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We study deformations of Lie groupoids by means of the cohomology which controls
them. This cohomology turns out to provide an intrinsic model for the cohomology of a
Lie groupoid with values in its adjoint representation. We prove several fundamental
properties of the deformation cohomology including Morita invariance, a van Est
theorem, and a vanishing result in the proper case. Combined with Moser’'s deformation

arguments for groupoids, we obtain several rigidity and normal form results.

1 Introduction

A central problem in geometry is that of understanding the behavior of geometric
structures under deformations; each class of geometric structures comes with its
deformation theory, including a cohomology theory that controls such deformations.
The aim of this paper is to investigate the cohomology theory controlling deformations
of a large class of geometric structures and to use it to prove several rigidity results.
The geometric structures that we have in mind are those that can be modeled by
Lie groupoids and it includes Lie groups (and bundles of such), Lie group actions on
manifolds, foliations, the symplectic groupoids of Poisson geometry, etc. In other words,
we study the deformation theory of Lie groupoids G and the resulting deformation

cohomology Hj.:(G). The cohomology is built in such a way that deformations of
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a groupoid G give rise to 2-cocycles inducing elements in ngf(g); 1-cochains that
transgress these 2-cocycles (when they exist) are then used to produce flows that allow
us to prove rigidity results. Intuitively, this allows us to think of ngf(g) as the 1st order
approximation (i.e., tangent space) of the moduli space of deformations of G. We became
aware of the existence of such a cohomology while searching for a geometric proof of
Zung's linearization theorem for proper Lie groupoids [10]; the same cohomology also
arises naturally when looking at the VB-interpretation of the adjoint representation [14].
Before we give more details on deformations and rigidity results, let us first describe
some of the main properties/results regarding the deformation cohomology. The 1st one

we would like to mention is Morita invariance:

Theorem 1.1. (Morita invariance). If two Lie groupoids are Morita equivalent, then

their deformation cohomologies are isomorphic. d

Intuitively, this means that the deformation cohomology only depends on
“the transverse geometry of the groupoid”. This is very much related to Haefliger's
philosophy/approach to the transverse geometry of foliations via the associated étale
groupoids; the role of the groupoid(s) was to model (desingularize) leaf spaces of
foliations; the notion of Morita equivalence of groupoids comes in for a simple reason:
there is no canonical étale groupoid modeling a given leaf space, but several of them
(e.g., any complete transversal to the foliation gives rise to one)—and the fact that
two groupoids correspond to the same leaf space—can be recognized by the fact
that they are Morita equivalent. In other words, Haefliger's point of view is that the
transverse geometry of foliations is the part of the geometry of étale groupoids, which
is Morita invariant. A slight generalization of this philosophy is the interpretation of
Lie groupoids as “atlases” for differentiable stacks; again, two groupoids correspond to
the same stack if and only if they are Morita equivalent. Hence, the previous theorem
allows us to talk about “the deformation cohomology of differentiable stacks”.

The deformation cohomology Hj ((G) is also related to differentiable cohomolo-
gies of G. As we will recall in Section 2.3, Héiff(g,E) (simply denoted H*(G,E) in this
paper) makes sense as soon as we have a representation E of G. It is not true that,
in general, Hy ((G) is isomorphic to H*(G, E) for some representation E of G (and this
is very much related to the fact that “the adjoint representation of G” does not make
sense as a representation in the usual sense, see also below). However, Hj (G) can often
be related to differentiable cohomology. This is best illustrated in the regular case,

that is, when all the orbits of G have the same dimension. In this case, G comes with
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two natural representations in the classical sense: the normal representation v (on the
normal bundle of the orbits) and the isotropy representation i (made of the Lie algebras
i, of the Lie groups G, consisting of arrows that start and end at x € M). These are
recalled in more detail in Sections 4.1 and 4.4. We will show that H} :(G) is related to
the standard differentiable cohomology with coefficients in these representations by a

long exact sequence:

Proposition 1.2 (The regular case). The deformation cohomology of a regular Lie

groupoid G fits into a long exact sequence
. _ K )
o — HYG: ) > Hi(G) = HNGv) — HY G — -,
where v and i are the normal and the isotropy representation of G, respectively. O

The spaces of invariants
F@™ :=H%(G;1),and T(v)™ := H*(G; v)

are of independent interest; with some extra care (explained in Sections 4.1 and 4.4),
they make sense even in the non-regular case. In our analysis in low degrees we will see
that, in general, ngf(g) is always isomorphic to I'(i)™ and one has a low-degree exact

sequence (Proposition 4.11):
0 — HY(G,1) > H (G) T> HO(G,v) => HA(G,i) 1> HZ4(G).

Another important property of H} ((G), which will be essential also for proving
rigidity results, is its behavior for proper groupoids. Recall that a Lie groupoid G over a
manifold M is said to be proper if G is Hausdorff and the map (s,t) : 6 — M x M,
which associates to an arrow its source and target, is proper; this generalizes the
compactness of Lie groups and the properness of Lie group actions. While proper
groupoids are the 1st candidates for rigidity phenomena, an essential step in proving
such rigidity theorems is to understand the behavior of HJ ((G) in low degrees. Of
particular importance will be the vanishing of H gef(g), which, due to its interpretation
as the tangent space to the moduli space of deformations, could be called “infinitesimal
rigidity”. However, the understanding of H éef(g) (related to families of automorphisms)

and even of ngf(g), will be important as well. We will show the following:
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Theorem 1.3 (Vanishing). Let G be a proper Lie groupoid. Then
HX :(G) =0forall k > 2,
while H} ((G) = T'(»)™, H3 (G) = ' ()™™". O

Besides the relevance to deformations, there is yet another guiding principle
that is worth having in mind when thinking about Hj (G): it makes sense of the
(differentiable) cohomology with coefficients in “the adjoint representation” (think, e.g.,
about the case of Lie groups [5]). This guiding principle is very useful when computing
the deformation cohomology in terms of ordinary differentiable cohomology. The last
quotes indicate the subtleties that arise when looking for “the adjoint representation of
a Lie groupoid”. Indeed, as remarked already in the early years of Lie groupoids, one
of the subtleties that make Lie groupoids harder to handle than Lie groups is the fact
that the notion of adjoint representation does not make sense when restricting to the
classical notion of representation. With the more recent concept of “representation up

to homotopy” [2], we now understand that

e the adjoint representation Ad of a Lie groupoid G makes sense intrinsically
as an isomorphism class of representations up to homotopy of G;

e to represent Ad by an actual representation up to homotopy Ad, one needs
to choose an Ehresmann connection o on G (this will be recalled in Section 9);

e by the very definition of representations up to homotopy, they serve as
coefficients for differentiable cohomology. However, to have an explicit model
for the cohomology with coefficients in the adjoint representation, one still

has to choose a connection o and consider the associated H*(G, Ad,,).

One of the main features of Hj ((G) is that it provides an intrinsic model for

these cohomologies, independent of any auxiliary choices:

Theorem 1.4 (The adjoint representation). If G is a Lie groupoid, then for any

connection o on G one has a canonical isomorphism of H} (G) with H*(G, Ad,,). O

We would like to point out that we have decided to write the paper in such
a way that it does not assume prior knowledge of the adjoint representation as
a representation up to homotopy. On the contrary, using the paradigm that “the
adjoint representation serves as coefficients of the cohomology theory that controls

deformations” (i.e., of ngf(g)), we will slowly guide the reader toward the final outcome.
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In particular, the reader will encounter along the way several comments on “the adjoint
representation”, slowly revealing its full structure.

There is yet another way to look at H} :(G), related to the fact that the theory
of Lie groupoids comes with an infinitesimal counterpart—that of Lie algebroids. From
this point of view, our cohomology is the global analog of the deformation cohomology
Hj ((A) of the Lie algebroid A of G, which was studied in [9]. In the same way that
the differentiable cohomology of a Lie group(/oid) is related to the cohomology of the

corresponding Lie algebra(/oid) by a van Est map, we will prove the following:

Theorem 1.5 (Van Est isomorphisms). Let G be a Lie groupoid with Lie algebroid A.

There exists a canonical chain map (the van Est map)
V' Caer(9) — Cer(A)-

Moreover, if G has k-connected s-fibers then the map induced in cohomology
Vi Hgp(G) —> Hi(A)

is an isomorphism for all p < k. O

It is worth insisting a bit more on the similarities and differences with the
corresponding infinitesimal theory H} ¢(A) from [9]. As there, one of the main subtleties
of Hj ((G) comes from the fact that the adjoint representation is only defined as a
representation up to homotopy. However, the setting of Lie groupoids, because of its
non-linear nature, comes with even more subtleties—to the extent that we revisit even
the very definition of Lie groupoids—giving rise to the Appendix of the paper. On the
other hand, and in contrast with the infinitesimal theory, for H} -(G) one can prove the
vanishing result mentioned above, with direct consequences to rigidity.

As we have already mentioned, one of the main motivations for studying the
deformation cohomology Hj () comes from its relevance to deformations and rigidity

results. We are interested in general deformations:

Definition 1.6. Let G = M be a groupoid over M, with structure maps denoted
s,t,m,i,u (the source, target, multiplication, inversion, and unit map, respectively). A

(smooth) deformation of G is a family

G =1{G, : ¢ €I} of groupoids G, = M,
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smoothly parametrized by ¢ in an open interval I containing 0, such that G; = G as
groupoids. We will denote the structure maps of G, by s, t,, m,, i, u,.

The deformation is called strict if G, = G as manifolds; it is called s-constant if,
furthermore, s, does not depend on ¢. The constant deformation is the one with G, = G
as groupoids.

Two deformations, {G, : ¢ € I} and {G, : ¢ € I'}, are called equivalent if there
exists a family of groupoid isomorphisms ¢* : G, — G/, smoothly parametrized by ¢ in
an open interval containing 0, such that ¢, = Id. We say that G is trivial if it is equivalent

to the constant deformation. O

In general, a family {M, : ¢ € I} of manifolds smoothly parametrized by ¢ can be
understood as a manifold M together with a submersion # : M —> I, so that M, is just
the fiber of = above ¢; similarly for families of groupoids, see Definition 1.9.

As we shall see, any s-constant deformation as above induces a deformation

cocycle

£y € C3er(9)

whose cohomology class depends only on the equivalence class of the deformation. It
is interesting to keep in mind that the single cocycle &, encodes the variation of all
the structure maps t,, m_,i,, u,, to be able to do that, we first have to revisit the very
definition of groupoids and note that everything is encoded in the source map and the
operation m(g, h) = gh™!; the resulting precise axioms are worked out in the Appendix.

A similar construction applies to general deformations (i.e., not necessarily s-
constant and not even strict); the price to pay for the greater generality is that we will no
longer have a 2-cocycle that is canonical (i.e., independent of auxiliary choices), but only
a canonical cohomology class in ngf(G). Using these cocycles/classes and the vanishing
theorem stated above, we will deduce several rigidity theorems. We mention here the

following:
Theorem 1.7. Any strict deformation of a compact groupoid is trivial.

This theorem can be seen as mutual generalization of the results of Palais on
rigidity and deformations of actions of Lie groups [24], [25] and those of Coppersmith
[5] on deformations of Lie groups. In fact, Proposition 3.5 shows that in the case of an
action groupoid, our deformation cohomology sits in a long exact sequence that relates
the deformation cohomology of a Lie group (as in [5]) and the deformation cohomology

of an action of a fixed group (as in [25]).
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As we already mentioned, the deformation cohomology HJ ((G) arises naturally
when studying a related phenomena, namely the linearization of Lie groupoids. In
essence, this is due to a very simple remark: for any real function f = f(x), which

vanishes at 0, its linearization around 0 can be written as a limit of rescales of f:

fO)x = liII(l)fs where f,(x) = %f(ex).

A groupoid version of this is that the linearization of a Lie groupoid around a fixed point
comes with a canonical (strict) deformation whose members for ¢ # 0 are isomorphic to
the original groupoid (around the fixed point). Using this and a local version of the last
theorem, we immediately deduce a generalization of "Zung's linearizability theorem”,

which was proven recently using different methods by del Hoyo and Fernandes in [12].

Theorem 1.8 (Linearization theorem). If G is an s-proper groupoid and N C M is

invariant, then G is linearizable around N. O

Zung's theorem corresponds to the special case when N is a fixed point of G (see
also [10] for more on the relation to Zung's theorem).

The relationship between Hj (G) and deformations also give rise to variation
maps for families of Lie groupoids, very much in the spirit of the Kodaira—Spencer map
associated to a family of complex manifolds [16] and other similar variation maps. We

will be looking at families of groupoids in the following sense:

Definition 1.9. A family of Lie groupoids parametrized by a smooth manifold B,
G6=M->B,

consists of a Lie groupoid G over a manifold M and a surjective submersion = from M to
B such that 7 o s = 7 o t. For b € B we will denote by G, the resulting groupoid over the
fiber My, = 71 (b) of = above b. We say that it is a proper family if G is proper.

Two families, G = M -~ Band ¢’ = M’ 1) B, are said to be isomorphic if there
exists an isomorphism of groupoids F : G — G’ with base map f : M — M’ compatible

with 7 and =’ (i.e., 7’ o f = 7). O

Looking at the variation of the groupoids G, in directions of curves y in B (i.e.,

applying the previous ideas to the deformations {G, .} of G, ), we obtain the variation
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maps of the family,
Vary, : T,B —> H3.:(Gp).
Again, it is possible to prove several rigidity results for families; we mention here the

simplest one:

Theorem 1.10 (Local triviality of compact families). Any compact family of Lie
groupoids is locally trivial, that is, with the previous notations, for any b € B, there
exists a neighborhood U of b in B such that the resulting family parametrized by U is
isomorphic to the trivial family G, x U. O

2 The Deformation Complex

In this section we introduce the deformation complex of a Lie groupoid.

2.1 Some notations/terminology

We start by fixing some notations/terminology. For a Lie groupoid G = M, we denote by
s,t,m,u, and i its source, target, multiplication, unit, and inversion maps, respectively.
When there is no danger of ambiguity, we write m(g, h) = gh, i(g) = g~! and we identify
x € M with the corresponding unit u(x) € G. We also write g : x — y to indicate that

g€ g, x=s(g), y =t(g). The s- and t-fibers above x € M are denoted
Gx, =) =s"'®), G(=0 =t .
For g : x — y in G, we consider the corresponding right translation
Ry:G(y,—) — G(x,-)

and similarly the left translation L, which maps t-fibers to ¢-fibers. Their differentials
will be denoted by r, and [, respectively.

Recall that the Lie algebroid A of G is, as a vector bundle, the restriction of
TSG = Ker(ds) to M (pulled back via the unit map u : M — §), so that

A, =T,G(x, —) forall x e M.

The anchor of A is the vector bundle map p : A — TM given by the differential of

t. Using right translations, any o € I'(A) induces a right invariant vector field @ on G

120z Adenuer GO uo Jasn dSn SOUeD 0BS op BoIS|4 8p onHIsu| A 980860G/299./1.2/020Z/310IE/uiwl/wod dno-dlwepese)/:sdjy wolj papeojumoq



7670 M. Crainic et al.

(necessarily tangent to the s-fibers, so that right invariance makes sense):
—
@ (g) =gty

This construction identifies I'(A) with the space X; (G) of right invariant vector fields
on G; in turn, this induces the Lie algebra bracket [-,-] on I'(4). Similarly, any « € I"'(4)

induces a left invariant vector field & on G, given by

@ (g) =1y o dilag). (1)

2.2 The deformation complex

We are now ready to introduce the deformation complex of a Lie groupoid. We will need

the division map m of G,

m(p,q) = pq !, for all p,q € G, such that s(p) = s(q).

Its advantage over the multiplication map m, especially when it comes to deformations,

is explained in Section 5.2. We also consider the space of strings of k-composable arrows

gh = {(G1,---19k) :8(9;) = t(g;yq) foralll <i<k-—1}.

Definition 2.1. The deformation complex (C}(G),5) of the Lie groupoid G, whose
cohomology is denoted Hj ((G), is defined as follows. For k > 1, the k-cochains ¢ € cgef(g)

are the smooth maps
c: g% — TG, G/ Gp) > C(@Gy,---19y) € Tglg,
which are s-projectable in the sense that
dsoc(gy.99,---19%) =:5:(Ggr--- 1 Gi)

does not depend on g,; the resulting s, is called the s-projection of c. The differential of
cec cgef(g) is defined by

©Bo)(Gyr--19k41) = — dm(c(9,95, - - - 1 9k+1)€@G2s -1 Gk41))

k
+ > (=D'c@y, -1 9iGis1r - Grp) + (D ey gp)-
=2
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Fork =0, cgef(g) :=I'(A) and the differential of @ € I'(4) is defined by

$() =d + & € Ciy(9).

d

Note that, for k = 0, one may think of a section of Aas amapc:G® =M — TG,
with ¢(1,) = ¢, € T, G, such that dso ¢, = 0,.

Lemma 2.2. (cgef(g), 3) is, indeed, a cochain complex. O

Proof. First of all, § is well defined, that is, §(c) € C’é:fl (G) for c € c’gef(g); indeed,
applying ds to the formula for 6(c)(g;,...,gk;) (and using s(m(a, b)) = t(b)) one finds

that §(c) is s-projectable with s-projection

S(Sc(gZI-o~lgk+1) :_dt(C(QZI'-wgk+1))+ (2)

k
+ Z(—nlsc(gz, 1 9iGis1r 1 Gkr) + (CDF s (g0, g0
=2

For o € I'(4), it holds that §(«) is s-projectable to p(«), the image of « by the
anchor map, since ds o rg = Oand dso lg odi = dt.
To check that § squares to zero, note that after canceling the pairs of terms with

opposite signs, the expression §(5¢)(g;, ..., gk, o) becomes

S(SC)(gll .. -rgk+2) =

= dm[dm (¢ (919295 - Jr+2) € (93,1 Grs2))  AM(C (9293, - - -+ Gri2) -

k+1

(931 Grs2) )]+ dimt (Z(—l)"c 9192/ -1 9i9is1+ -+ 1 Gis2) +
i=3

k+1
> (=1ic(gg---1 99041 - ,gk+z)) — dm(c (919295 -1 Grs2) -
=3

k+1

(9293 -1 Grr2)) + D_(~DAm(c (9192, -1 9iGis1 - -1 Grra) +
i=3

c(gz,...,9i9i+1w--r9k+2))-
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At this point, using the associativity axiom of the division map, that is,
m(m(g, k), m(h, k)) = m(g, h)

in the 1st line of the expression, and linearity of dm in the 2nd line, we see that the 1st

and 2nd lines become the symmetric of the 3rd and 4th, respectively. ]

Example 2.3. We will see several (classes of) examples throughout the paper. Let us
mention here the simplest one: when G is a Lie group G (hence, M = {x} is a point). Then,
using the trivialization TG = G x g induced by right translations (g being the Lie algebra
of G) we obtain an identification of C}_¢(G) with the complex C*(G,Ad) computing the

differentiable cohomology of G with coefficients in the adjoint representation, hence
H; +(G) = H*(G, Ad).

This is to be expected since the right-hand side is the cohomology that controls

deformations of Lie groups [5]. O

2.3 Differentiable cohomology

For a better perspective, and for the later use, let us recall here the ordinary differen-
tiable cohomology of Lie groupoids. Let G == M be a Lie groupoid; for a representation
E — M of g, the action E, — E, induced by an arrow g : x — y will be denoted

Vi g-v.

Definition 2.4. The (differentiable) cohomology of the Lie groupoid G with coefficients
in the representation E, denoted H*(G, E), is the cohomology of the complex (C*(G, E), §),

where k-cochains are the smooth maps

u:g®P E, (g1, gp) > ulgy,.... gp) € Et(gl)
and the differential is given by

Ou)(Gyr--- 1 Grky1) =91 - UGar- - Gry1) (3)

k
+ Z(—l)lu(gl, 19111 Gkt 1)

i=1

+ (=D luggy,...,gp.
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Note that, in degree 0, H°(G,E) = I'(E)™V is the space of sections of E that are
invariant with respect to the action of G. When E is the trivial line bundle with the
trivial action, the resulting complex is denoted by C*(G). It comes together with a graded

product—the cup product— given by

U-v)Gyr- o ki) = WG GV Grg1r - -1 Tperkr) (4)

for u € C*(G), v € C¥(G). The same formula makes C(G,E) into a right-graded C(G)-
module; the fact that E is a representation is encoded in the differential of C(G, E), which
makes it into a (right) C(G)-DG-module. Note that, using precisely the same formulas for

the cup product and the same arguments, one has the following:
Lemma 2.5. (Cj.(9),d) is a (right) (C*(G), §)- DG-module. O

Remark 2.6. For the later use note also that the spaces C¥(G, E) make sense for any
vector bundle E — M:
c*G, B =1@G®,t'B)

there ¢t on G0 picks the target of the 1st arrow. Also, whenever we have a quasi-action
of G on E, that is, a smooth operation that associates to any arrow g : x — y a linear
map A, : E, — E, depending smoothly on g, one has an induced operator §, on C*(g, E)
defined by exactly the same formulas as §, but using the quasi-action; §, is still a graded
derivation on the C(G)-module C(G, E) (actually, any graded derivation is of type §, for

some quasi-action). The associativity of the quasi-action is equivalent to §2 = 0. O

Remark 2.7. It will be often useful to consider a smaller complex computing defor-
mation cohomology. The normalized deformation complex of a Lie groupoid G is the
subcomplex Egef(g) of the deformation complex C} ((G), which in degree k > 2 is
composed of those cochains c € c’gef(g) satisfying

c(ly, Gy 9x) =5S:(Gg, -1 9x) and c@y,--- 1, ...,9,) =0.

In degree 1, the only condition is that ¢(1,) = s,(x), and in degree O there is no condition,
that is, 6gef(g) = I'(A). It is a simple computation to check that E;;ef(g) is, indeed, a
subcomplex—one only has to remember the expression for s, (Equation (2)).

The proof that Egef(g) is quasi-isomorphic to Cj3 (G) can be seen as a particular
case of the proof of Theorem 11.6 (see Remark 11.7 and Proposition 11.8), so we postpone

the discussion until then. O
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Remark 2.8 (Related to the adjoint representation). As we have already mentioned in
the introduction, another guiding principle that is worth having in mind when thinking
about Hy ((G) is that it plays the role of “differentiable cohomology with coefficients
in the adjoint representation”. The reason for the quotes is that there is no adjoint
representation in the classical sense. Actually, one of the main problems with the very
notion of representation is that there are only very few representations that come for
free and make sense intrinsically for all Lie groupoids. The situation is slightly better
in the regular case, when one has at hand the normal and the isotropy representations,
denoted v and i and recalled in the next two sections. However, even in this case, and
although “the adjoint representation” is closely related to v and i (it contains them!), its
structure is still subtle and requires the “up to homotopy” version of representations.
This remark is the 1st one of a series of remarks that will guide the reader toward the

full structure of the adjoint representation. O

3 First Examples

We now look at some basic examples. The order we choose is based on the simplicity of

the structure of the adjoint representations involved.

3.1 Gauge groupoids

Recall that any principal G-bundle = : P — M (G is a Lie group) has an associated
gauge groupoid, which is the quotient of the pair groupoid P x P —> P (with source and

target the two projections) modulo the diagonal action of G:

G=P Xa P= M.
Recall also that the adjoint bundle of P is defined as the vector bundle

Plgl = (P x5 g) = Ker(dn : TP/G — TM).

This bundle will also be discussed later on, in the general context, when it will show up
as the kernel of the anchor map. In this case the Lie algebroid of G is TP/G, its space of
sections is X(P)%, the Lie algebroid bracket of TP/G comes from the Lie bracket of vector
fields on P, and the anchor is induced by the differential of 7. Important for us is the
fact that Ker(p) = Plg] is a representation of G: indeed, any class [p, gl € G viewed as an

arrow from x = 7(p) to y = 7w (q) induces the action

Plgl, — Plgl,. [p,ul — Ig, ul.
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Proposition 3.1. If G is a Lie group and G is the gauge groupoid associated to a

principal G-bundle P, then there are canonical isomorphisms

Hye(G) = H*(G,Plgl) = H*(G, 9),

where the last group is the differentiable cohomology of the Lie group G with coeffi-

cients in its adjoint representation. O

There are various ways to look at this result. The 1st isomorphism will follow
from our later general results (e.g., on the regular case); the isomorphism between
the 1st and last groups follows directly from the Morita invariance of deformation
cohomology (Theorem 11.6); the last isomorphism can also be seen as an immediate

consequence of Morita invariance of differentiable cohomology [7].

Remark 3.2 (Related to the adjoint representation). In the spirit of Remark 2.8, we
see that the candidate for “the adjoint representation” of the gauge groupoid is given by
the adjoint bundle P[g]. O

3.2 Foliation groupoids

Next we look at the Lie groupoids that arise from foliation theory (such as holonomy
or homotopy groupoids of foliations), which integrate foliations; here we identify a
foliation with its tangent bundle and we interpret it as a Lie algebroid with the inclusion
as anchor. It then makes sense to talk about the integrability of a foliation by a groupoid.
We see that a foliation groupoid is a Lie groupoid ¢ = M with the property that the
anchor of the associated Lie algebroid is injective or, in a global formulation, with the
property that the isotropy groups of G are discrete [8]. They come with a regular foliation

F on M (the image of the anchor); the resulting normal bundle
v:=TM/F

is then a representation of G, where the action is given by linear holonomy (see [8]
but also our general discussion from Section 4.4 below) which, in turn, is a global
manifestation of the (foliated) Bott connection on v (cf.,, e.g., [15]). The resulting
cohomology H*(G,v) is the groupoid counterpart of the foliated cohomology H*(F,v)
which, in turn, was shown by Heitsch [15] to control deformations of the foliation (the
two are related by a Van Est map, see [7]). Therefore, the expectation that H*(G,v)

is related to deformations of foliation groupoids, that is, to Hy(G). Moreover, while
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deformations of Lie groupoids give rise to 2-cocycles in deformation cohomology (think,
e.g., of Lie groups and see also below), deformations of foliations give rise to degree 1
classes in the cohomology with coefficients in v; therefore, one also expects a degree
shift. And, indeed

Proposition 3.3. For any foliation groupoid G = M one has canonical isomorphisms:
Hjor(G) = H NG, v),

where the isomorphism sends a cocycle ¢ € c’gef(g) into [s.] - —the class modulo F of

the s-projection of ¢ (see Definition 2.1).

Proof. A simple computation shows that ¢ + I[s.] is a chain map. Since it is also
surjective, it suffices to show that its kernel, call it C*, is acyclic. So, assume that ¢ € ck,
that is, c € c’gef(g) has the property that s, takes values in 7. We show that ¢ = §(c¢’) for
some ¢ with the property that s, takes values in F (we will actually achieve s, = 0).

Namely, we set

C/(glr e ngfl) = _rgl (Sc(g11921 s !gk—l)r

where we identify F with the Lie algebroid of G to make sense of right translations. It
is clear that s, = 0. We are left with showing that ¢ = §(c¢’). Using the fact that the map
(ds,dt) : TG — TM x TM is injective, it suffices to show that ds o c = ds o §(¢’) and
similarly for dt. For the 1st one use again that ds kills ¢’ and that dt(rg(a)) =pla) Za
for « € F and we see that, after applying (ds) to the formula for §(c')(g;,...,g;), we are
left with

—dt(c (G, ---.9%) = Sc(Ggr -1 Gy) = ds(c(Gy, .-, Gy))-

Hence, we are left with showing that dt o ¢ = dt o §(¢’). Applying dt to the formula for
8(c)(gy,---.9;) we find

k-1

—dt(c' (9192, - gi) + D _(~D'ALC Gy, - GiGip1s- -2 i) + (—=DFAEC Gy, -, G0,
i=2

which, by the previous arguments, is

k-1

sc(glgzrggr e lgk)) + Z(_l)i+lsc(911921 .. rgigi_l,_lr .. rgk) + (_1)k+lsc(911921 .. rgk_l))'
=2
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Comparing with the formula (2) for the s-projection of §(c) (which vanishes because §(c)

does), we find precisely dt(c(g;,...,gy)). |

Remark 3.4 (Related to the adjoint representation). In the spirit of Remarks 2.8
and 3.2 we see that the candidate for the adjoint representation of G in this case is v[1]-
viewed as a graded representation of G concentrated in degree 1 (to make up for the shift

in the proposition). U

3.3 Action groupoids

One of the 1st classes of examples in which the deformation cohomology can be
understood in terms of (differentiable) cohomology with coefficients in representations
is that of action groupoids. So, let us assume that G is a Lie group acting on a manifold
M. Recall that the action groupoid G = G x M = M is the product G x M, with s(g, x) = x,
t(g,x) = gx, and (g, x)(h,y) = (gh, y). The corresponding Lie algebroid is

A=gy=9gxM,

the trivial vector bundle over M with fiber, the Lie algebra g of G, the anchor given by

the infinitesimal action of g on M
d
pigy — TM, p(v,x) = algzo exp(sv)x,

and the bracket is uniquely determined by the Leibniz identity and the condition that,

on constant sections ¢, with v € g, it restricts to the bracket of g:
ley eyl = cpy v

As is the convention with every Lie algebroid in this paper, we identify the Lie algebra
of G with the space of right invariant vector fields on G. Note that a representation E of
G is the same thing as an equivariant bundle over M; then I'(E) is naturally a G-module
and H*(G, E) can be interpreted as the resulting differentiable cohomology H*(G, I' (E)).

The action groupoid G has two natural representation:

e g,y itself, with the action induced by the adjoint action of G on g. Note that

H*(G,9y) = H(G,C* (M, 9))
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is a bundle-like version of H*(G; g), which controls deformations of the Lie
group G, as explained by Coppersmith [5].
e TM, using the induced action of G on TM. Note that

H*(G,TM) = H*(G, X(M))

arises in the work of Palais [25] as the cohomology controlling deformations

of the Lie group action (keeping G fixed).

Therefore, it is not surprising that, in this case, these cohomologies are closely

related to the deformation cohomology of the groupoid:

Proposition 3.5. The deformation cohomology of an action Lie groupoid G = G x M fits

into a long exact sequence
. — H*1(G, TM) — H§((G) — H¥(G,0y) —> H¥(G, TM) — -+,
where p, is induced by the infinitesimal action p : g;;, — TM. O
Proof. It suffices to remark that there is a short exact sequence
0 — k1, TM) L5 ¢k (G) > C¥(G, gpy) —> O

compatible with the differentials and to identify the boundary map of the long exact
sequence with the map p,. The deformation cochains of G take a composable string

(Y1,---, ) of G, with y; = (g, ), to
Tigx)(GxM) =T,Gx TyM =g xT,M=gx Ty,,M,

where the isomorphism is the one induced by the right translations of G. Moreover, the
TM-component of the cochain, since it is the projection by the source map, depends only

on (¥,,...,7); in other words, we obtain a decomposition
Ck (@) = C(G, gy @ CF1(G, TM).

This is not compatible with the differentials, but the natural inclusion on the 1st
component (called j) and projection on the 2nd component (called 7) are (a simple

computation)—therefore the desired short exact sequence. The identification of p,
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with the boundary map is straightforward. Or, a bit more conceptually, computing
the differential of c’gef(g) with respect to the previous decomposition, one finds the
formula (cy, ¢y) = (3(cy), —p,(cy) — 3(cy)), that is, C3(G) is isomorphic to the mapping

cone of p,. |

Remark 3.6 (Related to the adjoint representation). Note that the previous proof
shows that Hj (G) is isomorphic to the differentiable cohomology of G with coefficients

in the cochain complex of representations:
P
oy — TM, (5)

(gyr in degree 0 and TM in degree 1). Hence, a remark on the adjoint representation sim-
ilar to Remarks 3.2 and 3.4 shows that we have to look at even more general structures:
cochain complexes of representations. Then (5) becomes the natural candidate for the

adjoint representation in this case.

3.4 Bundles of Lie groups

We now take a closer look at the case of bundles of Lie groups parametrized by 1M;
these correspond to Lie groupoids G over M for which the source map coincides with

the target map; we denote them by

T:G— M.

Its Lie algebroid is just the bundle of Lie algebras g consisting of the Lie algebras g, of
the Lie groups G, (and the anchor is zero). A representation of G is then just a collection
of representations of each of the groups G, that are smoothly parametrized by x € M
and fit into a vector bundle over M.There are two such representations of G that will be
relevant for us: g itself, endowed with the (fiberwise) adjoint actions and TM with the

trivial action. The resulting cohomologies are related by a certain “curvature map”

K : H*(G, TM) — H*'2(G, g),

which arises by evaluating a cohomology class with values in the Hom-bundle:
Var € H?(G, Hom(TM, g)).
Var arises as the obstruction to the existence of a (Ehresmann) connection on G, which

is compatible with the multiplication—in the sense that the induced parallel transport

respects the group structure on the fibers. We call such connections multiplicative.
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To construct the class Var one starts with an arbitrary connection on 7 : § — M,
interpreted as a splitting o, : T, ((\M —> T,G of dr (smooth in g € G). The fact that o
is multiplicative is equivalent to the condition that, for any x € M, g,h € G,, X, € T, M,

one has

For our general o (multiplicative or not), the difference between the two terms lives in
the vertical space of = at gh, hence, it is obtained by right translations (in G,) of an

element in g,; that element defines

Var, (g, h)(X,) € g,.

It is not difficult to check now that Var, is a differentiable cocycle, whose cohomology
class does not depend on ¢ and whose vanishing is equivalent to the existence of a
multiplicative connection. This defines Var.

Note also that Var induces at each x € M a linear map
Var, : T,M —> H*(Gy, 0y) (... = H3.+(Gy)),

which encodes the variations of the group structure along directions in M (to be

explained in Section 5.5 for general Lie groupoids).

Proposition 3.7. For any bundle of Lie groups n : G —> M, interpreted as a groupoid
with source and target equal to 7, the deformation cohomology fits into a long exact

sequence

. — H¥G,g9) 1> HY (G) — H1(G, ™M) 55 HFYY(G, ) — -

Proof. Again, one has a short exact sequence
ck@G, 9 > ck (@) > G, ™M),
where 7 takes the base component of a cochain, so that the kernel of = consists of ¢ €

c’gef(g), which take values in the vertical spaces of 7, that is, modulo right translations,

come from C¥(G, g). It is straightforward to check that 7 and r are chain maps (and it
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will be discussed in the more general context also later on). Hence, we are left with

identifying the boundary map in the induced long exact sequence,
9 : H*=1(G, TM) — H*1(G, g).

Consider a cocycle u € ck1(G, TM). By the definition of 3, one has to write u = 7 (c) for
some c, 8§(c) comes, via r, from a cocycle v € C¥1(G, g) and then d([ul) = [v]. Fixing a

connection o on G there is a canonical choice for c:

C(g]: ‘e rgk) = Ugl (u(gZI e rgk))

Compute now §(¢)(gy, ..., gg,1). The 1st component in the resulting sum is

—dm(0g, g, U(Gs, -, Gr 1) O, (UGs, - -, Ty1))-

To handle this, note that, in general, for any pair of composable arrows (g, h) and X €
TsmyM,

N

dm(og,(X), 0,(X)) = dm(dm(oy(X), 0, (X)) + rgp(Var, (g, h)(X), 07,(X))
= 04(X) + ryVar, (g, h)(X),
where for the 1st equality we have used the definition of Var, and for the last one the

differentiated identities m(m(a, b),b) = b and m(agh,h) = ag = Ry(a). Hence, the 1st

one in the sum from §(c) is

—0g, (u(gs, - .. ,gk+l)) — rgIVara(gl,gz)(u(g3, A ,ng)).
The other terms are
04, (U(G2G3s - Grr1) + -+ (=DF gy, ..., gp)).

Hence, adding up and using that §(u) is zero, we find that

V(glr .. ng+1) = rgfl(a(c)(gll DR lgk+1) = _Varg(glrgz)(u(g,gr .o ng-l,-l))'

120z Adenuer GO uo Jasn dSn SOUeD 0BS op BoIS|4 8p onHIsu| A 980860G/299./1.2/020Z/310IE/uiwl/wod dno-dlwepese)/:sdjy wolj papeojumoq



7682 M. Crainic et al.

Remark 3.8 (Related to the adjoint representation). It is not so clear anymore how
to continue the series of Remarks 3.2, 3.4, and 3.6 on the adjoint representation, so
that it applies also to bundles of Lie groups. The trouble comes from the presence of
variation (curvature). Indeed, while it is clear that the relevant graded representation is
gl0] & TM[1] (with the zero differential), it is not so clear how to interpret K. Already at
this point, for this very simple class of examples, we need the notion of representation

up to homotopy (still to be recalled!). O

3.5 Relation to Poisson geometry

Recall that a Poisson manifold is a manifold M equipped with a bivector 7 € A?(T*M)
such that the Poisson bracket defined by {f,g} = #(df,dg) satisfies the Jacobi identity
on C®(M). It gives rise to a Lie algebroid structure on T*M with anchor #* given by

B(w¥(a)) = m(a, B) for all 1-forms « and B and Lie bracket given by

[, B, = Lyt (4 (B) — Lz g (@) — A (@, B)).

The global counterpart of a Poisson manifold (whenever it exists) is a symplectic
groupoid, that is, a Lie groupoid ¥ equipped with a symplectic form w € Q2(%), which

is multiplicative:
m*w = priw + priyo.

On the other hand, given any vector bundle A, there is a 1-1 correspondence
between Lie algebroid structures on A and Poisson structures on the dual vector bundle
A*, which are linear along the fibers. A Lie groupoid G with Lie algebroid A gives
rise to a symplectic groupoid integrating A*—namely T*G (see [6] for the groupoid
structure on T*G). Moreover, deformations of G give rise to deformations of the Poisson
structure of A*, which are controlled by the Poisson cohomology H}(A*) that is closely
related to the differentiable cohomology H*(T*G) via a van Est map (see [9]). Hence, one
expects a relation between Cj ((G) and the differentiable cohomology complex C*(T*G)
(an inclusion!). We obtain in this way, the complex described by Gracia-Saz and Mehta
in [14].

Indeed, C}.(G) can be identified with the subcomplex C;roj(T*g) of C*(T*G)
consisting of left-projectable linear cochains. This subcomplex arises in [14] by looking
at the VB-groupoid interpretation of the adjoint representation, where c;;mj(T*g) is
introduced as the VB-groupoid complex of the groupoid TG. Let us now look in more

detail at the relation between these complexes.
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First of all, there is a natural subcomplex Cikin(T*g) of C*(T*G), where k-cochains

are those that are linear in (T*G)®. Inside Ciin (T*G) there is the space of left-projectable
linear cochains c;;mj(T*g), where a linear k-cochain u is called left-projectable if it
satisfies the following two conditions:

1. Thevalue of u(¢;,...,&;) depends only on &, and on the base points g,,..., gz,

that is,

u(Oh,Sl, e 'ék—l) == 0,'

2. The cochain u is left-invariant in the 1st argument, in the sense that

u(Oh 'Elr”'ISk) = u(élr‘-'lsk)/

for any (¢,,...,&) € (T"G)® such that & € T;.G and h € G such that (0p, &) € (T*G)@.

It is not hard to check from the definitions that the differential of C*(T*G)
restricts to Cj; (T*G) and to C;roj(T*g) making them into subcomplexes. Putting together
Proposition 5.5 and Theorem 5.6 of [14] (in the case where the VB-groupoid of loc. cit. is

TG), one obtains the following:

Proposition 3.9. There is an isomorphism of right (C*(G), §)-DG-modules
¢ C:;ef(g) - Cproj(T*g)

given by

¢©) (- &) =§1(c(Gy, -1 G))

forany £,,...,& € T*G® such that & € ;.G

4 Low Degrees

Here we look at the deformation cohomology in low degrees (mainly O and 1). This
will already bring into the discussion the two natural representations of G, namely the
isotropy and the normal representation (both part of the adjoint representation!), and
will also reveal the presence of curvature. Throughout this section we fix a Lie groupoid
G = M with Lie algebroid denoted by A.
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4.1 The isotropy representation

The discussion in degree O will require the isotropy representation of G. First of all,

consider the isotropy bundle
i=1i, :=Ker(p: A — TM).

The bracket of A induces a Lie algebra bracket on each fiber i, and, using the groupoid
g, i, is just the Lie algebra of the isotropy group at x (arrows starting and ending at
x). Moreover, conjugation by g : x — y in G induces, after differentiation at units, the

“action” of G on i

adg iy — i,.
When G is regular (in the sense that its orbits have the same dimension or, equivalently,
that p has constant rank), i is a (smooth) representation of G. In general, it is only a
set-theoretic representation of G. However, one can still make sense of the space of its

smooth (invariant) sections; define I'(i) by requiring the smoothness as sections of A:
I'(i) = Ker(p : T'(A) — T[(TM)),
and then

H°@G,i) = F(i)inV ={ael@l): adg(oz(x)) =aly) Vg:x — yinG}.
Proposition 4.1. For any Lie groupoid G, H3.¢(G) = H%(G,i) = I'()™. O

Proof. We have to show that« € I'(A) satisfies @ + & = 0ifand only if ¢ is an invariant
section of Ker(p). After applying dt to the equation we see that p(¢) must be 0. This
implies that (di)(«,) = —a, for all x € M and then the condition rg(ay) + lg(di)(ax) =0

for g : x —> y becomes the invariance of «. |

Remark 4.2. The action of G on i has as infinitesimal counterpart, the action of A
given by the Lie bracket. The elements of I'(i) that are invariant with respect to the
infinitesimal action (i.e., « € I'(Q) with [u, «] = O for all u € I'(A)) are precisely the ones in
the center Z(I'(A)) of the Lie algebra I'(A). Hence, by the standard arguments, we have
I'(i)™V C Z(I'(A)) and equality holds when G has connected s-fibers.

4.2 H*(G,1) and its contribution to Hj ;(9)

Even when i is not of constant rank (i.e., G is not regular), one can still make sense

of the differentiable cohomology H*(G, ). The defining complex C*(G, i) is defined as in
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Subsection 2.3, where the smoothness of the cochains is obtained by interpreting them
as A-valued. The fact that the differential of C*(G,1) preserves smoothness follows, for
example, from the relationship with the deformation complex: one has an inclusion

(compatible with the differentials!):
r:C*(G,1) — Cier(9), (6)

which associates to a differentiable cochain u with values in i the deformation cochain

c, given by

Cu(@1r--1GK) =Tg, WGy, -1 Gi))-

The induced map in cohomology,
riH*(G,1) —> Hy(9), (7)

will be shown to be injective in degree 1, but may fail to be so in higher degrees.

4.3 Degree 1 and multiplicative vector fields

We now start looking at degree 1 by re-interpreting Héef(g) in terms of multiplicative
vector fields. Recall that, for any groupoid G = M, TG = TM is canonically a groupoid
with structure maps the differentials of the structure maps of G; with this, a vector field
X € G is called multiplicative if, as a map X : G — TG, it is a morphism of groupoids.
In other words, X must be projectable both along s and along t to some vector field
V e X(M), du(V,) = X, and

Xgh = dm(Xg,Xh)

for any pair (g, h) of composable arrows. A particular class of multiplicative vector fields
are those of type @ + & with « € I'(4) - —whose flows give rise to inner automorphisms

of G; therefore, they are called inner multiplicative vector fields.

Proposition 4.3. For any Lie groupoid G one has

multiplicative vector fields on G

Hyo(G) = — — :
€ inner multiplicative vector fields on G
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Proof. One has to check that a vector field X € X(G) is a cocycle in céef(g) if and only
if, as a map G — TG, it is a groupoid morphism; but this is an immediate consequence

of the characterization of groupoid morphisms from the Appendix (Corollary 11.12). W

Note also that the multiplicativity of X is equivalent with the fact that the flow
of X is compatible with the groupoid structure, and this is how multiplicativity (and
Hcllef) will come in the proof of rigidity results. So, for later use, here is a more precise
statement. We will use the following general notations: for a vector field X € X(M) we

denote by ¢y its flow, ¢%(x) = ¢x(x, &) and by
DX) ={(x,6) e M x R: ¢px(x,¢) is defined} C M x R

its domain. For each ¢ > 0, we consider the ¢-slice D, (V) C M (x € M with the property
that the integral curve of V through x is defined at time ¢). The following will be needed

later on.

Lemma 4.4. If G = M is a Lie groupoid and X € X(G) is multiplicative, then the flow
of X preserves the groupoid structure, wherever defined. More precisely, denoting by
V € X(M) the base field of X, then, for any ¢ > 0, D,(X) C G is an open subgroupoid of G
with base D,(V), and

¢x : D, X) — G

is a morphism of groupoids covering the flow of V.

If G is proper then, moreover,
Dg(X) = g|’DS(V)'

that is, the flow ¢5(g) is defined precisely when ¢7,(s(g)) and ¢y, (t(g)) are (and this holds
under the weaker hypothesis on X that it is s- and t-projectable to some V € X(M)). O

Proof. The 1st part is well known (see [18]). For the 2nd part, the inclusion “ C” is clear;
we prove the reverse one. Let g € G, consider the maximal integral curve y, of V through
s(g), similarly y,, and let (a, b) be the intersection of the domains of y, and y,. Denoting
by I the domain of the maximal curve y of X through g, we know that I C (a,b) and we
have to show that equality holds. We show that for all (u,v) C I witha < u <v < b, one

must have [u, v] C I: indeed, for such u and v,

y((u,v) Cla € G:s@) e ylu,vl), t@ e y(u, v},
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where the last subspace of G is compact because G is proper. Since y ((u, v)) is relatively

compact, it follows that [u, v] is contained in I. [ |

4.4 The normal representation v and HOG,v)

Next we have a closer look at Héef(g) in a way similar to that from Proposition 4.1.
The discussion will bring into the picture another important “representation” of G—the

normal one (another piece of the adjoint representation!). Consider the normal bundle
v := Coker(p) = TM/p(A).

As in the case of i, this is a smooth vector bundle only in the regular case, but, in general,
we can still talk about its fibers and, as we shall see, make sense of “its space of smooth
(invariant) sections”. First of all, still as for i, any arrow g : x — y of G induces an
action

adg : vy —> vy
Explicitly, for v € v,, one chooses a curve g(¢) : x(¢) — y(¢) in G with g(0) = g and
such that X(0) € T,M represents v, and then adg(v) is the class of y(0) € T,M. One can
check that this construction does not depend on the choices involved. The following is

immediate:

Lemma 4.5. For any g : x —> y, the action ad, : v, —> v, is uniquely determined by

Y
the condition that, for any vector X, € ng, it sends the class of ds(Xg) modulo p(4) to

that of dt(Xg). In particular, for V € X(M), the condition that
M>xw— [V,]ev,

is invariant is equivalent to the fact that for a (any) s-lift X € X(G) of Vand any g : x —

v, there exists 7(g) € A, such that

g

In the general (i.e., the possibly non-regular) case, since v is a quotient, making

sense of (the space of) smooth sections of v is more subtle than for i; and the same for
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defining H*(G, v)—and here we will only take care of degree 0, that is, making sense of

“invariant sections”. First of all, one defines
I'(v) := X(M)/Im(p).

Note that any [V] € T'(v) induces a set theoretic section M > x — [V,] € v,, but the
two objects are now different. Similarly, the invariance of [VV] € I'(v) is a stronger (or
better: a smooth version) pointwise invariance of the induced set theoretical section.
More precisely, with the last part of the previous lemma in mind, it is natural to define
the invariance of [V] € I'(v) by requiring that for a/any s-lift X € X(G) of V, the invariance
Equation (8) holds for some smooth section  over G of t*A. Replacing X by X’ given by
Xé =X, + rg(n(g)), we arrive at the following:

Definition 4.6. We say that [V] € I'(v) is invariant if there exists a vector field X € X(G),
which is both s- and ¢-projectable to V—in which case we say that X is an (s, t)-lift of V.

The resulting space of invariant elements is denoted
H°(G,v) =TT ()™ c T'(v).

O

From the previous discussion, it is clear that, in the regular case, one recovers
the usual space of sections of the smooth bundle v and its invariant sections. In general,

we obtain the following:

Lemma 4.7. One has a natural linear map
7 HYp(G) — T (),

which associates to a multiplicative vector field X on G the class modulo Im(p) of the
vector field on M associated with X. O

Remark 4.8 (Related to the adjoint representation). It is instructive to keep in
mind the (intuitive for now) interpretations of this discussion in terms of the adjoint
representation. As indicated by the previous examples, both i and v contribute to the
adjoint representation. The fact that Hcllef(g) is related to HY(G,v) indicates that the
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contribution of v involves a degree shift by one; so, a 1st guess would be that the adjoint
representation is represented by i[0] ® v[1] (the 1st one in degree 0, the 2nd one in degree

1). There are two remarks to have in mind here:

e In order to stay within smooth vector bundles also in the non-regular case,

one should think of i[0] & v[1] as the cohomology of the length two complex
0—AL T —0

with A in degree 0 and TM in degree 1. The idea is to think of such complexes
of vector bundles as being smooth representatives of their (possibly non-
smooth) cohomology bundles, and then work with such complexes “up to
homotopy” (quasi-isomorphisms).

e However, even in the regular case when no smoothness issues arise and
one could (try to) use the graded representation i[0] & v[1], the resulting
cohomology (in degree 1) would surject onto H°(G, v), which is certainly not
the case for the deformation cohomology and =. This indicates a more subtle

structure of the adjoint representation, related to the cokernel of 7.

4.5 The 1st manifestation of curvature

Next, we look closer at the kernel and cokernel of 7. As we shall see, this will bring the
cohomology H*(G, 1) back to our attention. Looking for the cokernel reveals the presence
of “curvature”. The precise meaning of “curvature” will become clear later on (see also

the next remark); here we note its manifestation on the cohomology of lower degrees.

Lemma 4.9. For[V] e I'(v)iv, choosing an (s, t)-lift X € X(G), §(X) € Céef(g) takes values

in the subcomplex (see (6))
C2(G,1) <> Ciur(Q),

and it defines a cocycle in H?(G, i) whose cohomology class does not depend on the choice

of X; hence, one has an induced linear map (the cohomological curvature in degree 0)

K: T — H2(G, ).
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Proof. Note that the inclusion (6) identifies C*(G,i) with the subcomplex of C}_.(G)
consisting of deformation cochains that take values in Ker(ds) N Ker(dt); therefore, we

will work only inside the deformation complex. Computing ds(5(X)(g, h)) we find

ds(dm(Xy,, Xp)) — ds(X,) = dt(Xp,) — ds(Xy) = V) — Vg =0

and similarly for d¢(§(X)(g, h)); hence, §(X) lives in the subcomplex. Moreover, if X’ is
another (s, t)-lift, then ¢ := X’ — X is in the subcomplex, hence, §(X') = §(X) + §(c)
represent the same class in H%(G,1i). Finally, this class only depends on the class [V].
Indeed, if [V] = [V’], then we find @ € T'(4) such that V' = V + p(«); then, if X is an
(s,t)-lift of V, we can use X' = X + & + & = X + 8(«) as the (s, t)-lift of V' but then
$(X') = 8(X). [

Remark 4.10 (Related to the adjoint representation). Continuing the previous
remark on the adjoint representation, the presence of K is a manifestation of the more
subtle structure of the adjoint representation: it shows that there is a certain interaction
between v and i, that allows one to move from v to i, via a differentiable 2-cocycle (hence,
a 2-cocycle with values in Hom(v, i) in the regular case, and some kind of cocycle with

values in Hom(TM, A) in general). O
Putting all the maps together, we have the following:

Proposition 4.11. One has an exact sequence
0 — HY(G,i) —> Hy(G) > T)™ =5 HA(G, 1) —> Hi(Q).

Proof. For the injectivity of the 1st map r, assume that c € céef(g) comes from C!(G, 1)
(i.e., c(g) is killed by both ds and dt, for all g) and it is also exact. Hence, ¢ = §(«) for
some « € I'(4); since dt sends 8(«) = @ + & to p(«), we see that « € I'(i), hence, c is a
coboundary in the sub-complex C*(G, ).

For the exactness at H}lef(g), compute the kernel of x: it consists of classes [X],
where X is a multiplicative vector field on G with the property that its base field V is
zero in I'(v), that is, it is of type V = p(«) for some « € I'(4); replacing X by X — §(«), we
deal with classes [X] with the property that the base field is zero, that is, coming from

the inclusion (6).
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Next, we take care of the kernel of K: it consists of classes [V] € '(v)I™ with
the property that, choosing X € X(G) an (s, t)-lift of V, one has §(X) = §(c) € Cief(g),
for some c that is killed by ds and dt; replacing X by X — ¢, we see that we deal with
classes [V] that admit an (s, t)-lift ¥ that is closed in the deformation complex, which is
multiplicative as a vector field. Hence, Ker(K) = Im(x).

Finally, the kernel of the last map r: by the definition of K, it is clear that roK = 0;
conversely, if [c] € H?(G,1) is in the kernel of r, we have r(c) = §(X) € cgef(g) for some
X e Céef(g); however, the fact that r(c) (hence, §(X)) takes values in the kernels of ds and
dt implies that X will be (s, t)-projectable to some ¥V € X(M), hence, by the construction
of K, [c] = K([V)). [

5 Degree 2 and Deformations

In this section we indicate the relevance of deformation cohomology to deformations of

Lie groupoids by explaining how such deformations give rise to 2-cocycles.

5.1 The case of (s, t)-constant deformations

Let {G, : ¢ € I} be a strict deformation of G (see the introduction). We would like to study
the variation of the groupoid structure. This variation is, at least intuitively, measured
by the variation of the structure maps, such as of the expressions of type m,(g, h) around
¢ = 0. As mentioned in the Appendix, to make sense of this, one encounters the problem
that if (g, h) are composable with respect to the original groupoid structure, they may
fail to be composable for G,. Although the Appendix indicates the way to proceed (using
m), let us first assume that s, and ¢, do not depend on ¢ and proceed in a more classical
way.

In this case

d
_&|g:0mg(gr h) € Tghg

is well defined for any (g,h) € G® and is killed by ds and dt (the choice of the sign
will soon become clear). Being killed by ds means that it lives in the image of the right
translation ry, : Ayg —> Ty, while being killed also by dt means that it comes from

the isotropy i,,. Hence, we end up with a differential cochain
ug € C%(G,1)

with the defining property

d
&'g:Omg(gr h) = - gh(uO(gr h)) € Tghg-
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Moreover, differentiating the associativity equation m,(m,(g,h), k) = m, (g, m.(h, k))
with respect to ¢ at 0, we find that u, is a cocycle. As it will follow from the more
general discussion or checked directly (but see also [26] where strict deformations were

first discussed):
Lemma 5.1. The resulting cohomology class
[uol € H*(G, 1)

only depends on the equivalence class of the deformation. O

Before we pass to the more general case of s-constant deformations, we consider
the image &, of u, by the inclusion

r:C3(G,1) = C3(Q)
(see (6)) or, explicitly,
d
§0(g. h) =T14(Uo(g. 1) = —Tp1 - le—o™Mc (g, ).

For a more convenient formula, differentiate at ¢ = 0 the identity m,(m, (my(g, h), h), h) =

mO(g/ h)'

d _ d _
&lgzome(mo(ghr h)l h) + (dmo)g'h (&Lﬁ/‘zomg(ghl h)r Oh) == Or

using also the fact that in any groupoid (dm),;(Xy,05) = r,(Xy) and applying ry-:

we find

d _
&(@g.h) = P l.—om,(gh, h).

5.2 The case of s-constant deformations I: the direct approach

The advantage of the last expression is that it makes sense for all s-constant deforma-
tions. Of course, this is also very much in the spirit of the Appendix, which teaches us

that we should look at the variation of m, (and only at it).

Definition 5.2. Given an s-constant deformation {G, : ¢ € I} of G, the associated

deformation cocycle is defined as

. d _
9 € Chop(9) given by : &(g,h) = 3-l._o/(gh. h) € TyG.
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Lemma 5.3. &, is indeed a cocycle and its cohomology class [§;] € ngf(g) depends only

on the equivalence class of the deformation. O

Proof. The 1st part follows again from the associativity but written in terms of the

division
m,(m,(u, w), m,(v,w)) = m,(u, v).

Indeed, by differentiating at ¢ = 0 we we obtain
dm d| m(uw)d m, (v, w) |+
O\de'e=o ¢ " dele=0

d r -1 -1 d _ _
+ (E 8:0m8) (uw ’VW ) - (a S:Oms) (ur V) _— Or

and by choosing u = g,9,95, vV = 9,95, and w = g5, this means precisely that

8£5(91,92,93) = dmy(§9(9192,93),£0(92,93)) — £9(g1,9293) +£0(91.92) = 0.

The 2nd part follows similarly. If ¢° : G, — G, is an equivalence of

deformations, let

d
X=- £:O¢8 € Chs(9).

Then, by differentiating the expression

m,(¢*(gh), ¢° (b)) = ¢*m,(gh, h)

we obtain that

£0(g,h) — &y(g, h) = 6X(g, h). .

Example 5.4. Let X € X(G) be a vector field on a groupoid ¢ = M and assume it is
s-projectable to some V € X(M) (hence, X € c}ief(g)). To avoid irrelevant technicalities,
we assume X to be complete and let ¢, be its flow. Then one obtains a new family of
groupoid structures on G by pulling back the original structure along ¢5; hence,

S, =¢y 0sopy, m,=¢ ‘omo(Ppy, d%), etc.
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This deformation is s-constant since X is s-projectable and it is trivial by the very
construction. Hence, we know that the associated cocycle is exact and, computing it,
one finds precisely §(X) € C%_(G). O

Remark 5.5. One can remove the condition that s, is constant and treat general strict
deformations; the price to pay for this generality is that we will no longer have a
canonical 2-cocycle, but only a canonical 2-cohomology class. Let us indicate how
to proceed in a direct fashion (an alternative route will be described in detail, for
general deformations, a bit later). One follows the obvious idea: given an arbitrary
strict deformation G, of G, replace it by an equivalent one, G/, which is s-constant. That
amounts to finding a family of diffeomorphisms ¢° : G — G so that when we pull back
the groupoid structure of G, via ¢¢, the new structure G, has constant s. Assume for
simplicity that ¢° is the identity on units, so the condition is that s, 0 ¢* does not depend
on ¢, and we look for ¢° of type ¢5—the “flow” of a time-dependent vector field X = {X¢}
on G (see the next paragraph for the notations). Differentiating with respect to ¢, the

desired equation becomes

d
(ds,)(X*(9)) + 5@ =0 (9
£

Since each (ds,) is surjective, it is clear that such a family X* exists. Going backwards
the only problem is the possible lack of completeness; however, the local flow is all that
is needed to make sense of the 2-cocycle associated to the resulting m,. The resulting

cohomology class will only depend on the deformation we started with.

Next we indicate how the deformation cocycles can be used to establish rigidity
results. But first some generalities on flows. By a time-dependent vector field on a
manifold M (or 1-parameter family of vector fields on M) we mean a family X = {X¢ :
¢ € I} consisting of vector fields X° € X(M) depending smoothly on ¢ in an open interval
I C R containing 0. Such a time-dependent vector field X has a flow qb;(’s with a double

dependence in the parameters, it consists of (local) diffeomorphisms
Y M — M,
X
the solutions to the system

d t,s t,s s, _
0500 =X, (), 9% ) = x.
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The flow relations are qb;('s = Id, ¢>;~('”¢;'S = qb)g's—valid modulo the usual issues on the
domains of definitions. When interested only on what happens for parameters close to

0, it suffices to consider the family of (local) diffeomorphisms of M given by

and then, for small parameters,

¢y =93 o 07

When X is autonomous ¢§~( is the usual flow, and ¢;’8'S =

The flows of type ¢§.{'s are suited to relate the members G, and G, of s-constant

qﬁj} only depends on ¢.

deformations:

Proposition 5.6. Let {G, : ¢ € I} be an s-constant deformation of G and consider the
induced deformation cocycles & € C3..(G,). Assume that for all ¢ small enough, one
finds X*¢ such that

8(X°) =&, in C34(G.), (10)

and assume that the resulting time-dependent vector field X = {X*} is smooth. Then, for
t and s close to O, qb;(’s is a locally defined morphism from g, to G,, covering the similar
flow of V¢ = ds(X?).

Moreover, if G is proper, then qb)tz;s (9) is defined whenever qb%’s (s(g)) and qbgs(t(g))

are.

This lemma can be proved directly but our reinterpretations from the next
section (Proposition 5.9) will show that it is a consequence of Lemma 4.4 on flows of

multiplicative vector fields.

5.3 The case of s-constant deformations II: reinterpretation using the groupoid G

Here we provide another way of looking at the deformation cocycles, less intuitive but
easier to work with. This is based on the reinterpretation of strict deformations of G as
(germs of) families parametrized by an interval I: one can identify a strict deformation

G ={G, : ¢ € I} with the groupoid

G:=GxI overM:=M x1,

120z Adenuer GO uo Jasn dSn SOUeD 0BS op BoIS|4 8p onHIsu| A 980860G/299./1.2/020Z/310IE/uiwl/wod dno-dlwepese)/:sdjy wolj papeojumoq



7696 M. Crainic et al.

with structure maps

5(g.¢) = (s,(9),8), m((g,¢), (h,&)) = (m.(g,h), &), etc.

This allows us to reinterpret the deformation cocycle associated to an s-constant

deformation as follows.

Proposition 5.7. Let§ = {G.} be an s-constant deformation of the Lie groupoid G. Then,

interpreting % as an element of Céef(é) and considering

a ~
E=-4 (5) € Ce(9),
one has

&y =£lg, € Cier(Go)-

O

Note that, implicit in this statement is also the fact that the restriction of & to
Gy C G takes values in TG, C TG (warning: the operation of restricting elements of
Cfief(,C';) to Gy, even when it produces elements in Cje¢(90), is mot compatible with the

differentials).

Proof. To check the previous identity we use that, as a vector field on G,

ad d -
59,0 = T120(9,9) € Ty G, (1)

hence, on elements g = (g,0), h = (h,0),

= 0 ad |
€ ae ae

d z a
= Elgzom((ghls), (h, ) — 7290

d _ d
= &Igzo(mg(gh,h),s) 5,90

d _
= alg:[)mg(gh! h) = éo(g: h)
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Remark 5.8. The interpretation given in the proposition makes substantial use of the
assumption that the deformation is s-constant, not only in the proof, but already right
from the start when we interpreted % as an element of Céef(g). Indeed, when the source
is not constant, this vector field on G is not even 5-projectable. This is very much related
to the choice of the family of vector fields X* in the previous section; actually, Equation

(9) precisely means that the resulting vector field on G
~ . )
X(g,e) =X"(9) + g(g, 0

is s-projectable (... to % € X(M)). O
Next, we reinterpret Proposition 5.6 in terms of the groupoid G but first we need

another general remark on time-dependent vector fields X = {X* : ¢ € I} on a manifold
M. Such an X can be identified with the vector field on M x I:

- ad
X(X,S) = Xg(X) + —,
ae
then the flow ¢§és mentioned above is related to the standard flow of X by
9% (x,5) = (93 (%), 5 + )

so that ¢§+E’S is seen as moving M x {s} to M x {s + ¢}. We will apply this to the time-

dependent vector fields that arise in Lemma 5.6.

Proposition 5.9. Consider an s-constant deformation as in Proposition 5.6 and the
associated groupoid G. Then a smooth family X? of vector fields on G satisfies the cocycle

equations (10) if and only the induced vector field on G,
- . 9 =
X(g,e) =X"(9) + E € X(9),

is multiplicative. O

Proof. Start from the multiplicativity equation for X:

X(g,€) = (dM) (g ) (o) X (M. (g, h), £), X (R, £)),
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where m is the division map associated to G. Writing X in terms of X¢, we see that the

expression on the right-hand side is the sum of two expressions:

= = d 0
(dm)(g,s),(h,g) (x* (m,(g, h)), X*(h)) and (dm)(g,g),(h,g) ( ) .

e’ e
Since X is tangent to the fiber G, where m restricts to 7m,, the 1st expression is just

(A1) gy (X (M, (g, B)), X° ().

For the 2nd expression we use again (11) (and the obvious analog at ¢ # 0) and we find

= a 0 d =
(dm)(gyg)'(h,g) %l % - & |s=0m((m5 (g: h)r & + S)l (hr & + S))

d -
= & |5:o(mg+s(mg(g/ h)r h)r &+ S)

G
= )+ —.
§:(9. )+ o~
Putting everything together, the multiplicativity equation for X becomes

X(g) = (dmg)(g,h)(Xs(mg(g, h)), X*(h)) +&.(g9, h),
that is, Equation (10). [ |

5.4 General deformations

The previous section indicates how to proceed in the case of general deformations. Let

us first reformulate Definition 1.6 in terms of families of groupoids (Definition 1.9).

Definition 5.10. A deformation of a Lie groupoid G is a family of Lie groupoids

G=M-ST
parametrized by an open interval I C R containing 0 such that G, = G (as Lie groupoids).
Two such deformations, G and _C';/ , are said to be equivalent if, after eventually
restricting them to smaller open intervals around the origin, they are isomorphic by
an isomorphism that is the identity on G,,.

A deformation is said to be proper if G is a proper groupoid. O
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We see that strict deformations of G correspond to deformations G with the
property that, as manifolds, _C'; =GxI, M=MxI, and 7 is the projection in the 2nd
factor. To construct the deformation class of a deformation, we use the reinterpretation
given in Proposition 5.7. First we need an analog of ;’—5, which makes sense as an element
of CL.¢(G).

Definition 5.11. Let G be a deformation of G. A transverse vector field for G is any
vector field Y € X(G), which is s-projectable to a vector field V e X(M) that, in turn, is

w-projectable to ;’—e O
With this, we can generalize the construction from Proposition 5.7 as follows.

Proposition 5.12. Let G be a deformation of G. Then
(i) there exist transverse vector fields for G;
(ii) for any Y € X(G) transverse, —6(17) € Céef(_C’;), when restricted to Gy, induces

a cocycle

£ € Ctzlef(go);

(iii) the cohomology class of &, does not depend on the choice of Y.

O

Proof. To produce transverse vector fields one chooses any V € X(M) that is -
projectable to % and any Y € X(G) that is 5-projectable to V. For (ii), given ¥, we have
to show that for (g,h) € G, 8(17)(9, h) € Tg_C’; is tangent to G, that it is killed by the

differential of 7 o S; however,
dr(d3(8(Y)(g, h))) = dr(dE(Y(h)) — d3(Y(9)))

and using that d7 od? = d 0d§ and that X is §-projectable, the desired vanishing follows.
Finally, assume that ¥’ is another transverse vector field. Then Z := Y’ — ¥ is killed by
dr o ds, hence, the values Z(g) are already tangent to the fiber groupoids; in particular,

on G = Gy, one has Z; C(lief(go) and the cocycles associated to Y’ and Y are related by
£y — & = 8(Zp). [

Definition 5.13. The resulting cohomology class [§,] € ngf(g) is called the deforma-

tion class associated to the deformation G of G. O
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Remark 5.14. We see that, in terms of the groupoids G, the natural approach to rigidity
from the previous sections takes a more algebraic but simpler form: one searches for
vector fields X on G, which are both transverse and multiplicative, then one uses their
flows ¢ to obtain isomorphisms between G, and G,. Of course, there is the usual issue
regarding the domain of definition of the flows, and an even more serious issue is the
existence of multiplicative transverse vector fields X. By the long exact sequence of
Proposition 4.11, the last issue is equivalent to the existence of [V] € F(v)in", which is
in the kernel of the map K there; we see that the vanishing of cohomology in degree 2

greatly reduces this issue. O

5.5 Families of groupoids and the variation map

Consider a family of Lie groupoids parametrized by a manifold B,
G=M B

(see the Introduction). Using the induced groupoids G, with b € B, any curve y : I — B,

induces a deformation y*G of gy(o).

Proposition 5.15. Let G = M — B be a family of Lie groupoids, b € B. Then, for any
curve y : I —> B with y(0) = b, the deformation class of y*G at time 0 only depends on

y(0), and this defines a linear map
Vary, : T,B —> H3.:(Gp).
O

Proof. Let v = p(0) and choose an arbitrary extension v € X(B) of v and an s-
projectable Y € X(G) such that d(x o s)(Y) = ¥. Define [§b] IS ngf(gb) as the cohomology

class of
- = —(8Y ) 12
& ( )|gz(;2) (12)
We will show that

e the cohomology class [éb] € ngf(gb) does not depend on the choices of ¥ and
Y;
e under the canonical identification of (y*G), with G, the deformation class

[£,] coincides with [£,].
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For the 1st statement, the proof that the class does not depend on the lift X
is identical to the proof of Proposition 5.12 (iii). To show that [§b] does not depend on
the extension ¥, let ¥ be another extension of v and choose a lift ¥/ of ¥ such that
Y(9) = Y'(g) forall g Gy. Then, for this choice of lift it follows from the linearity of
8 that

5Y(g,h) = 8Y'(g, h) for all g, h € G}

Next we prove the 2nd statement. Since the statement is local (in &), we can
assume without loss of generality the y : I — B is an embedding. We choose v to
coincide with y on all points of the curve, and we take a lift ¥ of 77 as above. Then the

vector field
0 ” *
Yeg =5, T Y9 € Tegr 9

is transverse, and thus &; is the restriction to (y*g)ff) of —§Y.

However, since the multiplication and inversion on y*G are given by

m,(e,9), (e, h) = (e,gh), (6,97 =(,97"),

we obtain that
_ 0 o~ -
dmy(Y(O,gh)l Yon = 3 + dm(th, Yy)

from where it follows that (for these choices of lift and transverse vector field)
gb = ‘50- |

Remark 5.16. Equation 12 in the proof above gives an alternative description of the

variation map. O

6 The Proper Case

Theorem 6.1. Let G be a proper Lie groupoid. Then

HY+(6) =TH)™, H (G =Tw)™, and HX .(G) =0forall k> 2.
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Proof. We proceed similarly to the proof of the vanishing of differentiable cohomology
from [7]. As there we appeal to the fact that for any proper Lie groupoid G over M one

can use a Haar system and a cut-off function to construct a family of linear maps

/ Lt (%) — R, fio froion / f(9)dg,
t~1(x) x

t~1(x)

which depends smoothly on x € M (i.e., applying them to a smooth function on G
produces a smooth function on M), is normalized (it sends the constant function 1 on G
to 1 on M) and left-invariant (the integral does not change under composition with L,
for any h € G).

Fork>2,letce c’gef(g) be a cocycle and define a map X : GF-1 — TG by

X(g1r---/9k_1)=(—1)k/ C(glr-nlgk_llh)dh. (13)
s(gk-1)
The map X is an element of ngfl (G) and we will now show that §X = c:

6X(glr~ .. /gk) = _dm(X(gng! e lgk)rX(QZI e rgk))

k-1

+ D (“D'X(@Gy, 1 GiGi1r- 1 9
=2

+(-D*X(gy, ... gk 1)
= (_1)k/ _dﬁl(c(g1921~--lgklh)lC(QZI---lgklh))
s(gk)
k—1 ]
+ > (=Dcgy,- - 9iGis1, - G AR
=2

+/ (@G- 1 Gr_1, AR
s(gk-1)

80:20/ —C(@G1s- -1 Gk-1: 9k +€(Gy, -, g)dh
s(gk)

+/ (@G- 1Gg_1,-W)dh
s(gk-1)

left-inv.

= "¢y, G1)-

Note that exactly the same formulas applied to cocycles in C*(G,1) imply that
H¥(G,i) = 0 for all k > 0, and this is basically the proof of the vanishing of differentiable
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cohomology with coefficients in i from [7], with the extra remark that the integrals still

define smooth cochains; indeed, if u € C*(G, 1), it is smooth as a map

G1r---0Gp) = ulGq, -0 Gg) eAt(gl),

hence, so is
(gl""'gk—l)'_)/ u(gll""gk—l’h)dheAt(gl)
S(gk-1)

(t(g;) stays constant in the integration process). The vanishing of H*(G,i) in degrees
1 and 2 combined with the exact sequence from Proposition 4.11 implies the desired
isomorphism Héef(g) =~ I'(v)I", The isomorphism ngf(g) >~ I'(i)iV holds by Proposition
4.1. |

Remark 6.2. Alternatively, the vanishing part of Theorem 6.1 can be immediately
obtained by using Theorem 3.35 from [2], after the isomorphism of the deformation
cohomology and the cohomology with values in the adjoint representation is established
(Lemma 9.1). O

6.1 Some consequences (relevant for rigidity results)

Here are some consequences of the previous result (and its proof).

Corollary 6.3. IfG = {G, : ¢ € I} is a proper family of groupoids, k > 2 and u® € c’gef(gg)

is a smooth family of deformation cocyles, then the equations
§(X%) =u’®

admit solutions X¢ € C’ge_fl (G,) that are smooth with respect to ¢. O

Proof. This follows from the vanishing part of the theorem, applied to the full
groupoid G. |

Remark 6.4. Itisimportant to realize that assuming only that each G, is proper (which
ensures that the equation for each ¢ has solution) does not suffice. One can actually
find families of compact groupoids for which the previous Corollary fails (because, as a

family, it is not proper).

In order to handle general deformations, we know from the previous section
(see, e.g., Remark 5.14) that it is important to ensure the existence of multiplicative

transverse vector fields.
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Lemma 6.5. Any proper family 6 = M Z I of Lie groupoids parametrized by an
interval I admits a multiplicative vector field X € X(G) that is transverse (in the sense of
Definition 5.11).

Proof. By the isomorphism Hcllef(g) ~ T'(v)I?V it suffices to show that one can find
V € X(M), which is 7 -projectable to ;—S and with the property that the induced [V] € T'(v)
is invariant. Start with any transverse vector field X € X(G). We define the vector field V
on M by

Vy :=/dt(Xa)da.

We have
dm (V) :/dn(dt(Xa))da=/dn(ds(Xa))da=/aidaz i

x 0€ de

To check that [V] is invariant, it suffices to find a vector field X' on G, which is both s-
and t-projectable to V. We claim that

X, ::/ dm(X(ga), X (a))da € T,G (14)
s(9)
does the job. Indeed,

ds(X;]) =/ ds(dm(X(ga), X(a)))da = / dt(X(a))da = Vs
s(9) s(9)
and a similar computation combined with the invariance of the integral shows that also
dt(Xy) = V.- u

Moreover, in order to handle deformations semi-locally (relative versions), one

needs a relative version of the previous lemma.

Lemma 6.6. With the same notations as in the previous lemma, if N ¢ M is an invariant
submanifold so that x|y : N — I is still a submersion and X, € X(G|y) is a given

multiplicative transverse vector field, then X can be chosen so that it extends Xj;. O

Proof. The proof is just a careful analysis of the previous proofs, the details are as
follows. Start with X,; and its base vector field Vy. Choose an extension V of V, that
is w-projectable to % and choose X € X(G), which is s-projectable to V. We modify X
in steps. First we make sure that X also extends Xy since Xy (g) — X(g) is killed by ds,
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it is of type re(m(@) with n(g) € Ayg) defined for g € G|y; choosing a smooth extension
7 € I'(G,t*A) of n one then replaces X by g — X(g) + rg(ﬁ(g)).

Hence, we may assume that X extends X, and is s-projectable. One can also
arrange it so that it is also t-projectable: the replacement is the one given by formula
(14)—indeed, when applied to g € G|y, the integration variable a stays in G|y, hence, one
deals with

dm(Xy(ga), Xy(a))da = Xy(g9)da = Xy (9),
t(9) t(9)
where the multiplicativity of X, was used.
Hence, we may assume that X extends X,; and is s- and t-projectable to some V.

Then the expressions
dm(X(gh), X(h)) — X(g9) € Ty

are killed by ds and dt, hence, they arise by right translations with respect to g of some

elements

As before one can find n € C'(G,1i) so that ¢ = §(57). However, the integral formula for
(of type (13)) shows that 5 vanishes on elements of G|, (because the multiplicativity of

Xy implies that ¢ does). We can now change X to

X'(g) = X(g) +1,(n(@)),

which has the same properties as X’ and is also multiplicative; the multiplicativity is
implicit in the last part of the proof of Theorem 6.1 but also follows easily by a direct

computation. |

Remark 6.7. Note that the last two lemmas apply (basically with no changes in the
proof) to general proper families G == M —— B parametrized by a manifold B; the
conclusion is that any vector field W on B admits a multiplicative lift X to G (lift in
the sense that X is projectable, viaw os = 7 ot to W).

Moreover, using the explicit argument from the last proof (applied to N = ¢ and
with I replaced by B) shows that the choice of X can be made smooth in W. Indeed, all
the steps involved to produce X are given by explicit formulas that are clearly smooth,
except maybe for the starting step, which starts with the choice of a vector field V on M
that is w-projectable to W and X € X(G) that is s-projectable to V. But that can be done
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smoothly as well, by fixing smooth splittings of dz and ds (i.e., Ehresmann connections
on 7 and s).

As analog of Lemma 6.6 one can start with any sub-family G|, = N — B, with
By C B, N C M submanifolds and IV invariant and then, if W € X(B) is tangent to B, and
one is given a multiplicative lift Xy of W|g to G|y, then one can find a multiplicative lift
X € X(G) that extends X;. O

7 Applications to Rigidity

As explained in the previous section, the main idea to obtain rigidity results is to use
the vanishing of the deformation cohomology and the flows of the resulting vector fields.
Here are some immediate illustrations of this idea. We start with the cases of (s, t)-

constant and s-constant deformations.

Theorem 7.1. The following hold true:

e Any (s, t)-constant deformation of a proper Lie groupoid is trivial.

e Any s-constant deformation of a compact Lie groupoid is trivial.

Proof. It is clear that any deformation G = {G.} as in the statement is proper. Then we

follow the general plan:

e We appeal to Corollary 6.3 to obtain X = {X?} smoothly depending on &
transgressing the deformation cocycles &,

e We use the 1st part of Lemma 5.6 and the resulting flows ¢§.('S as candidates
for isomorphisms between G; and G,.

e To make sure that ¢;'V is defined on the entire G, for u and v small enough,
we use the 2nd part of Lemma 5.6; we are left with proving that ¢>;'V is defined

on the entire M for u and v small enough.

The very last part is clear in the 2nd case since M is compact. For (s,t)-constant
deformations, we have seen that the resulting deformation cocycles &, live in the
subcomplex Cz(gs,i) and we can solve Equation (10) inside this subcomplex, that is,

we can arrange that V¢ = 0; hence, again, there are no problems with the flow. [ |

Remark 7.2. It is not true that s-constant deformations of proper Lie groupoids are

trivial. An example of this can be obtained by carefully analyzing a construction that
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Palais gave in [23]. In loc. cit. it is shown that for any nontrivial compact Lie group
G, there exists an uncountable family of inequivalent G actions on an Euclidean space
R™, such that any of them have isomorphic linearized actions at a fixed point. More

specifically

e it is shown in [19] that there exists an open 3-manifold W that is not
diffeomorphic to Euclidean 3-space, and such that W x R" is diffeomorphic
to n + 3-Euclidean space (this is really the important point!);

e if one considers the diagonal action on W x R" formed from a faithful
representation of a compact group G on R" and the trivial action of G on
W, the corresponding (non-linear) G-action on R™*2 has a fixed-point set
diffeomorphic to W;

e if one takes a fixed point of the action (which without loss of generality can
be assumed to be the origin) the homotety deformation to the linear action is
a nontrivial deformation: the fixed-point set of the linear action is a vector
space of dimension 3 (i.e., R%) and, hence, cannot be diffeomorphic to the
fixed-point set of the the non-linear action (which is diffeomorphic to W);

e in fact, in [19] it is shown that there is an uncountable family of non-
diffeomorphic manifolds W, with the property above. We thus obtain
uncountably many inequivalent s-constant deformations of the proper action

groupoid associated to the linearized action.

O

The last part of the Theorem 7.1 also has relative version; moreover, passing to
semi-local statements, one can deal with general proper groupoids. The 1st one in this

direction is the following:

Theorem 7.3. Let G = M be a proper groupoid and let N C M be an invariant
submanifold.

Then for any s-constant deformation ¢ = {G, : ¢ € I} of G that is constant on NV
(G.ly = Gly for all ¢) and any compact interval I; C I one can find a smooth family of

groupoid isomorphisms
F,: Q|U0 — gg|U5, (e €ly),

which restrict to the identity on G|y. Moreover, if M is compact then one may choose
U, = M. O
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Proof. We need to look a bit closer at the previous arguments. First of all, because of
the hypothesis, the deformation cocycles &, vanish on all pairs (g, h) coming from G|y.
Looking at the formulas (13) defining the transgressing cochains we see that also X*
vanishes at points of G|y. Let us now move to the product M x I and interpret Vasa

P, vt e)
is defined for all x € N as long as v+¢, v € I. In particular, ¢SI./’O(X) is defined for all x € N,

vector field there. Since V agrees with % on N x I, we see that ¢>f~/(x, v)=¢

¢ € I. With I, as in the statement, since any open in M x I containing N x I, also contains
U, x I, for some open-neighborhood U, of N in M, we find such an U, such that qﬁ%’o(x)
is defined for all x € Uy and ¢ € I,. Set

0
U, = ¢°(U).
Of course, q&%e is defined on U,. All together, using again Lemma 4.4 we find that

e,0 .
¢5( . g|U0 - g&‘lUg

is a groupoid isomorphism, with inverse d)?(’s defined on the entire G, |y, . Since X* is zero
on G|y, this isomorphism is the identity on G|y.

We are left with proving the last part. But this follows from a general property
of flows of vector fields V on M x I when M is compact: ¢8f/'0(x) is defined for all x e M
and e € 1. |

The following shows that proper deformations are trivial locally around com-

pact invariant submanifolds.

Theorem 7.4. Let G = M be a proper groupoid and let N € M be a compact invariant
submanifold. Then for any proper deformation ¢ = {G.} of G, there exists a smooth
family U = {U,} of opens U, C M, such that N is contained in U, and such that the
deformation G|[~] ={G.ly,} is trivial.

In particular, any proper deformation of a compact groupoid is trivial.

Proof. We work on the large groupoid ¢ = M to which we apply Lemma 6.5 to obtain
a multiplicative transverse vector field X with base-field denoted V. Since N is compact
we can choose a smaller I C I and an open-neighborhood Uy of N in M, such that ¢ (y)

is defined for all y € Uy, ¢ € I,. We set

U, = ¢5(Up) (e € Iy).
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The 2nd part of Lemma 4.4 insures that qﬁ;? is defined on the entire G| = QO|UO, while
the multiplicativity of X implies (cf. the 1st part of Lemma 4.4) that

45;"( 2Gly — Yelu,

is a groupoid isomorphism (note that the inverse qb; is defined on the entire G,|;; again
because of Lemma 4.4 and the fact that ¢; is defined on U,). n

Theorem 7.3 can also be extended to general proper deformations.

Theorem 7.5. Assume that G = {G, : € € I} is a proper family of Lie groupoids and
N = {IN,} is a smooth family of submanifolds N, C M, invariant with respect to G, and

such that G|z = {Gly,} is trivial, with given trivializing diffeomorphisms

V! go|1v0 - ga|1v5-

Then for any I,, which is the interior of a compact interval contained in I, there exists a
smooth family U = (U, : ¢ € I;} of open neighborhoods of N, in M, and a smooth family

of groupoid isomorphisms
F83g0|U0—)gs|U£l (8610)
extending ,. O

Proof. We proceed as in the proof of Theorem 7.3 but working directly on the large

groupoid G; in particular, we interpret the smooth family {¥.} as a map

Y :GlyxI— G, (g.&) > ¥(g,e) = v,(9)

and similarly for the base map, denoted f. For g € Q~|N, consider ¢ = 7 o s(g) that is with
the property that g € G, |y, . Move g back to ¢ = 0, that is, consider g, = ¥ 1(g) € G|y and

consider
~ d
XO(g) = E'V:gw(g(y V)'

Since the values of the curve v — v (gy, v) belong to QVINV C ,C';IN, 5(0 is a vector field on
g~|ﬂ,, which is s- and t-projectable to the similar vector field T70 on N (constructed using

f instead of F). Also, it is clear that f/o is m-projectable to {;’—E Since each v, is a groupoid
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homomorphism, we deduce that 5{0 is a multiplicative transverse vector field on C;|N. Use
now Lemma 6.6 to extend 5(0 to a similar vector field X on Q Note also that, for gy € G|y,
the curve y (¢) = ¥ (gy, €) has

d ~ -
y(e) = Elvzgl/f(go, V) = X (V. (go)) = X(y(e));

hence, the resulting flows qﬁ% satisfy ¢>;3((go) = ¥ (g, ¢) for all ¢ and for g, € G|y. Then one

proceeds like in the previous two proofs, using the flow of X. |

Finally, let us present an application to the linearization problem. However,
we would like to emphasize that our aim here is not so much to prove linearization
results but to show that, for proper groupoids, the linearization follows from a stronger
property—rigidity.

In general, for any Lie groupoid G = M and any N C M invariant submanifold,
one can make sense of the linear normal form of G around N, denoted Ny(G). For
instance, when N = {x} is a fixed point of G (i.e., all the arrows that start at x also
end at x), the action of G on v restricts to a linear action of the isotropy group G, at
x on the tangent space T, M and the linear normal form of G around x, NVy(G), is the
resulting action groupoid. For an arbitrary invariant N C M, similar to the action of G
on v, one has a canonical action of G|, on the normal bundle N (N) of N in M and the
linearization of G around N, denoted Ny (G), is defined as the resulting action groupoid.
A more conceptual description is obtained by considering the normal bundle N'(G|) of
Gly in G; as for TG = TM (and as a quotient of it), the differentials of the structure maps
of G make N(G|y) into a groupoid over N (IV), canonically isomorphic to Ny (G). Note
that N, identified with the zero section of Ny (M), is invariant with respect to Ny (G).
The linearization problem asks whether G and Ny (G) are isomorphic when restricted to
neighborhoods of N. When this happens one says that G is linearizable around N. The

relationship with deformations is provided by the following type of topological remarks:

Lemma 7.6. If G is an s-proper Lie groupoid and N C M is an invariant submanifold,
then there exists an open-neighborhood W of NV in M and a smooth proper family {G,} of

groupoids over W such that

o gl = g|Wl
e G, is (isomorphic to) the linear model Ny (G),

e G.ly =Gly as groupoids for all ¢;

and even more, one can ensure that G, is isomorphic to G|}, for all ¢ # 0. O
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Proof. (Sketch) One proceeds exactly as in the case of fixed points, which was
explained in full detail in [10]. First of all, the topological arguments from Proposition
2.2 of loc. cit. go through using the following remarks, for a smooth map 7 : P — M
and N C M a submanifold:

e if 7 is proper then any open ¢/ C P that contains 7 ~!(IV) also contains 71 (V)
for some neighborhood V of N;

e if 7 is a submersion, then one can find tubular neighborhoods of N in M and
of 7~1(N) in P that are compatible with 7 in the sense that the restriction of
7 to the tubular neighborhood corresponds to the map induced by dz on the

normal bundles.

One then finds an embedding of type
U Glvary = Ny (@) = Gly) xy NV,

which is the identity on G|y where N (N) is identified with a tubular neighborhood of
N Cc M. Then work on the left side, making use of the multiplication by scalars in the

fibers of the normal bundles to set
1
m.(e f) = ;m(se, ef)
(and similarly for the other structure maps), defined on

Like in [10], it is not difficult to see that the limit at ¢ = 0 gives rise to the linearized

groupoid structure on G, = Ny (G) and that the resulting groupoid G is proper. |

We see that we are almost in the position of applying Theorem 7.3; however, for
that, one would first have to improve the previous topological argument to insure that
the inclusion i above is an isomorphism, so that the resulting deformation is strict (the
fact that the source is constant is clear). Instead, we can just apply Theorem 7.5 and we

deduce the following linearization theorem (proved first in [12]):

Theorem 7.7. If G is an s-proper groupoid and N C M is invariant, then G is

linearizable around N. t
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Finally, our techniques can be applied also to the study of families of Lie
groupoids. As before, there are several variations (semi-local or relative versions). Here

we present the most restrictive but simplest statement.
Theorem 7.8. Any compact family ¢ = M — B of Lie groupoids is locally trivial. O

Proof. Consider a point b, in B and a coordinate chart (U, ) around b, in B, with
¥ = (x1,...,X,), such that ¢ maps U to an open disk D around 0 in R" and v (b,) = 0.

For any b € U, we consider the vector field
n
d
gl: t Xm

on D and the corresponding (via ) vector field W? on U. The flow of W? at time 1 maps
by to b and, moreover, from the construction it is clear that the choice of WP is smooth
in b. As explained in Remark 6.7, the vector fields W? on U admit multiplicative lifts X?
to Q‘U and, in addition, the choice of X? can be made smooth in W?. By taking the flow of
X? at time 1 (which is defined for all g € Gp, because of compactness), we find a family

of isomorphisms
1.
¢Xb . gbo gb ’

parametrized smoothly by b € U, giving the desired local trivialization. |

Remark 7.9. Using the Reeb stability theorem, it is enough that G, be compact to
ensure that there is a neighborhood U of b, in B such that G, is diffeomorphic to G,
for all b € U. It then follows that the same proof above ensures that G is trivial in a

(possibly smaller) neighborhood of by,. O

Remark 7.10. Del Hoyo and Fernandes have recently obtained (independently) the
theorem above [11]. Their proof follows from a version of the Ehresmann stability

theorem for Lie groupoids. O

8 The Regular Case

When G is a regular Lie groupoid, that is, having all leaves of the same dimension, it has
natural representations on the bundle of isotropy Lie algebras of G, denoted i and on the

normal bundle to the orbits, denoted v. An arrow g € G acts on « € gy, by conjugation,
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g-a=rgol,aanditacts on [v] € vy

on G with g(0) = g such that [v] = [%|€=Os(g(8))], theng-[v]l = [% |s=ot(9(8))]'

y by the isotropy representation: if g(¢) is a curve

Proposition 8.1. The deformation cohomology of a regular Lie groupoid G fits into a

long exact sequence
o — HNG, ) > HEY (0) 5> BTG, v) S HELG ) — -

where r is induced by the canonical inclusion (??), 7 associates to a deformation cocycle

c the class modulo Im(p) of the s-projection s, of ¢, and K will be discussed below. [

Proof. We will construct two cochain complexes, C and .4, that fit into two short exact

sequences

0 —> C*G,1) > C}p(@) 2> ¢ —> 0,

0— C" — A* =55 C*(G,v) — 0 (15)

and with the property that A* is acyclic. For A*, define
A¥ = MG, v @ €1 (G, TM)
(see also Remark 2.6), with the differential given by

8(p, ) = (=8'(#), —¢ + 8" (¥)),

where

§' . CckG, TM) — CFL(G, TM),

k
ED)G1r- 1 i) = D (D611 GiGis10 -1 Gs) + D D(G1 - g

i=1
One can check directly that A* is acyclic. More conceptually, A* is the cylinder of
the complex (C*(G,TM),d’), and ¢’ is clearly acyclic (with homotopy ¢(g;,...,g;) +

o(,9:,.-..91).
The map S : A* — C*(G; v) is defined by

S(@,0) Gy, 9K) =91 - l0(Ggs ... g = [@d(Gy, ... g,
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where [V] € v denotes the class of the tangent vector V € TM and “g,-" refers to the
canonical action of G on v. It is straightforward to check that S is compatible with
the differentials. Next, C* is defined as the kernel of S and R associates to a cochain

ce c’gef(g) the pair
R(c) = (¢, V) € C¥(G, TM) ® C*1(G, TM)

characterized by

4’(;(91,‘ .. ng) = dt(c(gll e rgk))l ‘(/fc(gZI e rgk) = ds(c(gll e ng))~

Lemma 4.5 implies that R takes values in C*. Again, a straightforward computation
shows that R is compatible with the differentials. It is also clear that Ker(R) = Im(r).
Finally, we show that R is surjective; let (¢, V) € Ck. One can first find ¢ € cgef(g) so that
¥ = ¢, (e.g., use a splitting of ds : TG — TM to lift the expressions ¥ (g, ..., gy) to

T, G). Using again Lemma 4.5 we see that

gl : [1//(92, .. lgk)] = [dt(c(gll e rgk)]'

Therefore, the condition that (¢, ¥) € C¥ implies that ¢ — dt o ¢ takes values in the image
of the anchor map p; hence, (also using regularity) we can write ¢ = dtoc + p o & from
some & € C¥(G,A). Then ¢’ € C’gef(G) defined by

C/(glluwgk) = C(glf-nlgk) +rgl($(921'-orgk))

is sent by R to (¢, ¥).
Back to the original sequences, consider the long exact sequences in cohomology

that they induce. The one induced by (15) gives rise to isomorphisms
3 : H*1(G,v) — H*(C),

which combined with the one induced by (15) gives rise to a long exact sequence as in
the statement.

We still have to show that, modulo the isomorphism 9, R is identified with =,
that is, in cohomology, 3 o # = R. For that, let ¢ € c’gef(g) be a cocycle representing
the cohomology class [c]. By definition of the connecting map 9, the cohomology class
dorlcl can be represented by §(a) (seen as a cochain in the subspace C¥), where a € A*~!

is any cochain such that S(a) = n(c). From the definitions of S and of § it is easy to see
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that S(—s,, 0) = 7(c), and so 9 o 7[c] can be represented by the cochain n = (§’s,, s,). The
2nd component of R(c) is also s,; hence, the 2nd component of R(c) — 7 is then equal
to zero. On the other hand, since c is closed, R(c) — n is closed as well. Finally, it is an
easy computation to check that for (¢,0) € C¥, the 2nd component of §(¢, 0) is equal to
—¢. With this we conclude that R(c) — 7 is in fact equal to zero, so R and 9 o w agree in

cohomology. ]

Although the previous proof may seem rather ad-hoc at 1st sight, it becomes very
natural if one follows the intuition given by the adjoint representation interpretation of
deformation cohomology (see Remark 8.4 below). Furthermore, it reveals several new
aspects (see the remarks below), including a possible route to the discovery of the full

structure of the adjoint representation (next section).

Remark 8.2. (A deformation complex for morphisms) First of all, the complex A* is
similar to the deformation complex and this indicates the presence of a more general
construction: one has a deformation complex Cj .(F) associated to any morphism of Lie

groupoids
F:G—H

covering some base map f : M —> N (cf. [22] for Lie groups). With the notation from

Remark 2.6,
k k *
Cies(F) C C*(G,F'TH)

so that k-cochains ¢ are smooth maps

go 5 G1r---191) > €(Gri-- -0 Gx) € TrigH.

The condition that ¢ belongs to Cgef(F) is that ds(c(g;,...,gy)) does not depend on g;.
Moreover, the differential § of Cj (F) is given by exactly the same formula as for the
deformation complex, but using the division m of H. Denote the resulting cohomology
by Hj ((F). Of course,

H:;ef(g) = H:;ef(ldg)'

More generally, the relation between the deformation complexes of F, G, and ‘H

is given by the maps

F, F*
Chep(G) —> Chp(F) <— CE (M),
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defined by F,(c)(g;,...g;) = dF 0 c(gy, ..., g;) and F*(€)(gy,--.,gp) = € F(gy), ..., F(gy)),
for any c € c{;ef(g) and ¢’ ¢ Cﬁef(’H).

Similar to the deformation cohomology of G, H&‘ef(F) can be seen as “the
differentiable cohomology of G with coefficients in F*Ad,—the pullback by F of the
adjoint representation of H".

With this, the complex A* from the previous proof is Cj_.(F) where F = (s, ) :
G —> Il := M x M is the canonical map into the pair groupoid of M, hence, it is related
to F*Ady; the acyclicity of A is related to the fact that Ad;, that is, the complex TM I—d>
TM, is acyclic. O

Remark 8.3. (The curvature map) One can also go on and compute the “curvature map
K" in the sequence. In degree 0 one finds the curvature discussed in Section 4.5. A careful
analysis in higher degrees shows that K is the cup product with a canonical cohomology
class, still denoted by K,

K € H*(G,Hom(v, i)).

Here we use the induced Hom-representation: for g : x — y, its action of £ : v, — i, is

g-§:v, — i, given by
G W) =g-&@g ' v).

Also, the cup-product operation that we refer to is
kG, Hom(v, 1)) x C*¥(G,v) — C**(G), v &-v

defined by the same formula as (4) where the pointwise product of u and v is replaced
by the evaluation of u on v. We will explain in the next section how the point of view
of representations up to homotopy can be used to describe the class K (see Remark 9.5).
However, it is worth having in mind that one can proceed directly and analyze K as
it arises from the previous proposition; the analysis is not completely straightforward
(e.g., one has to realize the relevance of connections on groupoids) but, ultimately, it
reveals the full structure on Ad = A & TM (and the notion of representation up to
homotopy). Although we do not give here the full details of such a direct approach,

we hope that our comments motivate and clarify the next section. O
Remark 8.4. (Yoneda extensions) The heart of the previous proof is the exact sequence

0 —> C*G,1) > Chep(G) 2> A* =5 C*(G,v) —> 0.
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With Remark 8.2 in mind, this sequence represents a sequence involving the adjoint
and the related representations: i, Adg, Adp, and v; at the level of chain complexes, one
simply deals with:

P

i A TM v
® ® @®

0 ——TM TM —— 0
N <= <~ —

Id

E: i—— Adg —— F*Ady —— v

This gives an interpretation of the curvature map from the previous proposition
in terms of Yoneda extensions (in the sense of homological algebra), as the cup product
with the element in the Ext-group represented by &; moreover, since we basically deal
with vector bundles (for which Hom(E,F) = E* ® F) the relevant group Ext?(v,i) is
simply H?(G,Hom(v, i)). Again, all these can be made precise within the framework of
representations up to homotopy, providing another way of looking at the cohomology
class K. O

9 Relation with the Adjoint Representation

In this section we describe the relationship between Hj ;(G) and the adjoint representa-
tion of [2]. Actually, we will explain that, once a connection o is fixed, C3.(G) gives rise
right away to a representation up to homotopy Ad,, and then we will identify it with the
adjoint representation from [2].

We fix a Lie groupoid ¢ = M and we start by briefly recalling the notion of
representation up to homotopy. As in Remark 2.6, for a vector bundle E over M we
consider the space C¥(G, E) of E-valued differentiable cochains. If E is graded, then we
consider C(G, E)* with the total grading

CG.E"= P ¥, ED.
k+l=n

As in Section 2.3, the cup product makes C(G,E) into a right-graded C(G)-module.
By definition, a representation up to homotopy of G is a graded vector bundle E
together with a differential D on C(G, E) (the structure operator), which makes it into
a differential graded (C(G),§)-module (with respect to the total grading and the cup
products). This is precisely what the deformation complex of G gives us once we fix a

splitting of the short exact sequence:

A 1 176 % ¢ (16)
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Such a splitting can be seen as a right inverse o : s*TM — TG of (ds), that is, an
Ehresmann connection on the bundle s : § — M; we say that o is an Ehresmann

connection on G if, moreover, at the units it coincides with the canonical splitting (du).

Lemma 9.1. Consider the graded vector bundle
Ad=AdTM

with A in degree 0 and TM in degree 1. Then any Ehresmann connection o induces

isomorphisms
I, : CEe(0) = C(G,Ad)* = C¥(G, A) ® C*1(G, TM), ¢ «— (u,v)
characterized by

€@y, 1 Gp) = g, WGy, .., G)) — Ty, (V(Gss ., Gi)- (17)

Moreover, this is an isomorphism of right C(G)-modules (see Lemma 2.5 for the module

structure on Cy.r(G)). In particular, for any Ehresmann connection o on g, there is a
unique operator D, on C(G,Ad), which makes Ad into a representation up to homotopy
of G and such that I is an isomorphism between (Cy.;(G),8) and (C(G,Ad), D).

The resulting representation up to homotopy will be denoted Ad,. To make it
more explicit (and identify it with the one of [2]), let us first be more explicit about the
structure of representations up to homotopy of length 2, that is, of type

E=E’@E.
In this case, the structure operator
D:C*G E% & C (G, EY) — C*(G E%) & C*(G,E

is necessarily of type

D(u,v) = (6, (w) +K - v, =6, (v) + d(w)),
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where

e J:EY— E!isavector bundle morphism, and we use the same letter for
3:C*G,E% — c¥@G,EY), d(c)=doc;
e Aisa quasi-action of G on E = E° @ E! acting componentwise and
8, : C*(G,E) — C**'(G,E)

is the induced operator (cf. Remark 2.6);
e the “curvature term” K is a smooth section that associates to a pair (g, h)

——> E9  and we use the

of composable arrows a linear map K(g, h) : ESl H)’

(h)
cup-product operation

c*~1@G,E"Y) — c*1(G,E°), c—~ K¢

(K : C)(g]: e rgk+1) = K(g]:gz)(C(QSI e !gk+1))-

Note that the condition that D* = 0 breaks into

dohrg=hr,00 (onE), (18)

hghp = dgn +K(g,h)od =0 (onEP), (19)

hghp — gy +090K(g,h) =0 (onEY), (20)

rgK(h, k) — K(gh, k) + K(g, hk) — K(g,R)A;, =0 (on E). (21)

Hence, Lemma 9.1 implies that Ad comes with operators d, A, K associated to o.
It is not difficult to check that 9 is the anchor of A. We claim that A and K coincide with

the quasi-action and the basic curvature of o, introduced in [2]:

e the quasi-actions associate to every g : x —> y the maps

hg 1 TM —> T,M, 1y(X) = (dt)y(0,(X)),

hg Ay —> Ay, hg(@) = —wg(X(9)),

where & is given by (1) and where w : TG —> t*A is the induced left splitting

of the sequence 16, wg(X) =Trg1 (X — O'gdS(X));
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e the basic curvature, K = K};’as, associates to a pair of composable arrows
y DL
and a vector v € T, M, the element
K(g, h)v e Ay,
characterized by
ron(K(@, W)V) = 04y (v) = (A1) g 4 (04 (1, (V)), 03, (V) € TgpG. (22)
In other words, we have the following:

Proposition 9.2. The structure operator of the representation up to homotopy Ad, =
A @& TM arising from Lemma 9.1 is the one associated to the quasi-actions and the basic

curvature of o and the bundle map d = p : A — TM, that is,
D, (u,v) =G, (uw)+K-v,=§(v) + p(u)).
O

Proof. Before we do the actual computation, let us first point out three general
formulas. First we note that, with respect to the decomposition induced by o, the
expressions of type (E(g) correspond to the pair (=2g(B), p(B)) € Ayg) ® Ts(g)M; indeed,
the A component is obtained by applying oy, hence it is —1,(8), while the TM-component
is obtained by applying ds, hence it is ds(l;(di())) = d¢(8) = p(B). In conclusion,

B (@) = —Ty04(B)) + ag(p(B)).

Next, we claim that, for all «, 8 € 4, and (g, h) composable arrows, one has

(AT i (Tgn @), T (B)) = T (@) + B (9) = Ty(@) — 14 (hg(B)) + 0y (0(B)). (23)

Due to the previous discussion, we only have to show the 1st equality. Since both
(rgn(a), 0p) and (04, ,(B)) are tangent to the domain G'? of m, to prove this formula it

suffices to consider separately the cases when 8 = 0 and then when « = 0. When 8 = 0,
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the left-hand side is the differential of the map s~!(x) > a ﬁl(rgh(a),h) =ag =ry(a)
(x = t(g)), at the unit at x, applied to «; hence it gives rgla(x)) = @ (g). Similarly, when
o = 0, we deal with the differential of the map s~!(y) > b — m(gh,r,(b)) = gb™! =
. . . . <~
l,(i(b)) y = t(h) = s(g)), at the unit at y applied to g, that is (see (1)), B (9).
Finally we also need the fact that, for (g, h) composable and V € TynyM,

(A1) g 4 (O (V), 0, (V) = 040 (V) + 14 (K(g, RY(V)). (24)
Indeed, using the formula for ogn(V) that results from (22), we find
(A1) gy, (A1) 4 (0 (O, (V)), 03, (V)), 0, (V) + (dT) gy, (g (K (G, R)(V), O).
The 1st term is just ag(kh(V)) because m(m(g, h),h) = g, while the 2nd term is
ry(K(g, (V).
Consider now a deformation cochain ¢ written as (17); we will compute §(c) in

terms of u and v.

The 1st term in the formula for §(¢)(g,, ..., gk, 1) is

_(dm)(rglgz (u(gngIgsl .. lgk-l,-])) - Uglgz (V(g3l .. rgk+1)): rgz(u(gZI ... lgk-',-l))

— 0y, v(gs, .- ,gk+1)).
Using (23) we find that —(dﬁl)(rglg2 (w(9192/ 93/ - - -1 Gr11)): g, (WG, - - 1 Gi11))) is
g (W(G12: G50+ Gep1)) + Ty (g (WGas -+, Grei))) — O, (P(W(Gas - G )
and using (24) we find that (drh)(aglg2 V(G3r-- 1 Grr1))s Og, (v(g3/---19ky1))) 18
09, (hg, (V(G3, -1 G 1)) + T (K (91, 92) (VG- - - Gi1))-

Hence, the components of the 1st term in the formula for §(c) are

_u(gngIg3l LI rgk+1) + )‘-gl (u(921 CIIR ng+1)) +K(91192)(V(g3r .. lgk+1)) € At(gl)'

UGz, -1 1)) T Ag,(V(G3, - -1 Gry1)) € Tgg M.
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The next terms in the formula for §(c)(g,, ... ' Jky1) are, foreachie {2,...,k}:

(_1)l(rgl (u(gll cee Igigi+ll ce lgk+])) - Ugl (V(gZI cee Igigi+ll cee lgk-l,-])))l

hence, give the components

(=D'u@Grs- -1 9iGis1r-- -1 G € Aggy)r (D"'(Gy, -1 9iGir1r - Grr1) € TsgnM,

and similarly for the last term. All together, we see that the components corresponding

to §(c) are

S)L(u)(glr cee /gk+1) + K(gll.gZ)(V(gSl v rgk+1)) € Ar

_p(u(.gZI o rgk+1)) + S)L(V)(g2r cee /gk+1) € TM.

Therefore, with respect to the splitting given by (17) (which introduces a minus sign on

the TM component) we find

8, (W) + K - v, p(w) — 8, (V).
|

Remark 9.3. When comparing with [2], note that one has to take care with adjusting
signs: the formula in loc. cit. for the differential Su of a differentiable k-cochain (formula
(3)) differs from ours by a factor of (—1)¥, and the formula for the cup product of a
k-cochain u and a k’-cochain v (formula (4)) differs by a factor of (—1)kK', By sending
f e Q) and (w,v) € CG,ADF to (—DEf and (—-1)!2)u, (~1)"F")v), respectively,
one obtains an isomorphism of chain complexes between the two versions, respecting
the DG-module structures. Here | x| denotes the largest integer that is smaller or equal
to x. ]

Remark 9.4. It is straightforward to check that the isomorphism I, restricts to an
isomorphism between the normalized subcomplexes (5def(g),8) and (5(Q,Ad),Da). A
cochain ¢ € Ck(g,Ad) is said to be normalized if c(g;,---,g;) = 0, whenever any of

the arrows g; is a unit, and Ek(g,Ad) denotes the subspace of normalized k-cochains. (J

Remark 9.5. We now return to case of a regular Lie groupoid G and to the sequence
from Proposition 8.1, in order to give another description of the curvature map K.

Choose splittings u : v — TM of the canonical projection = and t : Im(p) — A of
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the anchor map and a compatible Ehresmann connection o,that is, with the property
that u and t are equivariant with respect to the canonical actions of G on v and i,
and the quasi-actions A induced by o on A and TM. Such a o can always be obtained,
by starting with any Ehresmann connection ¢’ on G, and modifying it via a cochain
n € C(G,Hom(TM, A)), as explained in Lemma 6.10 of [14].

Then, composing K, with x and t, we have that any pair (g, h) of composable
arrows induces a map tK, (g, h)u : vy —> iyg); moving from vy, to vy, using
the action by gh, we end up with a map Kg""(g,h) : vyg — iy, therefore with a

differentiable cochain
KM™ e C%(G, Hom(v, 1)).

It can be proven that K4'" is a cocycle, the resulting cohomology class
[Ky] € H(G, Hom(v, 1))

does not depend on the choice of o, ¢, and 7 (as long as o is compatible with x and 7),

and the map K from Proposition 8.1 is given by the cup product with this class. O

10 Relation with the Infinitesimal Theory (the Van Est Map)

In this subsection we show that the deformation cohomology Hj ((G) is the global
(groupoid) analog of the similar cohomology Hj ((A) from the deformation theory of
Lie algebroids [9].

Recall first the definition of the deformation complex (C}(A),d) (and the
deformation cohomology Hj ((A)) of a Lie algebroid A over a manifold M. The k-cochains
are antisymmetric multilinear maps D : I'(A)¥ — T'(A), which are multiderivations,
that is, such that there is a map oy, : I'(A)*~1 — x(M), called the symbol of D, which is

multilinear and satisfies

Dy, 0y, fog) = Doy, g, ... o) + Loy o,

for any f € C*°(M) and «; € I'(A). The differential § : Cﬁef(A) — C’g:fl (A) is given by
SD)(ey, .- o) = D (=D oy, Dley, ..., &y, o )]
i

=+ Z(—l)l+]D([ai,(Xj],(X1,. . ’&i’ e ,&J', e ,(Xk+1).

i<j
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Next, we relate the deformation cohomology Hj .(G) of a Lie groupoid G with
the deformation cohomology Hy (A) of the Lie algebroid A of G. This can be seen as a
generalization of the more ordinary van Est map relating differentiable cohomology to
Lie algebroid cohomology. Given a section « € I'(4) we can defineamap R, : Egjfl G —
6§ef(g) by R,(c) =lc, E’]‘M when k = 0 and by

d
Ry(©(@1r-191) = (=DF | @119 0 (590 ™)

when k > 1, where ¢¢ denotes the flow of the right-invariant vector field on G associated

to «. The van Est map is the map
Vi Chor(G) —> Clios(A)

defined by
Vo) ay,... a) = Z(—l)'f‘Rar(k) o...0R,  (C).
TeSk
Note that the van Est map is only defined on the subcomplex of normalized
deformation cochains.
In analogy to the usual van Est theorem relating Lie groupoid cohomology to Lie

algebroid cohomology, we obtain the following result:

Theorem 10.1. For any Lie groupoid G the van Est map V is a chain map; hence, it

induces a map in cohomology
V:HY (G) — HE (A).

Moreover, if G has k-connected s-fibers then this map is an isomorphism in all degrees
p <k O

In Section 9 we have seen the construction of the adjoint representation of a Lie
groupoid, and the isomorphism of C} ((G) with C*(G,Ad,); the infinitesimal analog of
this construction gives rise to the adjoint representation ady, of a Lie algebroid A [1]; it
is proven in loc. cit. that C} ((A) is isomorphic to C*(4; ady).

We prove Theorem 10.1 by showing that under the isomorphisms of C ((G) and
Cer(A) with C*(G, Ad,,) and C*(4; ady), it translates to the van Est theorem of Arias Abad
and Schétz (Theorem 4.7 in [3]) for the van Est map relating the complexes C*(G, Ad,)
and C*(4; ady).
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We use the concepts and notations from [1, 3, 9] needed for the proof. Similarly
to the setting for Lie groupoids, Q(4,E) = '(A*(A*) ® E) is a right-graded € (A4)-module;
a representation up to homotopy of A is a graded vector bundle E together with a
differential D on Q(4, E), which makes it into a differential-graded (22(4), d,)-module.

The adjoint representation of a Lie algebroid A, seen as a representation up to
homotopy, is given by the graded vector bundle ad = A & TM, where A has degree 0
and TM has degree 1, so that Q4,ad)* = QkA; A) ® QF1(4; TM), and a differential
Dy, which is defined using a connection V on A. When A is the Lie algebroid of a Lie

groupoid G, one can take V to be induced by a Ehresmann connection o on G by letting
Vxo =[o(X), @1, (25)

for any vector field X on M and o« € I'(A). The resulting chain complex is denoted
C*(A,ady).

We recall that the isomorphism Cy.r(4) = C*(4; ady) induced by a connection V
on A is given by ¥y, : Cy.r(A) — C*(4;ady), D — (Lp, —op), where Ly is defined by

We now recall the definition of the van Est map from [3], for cochains with values
in representations up to homotopy of length 2. Let E = EY®E! be a graded vector bundle
over M and « a section of A. Define the map Rél : Ek+1(g; El) — Ek(g;El) by

d _
R(©)Gyr--- 90 = 7| _ 0@1- G 87 (5@ 7.
€ =0
The van Est map of [3] is the map VEl : Ek(g,- EYY — Qk(A; EY), which is given by

1
VEe) g, .o = (D D DR, 0. oR,  (0),
T€Sk

when k > 1 and by the identity map when k = 0. The van Est map for the adjoint
representation is obtained by taking E® = A and E' = TM.

We will show that for an Ehresmann connection o on G, and the connection
V on A induced by o (see formula 25), the van Est map V of deformation cohomology
corresponds to the van Est map of [3], under the isomorphisms I, : C4,¢(G) — C(G, Ad)
and Wy : Cyr(A) — C(4,ad) induced by o. Recall that I (c) = (w(c), —s,), where s, =
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dsocand (w(€))(g;....9;) = r;ll (c—005.,)(gy,...,9;)- In order to accommodate for the

sign convention of [3], we will actually use a slightly different map (see Remark 9.3)
1,0 = (-D'Ho(0), (DT s,

Lemma 10.2 (R, in degree 1). Forc e E}lef(g), it holds that
R,(0) := [c, @l = RY(w(0) + Vg o (26)

O

Proof. Since c(g) = rgw(€)(g) + 048.(s(g)), it is enough to prove the equation in the two
following cases:

Case 1: w(c) = 0, or equivalently, ¢ = 0gSci in this case Equation (26) holds since
it is exactly the defining expression for V.

Case 2: s, = 0, or equivalently, w(c)(g9) = ry-1¢(g); in this case we want to prove

that
d
[e, @ lpg () = Rg@(@) () i= | Tgc(@ )7,

Given any 1-cochain, normalized or not, consider the section y, = ¢y —s, € I'(4).
Define a projection = : céef(g) — Eéef(g) by n(c) = c — 7; For a deformation cochain
c satisfying s, = 0, we will prove that [c, E)]lM(X) = Rg (w(c))(x), which in the case of a
normalized cochain ¢ gives the desired result. To do so, first note that [7(c), 7]‘M(x) —
R%(w(0))(x) is C*(G)-linear in c. Indeed,

[fe, @1y (%) — W @ iy (x) — RY(@(fe) (x) =flc, @ 1 (%) — f17,, o |y (x) — fRY(@(c)) (x)

~ (Laf) e + (£p0f) €)= (L) o),

and the sum of the last three terms is zero since @ , + &, = p(a,). To see how the term
(Eg;f) c(x) shows up by expanding Rg (w(fc))(x), it is enough to notice that ¢¢ )1 =
d);‘7 (x) and apply the chain rule.

Any cochain ¢ with s, = 0 is a linear combination of right-invariant ones, with
coefficients in C*°(G), and since [ (c), 7]|M(X) - R2 (w(0))(x) is C*°(G)-linear, it is enough
to check that it is zero for a right-invariant c. This clearly holds because in this case
both [7(c), ?]‘M(X) and R%(w(c))(x) will be zero. [ ]
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Note that Lemma 10.2 says precisely that the map V on Eéef(g) corresponds to
(V4, V™) on C(G,Ad)', through the isomorphisms I, and Wy.

Lemma 10.3 (R, in higher degrees). For all k > 1, the maps R,, : 6’5;}1 G) — 5§ef(g)
satisfy

R =

o o

o (RY, —RLyo 1.

Proof. Ifce Eﬁé}l (G), then

(I o RS, ~RY 0L,©) @1, 90 =
k k-1
= (=D RO ((©)(9),- .. 9%)
k-1 k—2
+ (D T e RL(s) (90 90)

= (—=1)*(ry, RAU@(©)(gy, .-, gy) + 04, RY(ds 0 O)(gy, ..., gg)

_(_1\k i o -1
= (=1)"(ry @, + 04, ds) d8|8:0c(gl,.--,gk,¢g(s(gk» )).

where the last equality follows from checking that, since both », and (ds), are linear
and do not depend on ¢, they commute with the operation %L:o in the definitions of
R%,R!, and R,,. [

Proof. (Theorem 10.1) We can compare the van Est maps V and (V4, V™) in arbitrary
degree as follows. Consider a normalized deformation cochain ¢ of degree k, and a
permutation t € S;. Lemma 10.3 implies that

ORa,(l)(C) = Rar(k) ofa_l o (R0 o...oRO , (—l)k_lRl o oR! ) Oja(c),

Az (k) O Qrk—1)  ° ar(1) Ark-1) " ar(1)

and since we are applying R
that

ey to a deformation 1-cochain, using Lemma 10.2 we see

..oRam)(c)z(—l)L%JRO oR%  o...0R% (w(c)) (27)

Az (k) - Az (k) Oz (k—1) xz(1)

k-1
+DE2 Y e

o .
k1) O (sc)% (k)

1
OR"’I(I)

The van Est map V is obtained by summing the previous expressions over all

permutations in S;. We can split this into a double sum, summing overi =1,...,k and
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over the permutations r € S; such that v(k) = i. Using this resummation and Equation
(27), we have that

k
Ve)(ay, ... o) =D > (—1)|T|Rar(k) o...0R,  (c)
i=1 reSg
t(k)=i
X k
= (—1)lz! z(_mrlem ° Rgr(k_l) 0...0 Rgm) (w(C)) (28)

i=1

k
k-1
+ (_l)l- 2 J+1 z Z (_1)|r‘V(il)k_lRér(k,l)o'“ORér(l)(SC)ai'

i=1 reSg
t(k)=i
If r € Sy is a permutation with r(k) = i, by composing the cycler;=(k k-1 ... i+1 1)
with it, we obtain a permutation v’ = r; o v that fixes k, so it can be seen as element of
Sj_; (and any element of S,_, is of this form), for which we have (—1)I"1 = (=1)l7I+Il =
(—1)/71+*&=G=1) From this, and the definitions of V4, V™ we see that (28) is equal to

k
k k-1 .
DV )@, o) + DV DIV (@),

1

which is precisely the expression for \I-'g1 o (VA,VIM) o I’U (¢)(ay,...,ap), meaning that V
does indeed correspond to (V4, V™), To finish the proof, we apply the van Est theorem
(Theorem 4.7 in [3]) for (VA, VTM), [ |

Remark 10.4. A version of the theorem above, valid for more general representations
up to homotopy, was proved by Arias Abad and Schéatz in [3]. The main point of
our theorem is that it relates directly and canonically the deformation complexes of
groupoids and algebroids. Using the result of [3], one would only obtain the desired van
Est map after choosing connections and identifying the deformation complexes with the
respective adjoint complex.

An alternative proof using the VB-interpretation of the adjoint cohomology (see
[14] or Section 3.5) has been recently communicated to us by Cabrera and Drummond

and will appear in [4].

11 Morita Invariance

In this section we prove that Morita equivalent Lie groupoids have isomorphic defor-

mation cohomologies. This is useful not only for computations but also for conceptual
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reasons: it shows that the deformation cohomology of a Lie groupoid G is an invariant
of the differentiable stack presented by G.

Remark 11.1. In this direction, it is interesting to note that the notion of invariant
vector fields up to isomorphism of [17] is related to Héef(g), where G is an action

groupoid. d

We recall briefly some basics on Morita equivalences. Detailed expositions can
be found in [20, 21]. If G is a Lie groupoid over M, a (left) action of G on a manifold
P is given by a smooth map u : P — M, called moment map, and a smooth map
G Xy P — P,with (g,p)— g-p € wL(t(g)), satisfying the usual action axioms. Here,
the fibred product is taken over the source map of G and over pu.

A left G-bundle is a left G-space P together with a G-invariant surjective
submersion P — B. It is called principal if the map G x,,P — PxgzP, (g,p) — (gp,p) is
a diffeomorphism. The notions of right action and right G-bundle are defined similarly.

Lie groupoids G over M and # over N are said to be Morita equivalent if there is
a manifold P together with a left action of G on P with moment map « : P — M and a
right action of H on P with moment map 8 : P — N, such that 8 : P — N is a principal
G-bundle, « : P — M is a principal #-bundle and the two actions commute. We then

say that P is a bibundle realizing this Morita equivalence between G and H.

Example 11.2. (Isomorphisms) If f : § — H is an isomorphism of Lie groupoids,
then G and H are Morita equivalent. A bibundle can be given by the graph Graph(f) C
G x H, with moment maps t o pr; and s o pry, and the natural actions induced by the

multiplications of G and H.

Example 11.3. (Pullback groupoids) Let G be a Lie groupoid over M and a« : P — M
a surjective submersion. Then we can form the pullback groupoid «*G = P, that has as
space of arrows P x;; G x;, P, meaning that arrows are triples (p, g, @) with a(p) = t(g9)
and s(g) = a(q). The structure maps are determined by s(p,g,q9) = q, t(p,g,q9) = p and
.91, 9(q, 92, 7) = (0, 9192, 7).

The groupoids G and «*G are Morita equivalent, a bibundle being given by G x,,P.
The left action of G has moment map topr; : G Xy P — M is given by g - (h,p) =
(gh, p) and the right action of «*G has moment map pr, : G x3; P — P and is given by
(h.p) - (p.k, @) = (hk, q). O
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Example 11.4. (Cech groupoids) The following special case of the example above arises
in Mayer—Vietoris-type arguments concerning Lie groupoids (see Proposition 11.9 and
the proof of Theorem 11.6 below).

Let U = {U;};.; be an open cover of M and let = : LIU; — M denote the obvious

surjective submersion. The Cech groupoid of G w.r.t U is defined to be the groupoid
GU) =7*G = LU,

and it is Morita equivalent to G. Note that an arrow (x,g,y) of C;(L{) can be unambigu-

ously denoted by (i, g,j) where s(i,g,j) =y € U; and ¢(i,9,j) = x € Uj;. ]

Remark 11.5. Let G and H be Morita equivalent, with bibundle P as above. Using that

P is a principal bibundle, it is easy to check that
*G=Pxy Gxyy PEPXxy PxyP=PxyHxyP=8"H,

as Lie groupoids over P.

This means that we can break a Morita equivalence between G and #, using
a bibundle P, into a chain of simpler Morita equivalences: G is Morita equivalent to
a*G = B*H, which is Morita equivalent to #. Therefore, in order to check invariance
under Morita equivalences of a property or construction associated to a Lie groupoid,
it is enough to check invariance under isomorphisms and under Morita equivalences

between a Lie groupoid and its pullback by a surjective submersion.

Theorem 11.6 (Morita invariance). If two Lie groupoids are Morita equivalent, then

their deformation cohomologies are isomorphic. O

Proof. By Remark 11.5, it is enough to prove invariance under isomorphisms and
under pullback by a surjective submersion f : P —> M.
For both cases we use that given a morphism of Lie groupoids F : G — H, we

have maps
k Pk F* ok
Caer(@) — Cer(F) <— Cer(H)

relating the deformation cohomologies of G, F, and H (Remark 8.2). When F is an
isomorphism, F, and F* will be isomorphisms of chain complexes, so that takes care
of invariance under isomorphims. We will now focus on the case where f : P — M

is a surjective submersion, and F is the induced map F : f*G — G, g = (p,9,.q9) — g.
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We will prove that C}_.(f*G) is quasi-isomorphic to Cj}..(G) by showing that both are

quasi-isomorphic to C} ¢(F).

Claim 1. F, is a quasi-isomorphism between C} ((f*G) and C}.(F).
|

Proof of Claiml. Recall that F,c = dF o c. We first note that F, is surjective. In fact, if

we chose a connection on TP, that is, a right-splitting I" on the sequence
0 — ker(f) — TP — f*TM — O,

then given ¢ € C} (F), if we set ¢ = (I'(dt(c)), ¢, T'(ds(c))), we obtain that F,.c = c.

We thus obtain a short exact sequence
0 — kerF, — Cl(f*G) —> Ci(F) — 0,

so to prove the claim it is enough to show that ker F, is acyclic.

Note that k-cochains in ker F, may be identified with pairs of maps
u: (F*OF — kerdf, v:(F*GF ! — kerdf,

where u(gy,...,gy) € ker(df), ., v(gs ...,gy) € ker(df),, and g; denotes the arrow
A simple computation shows that under this identification, the differential of

the deformation complex satisfies
§(u,0) = (w,u),

for some w : (f*G)¥*1 — kerdf as above. Then, if (u,v) is a cocycle, it must actually
be exact, with (u,v) = §(v,0). Indeed, (u,v) — §(v,0) = (w,0) and (W', w) = §(w,0) =
s(u,v) —8%(v,0) =0, sow = 0. [ ]

Next, we reduce our problem of showing that H;;ef(f*g) ~ ngf(g) to the case
where f : P — M admits a global section 0 : M — P. For this we will need the
following Mayer—Vietoris argument, where we use the Cech groupoid G (/) associated to

an open cover i = {U;} of M (Example 11.4).
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Claim 2 (Mayer-Vietoris Argument). If / is an open cover of M, then H} ((G) =~

H (GU)). O

Since the proof of this claim is formally identical to the proofs of claims 5 and 6
below (with the role of the section o to be played by a partition of unity), we will

postpone it until Proposition 11.9.

Claim 3. We may assume without loss of generality that the map f : P — M admits a

global section o : M — P. g

Proof of Claim3. Take a cover & = {U;} of M by open sets, which admit local sections
o; : U; —> f~1U;, and denote by V the open cover of P by the open sets V; = f~1U;. Note

that f induces a surjective submersion with a global section
f:uv, — uu,.
Moreover, the Cech groupoid (f":g)(V) of f*G with respect to the cover V is

isomorphic to the pullback groupoid f*(é U)) of the Cech groupoid cU) by the surjective

submersion f . Thus, by Claim 2, and invariance under isomorphism, we have
Hio (F*(GU) = Hior (f*Gand Hiop(GUD) = Hior(G).

Thus, Hj ((G) ~ H} +(f*Q) if and only if H (GU)) ~ H; (F*(GU))). [ ]

From now until the end of the proof of the theorem we will assume that f : P —

M admits a global section o : M — P. We then obtain a left inverse to F*:

\IJO- . Czef(F) — Czef(g)l ‘DU(C)(glf T rgk) = C(U(t(gl))lglfa(s(gl))r' .. Ia(t(gk))lgkla(s(gk)))‘

It follows that the map induced by F* in cohomology is injective, and it is our task to
show that it is surjective. For this we consider the following decreasing sequence of
subcomplexes of C} ((F).

We will call a cochain c € Cgef(F) strongly normalized in the j — th position, if it

satisfies the following two conditions:

¢y Gjre-- k) = C(G7, - - ,g]’., ..., gp)whenever F(g;) = F(g]’-) (29)
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and if F(gj) is a unit in G, then

c(gl,...,gj,...,jk)=01f1 <j<k
c(gy,....gy)isaunitof TG ifj=1.

(30)

We denote by N* C C}((F) the complex of strongly normalized cochains, that is, those
that are strongly normalized in all positions.

We obtain a decreasing sequence of subcomplexes

C:lef(F):Nf)k2"'2./\/'[*2...3/\/’*’

where we set
j\/zk ={ce Cgef(F) such that c is strongly normalized in position j for all k — ¢ < j}.

Claim 4. The complex A'* is isomorphic to the complex Egef(g) of normalized cochains
of G. O

Proof of Claim4. The map F*: C’gef((]) — Cgef(F) is given by
(F*C)((pllgqul)l ey (pklgkl Qk)) = C(gll .. lgk)l

so restricting it to normalized cochains on G, we obtain a map F* : E’gef(g) — N*. This
restriction is injective because of surjectivity of f and is surjective because of condition
(29), which holds for all 1 < ¢ < k. (Alternatively, the restriction of ¥, to N* is the

inverse of F*). n

In order to show that F* is surjective in cohomology, we will prove that every
cocycle in ./\/'ek is cohomologous to a cocycle in AQk+1. We break this into two steps (the

next two claims).

Claim 5. If a cocycle ¢ € Cgef(F) satisfies condition (30) for all £ < j < k, then it also
satisfies condition (29) for all ¢ <j < k. O

Proof of Claim5. Forj > ¢, non-dependence on g; follows from spelling out the cocycle

equation

80((p1rgqu1)l DN (p],gj, qj)! (qJ/ 1/q})/ (pj+llgj+1/qj+1)/ sy (pk!gkr qk)) = 0
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If ¢ > 1, since c satisfies condition (30) in positions ¢, ..., k, only two terms survive, and

the result is

C(glr- cer (qjlgj+1rqj+1)r cee /gk) = C((glr- cer (q]/'lgj+1rqj+1)r cee /gk)r

where g; denotes the arrow (p;, g;, q;)-
If ¢ =1 and j = 1, the only non-zero terms in the cocycle condition are the 1st

two, and the result is that

_dﬁl(c((pllgqu/l)l (q/lrgZI qz)r o rgk)lc((qll 11 q/l)l (q/11921 qZ): .. gk))

+ C((pllgqul)l (q1192/ q2)r' . :gk) = 0

Since c satisfies condition (30) in position 1, it follows that c(q;, l,q’l, ...) is a unit, and
thus

c((P1,91,91),(41.92,92) - Gr) = c((P1,91,91), (41,92, 92) - - -+ Tp)-

Non-dependence on p, follows similarly from the cocycle equation

SC((pll lrp/l)r (p/lrgqul)l NG (pkrgkl qk)) =0.

Spelling it out, we obtain
_dm(c((pllgllql)r L] :gk), C((p/llgllql)r L] :gk)) = Z ULI
i

where condition (30) implies that each U; is a unit of TG. The result then follows by
multiplying (in TG) both sides of the equation by c¢((p},9,,q,),--.,g;) on the right. |

The next claim concludes the proof of the theorem.
Claim 6. Every cocycle c € Nek is cohomologous to a cocycle in Nek+1' O

Proof of Claim6. The notation becomes quite heavy in the following computations,
so we make some simplifications, which we now explain, and which will not be used
outside of this proof. For arrows g; = (p;,g;,q;). we use the notation (g;,...,G;) =
(P1:91/91/92+ - 19%_1,9k_1, 9k 9)» Which is not ambiguous since p;,; = g;. We also
abbreviate the expression by inserting g; = (p;,g;,q;) in parts of expressions where

the arrow is clear from its context. Moreover, we will implicitly assume when applying
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a cochain to a string of arrows, that they are composable, and omit the points of M
where we apply the unit map and the section o if they are uniquely determined by
this requirement (composability). So, for example, we would simplify the expression
c((p.9,0(5(9), (0(s(9), g @). (g, h, 1) to c(p,g,0,1,9,h,1).

We consider first the case £ > 2. Let ¢ € J\/}f_(Z C C’éef(F) be a cocycle. Consider
<p§(c) € Cﬁ;fl (F) given by

P O®1,91:q1s -1 Gke1 Tre1) = (D e®1,.91, 91 901,801, 1,090, Gps---,

Jk—1+De—1)-

We claim that ¢ + 8¢’(c) belongs to N,f_e“. In fact, let us compute (c +
8<p£ (©)(Gy,---9) when F(g;) =1.If i > ¢, then since c € N,f_g, most terms cancel and the
only non-zero terms are the ones resulting from the strings containing g; ,g; and g;g; ;.

both with opposite signs, that is, up to a sign we obtain

C(pllgllu-rq[_]l lrUrg£l~~-rqi—21gi—1lqil'-°gquk)_

C(pllgll'-~rq(_1l lrarg[/"-rqi_ZIgi_llqi_lr‘--gquk) = 0/

which vanishes because c satisfies condition (29) in position i > ¢. This show that ¢ +
8pl(c) e NF .

Now let i = ¢. We will show that if F(g,) = 0, then (c 4 8¢%(¢))(@;,...,3x) = O,
that is, ¢ + 8¢’ (c) satisfies condition (30) in position ¢. It then follows from Claim 5 that
c+8¢pt(c) e N,f_ul.

After a straightforward computation we obtain that

(C+8¢£(C))(gll~--lgé—lqu—]l 1rq[l--~lgk) =

=(=D"8c@y,---190-1.9-1,:1.90,1,0,9411 -, TK) = O,

which vanishes because c is a cocycle.

We are left with showing the cases £ = 1. Let ¢ € N]f_l be a cocycle, which
is strongly normalized in positions 2, ..., k. In this case we use the canonical splitting
T,,G6 = Ay ® TyM and denote by X4 the A-component of a vector X € T, G, to define
¢3(0) € Chf (F) by

(p;(c)(pllgllqlfn~ng—1lqk—1) = rglc(plrllalglfqlr‘~'lgk—1!qk—1)A'
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Similarly, if ¢ has degree 1, define ¢! (c) by ¢l (c)(p) = c(p, 1,0)2.
We wish to show that (¢ + (Sgo; ©)(@®;,1,91,95....,9;) is a unit of TG. Most terms

of this expression are zero and we are left with

(c+80©)(P1.1,q;, 990, 9k) =
=c(p,1,91,92,---,9%)

- dm(rgzc(plr 1101921 .. :gk)Al (rgzc(qll 1! 6192: e lgk)A)

If we decompose c(py,1,q;,95,..-.9;) = dsoc(p;,1,9,,99,---.91)+c(P1, 1,91, 95, - - ,gk)A
and use the cocycle identity

_dm(rgzc(plr 1101921 .. :gk)Ar (rgzc(q11 1161921 e lgk)A) + C(plr ]-1 q1192,~ .. lgk)A

= (5¢(py,1,q1,1,095,.... g =0,
we obtain that

(C+8<P(1;(C))(p1r 1/q1!92r~--lgk) = dsoc(pll 1rq11921-~-rgk) iS aunit-

The case k = 1 works exactly in the same way: (¢ + §¢l(c))(p, 1, q) is the unit
dsoc(p,1,q), plus the A-part of §c(p, 1,q,1,0). [ |

It follows from the previous two claims that F* : ngf(g) — ngf(F) is surjective,

and thus an isomorphism. This concludes the proof of the theorem. O
Remark 11.7. In the course of the proofs of claims 5 and 6, we actually showed that

every cocycle in Cj _.(F) is cohomologous to one in N*, which we identify with 6§ef(g)
(and not simply Cj_+(G)). Thus, applying the proof above to the identity map yields the

following proposition: O
Proposition 11.8. The inclusion: E;;ef(g) > C3.¢(9) is a quasi-isomorphism. O
We now prove the Mayer—Vietoris argument used in the proof above (Claim 2)

Proposition 11.9. (Mayer-Vietoris Argument). If I/ is an open cover of M, then
H{ot(9) = Hi(GQU)). O
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Proof. The proof is formally identical to the proofs of Theorem 11.6 above (Claims 5
and 6) with the role of the section o replaced by a partition of unity {p;} subordinate to

the open cover U = {U;}. The following are the main ingredients:

v

e G(U) is the pullback of G by a submersion, so there is an obvious chain map

71 CK(G) — CR LG, 71,910 i1 Girdi) = C(Gr, - -1 Gr)-

e Using the partition of unity we obtain a left inverse ¥ : cgef(é(u)) —
Ck+(9),

\II(C)(gll cee :gk) = Zpll’o]l U pjkc((illglljl)l sy (jkflrgkljk))r

where the sum is taken over all indexes i,,j, such that #(g,) € U;, and s(g,) €
Ujr,withrz 1,...,k.

e It follows that n* induces an injection in cohomology and all that is left to
prove is that it is also surjective.

e The normalized complex Egef(g) can be identified via ¥ with a subcomplex
N* of strongly normalized cochains of c’gef(é(U)). (Defined by conditions
analogous to (29) and (30)). In order to check that the map induced by

7.[*

in cohomology is surjective, it is enough to show that every cocycle
ce c’gef((j(u» is cohomologous to a cocycle in Nk,

e We consider the descending sequence
Ciap@U) =NG 2 2N 2--- 2N,

defined as in the proof of Theorem 11.6.

e The statement and proof of Claim 5 in Theorem 11.6 follow identically with
p, replaced by i.. and g, replaced by j,..

e The statement and proof of Claim 6 in Theorem 11.6 follow identically with

¢t replaced by

0 (© (i1, 91.d1s - Grdi) = (DY
J

piCGy 911 Ge—1ide—1 LiJiGerder - - Gx—11Jk—1)
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for ¢ > 1, where the sum is taken over all indices j such that t(g,) € U;

similarly, ¢} (c) is replaced by

991(0)@1'91,].1,- .. rgk/_]k) = ijrglc(ilr ]-!jlgllj]l LR rgkrjk)A-
J

Remark 11.10. We have recently learned that Theorem 11.6 can be obtained also by
using an appropriate notion of Morita equivalence for VB-groupoids (and using the VB-
groupoid interpretation of the deformation cohomology, see Section 3.5). This is being

worked out in an ongoing project of del Hoyo and Ortiz [13].

Appendix: Another way of Looking at Groupoids

Since the main motivation (and applications) for the deformation cohomology comes
from the study of deformations of Lie groupoids, in order to gain some insight into its
definition it is worth contemplating a bit on the meaning of deformations (and of Lie
groupoids). Given a groupoid G, we want to allow deformations smoothly parametrized
by some real parameter ¢ of all the structure maps: s,, t,, m,, etc. The cohomology theory
that controls deformations should incorporate the variation of the structure maps
(%se, etc); the cocycle conditions should be 1st order consequences of (i.e., obtained
by applying d% to) the various equations that the structure maps satisfy. There are two

relevant points to be addressed right from the start:

e In the set of Lie groupoid axioms there is a certain redundancy (e.g., the
target map is determined by the source and the inversion: ¢t = s o i). In order
to study deformations, it is natural to look for a minimal set of axioms.

e Variations of type ”d%mg (g, h)" are problematic because they make sense only
under very restrictive conditions (e.g., when s, and ¢, do not depend on ¢, so

that the condition that g and h are composable does not depend on on &).

Both points are answered by a very simple remark: it is better to use the division map m
of G instead of the multiplication; moreover, all the structure maps of G can be recovered

from only m and s, themselves satisfying some simple axioms.

Proposition 11.11. Given the manifolds G and M, giving structure maps (m,s,t, u,i)

making G into a Lie groupoid over M is equivalent to giving pairs (s,m) consisting of
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surjective submersions s : G — M and m : G x, G — G (defined on the space of pairs
(g, h) with s(g) = s(h)) satisfying:

(i) For all g, h € G with s(g) = s(h) one has

s(m(g, h)) = s(m(h, h))

(i.e., the expressions of type s(m(g, h)) only depend on h).
(ii) For all g, h, k € G with s(g) = s(h) = s(k) one has

m(m(g, k), m(h, k)) = m(g, h)

(note: the 1st expression makes sense because of (i)).
(iii) The restriction of s to m(A) = {m(g, g) : g € G} is injective.

O

Proof. We have to see how we can recover all the structure maps and their axioms
given a pair (s, m) as in 2. Note first that any x € M can be written as s(m(g, g)) for some
g € G. This follows by using the surjectivity of s and m and the fact that s(m(g, h)) =
s(m(h, h)) (by (i)). We deduce that the map from (iii) is a bijection, and we denote by

u: M — m(A) C G its inverse. By construction,

u(s(m(g, h)) = m(h, h)

for all (g, h) € G x, G. The other structure maps are defined by

t(g) = s(m(g,9)
i(g) =m(uos(g),9)
m(g, h) = m(g,i(h)).

Next, we check the groupoid axioms.

First, note that ¢ is a surjective submersion since both s and m are. Note also
that, by definition, s(u(s(g))) = s(g). On the other hand, s(i(h)) = s(m(u(s(h)), h)), so by
the 1st axiom, s(i(h)) = s(m(h, h)), which is t(h) by definition, thus implying that m is

well defined and soi =1t.

1. (toi(g) =s(@):
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Using the 2nd axiom we can compute
(toi)(g) = s(m(i(9),i(9)))
= s(m(m(u(s(9)), 9), m(u(s(g). 9))
= s(m(u(s(9)), u(s(9)))
= s(m(m(k, k), m(k, k)))
= s(m(k, k)),
where u(s(g)) = m(k, k) and so s(m(k, k)) = s(g) as desired.

. (s(m(g, h)) = s(h) and t(m(g, h)) = t(g)):
For (g, h) € G?, we have

s(m(g, b)) = s(m(g,i(h)))
= s(m(i(h), i(h))
= t(i(h))
= s(h).
Here, the 2nd equality is the consequence of the 1st axiom, and the 3rd

equality is the definition of ¢.

Also, we have that
t(m(g, h)) = t(m(g,i(h)))
= s(m(m(g,i(h)), m(g,i(h)))
= s(m(g,9))
=t(9).

This time, the 3rd equality is due to the 2nd axiom.
. (sou=idy and tou = idy):

sou = idy, is just by definition. For the other, let u(x) = m(k, k). Then
(tow(x) = t(m(k, k)))
= s(m(m(k, k), m(k, k)))
= s(m(k, k))
= s(u(x))
= idy(x).
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4. (m(i(9),9) = u(s(g), m(g, i(g)) = u(t(g), and i* = idg):

Again, let u(s(g)) = m(k, k)

m(i(9), 9) = m(i(g), i(9)))
= m(m(u(s(9)), 9), m(u(s(g)),9))
= m(u(s(g)), u(s(9)))
= m(m(k, k), m(k, k)))

=m(k, k) = u(s(g)).
Next, suppose that g = m(h, k). Then
i(g) = m(u(s(m(h, k))), m(h, k)) = m(m(k, k))), m(h, k)) = m(k, h).

From this, it follows that i2 = idg (and consequently that i is a bijection).

Moreover,

m(g,i(g) = s(m(i(i(9)), i(g)))
= u(s(i(9))
= u(t(9)).

. (m(g,u(s(9) = mu(t@), 9) = g):
First we are to prove that m(g, u(s(g))) = m(u(t(g)), g).

m(u(t(g9)),g9) = m(u(t(g9)),i(9)))
= m(u(s(m(g, 9))), m(u(s(g)), 9))
= m(m(g,9), m(u(s@)), 9))
= m(g, u(s(@)),
but i(u(s(g9))) = m(u(s(g)), u(s(g))) and we saw the latter was equal to u(s(g))

thus allowing us to remove the bar in the last equation.

Finally, let g = m(h, k), where

t(g) = s(m(m(h, k), m(h, k)) = s(m(h, h)).

120z Adenuer GO uo Jasn dSn SOUeD 0BS op BoIS|4 8p onHIsu| A 980860G/299./1.2/020Z/310IE/uiwl/wod dno-dlwepese)/:sdjy wolj papeojumoq



7742 M. Crainic et al.

Then
m(u(t(g)),g) = m(u(t(g)),i(g)))

= m(u(s(m(h, h))), m(k, h))
= m(m(h, h), m(k, h))
=m(h,k) =g.

6. (m is associative):
Let (g, h), (h, k) € G?. We compute

m(g, m(h, k)) = m(g, i(m(h, i(k))))
= m(g, m(i(k), h))
= m(m(g,i(h)), m(m(i(k), h)),i(h))
= m(m(g, h), m(m(i(k), h)), m(u(t(h), i(h)))

m(m(g, h), m(m(i(k), h)), m(u(t(h), h))
m(m(g, h), m(i(k), u(t(h))

= m(m(g, h), m(i(k), i(u(t(h)))
= m(m(g, h), m(i(k), u(t(h)))

m(m(g, h), i(k)))
m(m(g, h), k)).

We turn now to the problem of whether the maps are smooth. We already pointed
out that t is a surjective submersion, in particular it is smooth. Notice that u fits in the

following diagram,

G—3Gx,6"2 =g

A

M

and is therefore smooth. Also, since sou = idy,, d(souw), =1Id,. Let X € T,M, if d (X) =0,

dsu(X)(duX(X)) = dsu(X)(O)
disou),(X) = 0
d,(X) = 0

X = 0.
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Summing up, u is an injective smooth immersion onto u(M) = m(A), and again since
s is a left inverse and s is continuous u is a homeomorphism onto its image that is an
embedding. From the smoothness of u and m, the smoothness of i and m follow. Finally,

i is its own inverse and it is a diffeomorphism. |

Corollary 11.12, Given two Lie groupoids G over M and #H over N and two smooth maps

F:G— H,f:M — N, then (F,f) is a groupoid morphism if and only if
s(F(g) = f(s(g)), m(F(g),F(h)) = F(m(g, h)

for all g, h € G with s(g) = s(h).

Continuing our previous motivating comments coming from deformations, here
is one more explanatory remark. Assume that we have a deformations,, t,, m_, u,, i, with
s = s, not depending on ¢ (s-constant deformation). Proposition 11.11 reveals that, in
order to study the variation associated to the deformation, it is enough to concentrate
on the variation of m, (since s, is constant in ¢). This will induce a cocycle &, € C3 +(G)
(discussed in detail in Section 5). The fact that &, is a cocycle incorporates, as we
wanted, precisely the 1st order consequences of the axioms for (s,, m,) mentioned in

Proposition 11.11:

1. The equation from (i) will imply that ds(§,(g,h)) = ds(é(1,h)), that is,
precisely the condition of s-projectability defining the complex C} ((G).

2. The associativity equation from (ii) will imply §(&,) = 0.

Remark 11.13 (More natural variables). The previous proposition and remark indi-
cate that there is a more natural way of (re-)writing the deformation complex, so that it
only makes use of s and m in its definition; we will denote it by (':gef(g) (a more suggestive

notation would be C (G, s, m)). It arises by the standard change of variables
g(k) <« g[k], Gyr---0 1) <— (@q,--..ap),
which relates strings of composable arrows to strings of arrows with the same source:

71 .
A fori<k-—1 (31)
ay fori=k.

a;

a; =9i9iy1---9kr 9i = {
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Explicitly, the k-cochains u € é’gef(g) are the smooth maps

u:6™ — TG, (a,,...,a) — ula,,...,ay) € Thar,a09 = Ty q:19

a;

defined on the strings of arrows with the same source, with the property that

S(u(al, ceey ak)) € Ts(ﬁ’t(al,az))g

does not depend on a; (note: “the 1st axiom” for s and m, which is (i) of Proposition
11.11, ensures that s(m(a;, a,)) does not depend on a,).
The differential of u € CX_(Q) is

(duy(@ay,...,ar ) = —dm(u(a,, as, ..., agp1), U@y, asz, ..., g 1)
k+1
i+1 = k+1 -1 -1
+ > D" uay, L@, agg) + (D ulagag ] aai) ).
=3

(For k = 0, one keeps the same definition as for C} ¢(G)). The 2nd axiom for s and m, that
is, (ii) of Proposition 11.11, ensures that § is well defined and squares to zero. Of course,
the change of variables (31) induces an isomorphism between (C}_¢(G), §) and (&;;ef(g), 5).

Finally, let us mention that the reason we choose to use Cj ((9) instead of égef(g)
is that, searching in the existing literature involving cohomology of groupoids (and even

of groups), we see that one always uses the G’

s (and the corresponding formulas)
for the domains of the cochains. It is clear, however, that &gef(g) and the entire view
point that arises from Proposition 11.11 is much more conceptual and we expect it
to be useful in various related problems (e.g., for finding a non-linear analog of the
Gerstenhaber bracket that makes the deformation complex of a Lie algebroid into a DG
Lie algebra structure and allows one to interpret Lie algebroid structures as Maurer—

Cartan elements [9] or in the study of higher groupoids, etc). O
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