
A Polynomial Collocation Method for Singular

Integro-di�erential Equations in Weighted Spaces

M. A. Rosa and J. A. Cuminato

Universidade de São Paulo - São Carlos-SP, Brazil

e-mail: mmiriamr@icmc.usp.br jacumina@icmc.usp.br

S. McKee

Strathclyde University - Glasgow - Scotland

e-mail sean.mckee@strath.ac.uk

Abstract

A polynomial collocation method is proposed for the numerical solution of a

class of singular integro-di�erential equations of Cauchy type; the collocation points

are chosen to be the Chebyshev nodes. Function spaces are de�ned and theorems

concerning the boundedness of certain operators are developed. Convergence of the

numerical method is demonstrated in weighted uniform normed spaces of continuous

functions; convergence rates are then determined in accordance with the smoothness

of the functions characterising the problem. Numerical examples are provided which

go some way to con�rming these estimates.

Keywords: Cauchy singular integro-di�erential equations, Polynomial collocation meth-
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1 Introduction

This paper is devoted to the investigation of the convergence rates of a polynomial collo-

cation method for solving singular integro-di�erential equations (SIDE) of the form:

a1 φ
′(x) +

b1
π
−
∫ 1

−1

φ′(t)

t− x
dt+

∫ 1

−1

l1(x, t)φ
′(t)dt+ a2(x)φ(x) +

∫ 1

−1

l2(x, t)φ(t)dt = f(x),

|x| < 1, (1)

where a2(x), f(x) and l1,2(x, t) are Hölder continuous functions on (−1, 1) (on (−1, 1)2 in

the case of l1,2) and a1, b1 are given constants, such that a21 + b21 = 1. The symbol −
∫ 1

−1

denotes the Cauchy principal value and the non-homogeneous boundary conditions are

given by:

φ(−1) = ξ1 and φ(1) = ξ2.

The integro-di�erential equation (1) is �rst transformed into an integral equation via

a change of the dependent variable, as shall be demonstrated in Section 2. The resulting

integral equation is then approximated by collocation at the zeros of �rst-kind Chebyshev

polynomials. We shall present an analysis of the mapping properties and boundedness of

the various operators involved. The convergence of the numerical method is then analyzed

in weighted spaces of continuous functions, more speci�cally, in subspaces of Besov-type

spaces. The use of Jackson's theorem for the weighted norms will prove to be essential.

In the literature, the convergence of numerical methods for the solution of SIDE has

been studied in a variety of function spaces. Cuminato [7] and Nagamine & Cuminato

[16], proposed a numerical method for solving equation (1) for a1 = 0 and homogeneous

boundary conditions φ(−1) = φ(1) = 0; and they also presented a convergence analysis

in the uniform norm. Due the form of the term a2(x)φ(x) (after the change of variables),

the authors were only able to demonstrate a convergence rate of 1
2
, irrespective of the

smoothness of the functions involved. Here, we show that this restriction can be weakened

and a convergence rate of 5
2
can be obtained, depending on the smoothness of the functions.

One of the �rst studies on the convergence of polynomial approximation methods for

the numerical solution of singular integral equations (SIE) in weighted uniform normed

spaces was presented in Capobianco et al. [3] and extended in [10]. In [4], [5] and [13],

the authors considered a SIDE with homogeneous boundary conditions and employed the
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identity

a1 φ
′(x) +

b1
π
−
∫ 1

−1

φ′(t)

t− x
dt =

d

dx

[
a1 φ(x) +

b1
π
−
∫ 1

−1

φ(t)

t− x
dt

]
which can be demonstrated by integration by parts and which leads to a simpli�cation

of the analysis. However, the Besov spaces required in performing the analysis in [3] are

more restrictive than those required with the analysis of this paper.

In [4], equation (1) with a1 = 0 was studied in the weighted space L 2, in [5] this

analysis was performed in a weighted uniform norm and in [13] the mapping properties

of the singular integral operators, as well as their upper bounds, were discussed in the

weighted space L 1 where the restrictions are less stringent.

This paper is organized as follows. First the dependent variable of the integro-di�erential

equation is transformed so that the problem takes a homogeneous form. In Section 2 the

problem is reduced to a Cauchy integral equation and in Section 3 the new dependent

variable is approximated by Jacobi polynomials with the Chebyshev nodes as collocation

points. Section 4 introduces the abstract spaces that will be employed throughout the

paper, while Section 5 discusses the properties of the operators. This then allows the anal-

ysis of convergence to be undertaken in section 6. Finally in Section 7 the paper concludes

with numerical examples which illustrate these convergence estimates.

2 Preliminaries

Before deriving a numerical method for solving (1), we shall perform the following change

of variables

ψ(x) = φ(x) +
(ξ1 − ξ2)

2
x − (ξ1 + ξ2)

2

so that the boundary conditions take the homogeneous form:

ψ(−1) = 0 and ψ(1) = 0.

In the new dependent variable ψ(x), equation (1) becomes

a1 ψ
′(x) +

b1
π
−
∫ 1

−1

ψ′(t)

t− x
dt+

∫ 1

−1

l1(x, t)ψ
′(t) dt+ a2(x)ψ(x) +

∫ 1

−1

l2(x, t)ψ(t) dt = f(x), (2)
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where

f(x) = f(x) +
(ξ1 − ξ2)

2

[
a1 +

b1
π

log

∣∣∣∣1− x

1 + x

∣∣∣∣+ ∫ 1

−1

l1(x, t) dt+ a2(x)x

+

∫ 1

−1

l2(x, t) t dt

]
−(ξ1 + ξ2)

2

[
a2(x) +

∫ 1

−1

l2(x, t) dt

]
.

Note that the function f has singularities at −1 and 1, whenever ξ1 ̸= ξ2.

Changing now the dependent variable according to

u(x) = ψ′(x) or, equivalently ψ(x) =

∫ x

−1

u(t)dt

transforms the SIDE into a SIE. So substituting the new variable into (2), yields

a1u(x) +
b1
π
−
∫ 1

−1

u(t)

t− x
dt+

∫ 1

−1

l1(x, t)u(t)dt+ a2(x)

∫ x

−1

u(t)dt

+

∫ 1

−1

l2(x, t)

[ ∫ t

−1

u(s)ds

]
dt = f(x). (3)

For the new dependent variable u(x) the boundary conditions now simply become∫ 1

−1

u(t) dt = 0. (4)

Integrating the term
∫ 1

−1
l1(x, t)u(t) dt, by parts we see that equation (3) can be rewrit-

ten as:

a1u(x) +
b1
π
−
∫ 1

−1

u(t)

t− x
dt+ a2(x)

∫ x

−1

u(t)dt+

∫ 1

−1

(
l2(x, t)−

∂ l1(x, t)

∂t

)(∫ t

−1

u(s)ds

)
dt

= f(x) (5)

with the boundary condition
∫ 1

−1
u(t) dt = 0.

According to the theory of Cauchy singular integral equations (CSIE) (see [15]), the

solution u(x) of equation (5) has the form u(x) = g(x)ωα, β(x), where g is unknown and

ωα, β(x) = (1− x)α(1 + x)β is a Jacobi weight with −1 < α, β < 1, de�ned by

α =
1

2πi
log

(
a1 − ib1

a1 + ib1

)
+M, β = − 1

2πi
log

(
a1 − ib1

a1 + ib1

)
+N,

and M and N integers determined such that the index κ = −(α + β) = −(M + N)

is restricted to {−1, 0, 1}. Due to the form of equation (5) and due to the fact that

ψ(−1) = ψ(1) = 0, we need only consider κ = 1 and −1 < α, β < 0 (see [15] for details).
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In what follows, we shall refer to equation (5) in operator form as:

[H + (D + L)R ] g = f (6)

where 

Hg(x) = a1 g(x)ω
α, β(x) +

b1
π
−
∫ 1

−1

g(t)ωα, β(t)

t− x
dt,

Rg(x) =

∫ x

−1

g(t)ωα, β(t) dt,

Dh(x) ≡ a2(x)h(x),

l(x, t) = −∂ l1(x, t)
∂t

+ l2(x, t),

Lh(x) ≡
∫ 1

−1

l(x, t)h(t) dt.

(7)

In [7] it has been shown that, for κ = 1, the operator

HIg(x) = a1ω
−α,−β(x)g(x)− b1

π
−
∫ 1

−1

ω−α,−β(t)g(t)

t− x
dt,

satis�es

HI H g = g + g0,

where g0 ∈ kerH is an arbitrary constant. A unique solution of equation (6) exists if the

operator { I +HI [ (D + L )R ] } is invertible and the condition∫ 1

−1

ωα, β(x){ I +HI [ (D + L )R ] }−11 dx ̸= 0,

is satis�ed, where 1 represents the constant function identically 1. (See for instance [15]

for details). This will be assumed throughout this paper.

3 The numerical method

We de�ne the approximation of the function g(x) as:

gn(x) = c0P
α, β
0 (x) + c1P

α, β
1 (x) + ...+ cnP

α, β
n (x), (8)
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where {P α,β
j }nj=0 is a sequence of Jacobi polynomials, orthogonal with respect to the

weight ωα,β(x), and c0, c1, . . . , cn are unknown constants to be determined. We remark

that due to the boundary condition (4) it can be shown that c0 = 0.

Substituting gn into (6), we obtain the residual equation:

rn(x) =
n∑

j=1

cj

{
a1 ω

α, β(x)P α, β
j (x) +

b1
π
−
∫ 1

−1

ω α, β(t)P α, β
j (t)

(t− x)
dt

+ a2(x)

∫ x

−1

ωα, β(t)P α, β
j (t) dt+

∫ 1

−1

l(x, t)

(∫ t

−1

ω α, β(s)P α, β
j (s) ds

)
dt

}
− f(x). (9)

Note that the residual can be written in terms of the operators, de�ned in (7), as:

rn(x) = { [H + (D + L)R ]gn − f }(x). (10)

From the Rodrigue's formula [17, (4.3.1)], we have

ω α, β(x)P α, β
j (x) = − 1

2j

d

dx
[ω α+1, β+1(x)P α+1, β+1

j−1 (x) ].

This then implies that∫ x

−1

ω α, β(t)P α, β
j (t) dt = − 1

2j
ω α+1, β+1(x)P α+1, β+1

j−1 (x).

Taking this result into (9), yields

rn(x) =
n∑

j=1

cj

{
a1 ω

α, β(x)P α, β
j (x) +

b1
π
−
∫ 1

−1

ω α, β(t)P α, β
j (t)

(t− x)
dt

− 1

2j

[
a2(x)ω

α+1, β+1(x)P α+1, β+1
j−1 (x) +

∫ 1

−1

l(x, t)ω α+1, β+1(t)P α+1, β+1
j−1 (t) dt

]}
− f(x). (11)

To deal with the �rst two terms of (11), we applied the following result.

From [12, p. 226, (2.1)] we know that the orthogonal polynomials {P α,β
n } and

{P −α,−β
n } with respect to weights ω α, β(x) and ω−α,−β(x) respectively, satisfy

aω α, β(x)P α, β
n (x) +

b

π
−
∫ 1

−1

ω α, β(t)P α, β
n (t)

(t− x)
dt = − 2−κ

sin(π α)
bP−α, −β

n−κ (x), (12)

where a and b are such that a2 + b2 = 1, P α, β
n = P−α, −β

n ≡ 0 for n < 0, and κ is the

index of the SIE.
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Applying formula (12) to equation (11) and recalling that κ = 1, we obtain

rn(x) =
n∑

j=1

cj

{−b1P−α, −β
j−1 (x)

2 sin(π α)
− 1

2j

[
a2(x)ω

α+1,β+1(x)P α+1,β+1
j−1 (x)

+

∫ 1

−1

l(x, t)ω α+1,β+1(t)P α+1,β+1
j−1 (t) dt

]}
− f(x).

The method of Polynomial Collocation consists of suitably choosing n distinct points

say xi, i = 1, 2, 3, . . . , n, on (−1, 1) and imposing rn(xi) = 0 for 1 ≤ i ≤ n; the resulting n

equations will then allow us to calculate gn. In this paper, we choose the collocation points

as the zeros of the �rst kind Chebyshev polynomial of degree n, i.e. xi = cos[ (2i+1)π/2n ],

1 ≤ i ≤ n; the reason for this choice will be made clear later.

This gives rise to the system of linear equations, i.e.

rn(xi) =
n∑

j=1

cj

{− b1P
−α, −β
j−1 (xi)

2 sin(π α)
− 1

2j

[
a2(xi)ω

α+1,β+1(xi)P
α+1,β+1
j−1 (xi)

+

∫ 1

−1

l(xi, t)ω
α+1, β+1(t)Pα+1, β+1

j−1 (t) dt

]}
− f(xi) = 0,

that may be solved for the coe�cients cj, j = 1, 2, 3, . . . , n. However, in practice, the

integrals ∫ 1

−1

l(x, t)ωα+1,β+1(t)Pα+1,β+1
j−1 (t) dt,

cannot be evaluated analytically. For this reason, we shall employ the Gauss-Jacobi

quadrature formula with n nodes, i.e.,∫ 1

−1

l(x, t)ω α+1,β+1(t)P α+1,β+1
j−1 (t) dt

≃
∑n

k=1 l(x, tk)P
α+1,β+1
j−1 (tk)λ

α+1,β+1
k := L̃n [P

α+1,β+1
j−1 (x)ωα+1,β+1(x) ],

(13)

where

λα+1,β+1
k = 2α+β+3 Γ(n+ α + 2)Γ(n+ β + 2)

Γ(n+ 1)Γ(n+ α + β + 3)
(1− t2k)

−1 [ (P α+1, β+1
n )′(tk) ]

−2 (14)

(see [17, (15.3.1)]), where tk, k = 1, 2, . . . , n, denote the n zeros of P α+1,β+1
n (x) that we

obtain with the assistance of the Mathematica software. From Theorem 1 of [9, Section

7.3], this quadrature formula has maximum degree of precision 2n− 1.

From [17, (4.21.7)], we have the identity

d

dx
P α, β
n (x) =

1

2
(n+ α + β + 1)P α+1, β+1

n−1 (x),

7



that, when applied to (13), gives rise to the expression:

L̃n [P
α+1, β+1
j−1 (x)ω α+1,β+1(x) ] =

2α+β+5

(n+ α + β + 3)2
Γ(n+ α + 2)Γ(n+ β + 2)

Γ(n+ 1)Γ(n+ α + β + 3)

n∑
k=1

l(x, tk)
P α+1,β+1
j−1 (tk)

(1− t2k)
[P α+2,β+2

n−1 (tk) ]
−2.

In order to evaluate the polynomials P−α, −β
j (x), P α+1,β+1

j (x), 1 ≤ j ≤ n − 1 and

P α+2,β+2
n−1 (x), we apply the recurrence relation

P α, β
n (x) =

1

2n(n+ α + β)(2n+ α + β − 2)
{(2n + α + β − 1)[ (2n + α + β)(2n + α +

β − 2)x+ α2 − β2 ] P α, β
n−1 (x)− 2(n+ α− 1)(n+ β − 1)(2n+ α + β)P α, β

n−2 (x)}, n ≥ 2,

P α, β
0 (x) = 1, P α, β

1 (x) = [ (α + β + 2)x+ a− β ]/2,

(see [17, 4.5.1)]). In particular when α = β = −1/2 or α = β = 1/2, Jacobi polynomials

simplify to

P −1/2, −1/2
n (x) =

1.3 · · · (2n− 1)

2.4 · · · (2n)
Tn(x) or P 1/2, 1/2

n (x) = 2
1.3 · · · (2n+ 1)

2.4 · · · (2n+ 2)
Un(x) (15)

respectively, where Tn(x) are the Chebyshev polynomials of �rst kind and Un(x) are the

Chebyshev polynomials of second kind, (see [17, (4.1.7)]).

The system of equations that we solve in practice then has the form Ac = f , where

Ai,j =
−b1P−α, −β

j−1 (xi)

2 sin(π α)
− 1

2j

[
a2(xi)ω

α+1,β+1(xi)P
α+1,β+1
j−1 (xi)

+
n∑

k=1

l(xi, tk)P
α+1,β+1
j−1 (tk)λ

α+1,β+1
k

]
, 1 ≤ i, j ≤ n,

c = (c1, c2, · · · , cn)T and f = (f(x1), f(x2), · · · , f(xn))T .

4 Function spaces

In this section we shall present the functions spaces that will be required for the subsequent

analysis of convergence.

We shall consider the functions in (6)-(7), belonging to the space

Cρ,τ := {h ∈ C(−1, 1) : hωρ,τ ∈ C[−1, 1] },
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equipped with the norm

∥h∥∞, ρ,τ = max
|x|≤1

|(hωρ,τ )(x)|,

with ρ, τ ≥ 0. This is a Banach space.

Let Πn denote the set of polynomials of degree not greater than n and E ρ, τ
n (h) denote

the error in the best weighted uniform approximation to a function h by polynomials

belonging to Πn, i.e.,

E ρ, τ
n (h) = inf{ ∥h− Pn∥∞,ρ,τ : Pn ∈ Πn }.

We denote by B = {bn} a sequence of positive real numbers such that lim
n→∞

bn = 0.

Now we can de�ned the weighted Besov space

C B
ρ,τ :=

{
h ∈ Cρ,τ : ∥h∥ ρ,τ,B = ∥h∥∞, ρ,τ + sup

n=1,2,3,...

E ρ, τ
n (h)

bn
<∞

}
.

According to [10, Lemma 3.3 and Remark 3.5], if B = {bn} and C = {cn} are such

that limn→∞(bn/cn) = 0, then C B
ρ,τ is compactly imbedded into CC

ρ,τ and if, ρ1 ≤ ρ2 and

τ1 ≤ τ2 then the embedding C B
ρ1,τ1

into C B
ρ2,τ2

is continuous.

We denote by H r, µ the space of all real-valued functions h ∈ C r[−1, 1], such that h(r),

the r-th derivative of h, is Hölder continuous with index 0 < µ ≤ 1. The space H r, µ

endowed with the norm

∥h∥r,µ =
r∑

i=0

∥h(i)∥∞ + sup
|x|,|t|≤1

x ̸=t

{ |x− t|−µ|h(r)(x)− h(r)(t)| },

is a Banach space.

According to [10, Lemma 3.11], if h ∈ C B
ρ,τ , where B = {bn} is such that bn = O(n− γ),

then hωρ,τ ∈ H 0, µ for 0 < µ < 1, where µ depends on ρ, τ and γ. In the following

theorems and lemmata it will be assumed that the functions a2, l (in both variables) and

f all belong to the Besov space C B
ρ,τ for given values of ρ, τ and some B. Therefore, we

conclude that the functions of equation (6) satisfy the necessary conditions for the theory

of SIE to be applied.

5 Operator properties

In this section, we shall present some mapping properties of the operators H, HI , D, L

and R, and discuss their boundedness. This will then allow us to provide characterizations
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of the error in the best weighted uniform polynomial approximation of the operators in

(6).

De�ne the non-negative constants α+, α−, β+ and β− by: α = α+ −α− and β = β+ −

β−, where 0 ≤ α±, β± < 1. Notice that, since −1 < α, β < 0 and κ = 1, we have

0 ≤ α+, β+ < 1/2 and 1/2 ≤ α−, β− < 1.

If X and Y are Banach spaces, we denote by L(X,Y ) the Banach space of all linear

bounded operators from X into Y .

Let the sequence bn be denoted by bn =

 1 if n = 1,

(logq n)/nγ if n ≥ 2, for q ≥ 0, γ > 0.

In what follows, we write l ∈ C B
ρ, τ,x ⊕Cν,ς,t, when the function l satis�es the following

conditions:

i) l(x, t)ωρ,τ (x)ων,ς(t) ∈ C[−1, 1]2,

ii) l(x, •)ων,ς(•) ∈ C B
ρ,τ uniformly with respect to t ∈ [−1, 1].

The next lemma will be fundamental in the proof of the theorem following it. This

theorem is an adaptation of Proposition 4.12 of [10] and is necessary for making the

de�nition of the operator L precise.

Remark 5.1. In the remainder of this text, we denote c to be a generic constant inde-

pendent of n.

Lemma 5.2 ([10], Lemma 4.11). Let l ∈ CB
ρ, τ,x ⊕Cν,ς,t with B = {bn}. Then there exists

a sequence {Pn}∞n=1 of polynomials Pn(x, t) =
∑n

j=0 cnj (t)x
j of degree not greater than n

in x, such that cnj(t)ω
ν,ς(t) is piecewise constant for all j = 0, 1, . . . , n and

sup
x,t∈[−1,1]

| (l(x, t)− Pn(x, t) )ω
ρ,τ (x)ων,ς(t) | ≤ c bn, n = 1, 2, 3, . . . .

Theorem 5.3. Let ν, ς be nonnegative constants, such that ν + α−, ς + β− < 1. If l ∈

CB
ρ, τ,x ⊕ Cν,ς,t, then

L ∈ L (Cα−,β− , CB
ρ,τ ).

Proof : Since l ∈ CB
ρ, τ,x ⊕ Cν,ς,t, with B = {bn} and h ∈ Cα−,β− , we have

|(Lh)(x)ωρ,τ (x)| =
∣∣∣∣ ∫ 1

−1

l(x, t)h(t)ωρ,τ (x) dt

∣∣∣∣≤ c ∥h∥∞, α−, β−

∫ 1

−1

ω−ν−α−,−ς−β−
(t) dt.
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As ν + α−, ς + β− < 1, the integral
∫ 1

−1
ω−ν−α−,−ς−β−

(t) dt is bounded.

De�ne

Qn(x) :=

∫ 1

−1

Pn(x, t)h(t)dt,

where Pn(x, t) is given by Lemma 5.2. Then, Qn ∈ Πn since cnj ω
ν,ς ∈ L ∞ (−1, 1). So,

|(Lh−Qn)(x)ω
ρ,τ (x)| =

∣∣∣∣ ∫ 1

−1

[ l(x, t)− Pn(x, t)]h(t)ω
ρ,τ (x) dt

∣∣∣∣
≤ c bn ∥h∥∞, α−, β−

∫ 1

−1

ω−ν−α−,−ς−β−
(t)dt ≤ c bn ∥h∥∞,α−,β− .

Therefore,

Eρ,τ
n (Lh) ≤ c bn ∥h∥∞,α−,β− and Lh ∈ C B

ρ,τ . �

Theorem 5.4. If g ∈ Cα+,β+ then Rg ∈ Cα−,β−.

Proof : Since −α−,−β− > −1, we have

|Rg(x)| =
∣∣∣∣ ∫ x

−1

g(t)ωα,β(t) dt

∣∣∣∣ ≤ c ∥g∥∞,α+, β+

∫ x

−1

ω−α−,−β−
(t) dt ≤ c ∥g∥∞,α+,β+ .

Then, Rg ∈ C0,0 implies Rg ∈ Cα−,β− . �

Lemma 5.5. Suppose a2 ∈ C B
0,0 and Rg ∈ C C

α−,β−, where B = {bn} with bn = O(n−γ1)

and C = {cn} with cn = O(n−γ2). Then,

D ∈ L(C C
α−,β− , C D

α−,β− ),

where D = {dn} = O(n−γ̃) with γ̃ = min{γ1, γ2}.

Proof : Since −α−,−β− > −1, we have

|DRg(x)| =
∣∣∣∣ a2(x)∫ x

−1

g(t)ωα,β(t) dt

∣∣∣∣ ≤ c ∥g∥∞,α+,β+

∫ x

−1

ω−α−,−β−
(t) dt ≤ c ∥g∥∞,α+,β+ .

Then, D ∈ L(Cα−,β− , C0,0 ) implies D ∈ L(Cα−,β− , Cα−,β− ).

Let P ∗
n , P

∗∗
n be such that En(a2) = ∥a2−P ∗

n∥∞ and E α−,β−
n (Rg) = ∥Rg−P ∗∗

n ∥∞,α−,β− .

Then,

Eα−,β−

2n (DRg) ≤ ∥a2Rg − P ∗
nP

∗∗
n ∥∞,α−,β−

≤ ∥ (a2 − P ∗
n)Rg∥∞,α−,β− + ∥ (Rg − P ∗∗

n )P ∗
n∥∞,α−,β−

≤ c {En(a2) + Eα−,β−
n (Rg) } ≤ c (bn + cn) ≤ c dn ≤ c d2n. �
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Remark 5.6. From [10, Proposition 4.7 and Remark 4.9], HI ∈ L (CB
α−, β− , C

B logn
α+, β+ ) and H ∈

L (CB
α+, β+ , C

B logn
α−, β− ). Then, from the assumptions of Theorem 5.3, for ρ ≤ α− and τ ≤ β−,

we obtain

LR ∈ L(Cα+,β+ , C B
α−,β−) hence HILR ∈ L(Cα+,β+ , C B logn

α−,β− )

and from Lemma 5.5,

DR ∈ L(Cα+,β+ , C D
α−,β− ) hence HIDR ∈ L(Cα+,β+ , C D logn

α−,β− ).

6 Weighted uniform convergence

This section contains the main results that we shall use for proving the weighted uniform

convergence of the collocation method. Some of these results are an adaptation of lem-

mata and theorems from [10]; others are original, developed by the authors. Firstly, some

important properties of the operators de�ned in (7) are presented.

Let the projection operator be de�ned in C[−1, 1] by

(Pn−1h )(x) =
n∑

i=1

h(xi)pi(x),

where pi, 1 ≤ i ≤ n denote the Lagrange polynomials corresponding to the abscissas xi,

the nodes of the interpolation. The Weighted Lebesgue Constant is de�ned by

∥Pn−1∥∞,ρ,τ := sup{∥Pn−1h∥∞,ρ,τ : h ∈ Cρ,τ , ∥h∥∞,ρ,τ = 1}.

An estimate for the weighted Lebesgue constant is given by following theorem.

Theorem 6.1 ([14], Theorem 4.3.1). Let h ∈ Cρ,τ for ρ, τ ≥ 0 and Pn−1h(x) be the

Lagrange interpolation polynomial on the zeros of P σ,ς
n (x), σ, ς > −1. If the inequalities

σ

2
+

1

4
≤ ρ ≤ σ

2
+

5

4
,

ς

2
+

1

4
≤ τ ≤ ς

2
+

5

4
,

are satis�ed, then

∥Pn−1h∥∞,ρ,τ = O(log n).

12



By considering the identity (15), we can conclude that the roots of the n-th degree

Chebyshev polynomial of the �rst kind, when chosen to be the interpolation nodes, imply

that the inequalities of Theorem 6.1 are satis�ed when 0 ≤ ρ, τ < 1.

From the de�nition of Pn−1, we can show that rn(x) = 0 if and only if (Pn−1rn )(x) = 0.

Taking this fact into account, equation (10) can be rewritten as:

Pn−1Hgn + Pn−1DRgn + Pn−1L̃nRgn = Pn−1f̄ . (16)

From equation (12), Hgn is polynomial of degree n − 1 and therefore we can rewrite

equation (16) in the form

Hgn + Pn−1DRgn + Pn−1L̃nRgn = Pn−1f̄ .

We can show that the operator Pn−1L can be written as

(Pn−1Lh )(x) =
∫ 1

−1
l[n−1](x, t)h(t)dt, where l[n−1](x, t) =

n∑
j=1

Φj(x)Ψj(t)

is the polynomial that interpolates l(x, t) in the variable x, Ψj are chosen to satisfy
n∑

j=1

Φj(xi)Ψj(t) = l(xi, t), 1 ≤ i ≤ n, and {Φj} is a basis for the set of polynomials of

degree n− 1 satisfying the Haar condition (see [6, p.74]).

The following results will be fundamental to the proof of convergence of the collocation

method.

Lemma 6.2 ([10], Lemma 5.2). If h ∈ C B
ρ, τ for ρ ≤ α− and τ ≤ β−, then

∥HI(h− Pn−1h) ∥∞,α+,β+ ≤ c log n ∥Pn−1∥∞,ρ,τ E
α−,β−

n−1 (h), n ≥ 2.

Lemma 6.3. Let ν, ς be nonnegative constants such that ν + α− < 1 and ς + β− < 1. If

l ∈ CB
ρ, τ,x ⊕ Cν,ς,t, then

∥ (L̃n − L)Rgn ∥∞,ρ,τ ≤ c E ν,ς
n ( l(•, t)ωρ,τ (•) ).

Proof : It is known that

(Rgn)(x) =
n∑

j=0

∫ x

−1

cjP
α, β
j (t)ω α,β(t) dt = −

n∑
j=1

cj
2j
P α+1, β+1
j−1 (x)ω α+1, β+1(x)

13



and so, Rgn(x)ω
−α−1,−β−1(x) is a polynomial of degree n− 1.

Taking tk, 1 ≤ k ≤ n, as the zeros of P α+1, β+1
n (x), we have

L̃nRgn =
n∑

j=1

{
− cj

2j

n∑
k=1

l(x, tk)P
α+1, β+1
j−1 (tk)λ

α+1, β+1
k

}
,

where λα+1,β+1
k were previously de�ned in (14).

Then

| [( L̃n − L)Rgn ω
ρ, τ ](x) | =

∣∣∣∣ ∫ 1

−1

[ n∑
k=1

l(x, tk)ω
ρ,τ (x)Rgn(tk)ω

−α−1,−β−1(tk)λ
α+1, β+1
k

− l(x, t)ω ρ, τ (x)Rgn(t)

]
dt

∣∣∣∣.
Let P ∗

2n−1 be such that

E ν, ς
2n−1( l(•, t)ωρ,τ (•)Rgn ω−α−1,−β−1) = ∥ l(•, t)ωρ,τ (•)Rgn ω−α−1,−β−1 − P ∗

2n−1∥∞,ν,ς .

Then, we obtain,

| (L̃n − L)Rgn(x)ω
ρ,τ (x) | =∣∣∣∣ ∫ 1

−1

n∑
k=1

[ l(x, tk)ω
ρ,τ (x)Rgn(tk)ω

−α−1,−β−1(tk)− P ∗
2n−1(tk) ]λ

α+1,β+1
k

−[ l(x, t)ω ρ,τ (x)Rgn(t)ω
−α−1,−β−1(t)− P ∗

2n−1(t) ]ω
α+1,β+1(t)

−[P ∗
2n−1(t)ω

α+1,β+1(t)− P ∗
2n−1(tk)λ

α+1,β+1
k ] dt

∣∣∣∣
≤ E ν,ς

2n−1( l(•, t)ωρ,τ (•)Rgn ω−α−1,−β−1)

∫ 1

−1

[ |λα+1,β+1
k |+ ω α+1,β+1(t) ]ω−ν,−ς(t) dt.

As ν + α− < 1 and ς + β− < 1, we have that
∫ 1

−1
ω−ν,−ς(t) dt is bounded. Therefore,

| (L̃n − L)Rgn(x)ω
ρ,τ (x) | ≤ cE ν,ς

2n−1( l(•, t)ωρ,τ (•)Rgnω−α−1,−β−1 ).

Let P ∗∗
n be such that Eν,ς

n ( l(•, t)ωρ,τ (•)) = ∥ l(•, t)ωρ,τ (•)− P ∗∗
n ∥∞,ν,ς , then

E ν,ς
2n−1( l(•, t)ωρ,τ (•)Rgn ω−α−1,−β−1 ) ≤ ∥ ( l(•, t)ωρ,τ (•)− P ∗∗

n )Rgn ω
−α−1,−β−1 ∥∞,ν,ς

≤ cE ν,ς
n ( l(•, t)ωρ,τ (•) ). �

The following theorem of Jackson type, provides the convergence rates of the error

of the best polynomial approximation of functions in the weighted Sobolev space W s
γ, δ,

de�ned by

W s
γ, δ := {h ∈ Cγ, δ : h

(s−1) ∈ A.C.loc and ∥h(s) ϕs ω γ, δ ∥∞ < ∞},

14



where A.C.loc denotes the set of all locally absolutely continuous functions in [−1, 1] and

ϕ(x) =
√
1− x2. A norm in W s

γ, δ is given by

∥h ∥W s
γ, δ

:= ∥hω γ, δ ∥∞ + ∥h(s) ϕs ω γ, δ∥.

Theorem 6.4 ([8], Chapter 8). Let h ∈ W s
γ, δ, with s and n positive integers. Then,

E γ, δ
n (h) ≤ c

ns
E

γ+s/2, δ+s/2
n−s (h(s) ) ≤ c

ns
∥h(s) ϕsω γ, δ ∥∞.

We shall denote by W s, µ
γ, δ the subset of W s

γ, δ given by

W s, µ
γ, δ := {h ∈ W s

γ, δ : h
(s)ϕsωγ, δ ∈ H 0, µ },

and by Ωϵ, the function modulus of smoothness de�ned by

Ωϵ(h ) = sup
|x−y|≤ϵ

|h(x)− h(y) |.

Lemma 6.5. Let h ∈ W s, µ
γ, δ. Then

E γ, δ
n (h) ≤ c

ns+µ
∥h(s) ϕsω γ, δ∥∞.

Proof : We de�ne

Υ(x) = n

∫ x(1−1/n)+1/(2n)

x(1−1/n)−1/(2n)

h(s)(t)ϕs(t)ω γ, δ(t) dt.

Then, we have

|Υ(x)− h(s)(x)ϕs(x)ω γ, δ(x) |

= n

∣∣∣∣ ∫ x(1−1/n)+1/(2n)

x(1−1/n)−1/(2n)

[h(s)(t)ϕs(t)ω γ, δ(t)−h(s)(x)ϕs(x)ω γ, δ(x)] dt

∣∣∣∣≤ cΩ3/(2n)(h
(s)ϕsω γ, δ).

Let S
′
(x) = h(s)(x)ϕs(x)ω γ, δ(x) and 0 < θ1, θ2 < 1/(2n), then, we obtain

|Υ(x) | = n

∣∣∣∣ ∫ x(1−1/n)+1/(2n)

x(1−1/n)−1/(2n)
S

′
(t) dt

∣∣∣∣= n|S(x− x/n+ 1/(2n))− S(x− x/n− 1/(2n)) |

=
1

2
|S ′

(x− x/n+ θ1)− S
′
(x− x/n− θ2) | ≤ c Ω1/n(S

′
).

In view of these results and Theorem 6.4, we obtain

E γ, δ
n (h) ≤ c

ns
{ ∥h(s)ϕsω γ, δ −Υ∥∞ + ∥Υ∥∞ }

≤ c

ns
{Ω3/(2n)(h

(s)ϕsω γ, δ) + Ω1/n(h
(s)ϕsω γ, δ) } ≤ c

ns+µ
.
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However, Theorem 6.4 is not conclusive about the order of the term E γ, δ
n (h) when s = 0.

In this case, we shall consider the following

|Υ′(x) | = n | (hω γ, δ )(x− x/n+ 1/(2n))− (hω γ, δ )(x− x/n− 1/(2n)) |

≤ c nΩ1/n(hω
γ, δ)

and E γ, δ
n (Υ) = ∥(Υ− P ∗

n)ω
γ, δ∥∞. Thus we get

E γ, δ
n (h) ≤ c { ∥hω γ, δ −Υ∥∞ + ∥Υ(1− ω γ, δ)∥∞ + ∥(Υ− P ∗

n)ω
γ, δ∥∞ }

≤ c

{
Ω3/(2n)(hω

γ, δ) + Ω1/n(hω
γ, δ) +

1

n
∥Υ′(x)ϕ(x)ω γ, δ(x) ∥∞

}
≤ c {Ω3/(2n)(hω

γ, δ) + Ω1/n(hω
γ, δ) } ≤ c

nµ
. �

Lemma 6.6. If g ∈ Cα+,β+ the function Rg ∈ H 0, q, where q = min{1− α−, 1− β−}.

Proof : Let ε > 0, then we have

|Rg(x+ ε)−Rg(x) | =

∣∣∣∣ ∫ x+ε

−1

g(t)ω α,β(t) dt−
∫ x

−1

g(t)ω α,β(t) dt

∣∣∣∣
≤ ∥ g ∥∞, α+,β+

∫ x+ε

x

ω−α−,−β−
(t) dt

≤ c
{
B 1+x+ε

2
(1− β−, 1− α−)−B 1+x

2
(1− β−, 1− α−)

}
.

where Bx(a, b) is the incomplete Beta function. From [1, (6.6.8) and (15.3.3)], we have

Bx(a, b) = a−1 xa 2F1[a, 1− b; a+ 1;x] and

2F1[a, b; c; z] = (1− z)c−a−b
2F1[c− a, c− b; c; z],

where 2F1[a, b; c; z] is the Gauss's hypergeometric function. It follows that

B 1+x
2
( 1− β−, 1− α− ) =

2−2+β−+α−
(1− β−)−1 ω1−α−,1−β−

(x) 2F1[ 1, 2− β− − α−; 2− β−; (1 + x)/2 ].

By de�nition 2F1[a, b; c; z] =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, where (a)n = Γ(a + n)/Γ(a) is the

Pochhammer's symbol. From this, for some 0 < θ < 1 we obtain
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| 2F1[ 1, 2− β− − α−; 2− β−; (1 + x+ ε)/2 ]− 2F1[ 1, 2− β− − α−; 2− β−; (1 + x)/2 ] |

=

∣∣∣∣ ∞∑
n=0

(1)n(2− β− − α−)n
(2− β−)n

(1 + x+ ε)n − (1 + x)n

2nn!

∣∣∣∣
=

∣∣∣∣ ∞∑
n=0

(1)n(2− β− − α−)n
(2− β−)n

ε [ (1 + x+ θε)n ]′

2nn!

∣∣∣∣
=

∣∣∣∣ ∞∑
n=1

(1)n(2− β− − α−)n
(2− β−)n

ε

2Γ(n)

(
1 + x+ θε

2

)n−1 ∣∣∣∣
≤ ε

2

∞∑
n=1

Γ(n+ 1)Γ(n+ 2− β− − α−)Γ(2− β−)

Γ(n+ 2− β−)Γ(2− β− − α−)Γ(n)
=

ε

2

(1− β−)(2− α− − β−)

(1− α−)(2− α−)
≤ c ε.

From [15, p.12], if σ1 ̸= σ2 are positive numbers and 0 ≤ µ ≤ 1, then

|σµ
1 − σµ

2 | ≤ | σ1 − σ2 |µ. Therefore ω1−α−,1−β− ∈ H 0, q where q = min{ 1 − α−, 1 − β−}

and the function B 1+x
2
(1− β−, 1− α− ) ∈ H 0, q. Consequentily, Rg ∈ H 0, q. �

The following lemma can be used to obtain a criteria for the function Rg to be in

W s
α−,β− for maximum s and at the same time to �nd a space H 0, q′ such that the function

Rg(s)ϕsω α−,β− ∈ H 0, q′ .

Lemma 6.7. If g ∈ Cα+,β+, then Rg ∈ W s, q′

α−,β− where q′ = min{ 1−α−, 1−β−, α−, β−, 1/2}

and

s =


2 if (f − a2 )

′ ∈ Cα−+1, β−+1 and ∂l(x, t)/∂x satis�es the assumptions of

Theorem 5.3, with ρ ≤ 1 + α−, τ ≤ 1 + β−,

1 otherwise.

Proof : Firstly, we shall verify for which values of s, Rg ∈ W s
α−,β− .

Clearly Rg ∈ W 1
α−,β− and,

Rg(2)(x) = g′(x)ω α,β(x) + g(x)ω α−1,β−1(x)[ β − α− (α + β)x ];

hence Rg ∈ W 2
α−,β− if g′ exists and ∥g′ω α+,β+

ϕ2 ∥∞ <∞.

However,

Rg(3)(x) = g(2)(x)ω α,β(x) + 2g′(x)ω α−1,β−1(x)[ β − α− (α + β)x ]

+ g(x)ω α−2,β−2(x)[β(β − 1)(1− x)2 + α(α− 1)(1 + x)2 + 2αβ(1− x2) ].

Hence Rg /∈ W 3
α−,β− (unless g(2) exists, ∥g(2)ωα+,β+

ϕ3∥∞ < ∞, ∥g′ω α+,β+
ϕ ∥∞ < ∞ and

∥gωα+−1/2,β+−1/2∥∞ <∞. As α+, β+ < 1/2, the last inequality requires special properties

of the function g, making this a special case).
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Now consider the case s = 2. We shall verify under which conditions Rg ∈ W 2
α−,β− .

From (6), we obtain

a1(ω
α, β(x)g(x))′ = f̄ ′(x)− a2(x)

′Rg(x)− a2(x)ω
α, β(x)g(x)−

∫ 1

−1

∂

∂x
l(x, t)Rg(t) dt

− b1
π

[
d

dx

(
−
∫ 1

−1

ωα, β(t)g(t)

t− x
dt

)]
.

Applying the Mean Value Theorem for integrals in the last integral, yields

d

dx

(
−
∫ 1

−1

g(t)ωα, β(t)

t− x
dt

)
=

∫ 1

−1

g(t)ωα, β(t)

(t− x)2
dt = (g ωα+, β+

)(ξ)

∫ 1

−1

ω−α−,−β−
(t)

(t− x)2
dt

= (g ωα+, β+

)(ξ)

{
−(−1)β

−

2α− Γ(1− β−) (1 + x)−1−β−
2F1[α

−, 1− β−; 2 + α−; (1− x)/2]

− (−1)α
−

2β− Γ(1− α−) (1− x)−1−α−
2F1[β

−, 1− α−; 2 + β−; (1 + x)/2]

}
Γ(1 + α− + β−),

for −1 < ξ < 1. Therefore,∥∥∥∥ϕ2 ω α−, β− d

dx

(
−
∫ 1

−1

g(t)ωα, β(t)

t− x
dt

)∥∥∥∥
∞
<∞.

From Theorem 5.3, if ∂ l/∂x ∈ Cρ,τ,x ⊕ Cν,ζ,t with ν + α−, ς + β− < 1, we have

(LRg)′ ∈ Cρ,τ . In this case, since ρ ≤ 1+α−, τ ≤ 1+β−, we have ∥(LRg)′ϕ2ωα−, β−∥ <∞.

Therefore, Rg ∈ W s
α−, β− with

s =


2 if ( f̄ − a2 )

′ ∈ C1+α−, 1+β− and ∂l(x, t)/∂x satis�es the assumptions of Theorem

5.3, with ρ ≤ 1 + α−, τ ≤ 1 + β−,

1 otherwise.

From [10, Lemma 3.11], Rg(s)ϕs ωα−, β− ∈ H 0, µ for some 0 < µ ≤ 1. According to the

properties of Hölder continuous functions, if a function u(s) ∈ H 0,µ over some interval

s1 ≤ s ≤ s2 and f(u) is a function de�ned for values u(s) in this interval, such that its

derivative f ′(u) is bounded, then f(u) ∈ H 0,µ (see [15, p. 16]) . Using these properties

and the Mean Value Theorem for integrals, we obtain∫ x

−1
[Rg(1)ϕωα−, β−

](t) dt = (Rg ϕωα−, β−
)(x)−

∫ x

−1
Rg(t) [ωα−, β−

(t)ϕ(t) ]′ dt

= (Rg ϕωα−, β−
)(x)− (Rg ωα−, β−

)(ξ) [ β− − α− − (α− + β−)ξ − ξ ]
∫ x

−1
ϕ−1(t) dt

= (Rg ϕωα−, β−
)(x) + cB 1+x

2
( 1/2, 1/2 ).
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Then, we have Rg(1)ϕωα−, β− ∈ H 0, q′ for q′ = min{ 1 − α−, 1 − β−, α−, β−, 1/2}. Analo-

gously, we obtain∫ x

−1
[Rg(2)ϕ2 ωα−, β−

](t) dt = (Rg(1)ϕ2 ωα−, β−
)(x)−

∫ x

−1
Rg(1)(t) [ϕ2(t)ωα−, β−

(t) ]′ dt

= (Rg(1)ϕ2 ωα−, β−
)(x)− (Rg(1) ωα−, β−

)(ξ)[−2ξ + β−(1− ξ)− α−(1 + ξ)](x+ 1).

Furthermore, Rg(2)ϕ2 ωα−, β− ∈ H 0,q′ if Rg ∈ W 2
α−, β− . �

To prove the convergence of the collocation method, it will be necessary to show that

the linear operator [I +HIPn−1(DR + LR) ]−1 is bounded.

Lemma 6.8. Let the operator [ I+HI(D+L)R ] be continuously invertible into Cα−,β− and

let the assumptions of the Theorem 5.3 and Lemma 5.5 be satis�ed. Then for su�ciently

large n, [I +HIPn−1(D + L)R ]−1 exists and

∥ [I +HIPn−1(D + L)R ]−1∥∞,α+,β+

≤
∥ [ I +HI(D + L)R ]−1∥∞,α+,β+

1− ∥ [ I +HI(D + L)R ]−1∥∞,α+,β+ ∥HI [Pn−1(D + L ) − (D + L) ]R ∥∞,α−,β−
.

Proof : From [10, proposition 4.7 and remark 4.9], Theorem 5.3 and Lemma 5.5, the

operator HI(D+L)Rg and consequently HIPn−1(D+L)Rg are bounded in Cα+,β+ . From

Lemma 6.2 , we obtain HIPn−1(D+L)Rg −→ HI(D+L)Rg uniformly as n→ ∞. Then

for n su�ciently large,

∥ [ I+HIPn−1(D+L)R ]− [ I+HI(D+L)R ] ∥∞,α−,β− ∥ [ I+HI(D+L)R ]−1 ∥∞,α+,β+ ≤ 1.

The result then follows from [2, p. 15]. �

Theorem 6.9. Let a2 ∈ W r, υ
0,0 , f ∈ W r′, η

α−, β−, Rg ∈ W s, q′

α−, β− and LRg ∈ W r̃, ν
α−, β−. Suppose

also that l(•, t)ωρ,τ (•) ∈ W r,µ
ν,ς uniformly with respect to x ∈ [−1, 1], for ν, ς nonnegative

constants such that ν + α− < 1 and ς + β− < 1. Then for su�ciently large n,

∥ g − gn ∥∞,α+, β+ ≤ c
log2 n

np
, p = min{r + υ, r′ + η, s+ q′, r̃ + ν, r + µ}.
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Proof : Applying the operator HI to the left of equations (6) and (16) and recalling

that HIHg = g + g0, we see, respectively that

[I +HI(D + L)R ] g = HIf + g0 and [I +HIPn−1(D + L̃n)R ] gn = HIPn−1f + g0.

From Section 2, g0 is uniquely determined and [I+HI(D+L)R ]−1 exists. From Lemma

6.3, for n su�ciently large, L̃nRg −→ LRg and therefore in Lemma 6.8 we can substitute

L for L̃n demonstrating that the discrete equation has a unique solution. Furthermore,

[I +HIPn−1(DR + LR) ](g − gn) = HI{ ( f − Pn−1f )− (DR− Pn−1DR )g

− (LR− Pn−1LR )g − Pn−1 (LR− L̃nR ) gn }

and applying Lemma 6.8, we obtain

∥g − gn∥∞,α+, β+ ≤ c { ∥HI (f − Pn−1f)∥∞,α+,β+ + ∥HI (DR− Pn−1DR)g∥∞,α+,β+

+ ∥HI (LR− Pn−1LR )g∥∞,α+,β+ + ∥HI Pn−1 (LR− L̃nR )gn∥∞,α+,β+ }.

From [10, Corollary 4.5], ∥HIPn∥∞,α+,β+ ≤ c ∥Pn∥∞,α−,β− log n, for n ≥ 2. From this and

from Lemma 6.2, we obtain

∥g − gn∥∞,α+, β+ ≤ c log n ∥Pn−1∥∞,α−,β−{E α−,β−

n−1 (f) + E α−,β−

n−1 (DRg) + E α−,β−

n−1 (LRg)}

+ log(n− 1) ∥Pn−1 (LRgn − L̃nRgn) ∥∞,α−,β−

≤ c log n ∥Pn−1∥∞,α−,β− {E α−,β−

n−1 (f)

+E α−,β−

n−1 (DRg) + E α−,β−

n−1 (LRg ) + ∥ (LR− L̃nR )gn ∥∞,α−,β− }.

Since LRg ∈ W r̃, ν
α−, β− and l(•, t)ωρ,τ (•) ∈ W r+µ

ν, ς uniformly with respect to x ∈ [−1, 1]

we can deduce that l ∈ CB
α−, β−,x ⊕Cν,ς,t for B = {bn} = O(n−r̃−ν). Therefore Lemma 6.3

can be applied.

From Theorem 6.1 we obtain:

∥g − gn∥∞,α+, β+ ≤ c log2 n{E α−,β−

n−1 (f) + E α−,β−

n−1 (DRg) + E α−,β−

n−1 (LRg)

+E ν,ς
n ( l(•, t)ωρ,τ (•))}.

Applying Lemma 6.5 and the Lemma 5.5, we have

∥g − gn∥∞,α+, β+ ≤ c log2 n

{
1

nr′+η
∥f (r′)

ϕr′ωα−,β−∥∞ +
1

ns+q′
∥ (Rg)(s)ϕsωα−,β−∥∞

+
1

nr+υ
∥a(r)2 ϕrωα−,β−∥∞ +

1

nr̃+ν
∥ (LRg)(r̃) ϕr̃ωα−,β−∥∞

+
1

n r+µ
∥ ( l(•, t)ωρ,τ (•))(r )ϕrων,ζ∥∞

}
.
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Then,

∥g − gn∥∞,α+, β+ ≤ c

np
log2 n, p = min{r′ + η, s+ q′, r + υ, r̃ + ν, r + µ}.

7 Numerical Examples

In this Section we present four numerical examples that illustrate and, in two of the cases,

match exactly, the theoretical results of this work. The numerical method, derived and

analyzed in this paper, approximates g(x) by a polynomial gn(x) - see equation (8). Then

to obtain an approximation of the function φ(x), we calculate φn(x) =
∫ x

−1
gn(t)ω

α, β(t) dt.

The results of the numerical examples will be presented as the di�erence between φ and

φn, i.e., en = ||φ − φn||∞ while the convergence rate τ , to be used in the numerical

examples below, is de�ned by:

τ =
log en

e2n

log(2)
.

Comparative numerical results for the �rst example will be provided for three methods,

namely: the method presented in this work, the method of Capobianco et al. [5] and

Multhopp's method. The latter method would appear only to be found in reference [11]

and can only be applied to SIE of Prandtl's type with homogeneous boundary condi-

tions, due to the form of the identities used to evaluate the terms in equation (6). Since

Multhopp's method may be regarded as a special case of that of Capobianco et. al. [5],

when α = β and the Multhopp's method is not applicable when α, β ̸= ±1/2, the results

for this method will only be shown for the �rst example.

Example 7.1.

Consider the SIDE

− 1

π
−
∫ 1

−1

φ′(t)

t− x
dt+ φ(x) +

1

π

∫ 1

−1

(1− x)8√
1.00000001 + t

φ(t) dt

= arcsin(x)− 0.386319(1− x)8. (17)

The analytical solution of this equation is φ(x) = arcsin(x) which satis�es the inho-

mogeneous boundary conditions φ(−1) = −π/2 and φ(1) = π/2. Applying a change of
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variables, as described in Section 2, allows equation (17) to be rewritten as

− 1

π
−
∫ 1

−1

ψ′(t)

t− x
dt+ ψ(x) +

1

π

∫ 1

−1

(1− x)8√
1.00000001 + t

ψ(t) dt =

arcsin(x)− πx

2
− 1

2
log

∣∣∣∣1 + x

1− x

∣∣∣∣ + 0.084985(1− x)8,

with the solution ψ(x) = − πx/2 + arcsin(x); the boundary conditions now become

ψ(−1) = ψ(1) = 0. For the new equation in the transformed variables the derivative

of the solution is of the form ψ′(x) = ωα,β(x)g(x), where g(x) = 1 − π
√
1− x2/2 and

ωα,β(x) = 1/
√
1− x2. The functions, a2, LRg ∈ W∞

1/2,1/2, l(•, t)ω1/2,1/2(•) ∈ W∞
0,0 and

f ∈ W
1,1/2
1/2, 1/2. From Lemma 6.7 we obtain Rg ∈ W

2,1/2
1/2,1/2. Then from Theorem 6.9, we

obtain the estimate for the asymptotic error as log2 n/n1.5.

This example presents a problem with inhomogeneous boundary conditions that, when

transformed to one with homogenous boundary conditions gives rise to a problem with

data having log-type singularities at the ends. The theory presented in this work pre-

dicts the rate of convergence to be log2 n/n1.5 as shown above. On the other hand from

Capobianco et al. [5] it can be shown that the predicted rate of convergence for their

method for this example is log n/n0.5−ε, due to the way the term Hg(x) is discretized in

their method.

Table 1 displays the error and an approximation to the convergence rate, calculated

from τ = ln
(

en
e2n

)
/ log(2) for both methods and also for Multhopp's method. The method of

Capobianco [5] selected the collocation points to be the roots of the second kind Chebyshev

polynomials, as required by the theory in [5]. This is the case for Examples 7.1 and 7.2.

The convergence rates obtained in practice are better than those predicted by the theory,

since the theory only provides a lower bound for the convergence rate. In all cases the

convergence rates appear to be converging to 2. As already stated the Multhopp method

is a special case of the method in Capobianco et al. [5] when in the latter method the

collocation nodes are the roots of the second kind Chebyshev polynomials, and so its

behaviour is similar.
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n 16 32 64 128 256

e
(1)
n 3.4401×10−3 8.0605×10−4 1.9641×10−4 4.8849×10−5 1.2164×10−5

τ (1) 2.0935 2.0370 2.0075 2.0057

e
(2)
n 2.9066×10−3 7.6525×10−4 1.9415×10−4 4.8806×10−5 1.2202×10−5

τ (2) 1.9788 1.9253 1.9920 1.9999

e
(3)
n 2.9066×10−3 7.6525×10−4 1.9415×10−4 4.8806×10−5 1.2202×10−5

τ (3) 1.9788 1.9253 1.9920 1.9999

Table 1: (1)-collocation method; (2)-Method presented in [5]; (3)-Multhopp method.

The next example provides an instance where the predicted theoretical convergence

rates are attained in practice.

Example 7.2.

Consider the SIDE

1

π
−
∫ 1

−1

φ′(t)

t− x
dt+ φ(x) +

∫ 1

−1

l(x, t)φ(t) dt = f(x), (18)

with homogeneous boundary conditions φ(−1) = φ(1) = 0, where

l(x, t) = (1− x2)0.2 log

∣∣∣∣1 + x

1− x

∣∣∣∣ (1 + t)2

1.0000001− t
.

and f(x) = −1 +
√
1− x2 + 7.85088(1 − x2)0.2 log

∣∣∣∣1 + x

1− x

∣∣∣∣. The exact solution to this

equation is ϕ(x) =
√
1− x2.

Thus we see that, LRg ∈ W 1,0.2−ε
1/2,1/2 , l(•, t)ω1/2,1/2(•) ∈ W∞

0,0 and f ∈ W 1, 0.2−ε
1/2, 1/2 . The

theoretical estimate is then log2 n/n1.2−ε. The results are displayed in Table 2 and they

seem to be converging to 1.2− ε, for both method, as predicted.
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n 64 128 256 512 1024

e
(1)
n 1.9703×10−2 9.6064×10−3 4.6402×10−3 2.1912×10−3 1.0024×10−3

τ (1) 1.0363 1.0498 1.0825 1.1283

e
(2)
n 1.9701×10−2 9.6062×10−3 4.6402×10−3 2.1913×10−3 1.0024×10−3

τ (2) 1.0362 1.0498 1.0825 1.1283

Table 2: (1)-collocation method; (2)-Method presented in [5].

Example 7.3.

Consider the singular integro-di�erential equation

1√
2
φ′(x)− 1√

2π
−
∫ 1

−1

φ′(t)

t− x
dt+ (1− x)3/4(1 + x)1/4φ(x)+∫ 1

−1

√
1− x(1− x)3/4(1 + x)1/4

1.00000001 + t
φ(t) dt = −1 +

x2

2
− 1.11072

√
1− x(1− x)3/4(1 + x)1/4,

with the boundary conditions φ(−1) = φ(1) = 0.

The analytical solution for this equation is φ(x) = −1/2(1 − x)1/4(1 + x)3/4. This

example illustrates the case where the coe�cient a1 ̸= 0 in equation (1), thus giving

α ̸= β. Here α = 1/4 and β = 3/4.

We note that a2 ∈ W 1,1
3/4,1/4, LRg ∈ W

1,1/2
3/4,1/4, f ∈ W

1,1/2
3/4,1/4 and Rg ∈ W

2,1/4
3/4,1/4. However,

since l(•, t)ω3/4,1/4(•) ∈ W∞
0, 0, the estimate for the asymptotic error is log2 n/n3/2. The

results are displayed in Table 3. For Examples 7.3 and 7.4 the method in [5] was applied

by collocating at the roots of the polynomials P
−1/4,−3/4
n , as required by their theory.

n 32 64 128 256 512

e
(1)
n 1.4238×10−3 5.1384×10−4 1.8357×10−4 6.5201×10−5 2.3079×10−5

τ (1) 1.4703 1.4850 1.4933 1.4983

e
(2)
n 1.4238×10−3 5.1385×10−4 1.8357×10−4 6.5201×10−5 2.3079×10−5

τ (2) 1.4704 1.4850 1.4933 1.4983

Table 3: (1)-collocation method; (2)-Method presented in [5].

Example 7.4.
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In this example we consider the SIDE

1√
2
φ′(x)− 1√

2π
−
∫ 1

−1

φ′(t)

t− x
dt+

φ(x)

(1− x)3/4(1 + x)1/4

+
1

π

∫ 1

−1

|x| − |t|
(1− x)3/4(1 + x)1/4

φ(t) dt =
1

(1− x)3/4(1 + x)1/4
,

with boundary conditions φ(−1) = φ(1) = 0.

The analytical solution for this equation is unknown. To calculate the error we assume

the numerical solution, obtained by the collocation method of this work with n = 600, is

the exact solution.

We note that a2 ∈ W 0,1
3/4,1/4, LRg ∈ W 0,1

3/4,1/4, f ∈ W 0,1
3/4,1/4 and Rg ∈ W

1,1/4
3/4,1/4. However,

since l(•, t)ω3/4,1/4(•) ∈ W 0,1
0,0 , the method of this paper can be applied.

n 32 64 128 256 512

e
(1)
n 4.4399×10−2 1.9684×10−2 8.0810×10−3 2.6223×10−3 7.2955×10−4

e
(2)
n 1.3371×10−1 5.7343×10−2 3.5402×10−2 3.3568×10−2 3.4298×10−2

Table 4: (1)-collocation method; (2)-Method presented in [5]

For the method in Capobianco et. al. [5] and [4] the data do not satisfy their as-

sumptions and hence, strictly speaking their method cannot be applied to this problem.

Nonetheless in table 4 we present the numerical results for the error for both methods.

We see that the method of Capobianco does not appear to converge for this example as

n is increased.

8 Conclusions

In this paper we have employed polynomial collocation to solve a SIDE with a Cauchy

kernel. Nonhomogeneous boundary conditions meant that there would be discontinuities

in the right-hand-side function data. A convergence analysis of the collocation method in

a weighted uniform norm was given. Moreover, an estimate for the convergence rate of

the method, that depends on the regularity of the function data involved was derived.

The main di�culty posed for convergence was due to the discontinuity in the kernel, as

is apparent from the numerical examples presented in Section 7.
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Nagamine & Cuminato in [16] presented a uniform convergence analysis of the col-

location method applied to (1) in the special case when a1 = 0; and α = β = −1/2,

and κ = 1. The maximum estimate for the convergence rate obtained was 1/2. Here, we

were able to prove that the estimate can attain 5/2 depending on the regularity of the

data functions concerned. This is due to the fact that the analysis of this paper is less

restrictive on the regularity of the functions involved.

In [4], [5] and [13], the identity

a1 φ
′(x) +

b1
π
−
∫ 1

−1

φ′(t)

t− x
dt =

d

dx

[
a1 φ(x) +

b1
π
−
∫ 1

−1

φ(t)

t− x
dt

]
,

valid when φ(−1) = φ(1) = 0, was employed. In this case, φ(x) = g(x)ω α,β(x) with

0 < α, β < 1, leading to α− < α+ and β− < β+, according to the de�niton in our paper.

For this reason the space Cα−,β− , to which a2, f and l (with respect to x) must belong, is

more restrictive than the one employed here. For some cases, this leads to an estimate for

the convergence rate which is smaller than that obtained from Theorem 6.9, as discussed

in the numerical examples. As a result of the more restrictive conditions, the theoretical

convergence assumptions for the method of Capobianco et. al. [5] are more stringent than

those for the method derived in this work, as was argued above. Nonetheless we have

not managed to �nd a numerical example where this is shown up clearly. Even when the

theoretical prediction for the convergence rate was lower in Capobianco's method, as in

the case of Example 7.1, the practical calculations did not show it. Despite this, example

7.4 provides an instance where it seems that our method converges but the method of

Capobianco does not.
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