ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/276169106

Vers une approche d'ingénierie multiagent a base de ligne de produits
logiciels

Conference Paper - June 2015

CITATIONS READS
2 391

4 authors, including:

Anarosa Alves Franco Brandao Tewfik Ziadi

Universidade of Sdo Paulo, Sao Paulo, Brazil Sorbonne Université

122 PUBLICATIONS 586 CITATIONS 82 PUBLICATIONS 1,498 CITATIONS
SEE PROFILE SEE PROFILE

Zahia Guessoum
Université de Reims Champagne-Ardenne

195 PUBLICATIONS 1,695 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

et Cell pop project View project

roect Meduse: An Approach for Tailoring Software Development Process View project

All content following this page was uploaded by Zahia Guessoum on 12 May 2015.

The user has requested enhancement of the downloaded file.

Vers une approche d’ingénierie multiagent a base de
ligne de produits logiciels

Anarosa A .F. Brandao™®
anarosa.brandao@usp.br

Dounia Boufed;i
dounia.boufedji@lip6.fr

Zahia Guessoum®*
zahia.guessoum@lip6.fr

Tewfik Ziadi®
Tewfik.Ziadi@lip6.fr

a Computing Engineering and Digital Systems Department
University of Sao Paulo — Brazil

b Sorbonne Universite, UPMC Univ Paris 006,
LIP6, F-75005, Paris, France

¢ Université Reims Champagne Ardennes
CReSTIC, F-51000, Reims, France

d Université des Sciences et de la Technologie Houari Boumediene,
RIIMA, Babezouar,Alger,Algérie

Résumé

Bien que plusieurs méthodes et outils aient été
proposés pour l'ingénierie des SMA durant les
deux dernieres décennies, passer des modeles
SMA au code reste une tdche difficile. La
majorité de ces méthodes ne parvient pas a
proposer une solution pour la réutilisation des
implémentations existantes telles que les
processus incrémentaux. Notre proposition
répond a deux problemes : combler le fossé
entre la modélisation des SMA et
l’implémentation d’une part, et fournir une
approche incrémentale de développement de
SMA en s’appuyant sur les lignes de produits
logiciels d’autre part. Cette approche se base
sur une description de la variabilité grdce a des
modeles de caractéristiques et utilise un
framework de ligne de produits logiciels pour la
génération des difféerentes variantes de
["application.

Mots clefs: SMA, lignes de produits, modeéle des
caracteristiques, derivation des produits.
Abstract

Although several methods and tools to support
engineering MAS were proposed in the last
decades, it is still a difficult task to go from
MAS models to MAS code. Moreover, just a few
MAS methods provide guidelines for that and
such methods fail in proposing a solution to
reuse MAS implementation, as in an incremen-

tal process. Our proposal intends to address
both issues: filling in the gap between MAS
modeling and implementation and providing
guidance for incremental development of MAS
using a Software Product Line (SPL) approach
that goes beyond the variability description
through feature models and proposes to
generate different variants using existing SPL
frameworks.

Keywords: MAS-PL, product-line,
model, product generation.

feature

1. Introduction

Le génie logiciel multiagent a engendré
plusieurs méthodes et outils pour l'ingénierie
des SMA durant ces deux derni¢res décennies
[4][6][11][18]. Les méthodes proposées couv-
rent plusieurs étapes du cycle de développement
telles que I’ingénierie des besoins, la concep-
tion, I’implémentation, etc. Par exemple,
ASPECS [18] couvre toutes les étapes, elle est
applicable aux SMA holoniques. Cependant, la
majorit¢ des méthodes multiagents ne couvre
pas l’ensemble des ¢étapes. Elles s’arrétent
souvent a la conception qui élabore des modéles
multiagents. Néanmoins, le passage des modéeles
produits par les méthodes aux SMA
opérationnels est un probléme compliqué
notamment pour les non spécialistes des SMA,

car les outils d’implémentation n’utilisent pas
les mémes modeles et les mémes concepts que
les méta-modeles des méthodes. Par ailleurs, le

développement des SMA est souvent
incrémental. Il nécessite ainsi, une double
expertise a la fois en conception et en
implémentation.

Nous pensons que 1’écart entre les méthodes et
les outils multiagents est di a une carac-
téristique du développement des méthodes
multiagents. Contrairement a 1’approche objets
ou les méthodes et les langages de modélisation
ont émergé de I’'implémentation des systémes a
base d’objets, la majorit¢é des méthodes
multiagents a ét¢ développée sans s’appuyer sur
une expertise en implémentation.

Pour combler 1’écart entre la conception et
I’implémentation et pour faciliter le dévelop-
pement incrémental, la communauté génie
logiciel a introduit une nouvelle approche

appelée Ligne De Produits logiciels (LdP). La
LdP est un paradigme qui prone une vision de
modélisation et de développement dans laquelle
I’objectif n’est pas 1’obtention d’un seul
systtme logiciel a la fois, mais plutdt un
ensemble de systtmes logiciels possédant des
caractéristiques communes mais aussi qui
diffeérent en certains points de variabilité. Ces
logiciels peuvent étre des variantes d’une
famille d’applications similaires. La gestion de
la variabilité est la premiere dimension clé dans
I’ingénierie des LdPs. La deuxieme dimension
concerne la construction, appelée aussi
dérivation des membres de la ligne d’un produit.
Chaque logiciel variant est obtenu donc par
dérivation en instanciant un ou plusieurs points
de variabilité.

Différentes approches combinant les SMA et les
LdPs proposent des extensions de méthodes
SMA existantes afin d’intégrer la notion de
variabilité dans les modeles SMA (voir par
exemple [7][9][15][16][17]). Cependant, les
solutions existantes ne se sont pas focalisées sur
I’écart entre les méthodes et les outils
d’implémentation multiagents et ne proposent
pas des mécanismes permettant d’aller au dela
de la description de la variabilité.

Dans cet article, nous proposons une approche
pour combler I’écart entre les méthodes et les
outils d’implémentation et faciliter le
développement incrémental des variantes SMA.

Tout d'abord, nous proposons des lignes
directrices pour spécifier les modeles de
caractéristiques (features model) dans le
contexte des SMA. Ces caractéristiques
pourraient étre déduites des méta-modeles, des
méthodes existantes ou des applications
existantes (code).

Enfin, et pour réduire I’écart entre les modeles
et le code, nous réutilisons des environnements
de LdPs existants afin de générer des
implémentations JADE pour plusieurs variantes
de SMA. L'exemple de I’emploi du temps est
utilisé pour illustrer notre approche.

Ce papier est organis¢ comme suit : la section 2
présente un état de l’art sur 1’ingénierie des
LdPs et discute les travaux existants. La section
3 présente ’exemple de I’emploi du temps. La
section 4 décrit notre approche LdP-SMA. La
section 5 conclut ce travail et présente quelques
perspectives.

2. Contexte et état de I’art

Cette section introduit les LdPs et présente les
approches combinant les LdPs et les SMA.

2.1 Lignes De Produits Logiciels (LdP)

Les LdPs sont une transposition des chaines de
production industrielle au monde logiciel. Pour
réduire les colts et le temps de développement,
elles visent a produire une famille de systemes
au lieu d'un systtme unique. Clements et
Northrop [8] définissent une LdP comme un
ensemble de systemes logiciels partageant un
ensemble commun de fonctionnalités ou
caractéristiques qui répondent a des besoins
spécifiques d'une partie particuliére du marché,
ou mission et qui sont développés d’une
manicre prescrite a partir d'un noyau commun
d’¢éléments.

L’ingénierie des LdPs s’axe sur la capture de
points communs et de la variabilit¢ entre
plusieurs produits logiciels appartenant au
méme domaine [8]. Les points communs
rassemblent des hypothéses qui sont vraies pour
tous les membres de la LdP, tandis que la

variabilité regroupe l'ensemble des hypotheses
montrant comment les produits, membres de la

ligne de produits different.

L'ingénierie du domaine consiste a développer
et construire la LdP en utilisant 1’analyse et
I’implémentation du domaine.

L implémenta(ion du domaine
(l'espace de solutlon)

L'ingénierie du domaine
S
L'analyse du domaine
(I'espace de probléme}\

La L|gne de Produits

assets (3 : P /I
\\ C, Java, C++.. O S /
Feature Model
o

produits logiciels. Les documents de spécifica-
tion des besoins, les modéles, le code source,
etc. sont des exemples de tels éléments.

Legend:
./ Mandatory
O optional
A o
/A Aternative

Abstract

Transmission Engine

AN

Aerordhmng

Concrete

Automatic Manual Gasoline Electric

L'ingénierie d'application
FIG. 1 — Ingénierie de LdP.

Lors de l'analyse du domaine, des points
communs du domaine et la variabilit¢ sont
identifiés, les membres de la LdP sont ensuite
spécifiés en utilisant des modeles de variabilité.
Le modele de caractéristiques (qui sera nommé
FM' dans ce papier) est le formalisme principal
pour la capture de points communs et de
variabilité des LdPs [3][14]. Une caractéristique
est définie comme un aspect important ou
distinctif et apparent, la qualité ou attribut d'un
systtme [14]. Un exemple illustratif d'un
modele de variabilité simple concernant une
LdP simple d’une famille de voitures est illustré
dans la figure 2. Les éléments communs de cette
famille sont spécifiés en utilisant des
caractéristiques obligatoires ou la variabilité est
décrite en utilisant les caractéristiques
optionnelles, le ou, le ou exclusif’; ce qui est
¢galement complété par des contraintes.

La notion de configuration est utilisée pour
représenter un produit d'une LdP. Elle consiste
en une sélection de caractéristiques qui sont
compatibles avec les contraintes du FM [2].
Dans I’exemple de voitures, une configuration
peut contenir le choix des différentes options
d’une voiture particuliére.

Lors de I’implémentation du domaine, des
¢léments logiciels sont construits et associés a
chaque caractéristique. Un élément logiciel est
un artefact, qui est utilisé pour développer les

! Feature Model

FIG. 2-Modgele de caractéristiques

L’ingénierie d'applications consiste a dériver
des produits membres sur la base de la LdP
issue de l’ingénierie du domaine. De nomb-
reuses approches existantes sont proposées par
la communauté LdP pour la mise en ceuvre de la
dérivation de produits. Dans cet article nous
utilisons FeatureHouse qui offre des services de
composition de caractéristiques [1]. II est
générique et peut prendre en charge de
nombreux langages de programmation dont
Java.

2.2 Approches combinant LdPs et SMA

Cette section décrit et analyse les approches
existantes qui combinent les LdPs et les
méthodes SMA. Cette combinaison a généré un
nouveau paradigme : Les Lignes de Produits des
SMA (LdP-SMA) dont le but est d'améliorer
l'ingénierie des SMA en combinant les
avantages des deux approches.

Dans [17], les auteurs comparent les deux
approches et étudient les avantages et les défis
de ce nouveau paradigme de l'ingénierie des
SMA. IIs considerent que les deux approches
sont basées sur les mémes concepts dans les
premicres phases de développement. Par
exemple, les deux approches utilisent des
modeles dans les phases d'analyse ; les LdPs
utilisent des modeles de caractéristiques ; et les
méthodes multiagents utilisent les modeles
SMA. Ces modeles sont indépendants de la
plateforme. Dans la phase d’implémentation, les
LdPs s’appuient sur une architecture de base
commune et des ¢éléments réutilisables.
Cependant, la phase d’implémentation n’est pas
souvent prise en compte dans les méthodes
AOSE. Plusieurs approches LdP-SMA ont ainsi

été proposées dont la majorité¢ utilise Gaia et
PASSI.

Dehlinger et Lutz ont introduit Gaia-LdP qui se
concentre sur la documentation et la réutilisa-
tion des spécifications des besoins pour une
LdP-SMA [9]. Leur proposition étend Gaia pour
inclure les principes de réutilisation. Gaia-LdP
propose deux contributions principales : (i) elle
introduit des points de variation dans la
conception et le développement des SMA ; (ii)
elle propose un modele de spécification des
besoins.

Une autre approche basée sur Gaia, nommée
MaCMAS, propose un FM pour documenter les
points communs et les variabilités, ce qui
permet la description d’une méme carac-
téristique a différents niveaux d’abstraction
permettant ainsi de spécifier et de tester les
changements a chaque niveau d’abstraction.
Cette approche a été proposée par Pena et al.
[16] pour faire face a la conception et a la
gestion des SMA en évolution en utilisant les
LdP-SMA. MaCMAS vise la construction du
noyau de l'architecture de base d'une approche
LdP-SMA.

Nunes et al. proposent une approche qui s’avere
de nos jours étre la plus compléte car elle
recouvre toutes les étapes allant des besoins a
I’implémentation [15]. Ils y ont adapté et repris
des ¢léments de la méthode LdP PLUS.
Cependant, cette approche utilise un modele
unique pour toute la LdP enrichi avec des
annotations pour exprimer toutes les
variabilités. Le résultat est en effet un modele
complexe qui est difficile a utiliser par les
personnes qui ne sont pas impliquées dans son
développement.

La LdP-SMA est une approche prometteuse
pour l'ingénierie SMA. En fait, la plupart des
développeurs des SMA utilisent une approche
incrémentale pour construire des applications
SMA et suivre implicitement une approche de
ligne de produits. En outre, le paradigme LdP-
SMA permet de formaliser la réutilisation dans
le développement des SMA. Cependant, la
plupart des solutions existantes introduisent des
notations complexes qui sont difficiles a
comprendre et a utiliser. Par ailleurs, elles ne
sont pas adaptées au développement incrémental

des SMA car elles sont basées sur des méthodes
existantes qui ne considérent pas la phase
d’implémentation. Ainsi, notre approche est
différente car nous proposons de partir de
I’implémentation d'un SMA en se reposant ainsi
sur une approche LdP extractive, ou nous
¢tudions les points de variation et définissons
les caractéristiques.

Les LdP-SMA sont trés proches des méthodes
d’ingénierie a base de modeles. Cependant, ces
dernieres méthodes visent a développer un seul
systéme alors que les LdP-SMA permettent de
générer une famille de systémes. Ils sont en
effet mieux appropriés au développement
incrémental.

3. Exemple

Pour illustrer notre approche, nous proposons
d’utiliser le probléme de I’emploi du temps.
Dans cette section, nous commengons par
présenter une variante simple de cet exemple,
puis un ensemble de facteurs de variabilité est
introduit.

Description : Le benchmark emploi du temps
(appelé TimeTable ci-aprés) a ét€ proposé par
Bernon et al. [5] afin d'étudier -certains
problémes dans le domaine des SMA. Il
représente un probléme d’allocation de
ressources complexe pour lequel la recherche de
solutions doit étre collective.

Le diagramme de classes UML de la figure 3
résume I’implémentation de la variante simple
de I'emploi du temps. Il comprend deux parties:
1) un ensemble de classes qui représentent
l'ontologie du domaine et 2) un ensemble de
classes représentant les agents et leurs
comportements. Cette variante simple du
probléme de I’emploi du temps ne considere
aucune contrainte concernant les ressources. Par
exemple, elle considére que les enseignants et
les groupes d'étudiants trouvent une solution
pour les cours. Les classes sont ensuite affectées
a ces cours avec tout le matériel nécessaire
(Tableau noir, vidéo projecteur ...) et les
contraintes (taille de la piece ...).

Dans notre modele, chaque utilisateur est doté
d'un agent assistant dont le comportement est
guidé par le protocole contrat Net (CNP) :

- L'agent Enseignant (Teacher_Agent) a pour
objectif d’assurer sa charge d'enseignement
(en créneaux) en fixant les créneaux et les
cours qu'il doit assurer a toutes les classes
(groupes d’étudiants).

- L'agent Classe (Class_Agent) représente un
groupe d'étudiants auquel un enseignant sera
assigné pour un cours spécifique.

Ontologie Agents

F Teacher_Agent

Slot =1 TimeTable Agent

o1 1 4
. B2 Class_Agent ‘

1

TimeTableContract .

Behavior ‘

0.1
Course

Contract

CNP_lInitiator || CNP_Participant

FIG. 3 — diagramme de classes UML pour
l'exemple simple

Variabilité : La variante de I’emploi du temps
décrite ci-dessus est simple. Toutefois, le
probléeme de I’emploi du temps peut avoir
plusieurs variantes de part l'inclusion ou
I’exclusion de contraintes qui peut étre trés
complexe [5]. En effet, si on considére le
probléme associé a ce systéme et qui consiste a
trouver un emploi du temps cohérent en tenant
compte des points suivants : (i) une liste de m
enseignants, (ii) une liste de n classes (groupes
d'¢leves) et, si nécessaire, (iii) une liste des p
salles. Compte tenu de ces nouvelles
considérations, plusieurs variantes peuvent étre
déclinées. En effet, I’introduction de la
variabilit¢ concernant le nombre d’agents
entralne le changement du protocole
d’interaction. En plus, la prise en charge des
salles génére aussi d’autres variantes en
fonction de la facon dont les ressources sont
geérees.

Dans la section suivante, nous allons présenter
notre approche pour utiliser les LdPs afin
d’implémenter les SMA. Elle suit
I’environnement général des LdPs présenté dans
la section précédente. Nous commengons par
montrer comment spécifier un FM. Nous
montrons ensuite comment les différentes
variantes du systéme de I’emploi du temps

peuvent étre obtenues en utilisant une approche
de composition de LdP.

4. Id-MASPL?

Notre nouvelle approche LdP-SMA, nommée
Id-MASPL, vise a traiter deux questions:1) le
développement incrémental d’une famille de
SMA du méme domaine, et 2) la réduction de
I’écart existant entre la modélisation et
I’implémentation des SMA.

Nous proposons, en premier lieu, un canevas de
FM des SMA. Nous montrons par la suite,
comment raffiner ce FM pour prendre en
considération les nouveaux facteurs de
variabilité. Enfin, nous illustrons les questions

d’implémentation concernant les artefacts

logiciels et dérivation de variantes.

4.1 Vers un modele pour les
caractéristiques des SMA

Dans cette section, nous présentons une

approche de LdP pour I’'implémentation des
SMA ou la réutilisation de solutions SMA
existantes pour les raffiner ou les étendre.

Etant donnée une représentation abstraite d'un
SMA, qui pourrait étre le produit d'une méthode
multiagent, notre idée est de construire un FM
basé sur cette représentation abstraite et sur le
paradigme Voyelles (Agent, Environnement,
Interaction, Organisation) proposé par Yves
Demazeau [10].

Notre FM est construit a partir du modele SMA
¢laboré pour I'implémentation de la premicre
variante de I’exemple. Il possede deux niveaux :
un niveau abstrait, et un niveau spécifique au
domaine. Au niveau abstrait nous considérons
les principales abstractions qui font partie d'un
SMA, selon le paradigme Voyelles, pour
organiser les caractéristiques abstraites. Au
niveau spécifique du domaine, en dessous de
chaque abstraction correspondant & une voyelle,
nous retrouvons les caractéristiques liées a
I'Environnement, aux Agents, a 1’Interaction et a
1'Organisation.

Dans notre exemple, la description abstraite du
systéme présentée dans le diagramme UML doit

? Incremental development of Multi-Agent Systems with
Software Product Line

étre mise en correspondance avec un FM
compos¢ des caractéristiques spécifiques du
domaine

Caractéristiques de I’environnement

L’environnement des agents représente le
contexte dans lequel les agents sont situés.
Chacune des classes de 1’ontologie du domaine

(Course, Slot et TimeTable) est en effet associée
a une caractéristique.

La classe Contract représente la stratégie de
décision adoptée par les roles d'interaction pour
accepter et / ou rejeter les propositions regues.
Par conséquent, une caractéristique Decision-
Strategy lui est associée.

Caractéristiques des Agents : La mise en
correspondance est directe car les agents sont
clairement identifiés dans le diagramme UML et
chaque classe représentant un agent correspond
a une caractéristique.

Vu que le probléme que nous résolvons est la
variante la plus simple mais en méme temps la
base, ces caractéristiques sont donc obligatoires.

Caractéristiques de I’Interaction : Les
caractéristiques de I’interaction dépendent des
types d’applications et par conséquent de la
plateforme. Dans les SMA, il existe deux types
d’interactions : ~ L’interaction directe et
I’interaction indirecte. Par exemple, JADE
utilise ’interaction directe et fournit une
librairie de protocoles d'interaction - chacun
¢tant implémenté par deux roles d'interactions.
Dans le diagramme de classes, les classes CNP-
Initiator et CNP-Participant représentent les
deux rdles du protocole Contract Net (CNP).
Par ailleurs, Netlogo utilise souvent I’interaction
indirecte telle que les phéromones.

TimeTableMAS

'/A:ms/

Legend:
./ Mandatory
Abstract

Envrironement Interaction Organisation

Concrete

@
DomainOntology Class_Agent Teacher_Agent Interaction_ContratNet

Slot TimeTable Course DecisionStrategy Contract CNP_lnitiatorRole CNP_ParticipantRole

FIG. 4 — Modéle initial des caractéristiques pour
le SMA de I’emploi du temps.

Puisque dans notre systéme l'utilisation de CNP
est nécessaire, nous proposons d'associer la

caractéristique Interaction-ContractNet au
comportement F'SM Behaviour, avec ses sous-
caractéristiques CNP_InitiatorRole et
CNP_ParticipantRole pour chaque classe qui
décrit les roles d'interaction.

Caractéristiques de l'organisation : Compte
tenu de la simplicité¢ de la premiere version de
notre exemple, il n'y a qu'un groupe d'agents
(comprenant un agent Enseignant, n agents
Classes) et deux rdles. Chaque agent joue un
role. Par conséquent, nous n’avons pas
nécessairement besoin d’un modele explicite de
I’organisation pour cette version.

Une capture d’écran du FM est donnée dans la
figure 4, et elle représente une configuration du
SMA-LdP pour l'exemple décrit dans Ila
section 3. Les caractéristiques entourées en
rouge sont indépendantes du domaine et
représentent le FM. Le reste des caractéristiques
est spécifique au domaine. Ce FM sera raffiné
afin de montrer explicitement la variabilité
associée a certaines variantes de notre exemple.

4.2 L'évolution des SMA par le raffinement
des caractéristiques

Etant donnée la solution développée dans la
section précédente, nous allons analyser et
développer quelques extensions en améliorant le

FM. Nous proposons d'augmenter la complexité

du probléme :

- en changeant la stratégie de décision pour
les deux roles. Dans notre premier FM, nous
considérons que les différents agents sont
homogenes. Ils utilisent la méme stratégie
pour sélectionner les propositions regues.
Les classes utilisent la méme stratégie pour
accepter ou rejeter les propositions, et tous
les enseignants utilisent la méme stratégie
pour sélectionner un sous-ensemble de
propositions a accepter ;

- en changeant le nombre d'agents
Enseignants dans notre systéme (Version 1 :
1 Enseignant et n Classes ; Version 2 : m
Enseignants et n Classes). Ainsi, les agents
Classes peuvent recevoir plusieurs
propositions pour le méme cours. Ensuite,
les agents Classes peuvent définir une
stratégie pour sélectionner 'un d'entre eux a
accepter. Cela signifie que nous devrions
étendre le protocole d'interaction pour
décrire cette nouvelle fagon d’interagir ;

- en ajoutant des contraintes sur les ressources
telles que la disponibilité des salles. Nous
pouvons ainsi ajouter un agent pour gérer
toutes les salles ou associer a chaque salle
un gestionnaire ;

- en utilisant un autre protocole d'interaction.

Pour changer de protocole, nous avons juste

besoin d'étendre le FM existant en incluant une

caractéristique abstraite Interaction-Protocol qui
est composée de plusieurs protocoles
d'interaction, tels que les protocoles de FIPA

Contract-Net, Iterated-Contract-Net, English-

Auction, Request-Interaction, entre autres. Nous

avons ensuite analysé les protocoles

d’interaction et les comportements requis. Le
but de cette analyse est de déterminer les
comportements qui peuvent étre génériques. Par
exemple, l'initiateur CNP nécessite un contrat,
un temps d'arrét (timeout) et une stratégie
d'évaluation. En outre, le participant exige

seulement une stratégie pour construire des
propositions. Jarraya et Guessoum [13]
concluent que, pour plusieurs protocoles
d'interaction, les comportements locaux (définis
comme automates a états finis) sont génériques.
Mais ils nécessitent certains parametres d'entrée
comme un contrat, un temps d'arrét, et une ou
plusieurs stratégies.

En effet, ils peuvent étre adoptés et activés
dynamiquement par des agents.

Nous proposons donc d'ajouter a notre FM un
ensemble de caractéristiques représentant les
roles des protocoles d'interaction, et un
ensemble de stratégies, qui enrichissent
I’ontologie. En outre, et pour gérer les salles de
classe et leur disponibilité, nous proposons
d'ajouter le concept Room a l'ontologie et de
créer une nouvelle classe représentant les
gestionnaires (Room_Agent).

TimeTableMAS Legend
./ Mandatory
O/ Optional
Envrironement Interaction Organisation A Or

Abstract

Concrete
: = 9 O
DomainOntology Class_Agent Teacher_Agent Room_Agent Interaction_Protocol Roles Norms Groups
Slot TimeTable Course DecisionStrategy Contract Room Interaction_ContratNet Iterated_Contract English_Auction Request_Interaction

CNP_lnitiatorRole

CNP_ParticipantRole

Room < Room_Agent

FIG. 5 — Le modéle des caractéristiques raffiné.

La Figure 5 illustre le nouveau FM qui raffine
le mode¢le initial de la Figure 4. 1l est a noter
que les modeles de caractéristiques permettent
¢galement d'ajouter les dépendances entre les
caractéristiques.

Nous ajoutons donc une contrainte spécifiant
que la présence de la caractéristique liée a la
ressource Room nécessite la présence de la
caractéristique Room-Agent et vice versa.

Il est important de noter également que dans
cet article nous ne considérons pas la
caractéristique de l'organisation qui concerne
cet exemple d’emploi du temps. En plus, les
comportements des agents sont limités a des
rOles interactifs et aucune norme n’est

considérée. Toutefois, si l'on considére un
probléme plus complet pour gérer I’emploi du
temps des collégues de 1'Université, plusieurs
aspects doivent étre considérés. Par exemple,
plusieurs normes doivent étre prises en ligne
de compte comme le nombre d’heures
minimal ou maximal. Par ailleurs, un mod¢le
d'organisation tel que AGR [11] devrait étre
considéré également. Nous avons donc ajouté
trois caractéristiques optionnelles : les Rdles,
les Normes et les Groupes.

4.3 Implémentation d’artefacts et

dérivation de variantes

Comme souligné dans la section 2, la LdP est

définie par un FM mais aussi par des éléments
logiciels (appelés assets). Ces derniers
représentent les artefacts logiciels qui
implémentent les différentes caractéristiques.
De nombreuses approches ont été proposées
pour mettre en ceuvre les artefacts logiciels
dans les LdPs [2]. Dans notre approche ou
I’objectif est de générer des applications
JADE, nous nous sommes intéressés aux
artefacts logiciels représentant des fragments
de code JADE. Pour implémenter ces
artefacts, nous proposons de réutiliser le
composeur FeatureHouse [1] qui permet
I’implémentation de la LdP en Java.
FeatureHouse associe a chaque caractéristique
les éléments de code I’implémentant. Ceci
peut contenir 'ajout de nouvelles classes et/ou
le raffinement des classes existantes.
FeatureHouse utilise par la suite un
mécanisme de composition pour générer le
code de chaque variante en se basant sur une
composition des caractéristiques [1].

Dans ce qui suit, nous illustrons I’implémen-
tation des caractéristiques pour I’emploi du

Refuse [noExpiredTimeOut] / removeParticipant

[isInitialize]/sendCallForProposal

Propose [noExpiredTimeOut] / addProposal

[ExpiredTimeOut] / Ev

InformDone /

temps. Ensuite, nous présentons la fagon dont
chaque variante SMA peut étre dérivée a
partir de cette implémentation.

4.3.1 Implémentation des artefacts

Comme indiqué ci-dessus, les caractéristiques
LdP-SMA peuvent concerner quatre
dimensions I’environnement, les agents,
I’interaction et [’organisation. Les carac-
téristiques qui concernent l'environnement
pour le SMA de I’emploi du temps telles que
TimeTable, Course, Slot, et Contract, sont
directement mappées aux classes Java.
L’implémentation des caractéristiques liées
aux agents est basée sur l'extension des
classes agents de JADE. Par exemple, le code
associ€¢ a JADE pour la classe Teacher-Agent
consiste a définir la classe de facon a ce
qu’elle hérite de la classe Agent de JADE.
Nous avons également besoin de raffiner la
classe Launcher en ajoutant l'initialisation de
l'agent Teacher-Agent. En effet, pour chaque
implémentation JADE mise en ceuvre, une
classe de lanceur devrait étre définie pour
initialiser les différents agents.

alauateProposals

[RefuseProposal]/
[AcceptProposal]/
sendAcceptProposal AND
sendRejectproposal

sendRejectAllProposals

Failure/

FI1G.6 — Machine d’états finis représentant le role initiateur du CNP.

La mise en ceuvre des caractéristiques CPN-
Initiator et CPN-Participant qui sont les deux
roles liés au CPN, est basée sur la réutilisation
de la classe jade.core.Behaviour de JADE.
Pour rendre le comportement associé
générique, nous utilisons le FSMBehavior.
Chaque rdle est donc mis en ceuvre comme

une sous-classe de cette classe.

La Figure 6 donne un exemple de ce FSM a
travers sa machine d'état associée. Elle
s’appuie sur un contrat, une stratégie
d'évaluation, une liste de participants et ne
nécessite pas une autre entrée pour étre
exécutée.

4.3.2 Dérivation de variantes

A partir du modele des caractéristiques des
SMA et de tous les objets logiciels associés,
différentes variantes peuvent étre dérivées
automatiquement sur la base des mécanismes
de composition, comme ceux définis dans
FeatureHouse [1].

La dérivation des variantes est implémentée
en deux étapes :

- créer une configuration valide du FM qui
contient la sélection des fonctionnalités
pour une variante spécifique,

- composer les artefacts logiciels qui sont
associés a la fonction sélectionnée, et ce, a
l'aide du compositeur.

Pour le SMA de I’emploi du temps, plusieurs
configurations valides peuvent étre créées a
partir des caractéristiques du modéle de la
figure 5.

V TimeTableMAS (valid, 32 possible configurations)

- V Envrironement

- V¥ DomainOntology

- Slot

- TimeTable

- Course

- DecisionStrategy

- Contract

v Room

- V Agents

- Class_Agent

- Teacher_Agent

- Room_Agent

- V Interaction

- ¥ Interaction_Protocol

v WV Interaction_ContratNet

- CNP_lInitiatorRole

- CNP_ParticipantRole
Iterated_Contract

v English_Auction
Request_Interaction

- V Organisation

Roles

Norms

Groups

F1G.7 —-Exemple de configuration valide pour
une variante de I’emploi du temps.

La figure 7 montre un exemple d'une telle
configuration valide qui concerne une
variante du SMA de I’emploi du temps
supportant deux types de protocoles
d'interaction : ContratNet et English_Auction.
Cette variante gere également les contraintes

de salles parce que les deux caractéristiques
Room et Room-Agent sont sélectionnées.
Cependant, toutes les caractéristiques qui sont
liées a la dimension Organisation ne sont pas
présentes.

De la configuration valide créée,
FeatureHouse compose le code Java pour
toutes les caractéristiques choisies afin de
générer le code source de la variante cible.

La génération de code est basée sur le
raffinement du code [1].

5. Conclusion et perspectives

Nous avons introduit dans ce papier une
approche LdP-SMA, nommée Id-LdPMAS
qui permet le développement incrémental
bas¢ sur les caractéristiques et leur
implémentation, et qui comble le fossé
existant ~ entre la modé¢lisation et
I’implémentation des SMA. Pour outiller cette
approche, nous avons utilis¢ FeatureHouse,
un framework de LdP qui permet de générer
des wvariantes du systtme a partir des
caractéristiques. Pour 1’implémentation des
SMA, nous avons utilis¢ JADE. Chaque
caractéristique est associée au code JADE
et/ou Java.

Id-LdAPMAS utilise un ensemble de
caractéristiques qui peuvent étre déduites de
quelques modeles SMA existants. L’identi-
fication de ces caractéristiques et leur
catégorisation sont réalisées sur la base du
paradigme Voyelles. Par conséquent,
I’approche pourrait étre adoptée par les
développeurs utilisant n’importe quelle
méthode pour créer des modeles de SMA, y
compris les méthodes situationnelles [7].
Id-LdPMAS a ¢été validé sur Iexemple de
I’emploi du temps avec la plate-forme JADE.
En perspectives nous projetons : (i) d’analyser
I’impact sur I’identification des caractéris-
tiques lors de changement de plateforme ; (ii)
de considérer d’autres exemples de SMA qui
s’articuleraient autour de modeles organisa-
tionnels tel que celui des fourmis et du
champs potentiels afin d’enrichir le modele
avec différents mécanismes d’interaction et
d’auto-organisation également; (iii) de

proposer des lignes directrices et des tutoriels
accompagnés d’exemples pour les
développeurs des applications SMA, afin de
les encourager a adopter les LdAP-SMA en les
aidant a construire leur propre LdP-SMA
étape par étape ; (iv) de proposer 1’adoption
de I’agilité tout en la combinant avec notre
approche, ce qui serait intéressant pour
concevoir une véritable méthode pour les
SMA.

Remerciements

Anarosa A. F. Branddo est financée par une
bourse #014/03297-7, Sdo Paulo Research

Foundation (FAPESP).
References

[1] S. Apel, C. Kistner, C. Lengauer, Language-
Independent and Automated Software
Composition: The FeatureHouse Experience.
IEEE Transaction on Software Engineering
39(1): 63-79,2013

[2] S. Apel, D. Batory, C. Kistner, G. Saake:
Feature-Oriented Software Product Lines -
Concepts and Implementation. Springer,
2013.

[3] D. Benavides, S. Segura, and A. R. Cortés,
Automated analysis of feature models 20
years later: A literature review, Information
Systems, vol. 35, no. 6, pp. 615-636, 2010.

[4] F. Bergenti, M-P. Gleizes and F. Zambonelli,
Methodologies and Software Engineering for
Agents Systems, Kluwer Publishing, 2004.

[5] C. Bernon, M-P Gleizes, P. Glize, G. Picard,
Le probleme de I’emploi du temps - Cahier
des charges, In C. Bernon, V. Camps, M-P.
Gleizes, P. Glize, S. Peyruqueou, G. Picard.
Ingénierie des AMAS pour l'emploi du
temps. ETTO - Emergent TimeTable
Organization. Rapport de recherche, ASA-
PRC IA, IRIT,2002.

[6] S.Casare, A. A.F. Branddo, Z. Guessoum, J.
Sichman, Medee Method Framework: a
situational ~approach for organization-

centered MAS. Autonomous Agents and
Multi-Agent Systems, 28(3): 430-473, 2014.

[71 E. Cirilo, I. Nunes, U. Kulesza, C. Lucena,
Developping Multi-Agent System Product
Lines: From Requirements to Code. IJAOSE,
pp. 197-216, 2011.

[8] Clements and L. Northrop, Software product
lines: practices and patterns. Addison-
Wesley Longman Publishing Co., 2001.

[9] J. Dehlinger, R. Lutz, Gaia-PL: A Product
Line Engineer-ing Approach for Efficiently
Designing Multi-Agent Systems. ACM
Transaction on Software Engineering
Methodologies 20(4): 17 (2011)

[10] Y. Demazeau, From interactions to collective
behavior in agent-based systems.
Proceedings of the 1st. European Conference
on Cognitive Science. Saint-Malo, p. 117-
132,1995.

[11]J. Ferber, O. Gutknecht, F. Michel, From
Agents to Organizations: An Organizational
View of Multi-agent Systems. In P. Giorgini,
J.P. Miiller, J. Odell (Eds.): Agent-Oriented
Software Engineering, LNCS 2935, pp. 214—
230, Springer, 2004.

[12] Z. Guessoum, M. Cossentino and J. Pavon
Mestras. A Roadmap of Agent-Oriented
Software Engineering: The European
Agentlink Perspective. In “Methodologies
and Software Engineering for Agents
Systems”, Bergenti ey al (eds.), Kluwer pp.
430-450,2004.

[13] T. Jarraya, Z. Guessoum, Towards a Model
Driven Process for Multi-Agent System.
Proc.of CEEMAS 2007: 256-265

[14] K. Kang, S. Cohen, J. Hess, W. Nowak, S.
Peterson, Feature-Oriented Domain Analysis
(FODA) Feasibility Study (Report).
CMU/SEI-90-TR-21.

[15] I. Nunes, C. Lucena, D. Cowan, U. Kulesza,
P. Alencar, C. Nunes, Developing Multi-
agent System Product Lines: From
Requirements to Code, Agent-Oriented
Software Engineering, 4(4), 353-389,2011.

[16] J. Pena, M. Hinchey, M. Resinas, R. Sterritt,
J. Rash, Designing and managing evolving
systems using a MAS product line approach.
Sci. Comput. Program. 66(1), 71-86, 2007

[17]J. Pefia, M. Hinchey, A. Ruiz-Cortés, Multi-
agent system product lines: challenges and
benefits. Communications of the ACM, Vol.
49 No. 12, Pages 82-84. 2006.

[18] M. Cossentino. N. Gaud, V. Hilaire, S.
Galland, A. Koukam. ASPECS: an agent-
oriented software process for engineering
complex systems. In Autonomous Agents
and Multi-Agent Systems, 20(2), 260-304,
2010.

