenon are experimental, but it is
virtually impossible to rely solely on experiments in order to harness aerodynamic data for every combination of flow and
motion condition. Despite of these difficulties, many low-fidelity semi-empirical models with reasonable accuracy have
been developed for 2D flows at harmonic motion, with the intention of being used at the preliminary design stages, when a
vast number of candidate solutions must be evaluated. Either for helicopter, fixed-wing or wind turbine applications, the
Beddoes-Leishman (Leishman and Beddoes, 1986) model and its modified versions are among the most popular. It can be
represented in a state-space formulation that may easily be fitted in an aeroelastic framework when joined to the equations
of motion. Although dynamic stall nonlinearities can play a determinant role in the aeroelastic stability of flexible wings,
not many researchers have appreciated its due importance.

The present work investigates the bifurcations and post-flutter dynamics of a low-fidelity autonomous aeroelastic model
of an airfoil representative of HALE aircraft, undergoing stall flutter self-sustained oscillations. The structural model is
reduced to only two degrees of freedom, pitch and plunge, with a kinematically-exact approach that is more adequate for
the high angles of attack involved. Special modeling emphasis is given to aerodynamic nonlinearities, which are handled by
a modified Beddoes-Leishman dynamic stall model. The dynamics are henceforth analyzed through bifurcation diagrams
and frequency spectra, revealing an overall picture of the behavior of the system. The objective is to develop a methodology
suitable for initial estimations of post-flutter aeroelastic stability.

2. METHODOLOGY

The unsteady aerodynamic loading prediction is performed with a semi-empirical approach based on the Beddoes-
Leishman model in state space, following Leishman and Crouse Jr. (1989). The model was chosen because its equations
are derived in a physics-based approach and facilitate augmentations. The typical aeroelastic section receives these airloads,
thereby allowing time integration of the equations of motion. The complete system is piecewise-smooth with a kind of
fixed-time intermittent forcing, so the necessary precautions are exercised in the numerical procedures.



2.1 Equations of motion

The definition of parameters of the 2-DOF typical section follows in Tab. (1), and illustrated in Fig. (1).

Table 1: Reference typical section parameters.
Parameter [unit] Value Description

αI [deg] 4 Wind-off angle of attack

γα 0.5 Cubic pitch stiffness coefficient

γh 0.5 Cubic plunge stiffness coefficient

µ = m/πρb 30 Mass ratio

ρ [kg/m3] 0.0880 Freestream air density

ωα =
√
Kα/Iα [rad/s] 15.5 Pitch natural frequency

ωh =
√
Kh/m [rad/s] 3.1 Plunge natural frequency

ω̄ = ωh/ωα 0.2 Frequency ratio

a∞ [m/s] 295.1 Freestream sound speed

ah -0.4 Elastic axis (EA) semichords after midchord

b [m] 1 Semichord

Cα Kα/100 Pitch damping coefficient

Ch Kh/100 Plunge damping coefficient

H [km] 20 Altitude

rα =
√
Iα/mb2 0.5 Radius of gyration, in semichords

xα 0.3 Center of gravity (CG) semichords after EA

EA

CG

Figure 1: Typical section geometry.

The kinematically-exact equations of motion are derived from Euler-Lagrange’s equations as

mḧ+ Sαα̈ cosα− Sαα̇2 sinα+ Chḣ+Kh

(
h+ γhh

3
)

= −ρbU2cl

Sαḧ cosα+ Iαα̈+ Cαα̇+Kα

[
(α− αI) + γα(α− αI)3

]
= 2ρb2U2cmea

(1)

where α is the geometric pitch angle and h is the plunge displacement, m is the airfoil’s mass per unit length, Kα and
Kh are the stiffness coefficients, Sα = mbxα and Iα are the first and second moments of inertia about the EA, U is the
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2.2 Dynamic stall model

freestream airspeed, and cn, cc, cl = (cn cosα+ cc sinα) and cmea
= cm + (1/4 + ah/2)cn are respectively the normal,

chordwise, lift, and pitching moment coefficient at the EA (cm is the pitching moment coefficient at the quarter-chord).

2.2 Dynamic stall model

The Beddoes-Leishman model can be broken down into four modules, (i) unsteady attached flow loading; (ii) stall
onset determination; (iii) trailing edge separation effects; (iv) and leading-edge vortex shedding. The total airloads are
given by contributions of each module, so that cn = cfn + cIn + cvn, cc = cfc and cm = cfm + cIm + cvm. A formulation for
these coefficients similar to the one employed in the present work can be found in dos Santos and Marques (2021). When
inserted back into Eq. (1), they complete the state-space model, which can be expressed as

ẋ = f(x, ẋ) (2)

where x is the vector of 12 states, ẋ is its derivative and f(x, ẋ) is the corresponding vector of nonlinear equations,
integrated in time with a Runge-Kutta-Fehlberg algorithm. A validation of the model through comparison with the
experimental data published by McAlister et al. (1982) is presented in Fig. (2).
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Figure 2: Dynamic stall aerodynamic coefficients at M = U/a∞ = 0.072 and k = ωb/U = 0.25 - deep stall regime.

3. RESULTS

To characterize the post-flutter behavior, the linear flutter condition (Hopf point) had to be identified first, by solving
for its fixed-point (setting Eq. (2) equal to zero) with a Newton-Raphson algorithm, and assessing the corresponding
eigenvalues of the Jacobian matrix. This analysis yielded a flutter speed UF ≈ 42.65 m/s (MF ≈ 0.145) and a flutter
frequency of ωF ≈ 1.36 Hz (kF ≈ 0.20). With the Hopf point at hand, the numerical continuation scheme with a shooting
method could be started, as well as the simulations for investigation of the post-flutter behavior. The bifurcation diagram in
Fig. (3) depicts the local extrema of the pitch variables (αA) with the evolution of the airspeed ratio U/UF , as obtained
through the direct numerical simulations (DNS). The airspeed was slowly varied until transients died out and the values
were gathered for 60 seconds of oscillations. Also are shown the global extrema values according to the shooting method
(SM) in some regions, being in perfect agreement with the time simulations. The loci of the unstable focus is included for
reference as well. From the outset, it was determined that the range of interest for this study would be for U/UF ≤ 1.2, or
until a maximum effective angle of attack of 45° was reached, in order not to go too far beyond the limits validated for the
dynamic stall model.

It can be seen in the diagram that the Hopf bifurcation is supercritical, and that a branch of periodic solutions grows in
amplitude until U = UPD = 1.0594UF . At this point, a supercritical period-doubling bifurcation occurs, as suggested by
the appearance of two local maxima and two local minima. These period-doubled oscillations occur without the presence
of dynamic stall during the entire cycle, and no leading-edge vortex is shed. From an analysis of the state space variables, it
could be concluded that this bifurcation was not associated with the crossing of any discontinuity boundaries. Period-2
(P-2) motion continues like so until U = Uc = 1.0635UF , when finally dynamic stall begins, the orbit undergoes a
discontinuity-induced bifurcation known as boundary-crossing (BC) (di Bernardo et al., 2008), and the solution transitions
into chaos. It develops through intermittency, given that the closer to Uc, the longer the stretches of time around the “ghost”



period-2 orbit, as illustrated in the upper corner time history right at Uc. As a consequence, no hysteresis is observed
by changing U around Uc. A window of chaotic oscillations is present in the range 1.0635 ≤ U/UF ≤ 1.089, and it is
seen that local extrema develop in four separate bands. As shown in the lower zoomed-in window, at U/UF ≈ 1.089, the
chaotic solution ceases and two stable attractors co-exist, one in a period-4 (P-4), and other in a period-2 orbit. The former
has a wider basin of attraction and is more stable, thus being realized as the airspeed is slowly increased or decreased in
this region. The amplitude difference between the peaks of this period-4 branch rapidly shrinks around U/UF ≈ 1.095,
and then only the period-2 solutions are possible. There is no evidence that at this point the system undergoes a reverse
supercritical period-doubling bifurcation (a “period-halving”), but instead that the period-4 orbit gives way to the period-2
due to synchronizations between vortex-shedding and structural frequencies. The part of the stable period-2 branch that
co-exists with both the period-4 and chaotic orbits in the range of 1.083 ≤ U/UF ≤ 1.095 is less stable and cannot
be easily realized in the direct numerical simulations. Following its branch in the direction of decreasing airspeed, it is
seen that at U/UF ≈ 1.083 it suffers a period-doubling bifurcation, as indicated in the lower zoomed-in window of the
diagram, and at U/UF ≈ 1.0697, one of the Floquet multipliers becomes highly negative and the shooting algorithm cannot
converge due to the high instability. In the direction of increasing airspeed, the stable period-2 solutions are sustained until
U/UF ≈ 1.1808, when the numerical solutions jump to another branch, in which the airfoil now undergoes dynamic stall
under both positive and negative angles of attack (P/N DSVs), with vortex airloads overlapping during part of the cycle.
The shooting method allowed the characterization of this dangerous bifurcation as a cyclic fold, indicated by the direction
vector of the continuation parameter (U ) changing sign. Solutions on this new branch continue well beyond U/UF = 1.2,
but if the airspeed is slowly decreased, the simulations show that this branch remains stable down to U/UF ≈ 1.158,
when another cyclic fold takes place, thus causing a hysteresis effect. Although the unstable branches emanating from
the folds were not located with the shooting method due to the high computational cost for convergence in this region
(O(∆tmax) = 10−6) and also the presence of highly unstable Floquet multipliers, it is quite possible that they are in fact
only one branch, undergoing a double cyclic fold.
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Figure 3: Pitch bifurcation diagram.

By evaluating the frequency content of the solutions, further insights on the behavior of the system can be gained.
Fig. (4) contains the spectrograms of the pitch and nondimensional plunge (ξ = h/b) variables across the entire range
of airspeed, as it is slowly increased from UF . The simulations from Fig. (3) were continued for more 120 seconds,
yielding a frequency resolution of 1/120 ≈ 0.0083 Hz in the spectra. Just after the Hopf bifurcation, it can be noticed
that the prevalent frequency of motion is the plunge one (ωξ), which is equal to the flutter frequency (ωF ) at that point.
The presence of quadratic and cubic nonlinearities is clear from the smaller peaks at both even and odd superharmonics,
whose effects on the periodic solution grow steadily until U = UPD. The strongest nonlinearities in this range of periodic
solutions are due to structural damping and hardening, while the aerodynamic ones related to small trailing-edge separation
and nonlinear kinematics are present only to a very limited degree. The pitch frequency does not appear to play any role
so far. As the period-doubling bifurcation takes place, the 1/2 plunge subharmonic (1/2 ωξ) suddenly appears, along
with other ultrasubharmonics (n + 1/2 ωξ, n integer). Increasing the airspeed to U = Uc, chaos develops at the BC
bifurcation, as is clear from the broadband character of the spectra. Inside the chaotic window, the pitch spectrum reveals
stronger influence of frequencies in the range 1 < ω/ωF < 2, while the plunge spectrum is more “noisy” for frequencies
in the range 1/2 < ω/ωF < 1. After chaos is suppressed, the presence of the 1/4 plunge subharmonic (1/4 ωξ) and its
related ultrasubharmonics (n+ 1/4 ωξ, n integer) is evident, in accordance with the observed period-4 orbit. The dynamic
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stall vortices’ (DSV) intermittent forcing raises the possibility of resonances if the vortex-shedding frequency, ωDSV ,
synchronizes with other frequencies of motion, or rational fractions of them, which is exactly what happens in the present
case. During the period-4 oscillations, two unequal vortices are shed per cycle, each at a frequency ωDSV which is half
the fundamental one, ωξ. The overall effect is that of a superharmonic resonance of order 4. As the airspeed is increased
further, the phase difference between the shedding of the two vortices’ gradually reduces, resulting in the period-2 orbit.
It is also noted that after the chaotic oscillations, the dominant frequency in the plunge spectrum is the subharmonic of
1/2 ωξ = ωDSV . On the other hand, the pitch spectrum remains dominated by the ωξ frequency, but also with strong
influences from the 1/2 ωξ subharmonic. Moreover, it is remarked that even after dynamic stall sets in, the motion is still
dominated by the plunge mode. This is in contrast with previous observations of stall flutter in pitch-plunge wings (Razak
et al., 2011; Poirel et al., 2018), in which the leading mode was reported to be the pitch one. As the airspeed is raised,
all of the frequencies also do so, as indicated by the continuous “bending” of the peaks to the right in the plots. Finally,
for U/UF ' 1.18, the peaks are suddenly shifted to the right, as they reflect solutions on the other attractor discussed in
Fig. (3), in which dynamic stall occurs at positive and negative angles of attack. Now the motion is dominated by the pitch
frequency (ωα ≈ 1.63ωF , which in this context must not to be confused with the fixed value given in Tab. (1)), and its
subharmonic, which resonates with the vortex frequency (1/2 ωα = ωDSV ). Therefore, solutions on this branch are also
period-doubled.

Figure 4: Spectrograms.

4. CONCLUSIONS

This study has investigated the post-flutter, stall fluttering behavior of a pitch-plunge typical section representative of
HALE aircraft, at a reference altitude of 20 km, which is common for these vehicles. An appropriate non-smooth dynamic
stall model has been employed to capture aerodynamic nonlinearities, accompanied by simplified structural hardening and



damping. Analysis methods appropriate for discontinuous systems were adopted. Some key concluding remarks can be
drawn from this study, while the dynamic stall model limitations, and the limited range of parameters investigated should
be kept in mind:

1. For the present model, the general mechanism of evolution of solutions is through period-doubling bifurcations,
which can take place even before the onset of dynamic stall and stall flutter per se. However, as stall flutter begins, it
is possible that resonances occur due to the interaction between structural and vortex-shedding frequencies, leading
to high-period motion. These frequencies may lock-in, or synchronize, for a considerable range of airspeeds, and
with several vortices being shed at each cycle.

2. The occurrence of dynamic stall (and therefore stall flutter) has lead to a boundary-crossing bifurcation and
coincidentally, chaos development. Given that dynamic stall cycles are experimentally observed to be non-repeatable,
i.e., intrinsically aperiodic, appropriate methods would have to be employed in an experimental setting to identify
possibly periodic solutions of stall fluttering airfoils.

While the present methodology as a whole seems promising for post-flutter analyses due to the relatively low computa-
tional cost, it still requires a strict validation with high-fidelity (CSD-CFD) or experimental methods.
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