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A B S T R A C T

Disaggregated data for travel demand are essential resources toward appropriate urban planning, especially 
regarding public transportation. However, especially in developing countries, access to such information is 
limited. The current paper addresses this issue by introducing an approach, comprising semivariogram decon
volution, Sequential Gaussian Simulation (SGS), and validation, using regular spatial scales. As input to the 
procedure, we propose to use information with high availability, such as census microdata. The hallmark of the 
devised method lies in inferring travel spatial variability of more disaggregated unit areas using synthetic data. 
The method proposes to calculate synthetic data using the socioeconomic census microdata and a calibrated 
regression model with travel demand data associated with Traffic Analysis Zones (TAZs) in São Paulo city. The 
resulting maps and statistical metrics corroborate the original data values associated with TAZs. This paper 
presents relevant contributions as the method enables: bypassing the lack of available travel disaggregated data; 
creating different scenarios to reproduce travel spatial behavior; and assessing the associated uncertainty.

1. Introduction

Forecasting travel demand is crucial for urban planning policies. 
Traditional models for travel demand are usually based on Origin/ 
Destination (O/D) Surveys, whose data are collected by randomly 
sampling households within the study area. However, the process of 
collecting such data is cumbersome, time-consuming and requires large 
financial investments by responsible municipal bodies.

In addition to this scenario, traditional models do not consider 
spatial factors as important variables to estimate travel demand. 
Furthermore, simulations used in conventional data disaggregation 
processes and/or synthetic data acquisition often overlook the spatial 
autocorrelation of travel demand variables. However, different studies 
have recognized and advocated the link between travel behavior and the 
spatial allocation of urban activities (Cervero and Radisch, 1996; Kita
mura et al., 1997).

Long-established travel models applied to urban planning policies set 
out to replicate travel behavior using socioeconomic factors, for 
example. The lower the level of aggregation, the higher the amount of 

detail associated with the data. Therefore, individual information is a 
convenient resource for traditional urban planning methods. However, 
due to the confidentiality and high financial investment associated with 
the collection, such information is not regularly available. In the travel 
demand line of research, the process of obtaining disaggregated data is 
well consolidated in microsimulation approaches. Although micro
simulation is a well-established approach to travel demand issues, 
Lindner and Pitombo (2019) highlight the potential of using spatial 
autocorrelation of travel-related variables as key components to input in 
the microsimulation and generating synthetic data. To the best of the 
authors’ knowledge, this topic has not been explored in any other aca
demic literature. Therefore, this underscores the need to address the 
main shortcoming identified by Lindner and Pitombo (2019), i.e., 
obtaining the spatial structure of downscaled information, which is 
discussed in this paper.

Based on the context that travel demand variables are spatially 
correlated and that such a feature should be considered for data 
modeling and disaggregation, this paper proposes using geostatistical 
procedures. Various authors have already applied geostatistics in the 
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field of transportation (Yoon et al., 2014; Chen et al., 2015; Miura, 2010; 
Pitombo et al., 2015; Lindner et al., 2016; Rocha et al., 2017; Lindner 
and Pitombo, 2018; Marques and Pitombo, 2021a, 2023; Marques et al., 
2024). This technique enables modeling a variable at spatial positions 
whereby its values are unknown. Owing to the potential of using Geo
statistics for travel demand, this paper sets out to explore geostatistical 
simulation to devise a heuristic framework for data disaggregation.

Sequential Gaussian Simulation (SGS) is the most popular geo
statistical simulation technique. This method facilitates the calculation 
of equiprobable models that reproduce the spatial correlation and the 
probability distribution of a continuous variable (Verly, 1993). As 
several simulations are generated, the associated uncertainty, such as 
confidence intervals and conditional variances, can be calculated.

Simple downscaling processes using Geostatistics consist of 
analyzing the spatial structure of the variable (variographic analysis) 
and defining a semivariogram model as input in a kriging system, which 
allows for estimating values of a variable at non-sampled positions, 
based on the distance to their surrounding observations. The original 
input dataset of this case study is associated with Traffic Analysis Zones 
(TAZs), which have different shapes and sizes, leading to the Modifiable 
Areal Unit Problem (MAUP). However, the travel variable, originally 

related to TAZs, will become associated with smaller regular unit areas. 
Thus, due to the MAUP and its association with larger and irregular areal 
units, the initial semivariogram model is incompatible with the output 
information from the disaggregation process. Goovaerts (2008) pro
poses solving the MAUP by using a deconvoluted semivariogram, ac
cording to the concepts provided by Journel and Huijbregts (1978). 
However, the classic procedure for semivariogram deconvolution re
quires disaggregated data to calculate a regularized semivariogram.

The main aim of this paper is to bypass the lack of available travel 
disaggregated data through a heuristic approach comprising semi
variogram deconvolution, Sequential Gaussian Simulation (SGS), and 
validation, using regular spatial scales. Furthermore, this paper con
tributes by (1) generating more disaggregated data through information 
associated with irregular areas to overcome the unavailability of indi
vidual/household data; (2) proposing an alternative procedure for 
semivariogram deconvolution by employing data with higher avail
ability (e.g. census microdata); (3) obtaining different scenarios, with 
simulated data of the study variable, thus yielding the distribution of 
possible values of this variable and a map with confidence intervals.

Fig. 1. São Paulo (city) location map and its TAZs.

Fig. 2. Populated areas and land-use map (adapted from GeoSampa website - https://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx, 2010).
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2. The path from traditional spatial analysis to geostatistical 
simulation in travel demand modeling

Socioeconomic factors, cost and service level are widely recognized 
as explanatory attributes in traditional logistic regressions for travel 
demand models. It can be further noted that conventional travel mode 
choice models disregard information related to the spatial position of 
variables. However, owing to the technological advances and the high 
availability of geographical data, spatial modeling is seen as an impor
tant area of interest in travel demand, especially with the insertion of 
spatial patterns in mathematical models (Páez and Scott, 2005; Páez 
et al., 2013).

Various authors have reached valuable results by adding spatial at
tributes to travel behavior analysis (Yamada and Thill, 2004; Dugundji 
and Walker, 2005, Xie and Yan, 2013, Kaygisiz et al., 2015). However, 
Geostatistics may be more advantageous as it enables exploratory and 
confirmatory analyses by forecasting values of spatially correlated var
iables at sampled and non-sampled locations using the distance between 
the observations of the dataset and the theoretical semivariogram 
function. In addition to incorporating the spatial variability of variables, 
geostatistical methods also consider aspects of spatial patterns, such as 
the main direction of continuity (known as spatial anisotropy) 
(Matheron, 1963). Besides, the estimation (or simulation) of geo
statistical approaches is not achieved by simple spatial interpolation, but 
rather by a kriging process, using theoretical models that most fit the 
empirical semivariogram.

Geostatistical frameworks demonstrated in travel demand issues 
have not been sufficiently explored (Yoon et al., 2014; Chen et al., 2015; 
Marques and Pitombo, 2020). However, current research has shown that 
the technique may be promising to provide spatial estimates of travel 
demand variables using Ordinary, Universal, Indicator Kriging and 
Kriging with External Drift (Miura, 2010; Pitombo et al., 2015; Lindner 
et al., 2016; Gomes et al., 2016; Rocha et al., 2017; Lindner and 
Pitombo, 2018; Lindner et al., 2021; Marques and Pitombo, 2021b, 
2023; Marques et al., 2024). Simple Kriging, in turn, is suitable for cases 
where the population mean is known, which applies to the current 
study. Considering the subject of travel demand modeling, the applica
tion of geostatistical procedures still requires in-depth studies, especially 
regarding the effect of the nature of the variables, which encounter 
obstacles as they are linked to human behavior.

The optimal geographical scale (support) preferred by specialists in 
traditional travel demand models may differ from the scale selected for 
spatial models. Transportation decision-makers usually adopt variables 

associated with individuals or households, if available, rather than areal 
data. However, individual information may not be suitable for spatial 
models, as it is point-related and surveys do not precisely capture indi
vidual geographical coordinates. In addition, individuals residing in the 
same household are likely to behave differently, causing biased geore
ferenced information. To efficiently work with socioeconomic data, a 
certain level of aggregation is needed. This issue leads to a change of 
support.

Geographical information systems applied to social sciences 
commonly address the disaggregation of demographic data through 
spatial interpolation (Flowerdew and Green, 1993; Goodchild et al., 
1993). However, available methods have the drawback of requiring a 
disaggregated or regularized semivariogram (Kyriakidis, 2004), which, 
in turn, demands disaggregated data. Rocha et al. (2017) proposed an 
initial attempt to develop an alternative semivariogram deconvolution 
aiming at improving travel demand modeling, considering the 
assumption of continuity in geostatistical approaches and the MAUP. In 
spite of the procedure limitations, the authors presented an initial pro
posal to solve an important issue in travel demand analysis: the un
availability of disaggregated data.

The present paper gives some impetus to the concept of using sem
ivariogram deconvolution for data disaggregation, while addressing the 
previously identified challenges. The concepts for geostatistical 
modeling are conducted using the Sequential Gaussian Simulation 
(SGS). SGS is a stochastic simulation technique that aims to establish a 
group of distinctive scenarios that reproduce spatial features. Stochastic 
simulations generate a range of realizations (formal designation for 
simulations) that may express the associated uncertainty in the spatial 
simulation or deconvolution method (Goovaerts, 1997; Remy et al., 
2009). In addition, SGS enables the change of support (Goovaerts, 2001) 
and avoids smoothing effects that occur in kriging techniques (Deutsch 
and Journel, 1998).

An application of the SGS to explore different scenarios of transit 
production in the São Paulo Metropolitan Area (SPMA), Brazil (Lindner 
and Pitombo, 2019), demonstrates that the method may also be 
appropriate for travel mode choice variables. The authors have explored 
the following benefits of the stochastic simulation for the transportation 
field: gathering less information as input, incorporating the spatial as
sociation, predicting values at non-sampled positions, and mapping the 
simulated variable and the associated uncertainty using conditional 
variances and confidence intervals. However, the authors mention that 
the lack of availability of disaggregated spatial structure (semivario
gram) may be seen as a drawback when applying the geostatistical 
simulation.

3. Case-study context, dataset and method

The case study area consists of the city of São Paulo, located in the 
east of São Paulo state (SP), Brazil, according to Fig. 1.

São Paulo is the most populous city in Brazil, comprising 320 TAZs 
with 9 million passenger displacements per business day (SPTrans, 
2018). On average, the demographic density is 7,400 inhabitants per 
square kilometer. Fig. 2 (left side) shows the areas in which the popu
lation density is greater than 50 inhabitants per square kilometer – 
population densities lower than this threshold were assumed as non- 
populated regions. The land use map, also presented in Fig. 2 (right 
side), corroborates this assumption. It can be noted that both the 
northern and the southern areas (in greater part) encompass land use 
characteristics that do not demand an intense urban transportation 
network.

The dataset sources include the Brazilian Institute of Geography and 
Statistics (IBGE, 2010) and the São Paulo Metropolitan Company 
(Metrô, 2007), which provided the socioeconomic microdata and O/D 
database, respectively. The microdata pertain to 172,627 non- 
georeferenced households located at 310 sets of census tracts in the 
city of São Paulo. The 2007 O/D Survey, in turn, holds 196,699 travel 

Fig. 3. Transit trip rate per TAZ (adapted from Metrô, 2007).
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records associated with 30 thousand surveyed households in the SPMA. 
In the city of São Paulo, the O/D Survey covered 15,759 households.

The information collected from 15,759 households was aggregated 
within the TAZs of the study area, resulting in a dataset of 320 records. 
The O/D dataset was also aggregated into different spatial scales to 
provide a validation tool (Comparative Method) for the proposed 
method. It should be noted that the number of observations sampled for 
census surveys overcomes travel datasets from O/D surveys. Hence, 
microdata represent a larger sample of the population and may provide 
alternative perspectives for travel analysis, covering a wider spatial 
sample, especially when considering geostatistical models.

The OD Survey ensures the representability of the study area by 
adopting a proportional stratified random sampling based on four levels 
of household energy consumption, covering various levels of income. 
This sampling method allowed for calculating the total of produced trips 
at each TAZ with error margins of less than 5 % (Metrô, 2008). In the 
Census case, 5 % of the households were interviewed, accounting for the 
population distribution inside each tract (IBGE, 2013). As a higher 
number of households were visited in the Demographic Census, the error 

margins were even lower than in the OD case when estimating total 
values based on sampled households.

The transit trip rate (i.e., rate of trips by bus, metro and train, 
considering the main travel mode choice per household) is assessed as a 
study variable in this paper. Fig. 3 presents the values of the transit trip 
rate associated with the 320 TAZs in São Paulo, using the 2007 O/D 
Survey as a source.

It can be observed that the TAZs in southern São Paulo, shown in 
Fig. 2 as areas with low population density, are represented in Fig. 3 by 
higher rates of transit preference. Consequently, this may lead to mis
interpretations of the associated travel behavior. Furthermore, the TAZs 
have homogeneous behavior when compared with one another, 
demonstrating the smooth effect of aggregated data, which results in 
loss of information. The present paper proposes a heuristic framework to 
disaggregate data with an alternative semivariogram deconvolution 
method and SGS, using individual socioeconomic data and travel data 
associated with TAZs.

Fig. 4. Flowchart for the alternative semivariogram deconvolution.
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3.1. Alternative semivariogram deconvolution

Fig. 4 summarizes the proposed method for disaggregating data, and 
the semivariogram deconvolution process. The steps are designated by 
Arabic numerals (1) to (7), whilst the datasets (and variables) are 
depicted by the letters (A) and (B).

One main explanatory variable was set as essential to calculate the 
study variable using a calibrated model: low-income social class, as it 
links both data sources (Census and O/D Survey). A linear regression 
model was calibrated considering the transit trip rate per household 
(study variable) as a function of the low-income household rate, using 
the O/D data at the TAZ level.

The social class is provided in its original format in the travel dataset 
(Social Class A, B, C, D and E – representing higher to lower household 
conditions, respectively). The present study assumes that social classes 
C, D and E cover low-income households, according to ABEP (2010). 
Whereas, when considering the census microdata, the social class may 
be inferred using the provided total income per household. Total in
comes lower than BRL 1,541 represent low-income households, ac
cording to the criteria set by ABEP (2010).

Two data sources comprised a case study in São Paulo: the 2007 O/D 
Survey and the 2010 Demographic Census. Different units of analysis 
were used: census households with synthetic coordinates, O/D house
holds with real coordinates, O/D TAZs, and grid squares. In short, the O/ 
D TAZ data (transit trip rate and low-income household rate) were used 
to calibrate a linear regression model. Afterward, this equation was used 
to calculate the transit trip rate with the low-income household rate 
from the census household data. For both O/D and census data, the 
transit trip rate was obtained for different aggregation units. However, 
in the census data case, the transit trip rate was estimated by the 
regression equation.

The scale is recommended to be empirically set based on the spatial 
behavior of the study variable, according to minimum distances between 
the centroids of the source unit areas (TAZs in the present case study) 
and according to variographic experiments. The authors recommend the 
process for disaggregating data (1–6) to be repeated until sufficient 
configurations are explored to reproduce the phenomenon. For the 
present research, eight sets of synthetic data configurations were set up. 

At the end of the deconvolution process, the respective semivariogram of 
each configuration is calculated and the feasibility of using the average 
experimental semivariogram is assessed, subject to the variability of one 
another.

3.2. Method

Fig. 5 introduces the flowchart, which depicts the steps followed in 
the current paper. Letters (a) to (d) present the information assessed 
from both datasets. The steps are described by the Roman numerals (i) to 
(v), followed by the SGS. Steps (i) to (iii) are embedded in the semi
variogram deconvolution, previously outlined in Fig. 4. Hence, the 
hallmark of the research approach lies in steps (i) to (iii) and the suc
cessive SGS (Proposed Method). This paper recommends steps iv, v and 
the subsequent geostatistical simulation (Comparative Method) to 
validate the Proposed Method.

In short, the following methods were applied: 

1) Linear regression − to calibrate a model of the transit trip rate as a 
function of the low-income household rate.

2) Calculation and modeling of the empirical semivariogram – to 
analyze if the spatial structure of the estimated transit trip rate 
(based on census data) was similar to the real transit rate (OD Sur
vey) at different aggregation grids. The semivariogram calculation 
for lower levels of aggregation using census data corresponds to an 
alternative deconvolution method that does not depend on dis
aggregated data regarding the interest variable.

3) Sequential Gaussian Simulation – to obtain different scenarios for the 
spatial distribution of estimated and real transit trip rates at different 
aggregation grids; calculation of the associated uncertainty (variance 
and confidence intervals).

The following conditions are required for the variable considered for 
the SGS: 1) normal distribution with mean 0 and variance 1; and 2) 
multigaussian assumption, which defines that each linear combination 
of the variable is distributed by a normal distribution. The kriging sys
tem is embedded in the calculation of each realization at the SGS, ac
cording to Equation (1). 

Fig. 5. Flowchart of the method.
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z(l)(x0) = z*(x0)+ σε (1) 

The index z(l)(x0) is the simulated variable at x0, z*(x0) is the estimated 
variable at x0 using kriging; ε is a random component between 0 and 1. 
Considering different kriging techniques, Deutsch and Journel (1998)
suggest that researchers adopt Simple Kriging (SK), as it ensures the 
reproduction of the semivariogram. In terms of the results, the average 
value of the realizations at each location (also known as e-type) ap
proximates the estimated value achieved by kriging methods. The result 
of the variances between the realizations tends to be similar to the 
kriging variance (Chilès and Delfiner, 1999).

The SGS can be carried out using aggregated travel data associated 
with the centroid of each TAZ and the theoretical semivariograms (also 
associated with the TAZ centroids). However, in such a case, despite the 
MAUP, only aggregated information for the population distribution and 
the spatial structure would be considered as input. The variographic 
deconvolution, in turn, enables the incorporation of spatial structure 
associated with more disaggregated data, using theoretical semivario
grams for each analyzed regular support.

Finally, the results are compared using four criteria. The first crite
rion is the visual inspection of the spatial results processed by the SGS 
and represented by the average of 500 realizations (e-type), the 

confidence interval, median and variance. The second criterion refers to 
analyzing univariate statistical measures. The third criterion tests 
whether the distributions of both average simulations are similar, using 
non-parametric hypothesis testing. The last criterion aims to compare 
the performance of both methods (Proposed versus Comparative).

4. Results and discussions

4.1. Data processing, variographic analysis and deconvolution

The inference of travel demand information (based on socioeco
nomic microdata) was derived from the following equation: T =

1.056*H, where T is the rate between produced trips by transit and total 
produced trips, and H is the rate between low-income households and 
the total number of households inside each regular area. The regression 
model presented a determination coefficient of 0.8 and a statistically 
significant coefficient for the independent variable H (sig = 0.00). While 
the regression model was calibrated using the O/D Survey data, the 
previous equation was used to calculate the study variable T using the 
census synthetic data.

After estimating T for different aggregation units, a variographic 
analysis of this variable was conducted, as shown in Fig. 6. The 

Fig. 6. Deconvoluted semivariograms for the transit trip rate using synthetic data.
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omnidirectional semivariograms for the eight sets of synthetic data 
presented a similar structure, corroborating the assumption of using the 
average semivariograms for the main and minor directions of data 
continuity (N-S and E-W, respectively). As the Euclidean distance be
tween TAZs is 1,400 m, it can be concluded that using coarse spatial 
supports does not provide disaggregated outcomes. However, this study 
includes a coarse-scale of 1,500 m to compare the results.

The variographic analysis of the deconvoluted semivariograms leads 
to the conclusion that the more disaggregated the scale, the less the 
tendency for spatial stationarity. Thus, researchers may consider 
investigating particular spatial behavior for different scales while 
exploring geostatistical approaches for travel data. For the present case 
study, observations 250 m apart (or closer than 250 m) indicate a trend 
for linear theoretical semivariograms, showing evidence of the stop 
criteria for downscaling as it violates the intrinsic hypothesis of second- 
order stationarity, postulated in the formal geostatistical theory.

The disaggregated data to be used in the Comparative Simulation, i. 
e., household travel data, is then aggregated within unit areas of 250, 
500, 1000 and 1500 m. The aggregation of household-related data may 
lead to distributions with high levels of null values, as a unique obser
vation value may represent its entire respective cell, especially consid
ering that the sample size of the O/D Survey is smaller than the census 
sample. Fig. 7 shows the histograms for the household data (O/D Sur
vey) and the synthetic data at different scales, using the transit trip rate 
variable. The household aggregated data distribution tends to normality 
at coarser scales. In contrast, when considering synthetic data, the more 
disaggregated, the more similar to a normal distribution.

Fig. 8 exhibits the semivariograms for the household-related data, 
whose variances between pairs of observations are higher than those 
associated with TAZs, albeit both are based on the O/D Survey. 
Comparing Fig. 8 to Fig. 6, we can see that synthetic data, despite 
encompassing higher variability between pairs of observations than O/D 

Fig. 7. Histograms for the O/D and the synthetic data at different scales.
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data aggregated at TAZs, do not hold the same level of variance as the 
household-related information. Despite the greater level of information 
that causes higher variability at refined scales in household-related data, 
it can be recalled that such data entail a limited sample number, as they 
depend on costly O/D surveys, causing several cells to have no infor
mation in spatial models. These mentioned trade-offs must be taken into 

account when selecting adequate data and/or scale.
Table 1 summarizes the descriptive statistics of the groups of infor

mation utilized in this study.
The processed household datasets, derived from the O/D Survey 

(Metrô, 2007), contain fewer records compared to the synthetic data. In 
addition, the range of values from the irregular support (associated with 

Fig. 8. Semivariograms for the transit trip rate from the O/D data.

Table 1 
Descriptive statistics for the utilized datasets.

Support (m) Data # Records* Statistical measures

Average Std. Deviation Min. First 
Quartile

Median Third Quartile Max.

250 Household 6,619 0.44 0.39 0 0 0.35 1 1
Synthetic 18,563 0.43 0.20 0 0.28 0.43 0.57 1

500 Household 2,999 0.46 0.33 0 0.18 0.41 0.70 1
Synthetic 4,990 0.44 0.19 0 0.30 0.45 0.58 1

1000 Household 1,002 0.47 0.26 0 0.26 0.44 0.64 1
Synthetic 1,378 0.46 0.18 0 0.32 0.47 0.60 1

1500 Household 503 0.47 0.24 0 0.29 0.46 0.62 1
Synthetic 659 0.47 0.17 0.10 0.33 0.48 0.60 1

irregular (MAUP) Household per TAZ 308 0.30 0.10 0.07 0.23 0.30 0.37 0.62

* Non-zero cells.
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TAZs) does not reach the attainable range for transit rates (from 0 to 1), 
instead it provides smooth values for each unit area. Hence, the Pro
posed Method intends to use (as input to the Simulation) the Synthetic 
Data, as it not only covers a wider sample area but is also able to 
generate samples with a higher level of detail, considering the range of 
transit rate from 0 to 1.

4.2. Geostatistical simulation and comparison analysis

The Proposed Simulation consists of using the spatial structure of 
each scale (through the deconvoluted semivariograms) and the synthetic 
data. Fig. 9 presents the average, confidence interval, median and 

variance of 500 realizations (simulated scenarios), considering a 500- 
meter scale.

There is a uniform variance trend for the proposed simulation in 
populated areas. Although a few non-populated cells (not represented in 
the map) may cover higher variances, such values were not found to be 
higher than 2 %, which may be seen as a major drawback for the current 
case study. A comparison with the other supports indicates, however, 
that the more downscaled the map, the less uniform the spatial variance 
distribution. The method was also applied to the Comparative Simula
tion framework.

Fig. 10 gathers statistical maps for the Comparative Simulation at 
500 m. The Proposed Simulation resulted in maps with lower variances 

Fig. 9. Statistical maps for the Proposed Simulation using a 500-meter scale.

Fig. 10. Statistical maps for the Comparative Simulation using a 500-meter scale.
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and confidence intervals in contrast to the Comparative Simulation. This 
outcome was expected as the semivariograms based on the O/D Survey 
showed higher variances than those from synthetic data.

Table 2 outlines the descriptive statistics from the simulation ap
proaches at each scale.

In general, it can be observed that that the univariate statistical 

measures of both approaches tend to become more similar at more 
aggregated scales. Fig. 11 sets out the distribution of average values (e- 
type) for both approaches.

Contrary to the expectations of similar distributions from Fig. 11, 
non-parametric tests (Mann-Whitney and Kolmogorov-Smirnov) have 
led to rejecting the null hypothesis, suggesting that both average 

Table 2 
Descriptive statistics for the simulation approaches.

Scale (m) Simulation Approach # Records* Statistical Measure

Average Std. Deviation Min. First Quartile Median Third Quartile Max.

250 Proposed 18,944 0.43 0.20 0 0.28 0.43 0.57 1
Comparative 18,944 0.49 0.39 0 0.09 0.49 0.96 1

500 Proposed 5,076 0.45 0.19 0 0.30 0.45 0.58 1
Comparative 5,076 0.49 0.32 0 0.22 0.47 0.76 1

1000 Proposed 1,398 0.46 0.18 0 0.32 0.47 0.60 1
Comparative 1,398 0.50 0.25 0 0.31 0.48 0.67 1

1500 Proposed 663 0.47 0.17 0.10 0.33 0.49 0.60 1
Comparative 663 0.47 0.17 0.10 0.33 0.49 0.60 1

* Non-zero cells.

Fig. 11. E-type histograms for the Proposed and the Comparative Simulations.
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distributions are not equal. Finally, Table 3 shows the comparative 
analysis between the approaches for each scale.

Table 3 shows no association between the disaggregation level and 
the correlation, despite all the measures resulting in satisfactory values. 
The highest correlation was 0.806 for the comparison between ap
proaches at 1000 m-scale. Regardless of the lack of pattern in terms of 
correlation, coarser scales are more accurate, considering the RMSE. As 
the MD and MPE can detect eventual trends for over- or un
derestimations, the results showed that there is no association between 
the bias and the respective scale. Hence, the selection of the scale de
pends on the purpose of the data disaggregation.

4.3. Key findings

The key findings of the paper are outlined as follows: 

• The spatial structure of travel data might be inferred using socio
economic microdata and a calibrated regression model, instead of 
traditional O/D (household) information.

• By using widely available socioeconomic data, the proposed method 
allows for inferring the spatial pattern of travel demand data at 
different levels of aggregation.

• The alternative deconvolution procedure validates the spatial 
structure of disaggregated data, following a regular scale rather than 
the irregular unit areas of the input dataset.

• Geostatistical simulation tools provided means of creating different 
scenarios, with respective maps of confidence intervals and 
variances.

5. Conclusions

The declining public investment in accurate origin–destination (O/ 
D) surveys in Brazil has sparked significant discussions about developing 
alternative methods for generating travel data using fewer resources. 
The current paper was formulated based on this context of unavailable 
travel disaggregated data, as well as on the lack of traditional trans
portation models that account for the spatial dependence of variables.

The proposed method can be useful for municipalities that have no 
information on travel demand data. If one is interested in the spatial 
pattern of transit trip production, only the socioeconomic aspect is 
required to calculate estimates based on the equation given in Subsec
tion 4.1. Equations for estimating other variables of interest can be 
transferred from cities with similar characteristics which have an OD 
Survey. Other requirements would be the following: knowledge of 
dealing with spatial data in a geographic information system such as 
randomly assigning geographic coordinates to households sampled in a 
census; and knowledge of basic statistics (linear regression) and geo
statistics. In turn, the modeling steps can be conducted at no cost by 
using opensource software or a free interface (R Core Team, 2021; 
Pebesma, 2004; Ribeiro Jr. and Diggle, 2016; Remy et al., 2009; Deutsch 
and Journel, 1998).

Despite resulting in a uniform variance map (for one of the most 
disaggregated scales), the proposed framework sheds new light on 
spatial simulation methods to travel demand analysis. Applications of 

the proposed method to other variables of interest are highly recom
mended, mainly in the social sciences, which commonly deal with 
human behavior. Other recommended topics include making a com
parison between the semivariogram deconvolution method proposed in 
this paper and the one proposed by Journel and Huijbregts (1978); 
incorporating temporal effects; testing other types of regression 
modeling; and applying SGS to stop-level ridership data to support the 
operation planning considering on-peak and off-peak hours.
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