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ARTICLE INFO ABSTRACT

Keywords: Disaggregated data for travel demand are essential resources toward appropriate urban planning, especially
Spatial analysis regarding public transportation. However, especially in developing countries, access to such information is
s.eOStlathtlcs limited. The current paper addresses this issue by introducing an approach, comprising semivariogram decon-
imulation

volution, Sequential Gaussian Simulation (SGS), and validation, using regular spatial scales. As input to the
procedure, we propose to use information with high availability, such as census microdata. The hallmark of the
devised method lies in inferring travel spatial variability of more disaggregated unit areas using synthetic data.
The method proposes to calculate synthetic data using the socioeconomic census microdata and a calibrated
regression model with travel demand data associated with Traffic Analysis Zones (TAZs) in Sao Paulo city. The
resulting maps and statistical metrics corroborate the original data values associated with TAZs. This paper
presents relevant contributions as the method enables: bypassing the lack of available travel disaggregated data;

Semivariogram deconvolution
Change of support
Travel mode choice

creating different scenarios to reproduce travel spatial behavior; and assessing the associated uncertainty.

1. Introduction

Forecasting travel demand is crucial for urban planning policies.
Traditional models for travel demand are usually based on Origin/
Destination (O/D) Surveys, whose data are collected by randomly
sampling households within the study area. However, the process of
collecting such data is cumbersome, time-consuming and requires large
financial investments by responsible municipal bodies.

In addition to this scenario, traditional models do not consider
spatial factors as important variables to estimate travel demand.
Furthermore, simulations used in conventional data disaggregation
processes and/or synthetic data acquisition often overlook the spatial
autocorrelation of travel demand variables. However, different studies
have recognized and advocated the link between travel behavior and the
spatial allocation of urban activities (Cervero and Radisch, 1996; Kita-
mura et al., 1997).

Long-established travel models applied to urban planning policies set
out to replicate travel behavior using socioeconomic factors, for
example. The lower the level of aggregation, the higher the amount of

detail associated with the data. Therefore, individual information is a
convenient resource for traditional urban planning methods. However,
due to the confidentiality and high financial investment associated with
the collection, such information is not regularly available. In the travel
demand line of research, the process of obtaining disaggregated data is
well consolidated in microsimulation approaches. Although micro-
simulation is a well-established approach to travel demand issues,
Lindner and Pitombo (2019) highlight the potential of using spatial
autocorrelation of travel-related variables as key components to input in
the microsimulation and generating synthetic data. To the best of the
authors’ knowledge, this topic has not been explored in any other aca-
demic literature. Therefore, this underscores the need to address the
main shortcoming identified by Lindner and Pitombo (2019), ie.,
obtaining the spatial structure of downscaled information, which is
discussed in this paper.

Based on the context that travel demand variables are spatially
correlated and that such a feature should be considered for data
modeling and disaggregation, this paper proposes using geostatistical
procedures. Various authors have already applied geostatistics in the
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Fig. 1. Sao Paulo (city) location map and its TAZs.

Populated areas

Population density greater than 0.5
inhabitants per hectare

Land use

I Urbanized area and shantytown

Agricultural, vegetation, mining and
unoccupied allotments

Water bodies and reservoir

Urban equipment, industry, landfill and
dumpsite

= P Fam

Fig. 2. Populated areas and land-use map (adapted from GeoSampa website - https://geosampa.prefeitura.sp.gov.br/PaginasPublicas/ SBC.aspx, 2010).

field of transportation (Yoon et al., 2014; Chen et al., 2015; Miura, 2010;
Pitombo et al., 2015; Lindner et al., 2016; Rocha et al., 2017; Lindner
and Pitombo, 2018; Marques and Pitombo, 2021a, 2023; Marques et al.,
2024). This technique enables modeling a variable at spatial positions
whereby its values are unknown. Owing to the potential of using Geo-
statistics for travel demand, this paper sets out to explore geostatistical
simulation to devise a heuristic framework for data disaggregation.
Sequential Gaussian Simulation (SGS) is the most popular geo-
statistical simulation technique. This method facilitates the calculation
of equiprobable models that reproduce the spatial correlation and the
probability distribution of a continuous variable (Verly, 1993). As
several simulations are generated, the associated uncertainty, such as
confidence intervals and conditional variances, can be calculated.
Simple downscaling processes using Geostatistics consist of
analyzing the spatial structure of the variable (variographic analysis)
and defining a semivariogram model as input in a kriging system, which
allows for estimating values of a variable at non-sampled positions,
based on the distance to their surrounding observations. The original
input dataset of this case study is associated with Traffic Analysis Zones
(TAZs), which have different shapes and sizes, leading to the Modifiable
Areal Unit Problem (MAUP). However, the travel variable, originally

related to TAZs, will become associated with smaller regular unit areas.
Thus, due to the MAUP and its association with larger and irregular areal
units, the initial semivariogram model is incompatible with the output
information from the disaggregation process. Goovaerts (2008) pro-
poses solving the MAUP by using a deconvoluted semivariogram, ac-
cording to the concepts provided by Journel and Huijbregts (1978).
However, the classic procedure for semivariogram deconvolution re-
quires disaggregated data to calculate a regularized semivariogram.
The main aim of this paper is to bypass the lack of available travel
disaggregated data through a heuristic approach comprising semi-
variogram deconvolution, Sequential Gaussian Simulation (SGS), and
validation, using regular spatial scales. Furthermore, this paper con-
tributes by (1) generating more disaggregated data through information
associated with irregular areas to overcome the unavailability of indi-
vidual/household data; (2) proposing an alternative procedure for
semivariogram deconvolution by employing data with higher avail-
ability (e.g. census microdata); (3) obtaining different scenarios, with
simulated data of the study variable, thus yielding the distribution of
possible values of this variable and a map with confidence intervals.
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Fig. 3. Transit trip rate per TAZ (adapted from Metro, 2007).

2. The path from traditional spatial analysis to geostatistical
simulation in travel demand modeling

Socioeconomic factors, cost and service level are widely recognized
as explanatory attributes in traditional logistic regressions for travel
demand models. It can be further noted that conventional travel mode
choice models disregard information related to the spatial position of
variables. However, owing to the technological advances and the high
availability of geographical data, spatial modeling is seen as an impor-
tant area of interest in travel demand, especially with the insertion of
spatial patterns in mathematical models (Paez and Scott, 2005; Paez
et al., 2013).

Various authors have reached valuable results by adding spatial at-
tributes to travel behavior analysis (Yamada and Thill, 2004; Dugundji
and Walker, 2005, Xie and Yan, 2013, Kaygisiz et al., 2015). However,
Geostatistics may be more advantageous as it enables exploratory and
confirmatory analyses by forecasting values of spatially correlated var-
iables at sampled and non-sampled locations using the distance between
the observations of the dataset and the theoretical semivariogram
function. In addition to incorporating the spatial variability of variables,
geostatistical methods also consider aspects of spatial patterns, such as
the main direction of continuity (known as spatial anisotropy)
(Matheron, 1963). Besides, the estimation (or simulation) of geo-
statistical approaches is not achieved by simple spatial interpolation, but
rather by a kriging process, using theoretical models that most fit the
empirical semivariogram.

Geostatistical frameworks demonstrated in travel demand issues
have not been sufficiently explored (Yoon et al., 2014; Chen et al., 2015;
Marques and Pitombo, 2020). However, current research has shown that
the technique may be promising to provide spatial estimates of travel
demand variables using Ordinary, Universal, Indicator Kriging and
Kriging with External Drift (Miura, 2010; Pitombo et al., 2015; Lindner
et al., 2016; Gomes et al., 2016; Rocha et al., 2017; Lindner and
Pitombo, 2018; Lindner et al., 2021; Marques and Pitombo, 2021b,
2023; Marques et al., 2024). Simple Kriging, in turn, is suitable for cases
where the population mean is known, which applies to the current
study. Considering the subject of travel demand modeling, the applica-
tion of geostatistical procedures still requires in-depth studies, especially
regarding the effect of the nature of the variables, which encounter
obstacles as they are linked to human behavior.

The optimal geographical scale (support) preferred by specialists in
traditional travel demand models may differ from the scale selected for
spatial models. Transportation decision-makers usually adopt variables
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associated with individuals or households, if available, rather than areal
data. However, individual information may not be suitable for spatial
models, as it is point-related and surveys do not precisely capture indi-
vidual geographical coordinates. In addition, individuals residing in the
same household are likely to behave differently, causing biased geore-
ferenced information. To efficiently work with socioeconomic data, a
certain level of aggregation is needed. This issue leads to a change of
support.

Geographical information systems applied to social sciences
commonly address the disaggregation of demographic data through
spatial interpolation (Flowerdew and Green, 1993; Goodchild et al.,
1993). However, available methods have the drawback of requiring a
disaggregated or regularized semivariogram (Kyriakidis, 2004), which,
in turn, demands disaggregated data. Rocha et al. (2017) proposed an
initial attempt to develop an alternative semivariogram deconvolution
aiming at improving travel demand modeling, considering the
assumption of continuity in geostatistical approaches and the MAUP. In
spite of the procedure limitations, the authors presented an initial pro-
posal to solve an important issue in travel demand analysis: the un-
availability of disaggregated data.

The present paper gives some impetus to the concept of using sem-
ivariogram deconvolution for data disaggregation, while addressing the
previously identified challenges. The concepts for geostatistical
modeling are conducted using the Sequential Gaussian Simulation
(SGS). SGS is a stochastic simulation technique that aims to establish a
group of distinctive scenarios that reproduce spatial features. Stochastic
simulations generate a range of realizations (formal designation for
simulations) that may express the associated uncertainty in the spatial
simulation or deconvolution method (Goovaerts, 1997; Remy et al.,
2009). In addition, SGS enables the change of support (Goovaerts, 2001)
and avoids smoothing effects that occur in kriging techniques (Deutsch
and Journel, 1998).

An application of the SGS to explore different scenarios of transit
production in the Sao Paulo Metropolitan Area (SPMA), Brazil (Lindner
and Pitombo, 2019), demonstrates that the method may also be
appropriate for travel mode choice variables. The authors have explored
the following benefits of the stochastic simulation for the transportation
field: gathering less information as input, incorporating the spatial as-
sociation, predicting values at non-sampled positions, and mapping the
simulated variable and the associated uncertainty using conditional
variances and confidence intervals. However, the authors mention that
the lack of availability of disaggregated spatial structure (semivario-
gram) may be seen as a drawback when applying the geostatistical
simulation.

3. Case-study context, dataset and method

The case study area consists of the city of Sao Paulo, located in the
east of Sao Paulo state (SP), Brazil, according to Fig. 1.

Sao Paulo is the most populous city in Brazil, comprising 320 TAZs
with 9 million passenger displacements per business day (SPTrans,
2018). On average, the demographic density is 7,400 inhabitants per
square kilometer. Fig. 2 (left side) shows the areas in which the popu-
lation density is greater than 50 inhabitants per square kilometer —
population densities lower than this threshold were assumed as non-
populated regions. The land use map, also presented in Fig. 2 (right
side), corroborates this assumption. It can be noted that both the
northern and the southern areas (in greater part) encompass land use
characteristics that do not demand an intense urban transportation
network.

The dataset sources include the Brazilian Institute of Geography and
Statistics (IBGE, 2010) and the Sao Paulo Metropolitan Company
(Metro, 2007), which provided the socioeconomic microdata and O/D
database, respectively. The microdata pertain to 172,627 non-
georeferenced households located at 310 sets of census tracts in the
city of Sao Paulo. The 2007 O/D Survey, in turn, holds 196,699 travel
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Fig. 4. Flowchart for the alternative semivariogram deconvolution.

e e e e e e e e e e e e et i/ e i e e e e i i o G i e s’y i’ i e i)

records associated with 30 thousand surveyed households in the SPMA.
In the city of Sao Paulo, the O/D Survey covered 15,759 households.

The information collected from 15,759 households was aggregated
within the TAZs of the study area, resulting in a dataset of 320 records.
The O/D dataset was also aggregated into different spatial scales to
provide a validation tool (Comparative Method) for the proposed
method. It should be noted that the number of observations sampled for
census surveys overcomes travel datasets from O/D surveys. Hence,
microdata represent a larger sample of the population and may provide
alternative perspectives for travel analysis, covering a wider spatial
sample, especially when considering geostatistical models.

The OD Survey ensures the representability of the study area by
adopting a proportional stratified random sampling based on four levels
of household energy consumption, covering various levels of income.
This sampling method allowed for calculating the total of produced trips
at each TAZ with error margins of less than 5 % (Metro, 2008). In the
Census case, 5 % of the households were interviewed, accounting for the
population distribution inside each tract (IBGE, 2013). As a higher
number of households were visited in the Demographic Census, the error

margins were even lower than in the OD case when estimating total
values based on sampled households.

The transit trip rate (i.e., rate of trips by bus, metro and train,
considering the main travel mode choice per household) is assessed as a
study variable in this paper. Fig. 3 presents the values of the transit trip
rate associated with the 320 TAZs in Sao Paulo, using the 2007 O/D
Survey as a source.

It can be observed that the TAZs in southern Sao Paulo, shown in
Fig. 2 as areas with low population density, are represented in Fig. 3 by
higher rates of transit preference. Consequently, this may lead to mis-
interpretations of the associated travel behavior. Furthermore, the TAZs
have homogeneous behavior when compared with one another,
demonstrating the smooth effect of aggregated data, which results in
loss of information. The present paper proposes a heuristic framework to
disaggregate data with an alternative semivariogram deconvolution
method and SGS, using individual socioeconomic data and travel data
associated with TAZs.
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Fig. 5. Flowchart of the method.

3.1. Alternative semivariogram deconvolution

Fig. 4 summarizes the proposed method for disaggregating data, and
the semivariogram deconvolution process. The steps are designated by
Arabic numerals (1) to (7), whilst the datasets (and variables) are
depicted by the letters (A) and (B).

One main explanatory variable was set as essential to calculate the
study variable using a calibrated model: low-income social class, as it
links both data sources (Census and O/D Survey). A linear regression
model was calibrated considering the transit trip rate per household
(study variable) as a function of the low-income household rate, using
the O/D data at the TAZ level.

The social class is provided in its original format in the travel dataset
(Social Class A, B, C, D and E - representing higher to lower household
conditions, respectively). The present study assumes that social classes
C, D and E cover low-income households, according to ABEP (2010).
Whereas, when considering the census microdata, the social class may
be inferred using the provided total income per household. Total in-
comes lower than BRL 1,541 represent low-income households, ac-
cording to the criteria set by ABEP (2010).

Two data sources comprised a case study in Sao Paulo: the 2007 O/D
Survey and the 2010 Demographic Census. Different units of analysis
were used: census households with synthetic coordinates, O/D house-
holds with real coordinates, O/D TAZs, and grid squares. In short, the O/
D TAZ data (transit trip rate and low-income household rate) were used
to calibrate a linear regression model. Afterward, this equation was used
to calculate the transit trip rate with the low-income household rate
from the census household data. For both O/D and census data, the
transit trip rate was obtained for different aggregation units. However,
in the census data case, the transit trip rate was estimated by the
regression equation.

The scale is recommended to be empirically set based on the spatial
behavior of the study variable, according to minimum distances between
the centroids of the source unit areas (TAZs in the present case study)
and according to variographic experiments. The authors recommend the
process for disaggregating data (1-6) to be repeated until sufficient
configurations are explored to reproduce the phenomenon. For the
present research, eight sets of synthetic data configurations were set up.

At the end of the deconvolution process, the respective semivariogram of
each configuration is calculated and the feasibility of using the average
experimental semivariogram is assessed, subject to the variability of one
another.

3.2. Method

Fig. 5 introduces the flowchart, which depicts the steps followed in
the current paper. Letters (a) to (d) present the information assessed
from both datasets. The steps are described by the Roman numerals (i) to
(v), followed by the SGS. Steps (i) to (iii) are embedded in the semi-
variogram deconvolution, previously outlined in Fig. 4. Hence, the
hallmark of the research approach lies in steps (i) to (iii) and the suc-
cessive SGS (Proposed Method). This paper recommends steps iv, v and
the subsequent geostatistical simulation (Comparative Method) to
validate the Proposed Method.

In short, the following methods were applied:

1) Linear regression — to calibrate a model of the transit trip rate as a
function of the low-income household rate.

2) Calculation and modeling of the empirical semivariogram - to
analyze if the spatial structure of the estimated transit trip rate
(based on census data) was similar to the real transit rate (OD Sur-
vey) at different aggregation grids. The semivariogram calculation
for lower levels of aggregation using census data corresponds to an
alternative deconvolution method that does not depend on dis-
aggregated data regarding the interest variable.

Sequential Gaussian Simulation — to obtain different scenarios for the
spatial distribution of estimated and real transit trip rates at different
aggregation grids; calculation of the associated uncertainty (variance
and confidence intervals).

3

-

The following conditions are required for the variable considered for
the SGS: 1) normal distribution with mean 0 and variance 1; and 2)
multigaussian assumption, which defines that each linear combination
of the variable is distributed by a normal distribution. The kriging sys-
tem is embedded in the calculation of each realization at the SGS, ac-
cording to Equation (1).
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Synthetic data aggregated at different scales
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The index 2 (xg) is the simulated variable at xg, 2*(xg) is the estimated
variable at xy using kriging; ¢ is a random component between 0 and 1.
Considering different kriging techniques, Deutsch and Journel (1998)
suggest that researchers adopt Simple Kriging (SK), as it ensures the
reproduction of the semivariogram. In terms of the results, the average
value of the realizations at each location (also known as e-type) ap-
proximates the estimated value achieved by kriging methods. The result
of the variances between the realizations tends to be similar to the
kriging variance (Chiles and Delfiner, 1999).

The SGS can be carried out using aggregated travel data associated
with the centroid of each TAZ and the theoretical semivariograms (also
associated with the TAZ centroids). However, in such a case, despite the
MAUP, only aggregated information for the population distribution and
the spatial structure would be considered as input. The variographic
deconvolution, in turn, enables the incorporation of spatial structure
associated with more disaggregated data, using theoretical semivario-
grams for each analyzed regular support.

Finally, the results are compared using four criteria. The first crite-
rion is the visual inspection of the spatial results processed by the SGS
and represented by the average of 500 realizations (e-type), the

confidence interval, median and variance. The second criterion refers to
analyzing univariate statistical measures. The third criterion tests
whether the distributions of both average simulations are similar, using
non-parametric hypothesis testing. The last criterion aims to compare
the performance of both methods (Proposed versus Comparative).

4. Results and discussions
4.1. Data processing, variographic analysis and deconvolution

The inference of travel demand information (based on socioeco-
nomic microdata) was derived from the following equation: T =
1.056*H, where T is the rate between produced trips by transit and total
produced trips, and H is the rate between low-income households and
the total number of households inside each regular area. The regression
model presented a determination coefficient of 0.8 and a statistically
significant coefficient for the independent variable H (sig = 0.00). While
the regression model was calibrated using the O/D Survey data, the
previous equation was used to calculate the study variable T using the
census synthetic data.

After estimating T for different aggregation units, a variographic
analysis of this variable was conducted, as shown in Fig. 6. The
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Fig. 7. Histograms for the O/D and the synthetic data at different scales.

omnidirectional semivariograms for the eight sets of synthetic data
presented a similar structure, corroborating the assumption of using the
average semivariograms for the main and minor directions of data
continuity (N-S and E-W, respectively). As the Euclidean distance be-
tween TAZs is 1,400 m, it can be concluded that using coarse spatial
supports does not provide disaggregated outcomes. However, this study
includes a coarse-scale of 1,500 m to compare the results.

The variographic analysis of the deconvoluted semivariograms leads
to the conclusion that the more disaggregated the scale, the less the
tendency for spatial stationarity. Thus, researchers may consider
investigating particular spatial behavior for different scales while
exploring geostatistical approaches for travel data. For the present case
study, observations 250 m apart (or closer than 250 m) indicate a trend
for linear theoretical semivariograms, showing evidence of the stop
criteria for downscaling as it violates the intrinsic hypothesis of second-
order stationarity, postulated in the formal geostatistical theory.

The disaggregated data to be used in the Comparative Simulation, i.
e., household travel data, is then aggregated within unit areas of 250,
500, 1000 and 1500 m. The aggregation of household-related data may
lead to distributions with high levels of null values, as a unique obser-
vation value may represent its entire respective cell, especially consid-
ering that the sample size of the O/D Survey is smaller than the census
sample. Fig. 7 shows the histograms for the household data (O/D Sur-
vey) and the synthetic data at different scales, using the transit trip rate
variable. The household aggregated data distribution tends to normality
at coarser scales. In contrast, when considering synthetic data, the more
disaggregated, the more similar to a normal distribution.

Fig. 8 exhibits the semivariograms for the household-related data,
whose variances between pairs of observations are higher than those
associated with TAZs, albeit both are based on the O/D Survey.
Comparing Fig. 8 to Fig. 6, we can see that synthetic data, despite
encompassing higher variability between pairs of observations than O/D
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Household data aggregated at different scales
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Fig. 8. Semivariograms for the transit trip rate from the O/D data.

Table 1
Descriptive statistics for the utilized datasets.

Support (m) Data # Records* Statistical measures
Average Std. Deviation Min. First Median Third Quartile Max
Quartile
250 Household 6,619 0.44 0.39 0 0 0.35 1 1
Synthetic 18,563 0.43 0.20 0 0.28 0.43 0.57 1
500 Household 2,999 0.46 0.33 0 0.18 0.41 0.70 1
Synthetic 4,990 0.44 0.19 0 0.30 0.45 0.58 1
1000 Household 1,002 0.47 0.26 0 0.26 0.44 0.64 1
Synthetic 1,378 0.46 0.18 0 0.32 0.47 0.60 1
1500 Household 503 0.47 0.24 0 0.29 0.46 0.62 1
Synthetic 659 0.47 0.17 0.10 0.33 0.48 0.60 1
irregular (MAUP) Household per TAZ 308 0.30 0.10 0.07 0.23 0.30 0.37 0.62

* Non-zero cells.

data aggregated at TAZs, do not hold the same level of variance as the
household-related information. Despite the greater level of information
that causes higher variability at refined scales in household-related data,
it can be recalled that such data entail a limited sample number, as they
depend on costly O/D surveys, causing several cells to have no infor-
mation in spatial models. These mentioned trade-offs must be taken into

account when selecting adequate data and/or scale.

Table 1 summarizes the descriptive statistics of the groups of infor-
mation utilized in this study.

The processed household datasets, derived from the O/D Survey
(Metro, 2007), contain fewer records compared to the synthetic data. In
addition, the range of values from the irregular support (associated with
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Fig. 9. Statistical maps for the Proposed Simulation using a 500-meter scale.
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Fig. 10. Statistical maps for the Comparative Simulation using a 500-meter scale.

TAZs) does not reach the attainable range for transit rates (from O to 1),
instead it provides smooth values for each unit area. Hence, the Pro-
posed Method intends to use (as input to the Simulation) the Synthetic
Data, as it not only covers a wider sample area but is also able to
generate samples with a higher level of detail, considering the range of
transit rate from O to 1.

4.2. Geostatistical simulation and comparison analysis

The Proposed Simulation consists of using the spatial structure of
each scale (through the deconvoluted semivariograms) and the synthetic
data. Fig. 9 presents the average, confidence interval, median and

variance of 500 realizations (simulated scenarios), considering a 500-
meter scale.

There is a uniform variance trend for the proposed simulation in
populated areas. Although a few non-populated cells (not represented in
the map) may cover higher variances, such values were not found to be
higher than 2 %, which may be seen as a major drawback for the current
case study. A comparison with the other supports indicates, however,
that the more downscaled the map, the less uniform the spatial variance
distribution. The method was also applied to the Comparative Simula-
tion framework.

Fig. 10 gathers statistical maps for the Comparative Simulation at
500 m. The Proposed Simulation resulted in maps with lower variances
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Table 2
Descriptive statistics for the simulation approaches.
Scale (m) Simulation Approach # Records* Statistical Measure
Average Std. Deviation Min. First Quartile Median Third Quartile Max.
250 Proposed 18,944 0.43 0.20 0 0.28 0.43 0.57 1
Comparative 18,944 0.49 0.39 0 0.09 0.49 0.96 1
500 Proposed 5,076 0.45 0.19 0 0.30 0.45 0.58 1
Comparative 5,076 0.49 0.32 0 0.22 0.47 0.76 1
1000 Proposed 1,398 0.46 0.18 0 0.32 0.47 0.60 1
Comparative 1,398 0.50 0.25 0 0.31 0.48 0.67 1
1500 Proposed 663 0.47 0.17 0.10 0.33 0.49 0.60 1
Comparative 663 0.47 0.17 0.10 0.33 0.49 0.60 1
" Non-zero cells.
E-type of 500 realizations for each Simulation Approach
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Fig. 11. E-type histograms for the Proposed and the Comparative Simulations.
and confidence intervals in contrast to the Comparative Simulation. This measures of both approaches tend to become more similar at more
outcome was expected as the semivariograms based on the O/D Survey aggregated scales. Fig. 11 sets out the distribution of average values (e-
showed higher variances than those from synthetic data. type) for both approaches.
Table 2 outlines the descriptive statistics from the simulation ap- Contrary to the expectations of similar distributions from Fig. 11,
proaches at each scale. non-parametric tests (Mann-Whitney and Kolmogorov-Smirnov) have
In general, it can be observed that that the univariate statistical led to rejecting the null hypothesis, suggesting that both average
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Table 3

Comparative analysis between both simulation approaches.
Scale (m) MD MAD MSE RMSE MPE MAPE r
250 0.054 0.139 0.031 0.177 0.107 0.302 0.553
500 0.046 0.113 0.021 0.144 0.098 0.244 0.684
1,000 0.040 0.104 0.018 0.134 0.255 0.077 0.806
1,500 0.032 0.100 0.017 0.129 0.059 0.209 0.710

MD - Mean Deviation; MAD — Mean Absolute Deviation; MSE — Mean Square
Error; RMSE — Root Mean Square Error; MPE — Mean Percentage Error; MAPE —
Mean Absolute Percentage Error; r — Correlation.

distributions are not equal. Finally, Table 3 shows the comparative
analysis between the approaches for each scale.

Table 3 shows no association between the disaggregation level and
the correlation, despite all the measures resulting in satisfactory values.
The highest correlation was 0.806 for the comparison between ap-
proaches at 1000 m-scale. Regardless of the lack of pattern in terms of
correlation, coarser scales are more accurate, considering the RMSE. As
the MD and MPE can detect eventual trends for over- or un-
derestimations, the results showed that there is no association between
the bias and the respective scale. Hence, the selection of the scale de-
pends on the purpose of the data disaggregation.

4.3. Key findings

The key findings of the paper are outlined as follows:

The spatial structure of travel data might be inferred using socio-
economic microdata and a calibrated regression model, instead of
traditional O/D (household) information.

By using widely available socioeconomic data, the proposed method
allows for inferring the spatial pattern of travel demand data at
different levels of aggregation.

The alternative deconvolution procedure validates the spatial
structure of disaggregated data, following a regular scale rather than
the irregular unit areas of the input dataset.

Geostatistical simulation tools provided means of creating different
scenarios, with respective maps of confidence intervals and
variances.

Conclusions

The declining public investment in accurate origin—destination (O/
D) surveys in Brazil has sparked significant discussions about developing
alternative methods for generating travel data using fewer resources.
The current paper was formulated based on this context of unavailable
travel disaggregated data, as well as on the lack of traditional trans-
portation models that account for the spatial dependence of variables.

The proposed method can be useful for municipalities that have no
information on travel demand data. If one is interested in the spatial
pattern of transit trip production, only the socioeconomic aspect is
required to calculate estimates based on the equation given in Subsec-
tion 4.1. Equations for estimating other variables of interest can be
transferred from cities with similar characteristics which have an OD
Survey. Other requirements would be the following: knowledge of
dealing with spatial data in a geographic information system such as
randomly assigning geographic coordinates to households sampled in a
census; and knowledge of basic statistics (linear regression) and geo-
statistics. In turn, the modeling steps can be conducted at no cost by
using opensource software or a free interface (R Core Team, 2021;
Pebesma, 2004; Ribeiro Jr. and Diggle, 2016; Remy et al., 2009; Deutsch
and Journel, 1998).

Despite resulting in a uniform variance map (for one of the most
disaggregated scales), the proposed framework sheds new light on
spatial simulation methods to travel demand analysis. Applications of
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the proposed method to other variables of interest are highly recom-
mended, mainly in the social sciences, which commonly deal with
human behavior. Other recommended topics include making a com-
parison between the semivariogram deconvolution method proposed in
this paper and the one proposed by Journel and Huijbregts (1978);
incorporating temporal effects; testing other types of regression
modeling; and applying SGS to stop-level ridership data to support the
operation planning considering on-peak and off-peak hours.
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