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We study deformations of Lie groupoids by means of the cohomology which controls

them. This cohomology turns out to provide an intrinsic model for the cohomology of a

Lie groupoid with values in its adjoint representation. We prove several fundamental

properties of the deformation cohomology including Morita invariance, a van Est

theorem, and a vanishing result in the proper case. Combined with Moser’s deformation

arguments for groupoids, we obtain several rigidity and normal form results.

1 Introduction

A central problem in geometry is that of understanding the behavior of geometric

structures under deformations; each class of geometric structures comes with its

deformation theory, including a cohomology theory that controls such deformations.

The aim of this paper is to investigate the cohomology theory controlling deformations

of a large class of geometric structures and to use it to prove several rigidity results.

The geometric structures that we have in mind are those that can be modeled by

Lie groupoids and it includes Lie groups (and bundles of such), Lie group actions on

manifolds, foliations, the symplectic groupoids of Poisson geometry, etc. In other words,

we study the deformation theory of Lie groupoids G and the resulting deformation

cohomology H∗def(G). The cohomology is built in such a way that deformations of
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a groupoid G give rise to 2-cocycles inducing elements in H2
def(G); 1-cochains that

transgress these 2-cocycles (when they exist) are then used to produce flows that allow

us to prove rigidity results. Intuitively, this allows us to think of H2
def(G) as the 1st order

approximation (i.e., tangent space) of the moduli space of deformations of G. We became

aware of the existence of such a cohomology while searching for a geometric proof of

Zung’s linearization theorem for proper Lie groupoids [10]; the same cohomology also

arises naturally when looking at the VB-interpretation of the adjoint representation [14].

Before we give more details on deformations and rigidity results, let us first describe

some of the main properties/results regarding the deformation cohomology. The 1st one

we would like to mention is Morita invariance:

Theorem 1.1. (Morita invariance). If two Lie groupoids are Morita equivalent, then

their deformation cohomologies are isomorphic. �

Intuitively, this means that the deformation cohomology only depends on

“the transverse geometry of the groupoid”. This is very much related to Haefliger’s

philosophy/approach to the transverse geometry of foliations via the associated étale

groupoids; the role of the groupoid(s) was to model (desingularize) leaf spaces of

foliations; the notion of Morita equivalence of groupoids comes in for a simple reason:

there is no canonical étale groupoid modeling a given leaf space, but several of them

(e.g., any complete transversal to the foliation gives rise to one)—and the fact that

two groupoids correspond to the same leaf space—can be recognized by the fact

that they are Morita equivalent. In other words, Haefliger’s point of view is that the

transverse geometry of foliations is the part of the geometry of étale groupoids, which

is Morita invariant. A slight generalization of this philosophy is the interpretation of

Lie groupoids as “atlases” for differentiable stacks; again, two groupoids correspond to

the same stack if and only if they are Morita equivalent. Hence, the previous theorem

allows us to talk about “the deformation cohomology of differentiable stacks”.

The deformation cohomology H∗def(G) is also related to differentiable cohomolo-

gies of G. As we will recall in Section 2.3, H∗diff(G, E) (simply denoted H∗(G, E) in this

paper) makes sense as soon as we have a representation E of G. It is not true that,

in general, H∗def(G) is isomorphic to H∗(G, E) for some representation E of G (and this

is very much related to the fact that “the adjoint representation of G” does not make

sense as a representation in the usual sense, see also below). However, H∗def(G) can often

be related to differentiable cohomology. This is best illustrated in the regular case,

that is, when all the orbits of G have the same dimension. In this case, G comes with
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two natural representations in the classical sense: the normal representation ν (on the

normal bundle of the orbits) and the isotropy representation i (made of the Lie algebras

ix of the Lie groups Gx consisting of arrows that start and end at x ∈ M). These are

recalled in more detail in Sections 4.1 and 4.4. We will show that H∗def(G) is related to

the standard differentiable cohomology with coefficients in these representations by a

long exact sequence:

Proposition 1.2 (The regular case). The deformation cohomology of a regular Lie

groupoid G fits into a long exact sequence

· · · −→ Hk(G; i)
r−→ Hk

def(G)
π−→ Hk−1(G; ν)

K−→ Hk+1(G; i) −→ · · · ,

where ν and i are the normal and the isotropy representation of G, respectively. �

The spaces of invariants

�(i)inv := H0(G; i), and �(ν)inv := H0(G; ν)

are of independent interest; with some extra care (explained in Sections 4.1 and 4.4),

they make sense even in the non-regular case. In our analysis in low degrees we will see

that, in general, H0
def(G) is always isomorphic to �(i)inv and one has a low-degree exact

sequence (Proposition 4.11):

0 −→ H1(G, i)
r−→ H1

def(G)
π−→ H0(G, ν)

K−→ H2(G, i)
r−→ H2

def(G).

Another important property of H∗def(G), which will be essential also for proving

rigidity results, is its behavior for proper groupoids. Recall that a Lie groupoid G over a

manifold M is said to be proper if G is Hausdorff and the map (s, t) : G −→ M × M,

which associates to an arrow its source and target, is proper; this generalizes the

compactness of Lie groups and the properness of Lie group actions. While proper

groupoids are the 1st candidates for rigidity phenomena, an essential step in proving

such rigidity theorems is to understand the behavior of H∗def(G) in low degrees. Of

particular importance will be the vanishing of H2
def(G), which, due to its interpretation

as the tangent space to the moduli space of deformations, could be called “infinitesimal

rigidity”. However, the understanding of H1
def(G) (related to families of automorphisms)

and even of H0
def(G), will be important as well. We will show the following:
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Theorem 1.3 (Vanishing). Let G be a proper Lie groupoid. Then

Hk
def(G) = 0 for all k ≥ 2,

while H1
def(G) ∼= �(ν)inv, H0

def(G) ∼= �(i)inv. �

Besides the relevance to deformations, there is yet another guiding principle

that is worth having in mind when thinking about H∗def(G): it makes sense of the

(differentiable) cohomology with coefficients in “the adjoint representation” (think, e.g.,

about the case of Lie groups [5]). This guiding principle is very useful when computing

the deformation cohomology in terms of ordinary differentiable cohomology. The last

quotes indicate the subtleties that arise when looking for “the adjoint representation of

a Lie groupoid”. Indeed, as remarked already in the early years of Lie groupoids, one

of the subtleties that make Lie groupoids harder to handle than Lie groups is the fact

that the notion of adjoint representation does not make sense when restricting to the

classical notion of representation. With the more recent concept of “representation up

to homotopy” [2], we now understand that

• the adjoint representation Ad of a Lie groupoid G makes sense intrinsically

as an isomorphism class of representations up to homotopy of G;

• to represent Ad by an actual representation up to homotopy Adσ one needs

to choose an Ehresmann connection σ on G (this will be recalled in Section 9);

• by the very definition of representations up to homotopy, they serve as

coefficients for differentiable cohomology. However, to have an explicit model

for the cohomology with coefficients in the adjoint representation, one still

has to choose a connection σ and consider the associated H∗(G, Adσ ).

One of the main features of H∗def(G) is that it provides an intrinsic model for

these cohomologies, independent of any auxiliary choices:

Theorem 1.4 (The adjoint representation). If G is a Lie groupoid, then for any

connection σ on G one has a canonical isomorphism of H∗def(G) with H∗(G, Adσ ). �

We would like to point out that we have decided to write the paper in such

a way that it does not assume prior knowledge of the adjoint representation as

a representation up to homotopy. On the contrary, using the paradigm that “the

adjoint representation serves as coefficients of the cohomology theory that controls

deformations” (i.e., of H∗def(G)), we will slowly guide the reader toward the final outcome.
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7666 M. Crainic et al.

In particular, the reader will encounter along the way several comments on “the adjoint

representation”, slowly revealing its full structure.

There is yet another way to look at H∗def(G), related to the fact that the theory

of Lie groupoids comes with an infinitesimal counterpart—that of Lie algebroids. From

this point of view, our cohomology is the global analog of the deformation cohomology

H∗def(A) of the Lie algebroid A of G, which was studied in [9]. In the same way that

the differentiable cohomology of a Lie group(/oid) is related to the cohomology of the

corresponding Lie algebra(/oid) by a van Est map, we will prove the following:

Theorem 1.5 (Van Est isomorphisms). Let G be a Lie groupoid with Lie algebroid A.

There exists a canonical chain map (the van Est map)

V : C∗def(G) −→ C∗def(A).

Moreover, if G has k-connected s-fibers then the map induced in cohomology

V : Hp
def(G) −→ Hp

def(A)

is an isomorphism for all p ≤ k. �

It is worth insisting a bit more on the similarities and differences with the

corresponding infinitesimal theory H∗def(A) from [9]. As there, one of the main subtleties

of H∗def(G) comes from the fact that the adjoint representation is only defined as a

representation up to homotopy. However, the setting of Lie groupoids, because of its

non-linear nature, comes with even more subtleties—to the extent that we revisit even

the very definition of Lie groupoids—giving rise to the Appendix of the paper. On the

other hand, and in contrast with the infinitesimal theory, for H∗def(G) one can prove the

vanishing result mentioned above, with direct consequences to rigidity.

As we have already mentioned, one of the main motivations for studying the

deformation cohomology H∗def(G) comes from its relevance to deformations and rigidity

results. We are interested in general deformations:

Definition 1.6. Let G ⇒ M be a groupoid over M, with structure maps denoted

s, t, m, i, u (the source, target, multiplication, inversion, and unit map, respectively). A

(smooth) deformation of G is a family

G̃ = {Gε : ε ∈ I} of groupoids Gε ⇒ Mε
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smoothly parametrized by ε in an open interval I containing 0, such that G0 = G as

groupoids. We will denote the structure maps of Gε by sε, tε, mε, iε, uε.

The deformation is called strict if Gε = G as manifolds; it is called s-constant if,

furthermore, sε does not depend on ε. The constant deformation is the one with Gε = G
as groupoids.

Two deformations, {Gε : ε ∈ I} and {G′ε : ε ∈ I ′}, are called equivalent if there

exists a family of groupoid isomorphisms φε : Gε −→ G′ε, smoothly parametrized by ε in

an open interval containing 0, such that φ0 = Id. We say that G̃ is trivial if it is equivalent

to the constant deformation. �

In general, a family {Mε : ε ∈ I} of manifolds smoothly parametrized by ε can be

understood as a manifold M̃ together with a submersion π̃ : M̃ −→ I, so that Mε is just

the fiber of π above ε; similarly for families of groupoids, see Definition 1.9.

As we shall see, any s-constant deformation as above induces a deformation

cocycle

ξ0 ∈ C2
def(G)

whose cohomology class depends only on the equivalence class of the deformation. It

is interesting to keep in mind that the single cocycle ξ0 encodes the variation of all

the structure maps tε, mε, iε, uε, to be able to do that, we first have to revisit the very

definition of groupoids and note that everything is encoded in the source map and the

operation m̄(g, h) = gh−1; the resulting precise axioms are worked out in the Appendix.

A similar construction applies to general deformations (i.e., not necessarily s-

constant and not even strict); the price to pay for the greater generality is that we will no

longer have a 2-cocycle that is canonical (i.e., independent of auxiliary choices), but only

a canonical cohomology class in H2
def(G). Using these cocycles/classes and the vanishing

theorem stated above, we will deduce several rigidity theorems. We mention here the

following:

Theorem 1.7. Any strict deformation of a compact groupoid is trivial.

This theorem can be seen as mutual generalization of the results of Palais on

rigidity and deformations of actions of Lie groups [24], [25] and those of Coppersmith

[5] on deformations of Lie groups. In fact, Proposition 3.5 shows that in the case of an

action groupoid, our deformation cohomology sits in a long exact sequence that relates

the deformation cohomology of a Lie group (as in [5]) and the deformation cohomology

of an action of a fixed group (as in [25]).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/21/7662/5098086 by Instituto de Física de São C
arlos U

SP user on 05 January 2021



7668 M. Crainic et al.

As we already mentioned, the deformation cohomology H∗def(G) arises naturally

when studying a related phenomena, namely the linearization of Lie groupoids. In

essence, this is due to a very simple remark: for any real function f = f (x), which

vanishes at 0, its linearization around 0 can be written as a limit of rescales of f :

f ′(0)x = lim
ε→0

fε where fε(x) = 1

ε
f (εx).

A groupoid version of this is that the linearization of a Lie groupoid around a fixed point

comes with a canonical (strict) deformation whose members for ε 	= 0 are isomorphic to

the original groupoid (around the fixed point). Using this and a local version of the last

theorem, we immediately deduce a generalization of ”Zung’s linearizability theorem”,

which was proven recently using different methods by del Hoyo and Fernandes in [12].

Theorem 1.8 (Linearization theorem). If G is an s-proper groupoid and N ⊂ M is

invariant, then G is linearizable around N. �

Zung’s theorem corresponds to the special case when N is a fixed point of G (see

also [10] for more on the relation to Zung’s theorem).

The relationship between H∗def(G) and deformations also give rise to variation

maps for families of Lie groupoids, very much in the spirit of the Kodaira–Spencer map

associated to a family of complex manifolds [16] and other similar variation maps. We

will be looking at families of groupoids in the following sense:

Definition 1.9. A family of Lie groupoids parametrized by a smooth manifold B,

G ⇒ M
π−→ B,

consists of a Lie groupoid G over a manifold M and a surjective submersion π from M to

B such that π ◦ s = π ◦ t. For b ∈ B we will denote by Gb the resulting groupoid over the

fiber Mb = π−1(b) of π above b. We say that it is a proper family if G is proper.

Two families, G ⇒ M
π−→ B and G′ ⇒ M ′ π ′−→ B, are said to be isomorphic if there

exists an isomorphism of groupoids F : G −→ G′ with base map f : M −→ M ′ compatible

with π and π ′ (i.e., π ′ ◦ f = π ). �

Looking at the variation of the groupoids Gb in directions of curves γ in B (i.e.,

applying the previous ideas to the deformations {Gγ (ε)} of Gγ (0)), we obtain the variation
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maps of the family,

Varb : TbB −→ H2
def(Gb).

Again, it is possible to prove several rigidity results for families; we mention here the

simplest one:

Theorem 1.10 (Local triviality of compact families). Any compact family of Lie

groupoids is locally trivial, that is, with the previous notations, for any b ∈ B, there

exists a neighborhood U of b in B such that the resulting family parametrized by U is

isomorphic to the trivial family Gb × U. �

2 The Deformation Complex

In this section we introduce the deformation complex of a Lie groupoid.

2.1 Some notations/terminology

We start by fixing some notations/terminology. For a Lie groupoid G ⇒ M, we denote by

s, t, m, u, and i its source, target, multiplication, unit, and inversion maps, respectively.

When there is no danger of ambiguity, we write m(g, h) = gh, i(g) = g−1 and we identify

x ∈ M with the corresponding unit u(x) ∈ G. We also write g : x −→ y to indicate that

g ∈ G, x = s(g), y = t(g). The s- and t-fibers above x ∈ M are denoted

G(x,−) = s−1(x), G(−, x) = t−1(x).

For g : x −→ y in G, we consider the corresponding right translation

Rg : G(y,−) −→ G(x,−)

and similarly the left translation Lg, which maps t-fibers to t-fibers. Their differentials

will be denoted by rg and lg, respectively.

Recall that the Lie algebroid A of G is, as a vector bundle, the restriction of

TsG = Ker(ds) to M (pulled back via the unit map u : M ↪→ G), so that

Ax = TxG(x,−) for all x ∈ M.

The anchor of A is the vector bundle map ρ : A −→ TM given by the differential of

t. Using right translations, any α ∈ �(A) induces a right invariant vector field −→α on G
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(necessarily tangent to the s-fibers, so that right invariance makes sense):

−→α (g) = rgαt(g).

This construction identifies �(A) with the space Xs
inv(G) of right invariant vector fields

on G; in turn, this induces the Lie algebra bracket [·, ·] on �(A). Similarly, any α ∈ �(A)

induces a left invariant vector field ←−α on G, given by

←−α (g) = lg ◦ di(αs(g)). (1)

2.2 The deformation complex

We are now ready to introduce the deformation complex of a Lie groupoid. We will need

the division map m̄ of G,

m̄(p, q) = pq−1, for all p, q ∈ G, such that s(p) = s(q).

Its advantage over the multiplication map m, especially when it comes to deformations,

is explained in Section 5.2. We also consider the space of strings of k-composable arrows

G(k) = {(g1, . . . , gk) : s(gi) = t(gi+1) for all 1 ≤ i ≤ k− 1}.

Definition 2.1. The deformation complex (C∗def(G), δ) of the Lie groupoid G, whose

cohomology is denoted H∗def(G), is defined as follows. For k ≥ 1, the k-cochains c ∈ Ck
def(G)

are the smooth maps

c : G(k) −→ TG, (g1, . . . , gk) 
→ c(g1, . . . , gk) ∈ Tg1
G,

which are s-projectable in the sense that

ds ◦ c(g1, g2, . . . , gk) =: sc(g2, . . . , gk)

does not depend on g1; the resulting sc is called the s-projection of c. The differential of

c ∈ Ck
def(G) is defined by

(δc)(g1, . . . , gk+1) =− dm̄(c(g1g2, . . . , gk+1), c(g2, . . . , gk+1))

+
k∑

i=2

(−1)ic(g1, . . . , gigi+1, . . . , gk+1)+ (−1)k+1c(g1, . . . , gk).
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For k = 0, C0
def(G) := �(A) and the differential of α ∈ �(A) is defined by

δ(α) = −→α +←−α ∈ C1
def(G).

�

Note that, for k = 0, one may think of a section of A as a map c : G(0) = M −→ TG,

with c(1x) = cx ∈ T1x
G, such that ds ◦ cx = 0x.

Lemma 2.2. (C∗def(G), δ) is, indeed, a cochain complex. �

Proof. First of all, δ is well defined, that is, δ(c) ∈ Ck+1
def (G) for c ∈ Ck

def(G); indeed,

applying ds to the formula for δ(c)(g1, . . . , gk+1) (and using s(m̄(a, b)) = t(b)) one finds

that δ(c) is s-projectable with s-projection

sδc(g2, . . . , gk+1) =− dt(c(g2, . . . , gk+1))+ (2)

+
k∑

i=2

(−1)isc(g2, . . . , gigi+1, . . . , gk+1)+ (−1)k+1sc(g2, . . . , gk).

For α ∈ �(A), it holds that δ(α) is s-projectable to ρ(α), the image of α by the

anchor map, since ds ◦ rg = 0 and ds ◦ lg ◦ di = dt.

To check that δ squares to zero, note that after canceling the pairs of terms with

opposite signs, the expression δ(δc)(g1, . . . , gk+2) becomes

δ(δc)(g1, . . ., gk+2) =
= dm̄

[
dm̄

(
c

(
g1g2g3, . . . , gk+2

)
, c

(
g3, . . . , gk+2

))
, dm̄

(
c

(
g2g3, . . . , gk+2

)
,

c
(
g3, . . . , gk+2

) )]+ dm̄

(
k+1∑
i=3

(−1)ic
(
g1g2, . . . , gigi+1, . . . , gk+2

)
,

k+1∑
i=3

(−1)ic
(
g2, . . . , gigi+1, . . . , gk+2

))− dm̄
(
c

(
g1g2g3, . . . , gk+2

)
,

c
(
g2g3, . . . , gk+2

))+ k+1∑
i=3

(−1)i+1dm̄
(
c

(
g1g2, . . . , gigi+1, . . . , gk+2

)
,

c
(
g2, . . . , gigi+1, . . . , gk+2

) )
.
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At this point, using the associativity axiom of the division map, that is,

m̄(m̄(g, k), m̄(h, k)) = m̄(g, h)

in the 1st line of the expression, and linearity of dm̄ in the 2nd line, we see that the 1st

and 2nd lines become the symmetric of the 3rd and 4th, respectively. �

Example 2.3. We will see several (classes of) examples throughout the paper. Let us

mention here the simplest one: when G is a Lie group G (hence, M = {∗} is a point). Then,

using the trivialization TG ∼= G×g induced by right translations (g being the Lie algebra

of G) we obtain an identification of C∗def(G) with the complex C∗(G, Ad) computing the

differentiable cohomology of G with coefficients in the adjoint representation, hence

H∗def(G) ∼= H∗(G, Ad).

This is to be expected since the right-hand side is the cohomology that controls

deformations of Lie groups [5]. �

2.3 Differentiable cohomology

For a better perspective, and for the later use, let us recall here the ordinary differen-

tiable cohomology of Lie groupoids. Let G ⇒ M be a Lie groupoid; for a representation

E −→ M of G, the action Ex −→ Ey induced by an arrow g : x −→ y will be denoted

v 
→ g · v.

Definition 2.4. The (differentiable) cohomology of the Lie groupoid G with coefficients

in the representation E, denoted H∗(G, E), is the cohomology of the complex (C∗(G, E), δ),

where k-cochains are the smooth maps

u : G(k) −→ E, (g1, . . . , gk) 
→ u(g1, . . . , gk) ∈ Et(g1)

and the differential is given by

(δu)(g1, . . . , gk+1) = g1 · u(g2, . . . , gk+1) (3)

+
k∑

i=1

(−1)iu(g1, . . . , gigi+1, . . . , gk+1)

+ (−1)k+1u(g1, . . . , gk).

�
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Note that, in degree 0, H0(G, E) = �(E)inv is the space of sections of E that are

invariant with respect to the action of G. When E is the trivial line bundle with the

trivial action, the resulting complex is denoted by C∗(G). It comes together with a graded

product—the cup product— given by

(u · v)(g1, . . . , gk+k′) = u(g1, . . . , gk)v(gk+1, . . . , gk+k′) (4)

for u ∈ Ck(G), v ∈ Ck′(G). The same formula makes C(G, E) into a right-graded C(G)-

module; the fact that E is a representation is encoded in the differential of C(G, E), which

makes it into a (right) C(G)-DG-module. Note that, using precisely the same formulas for

the cup product and the same arguments, one has the following:

Lemma 2.5. (C∗def(G), δ) is a (right) (C∗(G), δ)- DG-module. �

Remark 2.6. For the later use note also that the spaces Ck(G, E) make sense for any

vector bundle E −→ M:

Ck(G, E) = �(G(k), t∗E)

there t on G(k) picks the target of the 1st arrow. Also, whenever we have a quasi-action

of G on E, that is, a smooth operation that associates to any arrow g : x −→ y a linear

map λg : Ex −→ Ey depending smoothly on g, one has an induced operator δλ on C∗(G, E)

defined by exactly the same formulas as δ, but using the quasi-action; δλ is still a graded

derivation on the C(G)-module C(G, E) (actually, any graded derivation is of type δλ for

some quasi-action). The associativity of the quasi-action is equivalent to δ2
λ = 0. �

Remark 2.7. It will be often useful to consider a smaller complex computing defor-

mation cohomology. The normalized deformation complex of a Lie groupoid G is the

subcomplex Ĉ∗def(G) of the deformation complex C∗def(G), which in degree k ≥ 2 is

composed of those cochains c ∈ Ck
def(G) satisfying

c(1x, g2, . . . , gk) = sc(g2, . . . , gk) and c(g1, . . . , 1x, . . . , gk) = 0.

In degree 1, the only condition is that c(1x) = sc(x), and in degree 0 there is no condition,

that is, Ĉ0
def(G) = �(A). It is a simple computation to check that Ĉ∗def(G) is, indeed, a

subcomplex—one only has to remember the expression for sδc (Equation (2)).

The proof that Ĉ∗def(G) is quasi-isomorphic to C∗def(G) can be seen as a particular

case of the proof of Theorem 11.6 (see Remark 11.7 and Proposition 11.8), so we postpone

the discussion until then. �
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Remark 2.8 (Related to the adjoint representation). As we have already mentioned in

the introduction, another guiding principle that is worth having in mind when thinking

about H∗def(G) is that it plays the role of “differentiable cohomology with coefficients

in the adjoint representation”. The reason for the quotes is that there is no adjoint

representation in the classical sense. Actually, one of the main problems with the very

notion of representation is that there are only very few representations that come for

free and make sense intrinsically for all Lie groupoids. The situation is slightly better

in the regular case, when one has at hand the normal and the isotropy representations,

denoted ν and i and recalled in the next two sections. However, even in this case, and

although “the adjoint representation” is closely related to ν and i (it contains them!), its

structure is still subtle and requires the “up to homotopy” version of representations.

This remark is the 1st one of a series of remarks that will guide the reader toward the

full structure of the adjoint representation. �

3 First Examples

We now look at some basic examples. The order we choose is based on the simplicity of

the structure of the adjoint representations involved.

3.1 Gauge groupoids

Recall that any principal G-bundle π : P −→ M (G is a Lie group) has an associated

gauge groupoid, which is the quotient of the pair groupoid P× P −→ P (with source and

target the two projections) modulo the diagonal action of G:

G = P ×G P ⇒ M.

Recall also that the adjoint bundle of P is defined as the vector bundle

P[g] = (P ×G g) ∼= Ker(dπ : TP/G −→ TM).

This bundle will also be discussed later on, in the general context, when it will show up

as the kernel of the anchor map. In this case the Lie algebroid of G is TP/G, its space of

sections is X(P)G, the Lie algebroid bracket of TP/G comes from the Lie bracket of vector

fields on P, and the anchor is induced by the differential of π . Important for us is the

fact that Ker(ρ) = P[g] is a representation of G: indeed, any class [p, q] ∈ G viewed as an

arrow from x = π(p) to y = π(q) induces the action

P[g]x −→ P[g]y, [p, u] 
→ [q, u].
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Proposition 3.1. If G is a Lie group and G is the gauge groupoid associated to a

principal G-bundle P, then there are canonical isomorphisms

H∗def(G) ∼= H∗(G, P[g]) ∼= H∗(G, g),

where the last group is the differentiable cohomology of the Lie group G with coeffi-

cients in its adjoint representation. �

There are various ways to look at this result. The 1st isomorphism will follow

from our later general results (e.g., on the regular case); the isomorphism between

the 1st and last groups follows directly from the Morita invariance of deformation

cohomology (Theorem 11.6); the last isomorphism can also be seen as an immediate

consequence of Morita invariance of differentiable cohomology [7].

Remark 3.2 (Related to the adjoint representation). In the spirit of Remark 2.8, we

see that the candidate for “the adjoint representation” of the gauge groupoid is given by

the adjoint bundle P[g]. �

3.2 Foliation groupoids

Next we look at the Lie groupoids that arise from foliation theory (such as holonomy

or homotopy groupoids of foliations), which integrate foliations; here we identify a

foliation with its tangent bundle and we interpret it as a Lie algebroid with the inclusion

as anchor. It then makes sense to talk about the integrability of a foliation by a groupoid.

We see that a foliation groupoid is a Lie groupoid G ⇒ M with the property that the

anchor of the associated Lie algebroid is injective or, in a global formulation, with the

property that the isotropy groups of G are discrete [8]. They come with a regular foliation

F on M (the image of the anchor); the resulting normal bundle

ν := TM/F

is then a representation of G, where the action is given by linear holonomy (see [8]

but also our general discussion from Section 4.4 below) which, in turn, is a global

manifestation of the (foliated) Bott connection on ν (cf., e.g., [15]). The resulting

cohomology H∗(G, ν) is the groupoid counterpart of the foliated cohomology H∗(F , ν)

which, in turn, was shown by Heitsch [15] to control deformations of the foliation (the

two are related by a Van Est map, see [7]). Therefore, the expectation that H∗(G, ν)

is related to deformations of foliation groupoids, that is, to H∗def(G). Moreover, while
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deformations of Lie groupoids give rise to 2-cocycles in deformation cohomology (think,

e.g., of Lie groups and see also below), deformations of foliations give rise to degree 1

classes in the cohomology with coefficients in ν; therefore, one also expects a degree

shift. And, indeed

Proposition 3.3. For any foliation groupoid G ⇒ M one has canonical isomorphisms:

H∗def(G) ∼= H∗−1(G, ν),

where the isomorphism sends a cocycle c ∈ Ck
def(G) into [sc] - —the class modulo F of

the s-projection of c (see Definition 2.1).

Proof. A simple computation shows that c 
→ [sc] is a chain map. Since it is also

surjective, it suffices to show that its kernel, call it C∗, is acyclic. So, assume that c ∈ Ck,

that is, c ∈ Ck
def(G) has the property that sc takes values in F . We show that c = δ(c′) for

some c′ with the property that sc′ takes values in F (we will actually achieve sc′ = 0).

Namely, we set

c′(g1, . . . , gk−1) := −rg1
(sc(g1, g2, . . . , gk−1),

where we identify F with the Lie algebroid of G to make sense of right translations. It

is clear that sc′ = 0. We are left with showing that c = δ(c′). Using the fact that the map

(ds, dt) : TG −→ TM × TM is injective, it suffices to show that ds ◦ c = ds ◦ δ(c′) and

similarly for dt. For the 1st one use again that ds kills c′ and that dt(rg(α)) = ρ(α) ∼= α

for α ∈ F and we see that, after applying (ds) to the formula for δ(c′)(g1, . . . , gk), we are

left with

−dt(c′(g2, . . . , gk)) = sc(g2, . . . , gk) = ds(c(g1, . . . , gk)).

Hence, we are left with showing that dt ◦ c = dt ◦ δ(c′). Applying dt to the formula for

δ(c′)(g1, . . . , gk) we find

−dt(c′(g1g2, . . . , gk))+
k−1∑
i=2

(−1)idt(c′(g1, . . . , gigi+1, . . . , gk))+ (−1)kdt(c′(g1, . . . , gk)),

which, by the previous arguments, is

sc(g1g2, g3, . . . , gk))+
k−1∑
i=2

(−1)i+1sc(g1, g2, . . . , gigi+1, . . . , gk)+ (−1)k+1sc(g1, g2, . . . , gk−1)).
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Comparing with the formula (2) for the s-projection of δ(c) (which vanishes because δ(c)

does), we find precisely dt(c(g1, . . . , gk)). �

Remark 3.4 (Related to the adjoint representation). In the spirit of Remarks 2.8

and 3.2 we see that the candidate for the adjoint representation of G in this case is ν[1]-

viewed as a graded representation of G concentrated in degree 1 (to make up for the shift

in the proposition). �

3.3 Action groupoids

One of the 1st classes of examples in which the deformation cohomology can be

understood in terms of (differentiable) cohomology with coefficients in representations

is that of action groupoids. So, let us assume that G is a Lie group acting on a manifold

M. Recall that the action groupoid G = G�M ⇒ M is the product G×M, with s(g, x) = x,

t(g, x) = gx, and (g, x)(h, y) = (gh, y). The corresponding Lie algebroid is

A = gM = g×M,

the trivial vector bundle over M with fiber, the Lie algebra g of G, the anchor given by

the infinitesimal action of g on M

ρ : gM −→ TM, ρ(v, x) = d

dε
|ε=0 exp(εv)x,

and the bracket is uniquely determined by the Leibniz identity and the condition that,

on constant sections cv with v ∈ g, it restricts to the bracket of g:

[cu, cv] = c[u,v].

As is the convention with every Lie algebroid in this paper, we identify the Lie algebra

of G with the space of right invariant vector fields on G. Note that a representation E of

G is the same thing as an equivariant bundle over M; then �(E) is naturally a G-module

and H∗(G, E) can be interpreted as the resulting differentiable cohomology H∗(G, �(E)).

The action groupoid G has two natural representation:

• gM itself, with the action induced by the adjoint action of G on g. Note that

H∗(G, gM) = H∗(G, C∞(M, g))
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is a bundle-like version of H∗(G; g), which controls deformations of the Lie

group G, as explained by Coppersmith [5].

• TM, using the induced action of G on TM. Note that

H∗(G, TM) = H∗(G,X(M))

arises in the work of Palais [25] as the cohomology controlling deformations

of the Lie group action (keeping G fixed).

Therefore, it is not surprising that, in this case, these cohomologies are closely

related to the deformation cohomology of the groupoid:

Proposition 3.5. The deformation cohomology of an action Lie groupoid G = G�M fits

into a long exact sequence

· · · −→ Hk−1(G, TM) −→ Hk
def(G) −→ Hk(G, gM)

ρ∗−→ Hk(G, TM) −→ · · · ,

where ρ∗ is induced by the infinitesimal action ρ : gM −→ TM. �

Proof. It suffices to remark that there is a short exact sequence

0 −→ Ck−1(G, TM)
j−→ Ck

def(G)
π−→ Ck(G, gM) −→ 0

compatible with the differentials and to identify the boundary map of the long exact

sequence with the map ρ∗. The deformation cochains of G take a composable string

(γ1, . . . , γk) of G, with γ1 = (g, x), to

T(g,x)(G×M) = TgG× TxM ∼= g× TxM = g× Tt(γ2)M,

where the isomorphism is the one induced by the right translations of G. Moreover, the

TM-component of the cochain, since it is the projection by the source map, depends only

on (γ2, . . . , γk); in other words, we obtain a decomposition

Ck
def(G) ∼= Ck(G, gM)⊕ Ck−1(G, TM).

This is not compatible with the differentials, but the natural inclusion on the 1st

component (called j) and projection on the 2nd component (called π ) are (a simple

computation)—therefore the desired short exact sequence. The identification of ρ∗
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with the boundary map is straightforward. Or, a bit more conceptually, computing

the differential of Ck
def(G) with respect to the previous decomposition, one finds the

formula (c1, c2) 
→ (∂(c1),−ρ∗(c1) − ∂(c2)), that is, C∗def(G) is isomorphic to the mapping

cone of ρ∗. �

Remark 3.6 (Related to the adjoint representation). Note that the previous proof

shows that H∗def(G) is isomorphic to the differentiable cohomology of G with coefficients

in the cochain complex of representations:

gM
ρ−→ TM, (5)

(gM in degree 0 and TM in degree 1). Hence, a remark on the adjoint representation sim-

ilar to Remarks 3.2 and 3.4 shows that we have to look at even more general structures:

cochain complexes of representations. Then (5) becomes the natural candidate for the

adjoint representation in this case.

3.4 Bundles of Lie groups

We now take a closer look at the case of bundles of Lie groups parametrized by 1M;

these correspond to Lie groupoids G over M for which the source map coincides with

the target map; we denote them by

π : G −→ M.

Its Lie algebroid is just the bundle of Lie algebras g consisting of the Lie algebras gx of

the Lie groups Gx (and the anchor is zero). A representation of G is then just a collection

of representations of each of the groups Gx that are smoothly parametrized by x ∈ M

and fit into a vector bundle over M.There are two such representations of G that will be

relevant for us: g itself, endowed with the (fiberwise) adjoint actions and TM with the

trivial action. The resulting cohomologies are related by a certain “curvature map”

K : H∗(G, TM) −→ H∗+2(G, g),

which arises by evaluating a cohomology class with values in the Hom-bundle:

Var ∈ H2(G, Hom(TM, g)).

Var arises as the obstruction to the existence of a (Ehresmann) connection on G, which

is compatible with the multiplication—in the sense that the induced parallel transport

respects the group structure on the fibers. We call such connections multiplicative.
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To construct the class Var one starts with an arbitrary connection on π : G −→ M,

interpreted as a splitting σg : Tπ(g)M −→ TgG of dπ (smooth in g ∈ G). The fact that σ

is multiplicative is equivalent to the condition that, for any x ∈ M, g, h ∈ Gx, Xx ∈ TxM,

one has

σgh(Xx) = (dm)(σg(Xx), σh(Xx)).

For our general σ (multiplicative or not), the difference between the two terms lives in

the vertical space of π at gh, hence, it is obtained by right translations (in Gx) of an

element in gx; that element defines

Varσ (g, h)(Xx) ∈ gx.

It is not difficult to check now that Varσ is a differentiable cocycle, whose cohomology

class does not depend on σ and whose vanishing is equivalent to the existence of a

multiplicative connection. This defines Var.

Note also that Var induces at each x ∈ M a linear map

Varx : TxM −→ H2(Gx, gx) (. . . = H2
def(Gx)),

which encodes the variations of the group structure along directions in M (to be

explained in Section 5.5 for general Lie groupoids).

Proposition 3.7. For any bundle of Lie groups π : G −→ M, interpreted as a groupoid

with source and target equal to π , the deformation cohomology fits into a long exact

sequence

· · · −→ Hk(G, g)
r−→ Hk

def(G) −→ Hk−1(G, TM)
K−→ Hk+1(G, g) −→ · · · .

�

Proof. Again, one has a short exact sequence

Ck(G, g)
r−→ Ck

def(G)
π−→ Ck−1(G, TM),

where π takes the base component of a cochain, so that the kernel of π consists of c ∈
Ck

def(G), which take values in the vertical spaces of π , that is, modulo right translations,

come from Ck(G, g). It is straightforward to check that π and r are chain maps (and it
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will be discussed in the more general context also later on). Hence, we are left with

identifying the boundary map in the induced long exact sequence,

∂ : Hk−1(G, TM) −→ Hk+1(G, g).

Consider a cocycle u ∈ Ck−1(G, TM). By the definition of ∂, one has to write u = π(c) for

some c, δ(c) comes, via r, from a cocycle v ∈ Ck+1(G, g) and then ∂([u]) = [v]. Fixing a

connection σ on G there is a canonical choice for c:

c(g1, . . . , gk) = σg1
(u(g2, . . . , gk)).

Compute now δ(c)(g1, . . . , gk+1). The 1st component in the resulting sum is

−dm̄(σg1g2
(u(g3, . . . , gk+1), σg2

(u(g3, . . . , gk+1)).

To handle this, note that, in general, for any pair of composable arrows (g, h) and X ∈
Ts(h)M,

dm̄(σgh(X), σh(X)) = dm̄(dm(σg(X), σh(X))+ rgh(Varσ (g, h)(X), σh(X))

= dm̄(dm(σg(X), σh(X)), σh(X))+ dm̄(rgh(Varσ (g, h)(X), 0h)

= σg(X)+ rgVarσ (g, h)(X),

where for the 1st equality we have used the definition of Varσ and for the last one the

differentiated identities m̄(m(a, b), b) = b and m̄(agh, h) = ag = Rg(a). Hence, the 1st

one in the sum from δ(c) is

−σg1
(u(g3, . . . , gk+1))− rg1

Varσ (g1, g2)(u(g3, . . . , gk+1)).

The other terms are

σg1
(u(g2g3, . . . , gk+1)+ . . .+ (−1)k+1u(g1, . . . , gk)).

Hence, adding up and using that δ(u) is zero, we find that

v(g1, . . . , gk+1) = rg−1
1

(δ(c)(g1, . . . , gk+1) = −Varσ (g1, g2)(u(g3, . . . , gk+1)).

�
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Remark 3.8 (Related to the adjoint representation). It is not so clear anymore how

to continue the series of Remarks 3.2, 3.4, and 3.6 on the adjoint representation, so

that it applies also to bundles of Lie groups. The trouble comes from the presence of

variation (curvature). Indeed, while it is clear that the relevant graded representation is

g[0]⊕ TM[1] (with the zero differential), it is not so clear how to interpret K. Already at

this point, for this very simple class of examples, we need the notion of representation

up to homotopy (still to be recalled!). �

3.5 Relation to Poisson geometry

Recall that a Poisson manifold is a manifold M equipped with a bivector π ∈ �2(T∗M)

such that the Poisson bracket defined by {f , g} = π(df , dg) satisfies the Jacobi identity

on C∞(M). It gives rise to a Lie algebroid structure on T∗M with anchor π� given by

β(π�(α)) = π(α, β) for all 1-forms α and β and Lie bracket given by

[α, β]π = Lπ�(α)(β)− Lπ�(β)(α)− d(π(α, β)).

The global counterpart of a Poisson manifold (whenever it exists) is a symplectic

groupoid, that is, a Lie groupoid � equipped with a symplectic form ω ∈ �2(�), which

is multiplicative:

m∗ω = pr∗1ω + pr∗2ω.

On the other hand, given any vector bundle A, there is a 1-1 correspondence

between Lie algebroid structures on A and Poisson structures on the dual vector bundle

A∗, which are linear along the fibers. A Lie groupoid G with Lie algebroid A gives

rise to a symplectic groupoid integrating A∗—namely T∗G (see [6] for the groupoid

structure on T∗G). Moreover, deformations of G give rise to deformations of the Poisson

structure of A∗, which are controlled by the Poisson cohomology H∗π (A∗) that is closely

related to the differentiable cohomology H∗(T∗G) via a van Est map (see [9]). Hence, one

expects a relation between C∗def(G) and the differentiable cohomology complex C∗(T∗G)

(an inclusion!). We obtain in this way, the complex described by Gracia-Saz and Mehta

in [14].

Indeed, C∗def(G) can be identified with the subcomplex C∗proj(T
∗G) of C∗(T∗G)

consisting of left-projectable linear cochains. This subcomplex arises in [14] by looking

at the VB-groupoid interpretation of the adjoint representation, where C∗proj(T
∗G) is

introduced as the VB-groupoid complex of the groupoid TG. Let us now look in more

detail at the relation between these complexes.
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First of all, there is a natural subcomplex C∗lin(T∗G) of C∗(T∗G), where k-cochains

are those that are linear in (T∗G)(k). Inside C∗lin(T∗G) there is the space of left-projectable

linear cochains C∗proj(T
∗G), where a linear k-cochain u is called left-projectable if it

satisfies the following two conditions:

1. The value of u(ξ1, . . . , ξk) depends only on ξ1 and on the base points g2, . . . , gk,

that is,

u(0h, ξ1, . . . , ξk−1) = 0;

2. The cochain u is left-invariant in the 1st argument, in the sense that

u(0h · ξ1, . . . , ξk) = u(ξ1, . . . , ξk),

for any (ξ1, . . . , ξk) ∈ (T∗G)(k) such that ξi ∈ T∗gi
G and h ∈ G such that (0h, ξ1) ∈ (T∗G)(2).

It is not hard to check from the definitions that the differential of C∗(T∗G)

restricts to C∗lin(T∗G) and to C∗proj(T
∗G) making them into subcomplexes. Putting together

Proposition 5.5 and Theorem 5.6 of [14] (in the case where the VB-groupoid of loc. cit. is

TG), one obtains the following:

Proposition 3.9. There is an isomorphism of right (C∗(G), δ)-DG-modules

φ : C∗def(G) −→ Cproj(T
∗G)

given by

φ(c)(ξ1, . . . , ξk) = ξ1(c(g1, . . . , gk))

for any ξ1, . . . , ξk ∈ T∗G(k) such that ξi ∈ T∗gi
G.

4 Low Degrees

Here we look at the deformation cohomology in low degrees (mainly 0 and 1). This

will already bring into the discussion the two natural representations of G, namely the

isotropy and the normal representation (both part of the adjoint representation!), and

will also reveal the presence of curvature. Throughout this section we fix a Lie groupoid

G ⇒ M with Lie algebroid denoted by A.
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4.1 The isotropy representation

The discussion in degree 0 will require the isotropy representation of G. First of all,

consider the isotropy bundle

i = iA := Ker(ρ : A −→ TM).

The bracket of A induces a Lie algebra bracket on each fiber ix and, using the groupoid

G, ix is just the Lie algebra of the isotropy group at x (arrows starting and ending at

x). Moreover, conjugation by g : x −→ y in G induces, after differentiation at units, the

“action” of G on i

adg : ix −→ iy.

When G is regular (in the sense that its orbits have the same dimension or, equivalently,

that ρ has constant rank), i is a (smooth) representation of G. In general, it is only a

set-theoretic representation of G. However, one can still make sense of the space of its

smooth (invariant) sections; define �(i) by requiring the smoothness as sections of A:

�(i) = Ker(ρ : �(A) −→ �(TM)),

and then

H0(G, i) = �(i)inv := {α ∈ �(i) : adg(α(x)) = α(y) ∀ g : x −→ y in G}.

Proposition 4.1. For any Lie groupoid G, H0
def(G) ∼= H0(G, i) = �(i)inv. �

Proof. We have to show that α ∈ �(A) satisfies−→α +←−α = 0 if and only if α is an invariant

section of Ker(ρ). After applying dt to the equation we see that ρ(α) must be 0. This

implies that (di)(αx) = −αx for all x ∈ M and then the condition rg(αy) + lg(di)(αx) = 0

for g : x −→ y becomes the invariance of α. �

Remark 4.2. The action of G on i has as infinitesimal counterpart, the action of A

given by the Lie bracket. The elements of �(i) that are invariant with respect to the

infinitesimal action (i.e., α ∈ �(i) with [u, α] = 0 for all u ∈ �(A)) are precisely the ones in

the center Z(�(A)) of the Lie algebra �(A). Hence, by the standard arguments, we have

�(i)inv ⊆ Z(�(A)) and equality holds when G has connected s-fibers.

4.2 H∗(G, i) and its contribution to H∗def(G)

Even when i is not of constant rank (i.e., G is not regular), one can still make sense

of the differentiable cohomology H∗(G, i). The defining complex C∗(G, i) is defined as in
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Subsection 2.3, where the smoothness of the cochains is obtained by interpreting them

as A-valued. The fact that the differential of C∗(G, i) preserves smoothness follows, for

example, from the relationship with the deformation complex: one has an inclusion

(compatible with the differentials!):

r : C∗(G, i) −→ C∗def(G), (6)

which associates to a differentiable cochain u with values in i the deformation cochain

cu given by

cu(g1, . . . , gk) := rg1
(u(g1, . . . , gk)).

The induced map in cohomology,

r : H∗(G, i) −→ H∗def(G), (7)

will be shown to be injective in degree 1, but may fail to be so in higher degrees.

4.3 Degree 1 and multiplicative vector fields

We now start looking at degree 1 by re-interpreting H1
def(G) in terms of multiplicative

vector fields. Recall that, for any groupoid G ⇒ M, TG ⇒ TM is canonically a groupoid

with structure maps the differentials of the structure maps of G; with this, a vector field

X ∈ G is called multiplicative if, as a map X : G −→ TG, it is a morphism of groupoids.

In other words, X must be projectable both along s and along t to some vector field

V ∈ X(M), du(Vx) = Xu(x) and

Xgh = dm(Xg, Xh)

for any pair (g, h) of composable arrows. A particular class of multiplicative vector fields

are those of type −→α +←−α with α ∈ �(A) - —whose flows give rise to inner automorphisms

of G; therefore, they are called inner multiplicative vector fields.

Proposition 4.3. For any Lie groupoid G one has

H1
def(G) = multiplicative vector fields on G

inner multiplicative vector fields on G .

�
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Proof. One has to check that a vector field X ∈ X(G) is a cocycle in C1
def(G) if and only

if, as a map G −→ TG, it is a groupoid morphism; but this is an immediate consequence

of the characterization of groupoid morphisms from the Appendix (Corollary 11.12). �

Note also that the multiplicativity of X is equivalent with the fact that the flow

of X is compatible with the groupoid structure, and this is how multiplicativity (and

H1
def) will come in the proof of rigidity results. So, for later use, here is a more precise

statement. We will use the following general notations: for a vector field X ∈ X(M) we

denote by φX its flow, φε
X(x) = φX(x, ε) and by

D(X) = {(x, ε) ∈ M × R : φX(x, ε) is defined} ⊂ M × R

its domain. For each ε > 0, we consider the ε-slice Dε(V) ⊂ M (x ∈ M with the property

that the integral curve of V through x is defined at time ε). The following will be needed

later on.

Lemma 4.4. If G ⇒ M is a Lie groupoid and X ∈ X(G) is multiplicative, then the flow

of X preserves the groupoid structure, wherever defined. More precisely, denoting by

V ∈ X(M) the base field of X, then, for any ε ≥ 0, Dε(X) ⊂ G is an open subgroupoid of G
with base Dε(V), and

φε
X : Dε(X) −→ G

is a morphism of groupoids covering the flow of V.

If G is proper then, moreover,

Dε(X) = G|Dε(V),

that is, the flow φε
X(g) is defined precisely when φε

V(s(g)) and φε
V(t(g)) are (and this holds

under the weaker hypothesis on X that it is s- and t-projectable to some V ∈ X(M)). �

Proof. The 1st part is well known (see [18]). For the 2nd part, the inclusion “ ⊂” is clear;

we prove the reverse one. Let g ∈ G, consider the maximal integral curve γs of V through

s(g), similarly γt, and let (a, b) be the intersection of the domains of γs and γt. Denoting

by I the domain of the maximal curve γ of X through g, we know that I ⊂ (a, b) and we

have to show that equality holds. We show that for all (u, v) ⊂ I with a < u ≤ v < b, one

must have [u, v] ⊂ I: indeed, for such u and v,

γ ((u, v)) ⊂ {a ∈ G : s(a) ∈ γs([u, v]), t(a) ∈ γt([u, v])},
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where the last subspace of G is compact because G is proper. Since γ ((u, v)) is relatively

compact, it follows that [u, v] is contained in I. �

4.4 The normal representation ν and H0(G, ν)

Next we have a closer look at H1
def(G) in a way similar to that from Proposition 4.1.

The discussion will bring into the picture another important “representation” of G—the

normal one (another piece of the adjoint representation!). Consider the normal bundle

ν := Coker(ρ) = TM/ρ(A).

As in the case of i, this is a smooth vector bundle only in the regular case, but, in general,

we can still talk about its fibers and, as we shall see, make sense of “its space of smooth

(invariant) sections”. First of all, still as for i, any arrow g : x −→ y of G induces an

action

adg : νx −→ νy.

Explicitly, for v ∈ νx, one chooses a curve g(ε) : x(ε) −→ y(ε) in G with g(0) = g and

such that ẋ(0) ∈ TxM represents v, and then adg(v) is the class of ẏ(0) ∈ TyM. One can

check that this construction does not depend on the choices involved. The following is

immediate:

Lemma 4.5. For any g : x −→ y, the action adg : νx −→ νy is uniquely determined by

the condition that, for any vector Xg ∈ TgG, it sends the class of ds(Xg) modulo ρ(A) to

that of dt(Xg). In particular, for V ∈ X(M), the condition that

M � x 
→ [Vx] ∈ νx

is invariant is equivalent to the fact that for a (any) s-lift X ∈ X(G) of V and any g : x −→
y, there exists η(g) ∈ At(g) such that

Vt(g) = dt(Xg)+ ρ(η(g)). (8)

�

In the general (i.e., the possibly non-regular) case, since ν is a quotient, making

sense of (the space of) smooth sections of ν is more subtle than for i; and the same for
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defining H∗(G, ν)—and here we will only take care of degree 0, that is, making sense of

“invariant sections”. First of all, one defines

�(ν) := X(M)/Im(ρ).

Note that any [V] ∈ �(ν) induces a set theoretic section M � x 
→ [Vx] ∈ νx, but the

two objects are now different. Similarly, the invariance of [V] ∈ �(ν) is a stronger (or

better: a smooth version) pointwise invariance of the induced set theoretical section.

More precisely, with the last part of the previous lemma in mind, it is natural to define

the invariance of [V] ∈ �(ν) by requiring that for a/any s-lift X ∈ X(G) of V, the invariance

Equation (8) holds for some smooth section η over G of t∗A. Replacing X by X ′ given by

X ′g = Xg + rg(η(g)), we arrive at the following:

Definition 4.6. We say that [V] ∈ �(ν) is invariant if there exists a vector field X ∈ X(G),

which is both s- and t-projectable to V—in which case we say that X is an (s, t)-lift of V.

The resulting space of invariant elements is denoted

H0(G, ν) = �(ν)inv ⊂ �(ν).

�

From the previous discussion, it is clear that, in the regular case, one recovers

the usual space of sections of the smooth bundle ν and its invariant sections. In general,

we obtain the following:

Lemma 4.7. One has a natural linear map

π : H1
def(G) −→ �(ν)inv,

which associates to a multiplicative vector field X on G the class modulo Im(ρ) of the

vector field on M associated with X. �

Remark 4.8 (Related to the adjoint representation). It is instructive to keep in

mind the (intuitive for now) interpretations of this discussion in terms of the adjoint

representation. As indicated by the previous examples, both i and ν contribute to the

adjoint representation. The fact that H1
def(G) is related to H0(G, ν) indicates that the

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/21/7662/5098086 by Instituto de Física de São C
arlos U

SP user on 05 January 2021



Deformations of Lie Groupoids 7689

contribution of ν involves a degree shift by one; so, a 1st guess would be that the adjoint

representation is represented by i[0]⊕ ν[1] (the 1st one in degree 0, the 2nd one in degree

1). There are two remarks to have in mind here:

• In order to stay within smooth vector bundles also in the non-regular case,

one should think of i[0]⊕ ν[1] as the cohomology of the length two complex

0 −→ A
ρ−→ TM −→ 0

with A in degree 0 and TM in degree 1. The idea is to think of such complexes

of vector bundles as being smooth representatives of their (possibly non-

smooth) cohomology bundles, and then work with such complexes “up to

homotopy” (quasi-isomorphisms).

• However, even in the regular case when no smoothness issues arise and

one could (try to) use the graded representation i[0] ⊕ ν[1], the resulting

cohomology (in degree 1) would surject onto H0(G, ν), which is certainly not

the case for the deformation cohomology and π . This indicates a more subtle

structure of the adjoint representation, related to the cokernel of π .

4.5 The 1st manifestation of curvature

Next, we look closer at the kernel and cokernel of π . As we shall see, this will bring the

cohomology H∗(G, i) back to our attention. Looking for the cokernel reveals the presence

of “curvature”. The precise meaning of “curvature” will become clear later on (see also

the next remark); here we note its manifestation on the cohomology of lower degrees.

Lemma 4.9. For [V] ∈ �(ν)inv, choosing an (s, t)-lift X ∈ X(G), δ(X) ∈ C2
def(G) takes values

in the subcomplex (see (6))

C2(G, i)
r

↪→ C2
def(G),

and it defines a cocycle in H2(G, i) whose cohomology class does not depend on the choice

of X; hence, one has an induced linear map (the cohomological curvature in degree 0)

K : �(ν)inv −→ H2(G, i).

�
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Proof. Note that the inclusion (6) identifies C∗(G, i) with the subcomplex of C∗def(G)

consisting of deformation cochains that take values in Ker(ds) ∩ Ker(dt); therefore, we

will work only inside the deformation complex. Computing ds(δ(X)(g, h)) we find

ds(dm̄(Xgh, Xh))− ds(Xg) = dt(Xh)− ds(Xg) = Vt(h) − Vs(g) = 0

and similarly for dt(δ(X)(g, h)); hence, δ(X) lives in the subcomplex. Moreover, if X ′ is

another (s, t)-lift, then c := X ′ − X is in the subcomplex, hence, δ(X ′) = δ(X) + δ(c)

represent the same class in H2(G, i). Finally, this class only depends on the class [V].

Indeed, if [V] = [V ′], then we find α ∈ �(A) such that V ′ = V + ρ(α); then, if X is an

(s, t)-lift of V, we can use X ′ = X + −→α + ←−α = X + δ(α) as the (s, t)-lift of V ′ but then

δ(X ′) = δ(X). �

Remark 4.10 (Related to the adjoint representation). Continuing the previous

remark on the adjoint representation, the presence of K is a manifestation of the more

subtle structure of the adjoint representation: it shows that there is a certain interaction

between ν and i, that allows one to move from ν to i, via a differentiable 2-cocycle (hence,

a 2-cocycle with values in Hom(ν, i) in the regular case, and some kind of cocycle with

values in Hom(TM, A) in general). �

Putting all the maps together, we have the following:

Proposition 4.11. One has an exact sequence

0 −→ H1(G, i)
r−→ H1

def(G)
π−→ �(ν)inv K−→ H2(G, i)

r−→ H2
def(G).

Proof. For the injectivity of the 1st map r, assume that c ∈ C1
def(G) comes from C1(G, i)

(i.e., c(g) is killed by both ds and dt, for all g) and it is also exact. Hence, c = δ(α) for

some α ∈ �(A); since dt sends δ(α) = −→α +←−α to ρ(α), we see that α ∈ �(i), hence, c is a

coboundary in the sub-complex C∗(G, i).

For the exactness at H1
def(G), compute the kernel of π : it consists of classes [X],

where X is a multiplicative vector field on G with the property that its base field V is

zero in �(ν), that is, it is of type V = ρ(α) for some α ∈ �(A); replacing X by X − δ(α), we

deal with classes [X] with the property that the base field is zero, that is, coming from

the inclusion (6).
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Next, we take care of the kernel of K: it consists of classes [V] ∈ �(ν)inv with

the property that, choosing X ∈ X(G) an (s, t)-lift of V, one has δ(X) = δ(c) ∈ C2
def(G),

for some c that is killed by ds and dt; replacing X by X − c, we see that we deal with

classes [V] that admit an (s, t)-lift Y that is closed in the deformation complex, which is

multiplicative as a vector field. Hence, Ker(K) = Im(π).

Finally, the kernel of the last map r: by the definition of K, it is clear that r◦K = 0;

conversely, if [c] ∈ H2(G, i) is in the kernel of r, we have r(c) = δ(X) ∈ C2
def(G) for some

X ∈ C1
def(G); however, the fact that r(c) (hence, δ(X)) takes values in the kernels of ds and

dt implies that X will be (s, t)-projectable to some V ∈ X(M), hence, by the construction

of K, [c] = K([V]). �

5 Degree 2 and Deformations

In this section we indicate the relevance of deformation cohomology to deformations of

Lie groupoids by explaining how such deformations give rise to 2-cocycles.

5.1 The case of (s, t)-constant deformations

Let {Gε : ε ∈ I} be a strict deformation of G (see the introduction). We would like to study

the variation of the groupoid structure. This variation is, at least intuitively, measured

by the variation of the structure maps, such as of the expressions of type mε(g, h) around

ε = 0. As mentioned in the Appendix, to make sense of this, one encounters the problem

that if (g, h) are composable with respect to the original groupoid structure, they may

fail to be composable for Gε. Although the Appendix indicates the way to proceed (using

m̄), let us first assume that sε and tε do not depend on ε and proceed in a more classical

way.

In this case

− d

dε
|ε=0mε(g, h) ∈ TghG

is well defined for any (g, h) ∈ G(2) and is killed by ds and dt (the choice of the sign

will soon become clear). Being killed by ds means that it lives in the image of the right

translation rgh : At(g) −→ TghG, while being killed also by dt means that it comes from

the isotropy it(g). Hence, we end up with a differential cochain

u0 ∈ C2(G, i)

with the defining property

d

dε
|ε=0mε(g, h) = −rgh(u0(g, h)) ∈ TghG.
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Moreover, differentiating the associativity equation mε(mε(g, h), k) = mε(g, mε(h, k))

with respect to ε at 0, we find that u0 is a cocycle. As it will follow from the more

general discussion or checked directly (but see also [26] where strict deformations were

first discussed):

Lemma 5.1. The resulting cohomology class

[u0] ∈ H2(G, i)

only depends on the equivalence class of the deformation. �

Before we pass to the more general case of s-constant deformations, we consider

the image ξ0 of u0 by the inclusion

r : C2(G, i) ↪→ C2
def(G)

(see (6)) or, explicitly,

ξ0(g, h) = rg(u0(g, h)) = −rh−1
d

dε
|ε=0mε(g, h).

For a more convenient formula, differentiate at ε = 0 the identity mε(m̄ε(m0(g, h), h), h) =
m0(g, h):

d

dε
|ε=0mε(m̄0(gh, h), h)+ (dm0)g,h

(
d

dε
|ε=0m̄ε(gh, h), 0h

)
= 0,

using also the fact that in any groupoid (dm)g,h(Xg, 0h) = rh(Xg) and applying rh−1

we find

ξ0(g, h) = d

dε
|ε=0m̄ε(gh, h).

5.2 The case of s-constant deformations I: the direct approach

The advantage of the last expression is that it makes sense for all s-constant deforma-

tions. Of course, this is also very much in the spirit of the Appendix, which teaches us

that we should look at the variation of m̄ε (and only at it).

Definition 5.2. Given an s-constant deformation {Gε : ε ∈ I} of G, the associated

deformation cocycle is defined as

ξ0 ∈ C2
def(G) given by : ξ0(g, h) = d

dε
|ε=0m̄ε(gh, h) ∈ TgG.

�
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Lemma 5.3. ξ0 is indeed a cocycle and its cohomology class [ξ0] ∈ H2
def(G) depends only

on the equivalence class of the deformation. �

Proof. The 1st part follows again from the associativity but written in terms of the

division

m̄ε(m̄ε(u, w), m̄ε(v, w)) = m̄ε(u, v).

Indeed, by differentiating at ε = 0 we we obtain

dm̄0

(
d

dε

∣∣
ε=0

m̄ε(u, w),
d

dε

∣∣
ε=0

m̄ε(v, w)

)
+

+
(

d

dε

∣∣
ε=0

m̄ε

)
(uw−1, vw−1)−

(
d

dε

∣∣
ε=0

m̄ε

)
(u, v) = 0,

and by choosing u = g1g2g3, v = g2g3, and w = g3, this means precisely that

δξ0(g1, g2, g3) = dm̄0(ξ0(g1g2, g3), ξ0(g2, g3))− ξ0(g1, g2g3)+ ξ0(g1, g2) = 0.

The 2nd part follows similarly. If φε : Gε −→ G′ε is an equivalence of

deformations, let

X = d

dε

∣∣
ε=0

φε ∈ C1
def(G).

Then, by differentiating the expression

m̄′
ε(φ

ε(gh), φε(h)) = φεm̄ε(gh, h)

we obtain that

ξ ′0(g, h)− ξ0(g, h) = δX(g, h).
�

Example 5.4. Let X ∈ X(G) be a vector field on a groupoid G ⇒ M and assume it is

s-projectable to some V ∈ X(M) (hence, X ∈ C1
def(G)). To avoid irrelevant technicalities,

we assume X to be complete and let φε
X be its flow. Then one obtains a new family of

groupoid structures on G by pulling back the original structure along φε
X ; hence,

sε = φ−ε
V ◦ s ◦ φε

X , mε = φ−ε ◦m ◦ (φε
X , φε

X), etc.
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This deformation is s-constant since X is s-projectable and it is trivial by the very

construction. Hence, we know that the associated cocycle is exact and, computing it,

one finds precisely δ(X) ∈ C2
def(G). �

Remark 5.5. One can remove the condition that sε is constant and treat general strict

deformations; the price to pay for this generality is that we will no longer have a

canonical 2-cocycle, but only a canonical 2-cohomology class. Let us indicate how

to proceed in a direct fashion (an alternative route will be described in detail, for

general deformations, a bit later). One follows the obvious idea: given an arbitrary

strict deformation Gε of G, replace it by an equivalent one, G′ε, which is s-constant. That

amounts to finding a family of diffeomorphisms φε : G −→ G so that when we pull back

the groupoid structure of Gε via φε, the new structure G′ε has constant s. Assume for

simplicity that φε is the identity on units, so the condition is that sε ◦φε does not depend

on ε, and we look for φε of type φε
X—the “flow” of a time-dependent vector field X̃ = {Xε}

on G (see the next paragraph for the notations). Differentiating with respect to ε, the

desired equation becomes

(dsε)(X
ε(g))+ d

dε
sε(g) = 0. (9)

Since each (dsε) is surjective, it is clear that such a family Xε exists. Going backwards

the only problem is the possible lack of completeness; however, the local flow is all that

is needed to make sense of the 2-cocycle associated to the resulting m′
ε. The resulting

cohomology class will only depend on the deformation we started with.

Next we indicate how the deformation cocycles can be used to establish rigidity

results. But first some generalities on flows. By a time-dependent vector field on a

manifold M (or 1-parameter family of vector fields on M) we mean a family X̃ = {Xε :

ε ∈ I} consisting of vector fields Xε ∈ X(M) depending smoothly on ε in an open interval

I ⊂ R containing 0. Such a time-dependent vector field X̃ has a flow φ
t,s
X̃

with a double

dependence in the parameters, it consists of (local) diffeomorphisms

φ
t,s
X̃

: M −→ M,

the solutions to the system

d

dt
φ

t,s
X̃

(x) = X(t, φt,s
X̃

(x)), φ
s,s
X̃

(x) = x.
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The flow relations are φ
s,s
X̃
= Id, φ

t,u
X̃

φ
u,s
X̃

= φ
t,s
X̃

—valid modulo the usual issues on the

domains of definitions. When interested only on what happens for parameters close to

0, it suffices to consider the family of (local) diffeomorphisms of M given by

φε

X̃
:= φ

ε,0
X̃

and then, for small parameters,

φ
s+ε,s
X̃

= φs+ε

X̃
◦ (φs

X̃
)−1.

When X is autonomous φε

X̃
is the usual flow, and φ

s+ε,s
X̃

= φε

X̃
only depends on ε.

The flows of type φ
t,s
X̃

are suited to relate the members Gs and Gt of s-constant

deformations:

Proposition 5.6. Let {Gε : ε ∈ I} be an s-constant deformation of G and consider the

induced deformation cocycles ξε ∈ C2
def(Gε). Assume that for all ε small enough, one

finds Xε such that

δ(Xε) = ξε in C2
def(Gε), (10)

and assume that the resulting time-dependent vector field X̃ = {Xε} is smooth. Then, for

t and s close to 0, φ
t,s
X̃

is a locally defined morphism from Gs to Gt, covering the similar

flow of Vε = ds(Xε).

Moreover, if G is proper, then φ
t,s
X̃

(g) is defined whenever φ
t,s
Ṽ

(s(g)) and φ
t,s
Ṽ

(t(g))

are.

This lemma can be proved directly but our reinterpretations from the next

section (Proposition 5.9) will show that it is a consequence of Lemma 4.4 on flows of

multiplicative vector fields.

5.3 The case of s-constant deformations II: reinterpretation using the groupoid G̃

Here we provide another way of looking at the deformation cocycles, less intuitive but

easier to work with. This is based on the reinterpretation of strict deformations of G as

(germs of) families parametrized by an interval I: one can identify a strict deformation

G̃ = {Gε : ε ∈ I} with the groupoid

G̃ := G × I over M̃ := M × I,
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with structure maps

s̃(g, ε) = (sε(g), ε), m̃((g, ε), (h, ε)) = (mε(g, h), ε), etc.

This allows us to reinterpret the deformation cocycle associated to an s-constant

deformation as follows.

Proposition 5.7. Let G̃ = {Gε} be an s-constant deformation of the Lie groupoid G. Then,

interpreting ∂
∂ε

as an element of C1
def(G̃) and considering

ξ = −δ

(
∂

∂ε

)
∈ C2

def(G̃),

one has

ξ0 = ξ |G0
∈ C2

def(G0).

�

Note that, implicit in this statement is also the fact that the restriction of ξ to

G0 ⊂ G̃ takes values in TG0 ⊂ TG̃ (warning: the operation of restricting elements of

C∗def(G̃) to G0, even when it produces elements in C∗def(G0), is not compatible with the

differentials).

Proof. To check the previous identity we use that, as a vector field on G̃,

∂

∂ε
(g, 0) = d

dε
|ε=0(g, ε) ∈ T(g,0)G̃, (11)

hence, on elements g ≡ (g, 0), h ≡ (h, 0),

ξ((g, 0), (h, 0)) = (d ¯̃m)

(
∂

∂ε
(gh, 0),

∂

∂ε
(h, 0)

)
− ∂

∂ε
(g, 0)

= d

dε
|ε=0

¯̃m((gh, ε), (h, ε))− ∂

∂ε
(g, 0)

= d

dε
|ε=0(m̄ε(gh, h), ε)− ∂

∂ε
(g, 0)

= d

dε
|ε=0m̄ε(gh, h) = ξ0(g, h).

�
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Remark 5.8. The interpretation given in the proposition makes substantial use of the

assumption that the deformation is s-constant, not only in the proof, but already right

from the start when we interpreted ∂
∂ε

as an element of C1
def(G̃). Indeed, when the source

is not constant, this vector field on G̃ is not even s̃-projectable. This is very much related

to the choice of the family of vector fields Xε in the previous section; actually, Equation

(9) precisely means that the resulting vector field on G̃

X̃(g, ε) = Xε(g)+ ∂

∂ε
(g, 0)

is s-projectable (... to ∂
∂ε
∈ X(M̃)). �

Next, we reinterpret Proposition 5.6 in terms of the groupoid G̃ but first we need

another general remark on time-dependent vector fields X̃ = {Xε : ε ∈ I} on a manifold

M. Such an X̃ can be identified with the vector field on M × I:

X̃(x, ε) = Xε(x)+ ∂

∂ε
,

then the flow φ
t,s
X̃

mentioned above is related to the standard flow of X̃ by

φε

X̃
(x, s) = (φ

s+ε,s
X̃

(x), s+ ε)

so that φ
s+ε,s
X̃

is seen as moving M × {s} to M × {s + ε}. We will apply this to the time-

dependent vector fields that arise in Lemma 5.6.

Proposition 5.9. Consider an s-constant deformation as in Proposition 5.6 and the

associated groupoid G̃. Then a smooth family Xε of vector fields on G satisfies the cocycle

equations (10) if and only the induced vector field on G̃,

X̃(g, ε) = Xε(g)+ ∂

∂ε
∈ X(G̃),

is multiplicative. �

Proof. Start from the multiplicativity equation for X̃:

X̃(g, ε) = (d ¯̃m)(g,ε),(h,ε)(X̃(mε(g, h), ε), X̃(h, ε)),
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where ¯̃m is the division map associated to G̃. Writing X̃ in terms of Xε, we see that the

expression on the right-hand side is the sum of two expressions:

(d ¯̃m)(g,ε),(h,ε)(X
ε(mε(g, h)), Xε(h)) and (d ¯̃m)(g,ε),(h,ε)

(
∂

∂ε
,

∂

∂ε

)
.

Since Xε is tangent to the fiber Gε where ¯̃m restricts to m̄ε, the 1st expression is just

(dm̄ε)(g,h)(X
ε(mε(g, h)), Xε(h)).

For the 2nd expression we use again (11) (and the obvious analog at ε 	= 0) and we find

(d ¯̃m)(g,ε),(h,ε)

(
∂

∂ε
,

∂

∂ε

)
= d

ds
|s=0

¯̃m((mε(g, h), ε + s), (h, ε + s))

= d

ds
|s=0(m̄ε+s(mε(g, h), h), ε + s)

= ξε(g, h)+ ∂

∂ε
.

Putting everything together, the multiplicativity equation for X̃ becomes

Xε(g) = (dm̄ε)(g,h)(X
ε(mε(g, h)), Xε(h))+ ξε(g, h),

that is, Equation (10). �

5.4 General deformations

The previous section indicates how to proceed in the case of general deformations. Let

us first reformulate Definition 1.6 in terms of families of groupoids (Definition 1.9).

Definition 5.10. A deformation of a Lie groupoid G is a family of Lie groupoids

G̃ ⇒ M̃
π−→ I

parametrized by an open interval I ⊂ R containing 0 such that G0 = G (as Lie groupoids).

Two such deformations, G̃ and G̃′, are said to be equivalent if, after eventually

restricting them to smaller open intervals around the origin, they are isomorphic by

an isomorphism that is the identity on G0.

A deformation is said to be proper if G̃ is a proper groupoid. �
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We see that strict deformations of G correspond to deformations G̃ with the

property that, as manifolds, G̃ = G × I, M̃ = M × I, and π is the projection in the 2nd

factor. To construct the deformation class of a deformation, we use the reinterpretation

given in Proposition 5.7. First we need an analog of ∂
∂ε

, which makes sense as an element

of C1
def(G̃).

Definition 5.11. Let G̃ be a deformation of G. A transverse vector field for G̃ is any

vector field Ỹ ∈ X(G̃), which is s-projectable to a vector field V ∈ X(M̃) that, in turn, is

π-projectable to ∂
∂ε

. �

With this, we can generalize the construction from Proposition 5.7 as follows.

Proposition 5.12. Let G̃ be a deformation of G. Then

(i) there exist transverse vector fields for G̃;

(ii) for any Ỹ ∈ X(G) transverse, −δ(Ỹ) ∈ C2
def(G̃), when restricted to G0, induces

a cocycle

ξ0 ∈ C2
def(G0);

(iii) the cohomology class of ξ0 does not depend on the choice of Ỹ.

�

Proof. To produce transverse vector fields one chooses any Ṽ ∈ X(M̃) that is π-

projectable to ∂
∂ε

and any Ỹ ∈ X(G̃) that is s̃-projectable to Ṽ. For (ii), given Ỹ, we have

to show that for (g, h) ∈ G0, δ(Ỹ)(g, h) ∈ TgG̃ is tangent to G0 that it is killed by the

differential of π ◦ s̃; however,

dπ(ds̃(δ(Ỹ)(g, h))) = dπ(dt̃(Ỹ(h))− ds̃(Ỹ(g)))

and using that dπ◦dt̃ = dπ◦ds̃ and that X̃ is s̃-projectable, the desired vanishing follows.

Finally, assume that Ỹ ′ is another transverse vector field. Then Z := Ỹ ′ − Ỹ is killed by

dπ ◦ ds̃, hence, the values Z(g) are already tangent to the fiber groupoids; in particular,

on G = G0, one has Z0 ∈ C1
def(G0) and the cocycles associated to Ỹ ′ and Ỹ are related by

ξ
′
0 − ξ0 = δ(Z0). �

Definition 5.13. The resulting cohomology class [ξ0] ∈ H2
def(G) is called the deforma-

tion class associated to the deformation G̃ of G. �
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Remark 5.14. We see that, in terms of the groupoids G̃, the natural approach to rigidity

from the previous sections takes a more algebraic but simpler form: one searches for

vector fields X̃ on G̃, which are both transverse and multiplicative, then one uses their

flows φε

X̃
to obtain isomorphisms between G0 and Gε. Of course, there is the usual issue

regarding the domain of definition of the flows, and an even more serious issue is the

existence of multiplicative transverse vector fields X̃. By the long exact sequence of

Proposition 4.11, the last issue is equivalent to the existence of [V] ∈ �(ν)inv, which is

in the kernel of the map K there; we see that the vanishing of cohomology in degree 2

greatly reduces this issue. �

5.5 Families of groupoids and the variation map

Consider a family of Lie groupoids parametrized by a manifold B,

G ⇒ M
π−→ B

(see the Introduction). Using the induced groupoids Gb with b ∈ B, any curve γ : I −→ B,

induces a deformation γ ∗G of Gγ (0).

Proposition 5.15. Let G ⇒ M −→ B be a family of Lie groupoids, b ∈ B. Then, for any

curve γ : I −→ B with γ (0) = b, the deformation class of γ ∗G at time 0 only depends on

γ̇ (0), and this defines a linear map

Varb : TbB −→ H2
def(Gb).

�

Proof. Let v = γ̇ (0) and choose an arbitrary extension ṽ ∈ X(B) of v and an s-

projectable Ỹ ∈ X(G) such that d(π ◦ s)(Ỹ) = ṽ. Define [ξ̃b] ∈ H2
def(Gb) as the cohomology

class of

ξ̃b = −(δỸ)
∣∣
G(2)

b
. (12)

We will show that

• the cohomology class [ξ̃b] ∈ H2
def(Gb) does not depend on the choices of ṽ and

Ỹ;

• under the canonical identification of (γ ∗G)0 with Gb, the deformation class

[ξ0] coincides with [ξ̃b].
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For the 1st statement, the proof that the class does not depend on the lift X̃

is identical to the proof of Proposition 5.12 (iii). To show that [ξ̃b] does not depend on

the extension ṽ, let ṽ′ be another extension of v and choose a lift Ỹ ′ of ṽ′ such that

Ỹ(g) = Ỹ ′(g) for all g ∈ Gb. Then, for this choice of lift it follows from the linearity of

δ that

δỸ(g, h) = δỸ ′(g, h) for all g, h ∈ G(2)

b .

Next we prove the 2nd statement. Since the statement is local (in ε), we can

assume without loss of generality the γ : I −→ B is an embedding. We choose ṽ to

coincide with γ̇ on all points of the curve, and we take a lift Ỹ of ṽ as above. Then the

vector field

Y(ε,g) =
∂

∂ε
+ Ỹg ∈ T(ε,g)γ

∗G

is transverse, and thus ξ0 is the restriction to (γ ∗G)
(2)
0 of −δY.

However, since the multiplication and inversion on γ ∗G are given by

mγ (ε, g), (ε, h) = (ε, gh), (ε, g)−1 = (ε, g−1),

we obtain that

dm̄γ (Y(0,gh), Y(0,h)) =
∂

∂ε
+ dm̄(Ỹgh, Ỹh)

from where it follows that (for these choices of lift and transverse vector field)

ξ̃b = ξ0. �

Remark 5.16. Equation 12 in the proof above gives an alternative description of the

variation map. �

6 The Proper Case

Theorem 6.1. Let G be a proper Lie groupoid. Then

H0
def(G) ∼= �(i)inv, H1

def(G) ∼= �(ν)inv, and Hk
def(G) = 0 for all k ≥ 2.

�
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Proof. We proceed similarly to the proof of the vanishing of differentiable cohomology

from [7]. As there we appeal to the fact that for any proper Lie groupoid G over M one

can use a Haar system and a cut-off function to construct a family of linear maps∫
t−1(x)

: C∞(t−1(x)) −→ R, f 
→
∫

t−1(x)

f
notation=

∫
x

f (g)dg,

which depends smoothly on x ∈ M (i.e., applying them to a smooth function on G
produces a smooth function on M), is normalized (it sends the constant function 1 on G
to 1 on M) and left-invariant (the integral does not change under composition with Lh,

for any h ∈ G).

For k ≥ 2, let c ∈ Ck
def(G) be a cocycle and define a map X : Gk−1 −→ TG by

X(g1, . . . , gk−1) = (−1)k
∫

s(gk−1)

c(g1, . . . , gk−1, h)dh. (13)

The map X is an element of Ck−1
def (G) and we will now show that δX = c:

δX(g1, . . . , gk) = −dm̄(X(g1g2, . . . , gk), X(g2, . . . , gk))

+
k−1∑
i=2

(−1)iX(g1, . . . , gigi+1, . . . , gk)

+ (−1)kX(g1, . . . , gk−1)

= (−1)k
∫

s(gk)

−dm̄(c(g1g2, . . . , gk, h), c(g2, . . . , gk, h))

+
k−1∑
i=2

(−1)ic(g1, . . . , gigi+1, . . . , gk, h)dh

+
∫

s(gk−1)

c(g1, . . . , gk−1, h)dh

δc=0=
∫

s(gk)

−c(g1, . . . , gk−1, gkh)+ c(g1, . . . , gk)dh

+
∫

s(gk−1)

c(g1, . . . , gk−1, h)dh

left-inv.= c(g1, . . . , gk).

Note that exactly the same formulas applied to cocycles in C∗(G, i) imply that

Hk(G, i) = 0 for all k ≥ 0, and this is basically the proof of the vanishing of differentiable
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cohomology with coefficients in i from [7], with the extra remark that the integrals still

define smooth cochains; indeed, if u ∈ Ck(G, i), it is smooth as a map

(g1, . . . , gk) 
→ u(g1, . . . , gk) ∈ At(g1),

hence, so is

(g1, . . . , gk−1) 
→
∫

s(gk−1)

u(g1, . . . , gk−1, h)dh ∈ At(g1)

(t(g1) stays constant in the integration process). The vanishing of H∗(G, i) in degrees

1 and 2 combined with the exact sequence from Proposition 4.11 implies the desired

isomorphism H1
def(G) ∼= �(ν)inv. The isomorphism H0

def(G) ∼= �(i)inv holds by Proposition

4.1. �

Remark 6.2. Alternatively, the vanishing part of Theorem 6.1 can be immediately

obtained by using Theorem 3.35 from [2], after the isomorphism of the deformation

cohomology and the cohomology with values in the adjoint representation is established

(Lemma 9.1). �

6.1 Some consequences (relevant for rigidity results)

Here are some consequences of the previous result (and its proof).

Corollary 6.3. If G̃ = {Gε : ε ∈ I} is a proper family of groupoids, k ≥ 2 and uε ∈ Ck
def(Gε)

is a smooth family of deformation cocyles, then the equations

δ(Xε) = uε

admit solutions Xε ∈ Ck−1
def (Gε) that are smooth with respect to ε. �

Proof. This follows from the vanishing part of the theorem, applied to the full

groupoid G̃. �

Remark 6.4. It is important to realize that assuming only that each Gε is proper (which

ensures that the equation for each ε has solution) does not suffice. One can actually

find families of compact groupoids for which the previous Corollary fails (because, as a

family, it is not proper).

In order to handle general deformations, we know from the previous section

(see, e.g., Remark 5.14) that it is important to ensure the existence of multiplicative

transverse vector fields.
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Lemma 6.5. Any proper family G ⇒ M
π−→ I of Lie groupoids parametrized by an

interval I admits a multiplicative vector field X ∈ X(G) that is transverse (in the sense of

Definition 5.11).

Proof. By the isomorphism H1
def(G) ∼= �(ν)inv it suffices to show that one can find

V ∈ X(M), which is π-projectable to ∂
∂ε

and with the property that the induced [V] ∈ �(ν)

is invariant. Start with any transverse vector field X ∈ X(G). We define the vector field V

on M by

Vx :=
∫

x
dt(Xa)da.

We have

dπ(Vx) =
∫

x
dπ(dt(Xa))da =

∫
x

dπ(ds(Xa))da =
∫

x

∂

∂ε
da = ∂

∂ε
.

To check that [V] is invariant, it suffices to find a vector field X
′

on G, which is both s-

and t-projectable to V. We claim that

X
′
g :=

∫
s(g)

dm̄(X(ga), X(a))da ∈ TgG (14)

does the job. Indeed,

ds(X
′
g) =

∫
s(g)

ds(dm̄(X(ga), X(a)))da =
∫

s(g)

dt(X(a))da = Vs(g)

and a similar computation combined with the invariance of the integral shows that also

dt(X
′
g) = Vt(g). �

Moreover, in order to handle deformations semi-locally (relative versions), one

needs a relative version of the previous lemma.

Lemma 6.6. With the same notations as in the previous lemma, if N ⊂ M is an invariant

submanifold so that π |N : N −→ I is still a submersion and XN ∈ X(G|N) is a given

multiplicative transverse vector field, then X can be chosen so that it extends XN . �

Proof. The proof is just a careful analysis of the previous proofs, the details are as

follows. Start with XN and its base vector field VN . Choose an extension V of VN that

is π-projectable to ∂
∂ε

and choose X ∈ X(G), which is s-projectable to V. We modify X

in steps. First we make sure that X also extends XN : since XN(g) − X(g) is killed by ds,
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it is of type rg(η(g)) with η(g) ∈ At(g) defined for g ∈ G|N ; choosing a smooth extension

η̃ ∈ �(G, t∗A) of η one then replaces X by g 
→ X(g)+ rg(η̃(g)).

Hence, we may assume that X extends XN and is s-projectable. One can also

arrange it so that it is also t-projectable: the replacement is the one given by formula

(14)—indeed, when applied to g ∈ G|N , the integration variable a stays in G|N , hence, one

deals with ∫
t(g)

dm̄(XN(ga), XN(a))da =
∫

t(g)

XN(g)da = XN(g),

where the multiplicativity of XN was used.

Hence, we may assume that X extends XN and is s- and t-projectable to some V.

Then the expressions

dm̄(X(gh), X(h))− X(g) ∈ TgG

are killed by ds and dt, hence, they arise by right translations with respect to g of some

elements

ζ(g, h) ∈ it(g).

As before one can find η ∈ C1(G, i) so that ζ = δ(η). However, the integral formula for η

(of type (13)) shows that η vanishes on elements of G|N (because the multiplicativity of

XN implies that ζ does). We can now change X to

X ′(g) = X(g)+ rg(η(g)),

which has the same properties as X ′ and is also multiplicative; the multiplicativity is

implicit in the last part of the proof of Theorem 6.1 but also follows easily by a direct

computation. �

Remark 6.7. Note that the last two lemmas apply (basically with no changes in the

proof) to general proper families G ⇒ M
π−→ B parametrized by a manifold B; the

conclusion is that any vector field W on B admits a multiplicative lift X to G (lift in

the sense that X is projectable, via π ◦ s = π ◦ t to W).

Moreover, using the explicit argument from the last proof (applied to N = ∅ and

with I replaced by B) shows that the choice of X can be made smooth in W. Indeed, all

the steps involved to produce X are given by explicit formulas that are clearly smooth,

except maybe for the starting step, which starts with the choice of a vector field V on M

that is π-projectable to W and X ∈ X(G) that is s-projectable to V. But that can be done
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smoothly as well, by fixing smooth splittings of dπ and ds (i.e., Ehresmann connections

on π and s).

As analog of Lemma 6.6 one can start with any sub-family G|N ⇒ N
π−→ B0 with

B0 ⊂ B, N ⊂ M submanifolds and N invariant and then, if W ∈ X(B) is tangent to B0 and

one is given a multiplicative lift XN of W|B0
to G|N , then one can find a multiplicative lift

X ∈ X(G) that extends XN . �

7 Applications to Rigidity

As explained in the previous section, the main idea to obtain rigidity results is to use

the vanishing of the deformation cohomology and the flows of the resulting vector fields.

Here are some immediate illustrations of this idea. We start with the cases of (s, t)-

constant and s-constant deformations.

Theorem 7.1. The following hold true:

• Any (s, t)-constant deformation of a proper Lie groupoid is trivial.

• Any s-constant deformation of a compact Lie groupoid is trivial.

�

Proof. It is clear that any deformation G̃ = {Gε} as in the statement is proper. Then we

follow the general plan:

• We appeal to Corollary 6.3 to obtain X̃ = {Xε} smoothly depending on ε

transgressing the deformation cocycles ξε

• We use the 1st part of Lemma 5.6 and the resulting flows φ
t,s
X̃

as candidates

for isomorphisms between Gs and Gt.

• To make sure that φ
u,v
X̃

is defined on the entire Gv for u and v small enough,

we use the 2nd part of Lemma 5.6; we are left with proving that φ
u,v
Ṽ

is defined

on the entire M for u and v small enough.

The very last part is clear in the 2nd case since M is compact. For (s, t)-constant

deformations, we have seen that the resulting deformation cocycles ξε live in the

subcomplex C2(Gε, i) and we can solve Equation (10) inside this subcomplex, that is,

we can arrange that Vε = 0; hence, again, there are no problems with the flow. �

Remark 7.2. It is not true that s-constant deformations of proper Lie groupoids are

trivial. An example of this can be obtained by carefully analyzing a construction that
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Palais gave in [23]. In loc. cit. it is shown that for any nontrivial compact Lie group

G, there exists an uncountable family of inequivalent G actions on an Euclidean space

R
n, such that any of them have isomorphic linearized actions at a fixed point. More

specifically

• it is shown in [19] that there exists an open 3-manifold W that is not

diffeomorphic to Euclidean 3-space, and such that W × R
n is diffeomorphic

to n+ 3-Euclidean space (this is really the important point!);

• if one considers the diagonal action on W × R
n formed from a faithful

representation of a compact group G on R
n and the trivial action of G on

W, the corresponding (non-linear) G-action on R
n+3 has a fixed-point set

diffeomorphic to W;

• if one takes a fixed point of the action (which without loss of generality can

be assumed to be the origin) the homotety deformation to the linear action is

a nontrivial deformation: the fixed-point set of the linear action is a vector

space of dimension 3 (i.e., R3) and, hence, cannot be diffeomorphic to the

fixed-point set of the the non-linear action (which is diffeomorphic to W);

• in fact, in [19] it is shown that there is an uncountable family of non-

diffeomorphic manifolds Wα with the property above. We thus obtain

uncountably many inequivalent s-constant deformations of the proper action

groupoid associated to the linearized action.

�

The last part of the Theorem 7.1 also has relative version; moreover, passing to

semi-local statements, one can deal with general proper groupoids. The 1st one in this

direction is the following:

Theorem 7.3. Let G ⇒ M be a proper groupoid and let N ⊂ M be an invariant

submanifold.

Then for any s-constant deformation G̃ = {Gε : ε ∈ I} of G that is constant on N

(Gε|N = G|N for all ε) and any compact interval I0 ⊂ I one can find a smooth family of

groupoid isomorphisms

Fε : G|U0
−→ Gε|Uε

, (ε ∈ I0),

which restrict to the identity on G|N . Moreover, if M is compact then one may choose

Uε = M. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/21/7662/5098086 by Instituto de Física de São C
arlos U

SP user on 05 January 2021



7708 M. Crainic et al.

Proof. We need to look a bit closer at the previous arguments. First of all, because of

the hypothesis, the deformation cocycles ξε vanish on all pairs (g, h) coming from G|N .

Looking at the formulas (13) defining the transgressing cochains we see that also Xε

vanishes at points of G|N . Let us now move to the product M × I and interpret Ṽ as a

vector field there. Since Ṽ agrees with ∂
∂ε

on N × I, we see that φε

Ṽ
(x, v) = φ

v+ε,v
Ṽ

(x), v+ ε)

is defined for all x ∈ N as long as v+ε, v ∈ I. In particular, φ
ε,0
Ṽ

(x) is defined for all x ∈ N,

ε ∈ I. With I0 as in the statement, since any open in M× I containing N× I0 also contains

U0 × I0 for some open-neighborhood U0 of N in M, we find such an U0 such that φ
ε,0
Ṽ

(x)

is defined for all x ∈ U0 and ε ∈ I0. Set

Uε = φ
ε,0
Ṽ

(U0).

Of course, φ
0,ε
Ṽ

is defined on Uε. All together, using again Lemma 4.4 we find that

φ
ε,0
X̃

: G|U0
−→ Gε|Uε

is a groupoid isomorphism, with inverse φ
0,ε
X̃

defined on the entire Gε|Uε
. Since Xε is zero

on G|N , this isomorphism is the identity on G|N .

We are left with proving the last part. But this follows from a general property

of flows of vector fields Ṽ on M × I when M is compact: φ
ε,0
Ṽ

(x) is defined for all x ∈ M

and ε ∈ I. �

The following shows that proper deformations are trivial locally around com-

pact invariant submanifolds.

Theorem 7.4. Let G ⇒ M be a proper groupoid and let N ⊂ M be a compact invariant

submanifold. Then for any proper deformation G̃ = {Gε} of G, there exists a smooth

family Ũ = {Uε} of opens Uε ⊂ Mε such that N is contained in U0 and such that the

deformation G̃|Ũ = {Gε|Uε
} is trivial.

In particular, any proper deformation of a compact groupoid is trivial.

Proof. We work on the large groupoid G̃ ⇒ M̃ to which we apply Lemma 6.5 to obtain

a multiplicative transverse vector field X̃ with base-field denoted Ṽ. Since N is compact

we can choose a smaller I0 ⊂ I and an open-neighborhood U0 of N in M0 such that φε

Ṽ
(y)

is defined for all y ∈ U0, ε ∈ I0. We set

Uε = φε

Ṽ
(U0) (ε ∈ I0).
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The 2nd part of Lemma 4.4 insures that φε

X̃
is defined on the entire G|U = G0|U0

, while

the multiplicativity of X̃ implies (cf. the 1st part of Lemma 4.4) that

φε

X̃
: G|U −→ Gε|Uε

is a groupoid isomorphism (note that the inverse φ−ε

X̃
is defined on the entire Gε|Uε

again

because of Lemma 4.4 and the fact that φ−ε

X̃
is defined on Uε). �

Theorem 7.3 can also be extended to general proper deformations.

Theorem 7.5. Assume that G̃ = {Gε : ε ∈ I} is a proper family of Lie groupoids and

Ñ = {Nε} is a smooth family of submanifolds Nε ⊂ Mε invariant with respect to Gε and

such that G|Ñ = {G|Nε
} is trivial, with given trivializing diffeomorphisms

ψε : G0|N0
−→ Gε|Nε

.

Then for any I0, which is the interior of a compact interval contained in I, there exists a

smooth family Ũ = {Uε : ε ∈ I0} of open neighborhoods of Nε in Mε and a smooth family

of groupoid isomorphisms

Fε : G0|U0
−→ Gε|Uε

, (ε ∈ I0)

extending ψε. �

Proof. We proceed as in the proof of Theorem 7.3 but working directly on the large

groupoid G̃; in particular, we interpret the smooth family {ψε} as a map

ψ : G|N × I −→ G̃, (g, ε) 
→ ψ(g, ε) := ψε(g)

and similarly for the base map, denoted f . For g ∈ G̃|Ñ , consider ε = π ◦ s(g) that is with

the property that g ∈ Gε|Nε
. Move g back to ε = 0, that is, consider g0 = ψ−1

ε (g) ∈ G|N and

consider

X̃0(g) := d

dv
|v=εψ(g0, v).

Since the values of the curve v 
→ ψ(g0, v) belong to Gv|Nv
⊂ G̃|Ñ , X̃0 is a vector field on

G̃|Ñ , which is s- and t-projectable to the similar vector field Ṽ0 on Ñ (constructed using

f instead of F). Also, it is clear that Ṽ0 is π-projectable to ∂
∂ε

. Since each ψε is a groupoid
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homomorphism, we deduce that X̃0 is a multiplicative transverse vector field on G̃|Ñ . Use

now Lemma 6.6 to extend X̃0 to a similar vector field X̃ on G̃. Note also that, for g0 ∈ G|N ,

the curve γ (ε) = ψ(g0, ε) has

γ̇ (ε) = d

dv
|v=εψ(g0, v) = X̃0(ψε(g0)) = X̃(γ (ε));

hence, the resulting flows φε

X̃
satisfy φε

X̃
(g0) = ψ(g0, ε) for all ε and for g0 ∈ G|N . Then one

proceeds like in the previous two proofs, using the flow of X̃. �

Finally, let us present an application to the linearization problem. However,

we would like to emphasize that our aim here is not so much to prove linearization

results but to show that, for proper groupoids, the linearization follows from a stronger

property—rigidity.

In general, for any Lie groupoid G ⇒ M and any N ⊂ M invariant submanifold,

one can make sense of the linear normal form of G around N, denoted NN(G). For

instance, when N = {x} is a fixed point of G (i.e., all the arrows that start at x also

end at x), the action of G on ν restricts to a linear action of the isotropy group Gx at

x on the tangent space TxM and the linear normal form of G around x, NN(G), is the

resulting action groupoid. For an arbitrary invariant N ⊂ M, similar to the action of G
on ν, one has a canonical action of G|N on the normal bundle N (N) of N in M and the

linearization of G around N, denoted NN(G), is defined as the resulting action groupoid.

A more conceptual description is obtained by considering the normal bundle N (G|N) of

G|N in G; as for TG ⇒ TM (and as a quotient of it), the differentials of the structure maps

of G make N (G|N) into a groupoid over N (N), canonically isomorphic to NN(G). Note

that N, identified with the zero section of NN(M), is invariant with respect to NN(G).

The linearization problem asks whether G and NN(G) are isomorphic when restricted to

neighborhoods of N. When this happens one says that G is linearizable around N. The

relationship with deformations is provided by the following type of topological remarks:

Lemma 7.6. If G is an s-proper Lie groupoid and N ⊂ M is an invariant submanifold,

then there exists an open-neighborhood W of N in M and a smooth proper family {Gε} of

groupoids over W such that

• G1 = G|W ,

• G0 is (isomorphic to) the linear model NN(G),

• Gε|N = G|N as groupoids for all ε;

and even more, one can ensure that Gε is isomorphic to G|W for all ε 	= 0. �
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Proof. (Sketch) One proceeds exactly as in the case of fixed points, which was

explained in full detail in [10]. First of all, the topological arguments from Proposition

2.2 of loc. cit. go through using the following remarks, for a smooth map π : P −→ M

and N ⊂ M a submanifold:

• if π is proper then any open U ⊂ P that contains π−1(N) also contains π−1(V)

for some neighborhood V of N;

• if π is a submersion, then one can find tubular neighborhoods of N in M and

of π−1(N) in P that are compatible with π in the sense that the restriction of

π to the tubular neighborhood corresponds to the map induced by dπ on the

normal bundles.

One then finds an embedding of type

i : G|N (N) ↪→ NN(G) = (G|N)×N N (N),

which is the identity on G|N where N (N) is identified with a tubular neighborhood of

N ⊂ M. Then work on the left side, making use of the multiplication by scalars in the

fibers of the normal bundles to set

mε(e, f ) = 1

ε
m(εe, εf )

(and similarly for the other structure maps), defined on

Gε := {e ∈ NN(G) : εe ∈ G|N (N)}.

Like in [10], it is not difficult to see that the limit at ε = 0 gives rise to the linearized

groupoid structure on G0 = NN(G) and that the resulting groupoid G̃ is proper. �

We see that we are almost in the position of applying Theorem 7.3; however, for

that, one would first have to improve the previous topological argument to insure that

the inclusion i above is an isomorphism, so that the resulting deformation is strict (the

fact that the source is constant is clear). Instead, we can just apply Theorem 7.5 and we

deduce the following linearization theorem (proved first in [12]):

Theorem 7.7. If G is an s-proper groupoid and N ⊂ M is invariant, then G is

linearizable around N. �
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Finally, our techniques can be applied also to the study of families of Lie

groupoids. As before, there are several variations (semi-local or relative versions). Here

we present the most restrictive but simplest statement.

Theorem 7.8. Any compact family G ⇒ M
π−→ B of Lie groupoids is locally trivial. �

Proof. Consider a point b0 in B and a coordinate chart (U, ψ) around b0 in B, with

ψ = (x1, . . . , xn), such that ψ maps U to an open disk D around 0 in R
n and ψ(b0) = 0.

For any b ∈ U, we consider the vector field

n∑
i=1

xi(b)
d

dxi

on D and the corresponding (via ψ ) vector field Wb on U. The flow of Wb at time 1 maps

b0 to b and, moreover, from the construction it is clear that the choice of Wb is smooth

in b. As explained in Remark 6.7, the vector fields Wb on U admit multiplicative lifts Xb

to G|U and, in addition, the choice of Xb can be made smooth in Wb. By taking the flow of

Xb at time 1 (which is defined for all g ∈ Gb0
because of compactness), we find a family

of isomorphisms

φ1
Xb : Gb0

−→ Gb,

parametrized smoothly by b ∈ U, giving the desired local trivialization. �

Remark 7.9. Using the Reeb stability theorem, it is enough that Gb0
be compact to

ensure that there is a neighborhood U of b0 in B such that Gb is diffeomorphic to Gb0

for all b ∈ U. It then follows that the same proof above ensures that G is trivial in a

(possibly smaller) neighborhood of b0. �

Remark 7.10. Del Hoyo and Fernandes have recently obtained (independently) the

theorem above [11]. Their proof follows from a version of the Ehresmann stability

theorem for Lie groupoids. �

8 The Regular Case

When G is a regular Lie groupoid, that is, having all leaves of the same dimension, it has

natural representations on the bundle of isotropy Lie algebras of G, denoted i and on the

normal bundle to the orbits, denoted ν. An arrow g ∈ G acts on α ∈ gs(g) by conjugation,
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g · α = rg−1 ◦ lgα and it acts on [v] ∈ νs(g) by the isotropy representation: if g(ε) is a curve

on G with g(0) = g such that [v] =
[

d
dε

∣∣
ε=0s(g(ε))

]
, then g · [v] =

[
d
dε

∣∣
ε=0t(g(ε))

]
.

Proposition 8.1. The deformation cohomology of a regular Lie groupoid G fits into a

long exact sequence

· · · −→ Hk(G, i)
r−→ Hk

def(G)
π−→ Hk−1(G, ν)

K−→ Hk+1(G, i) −→ · · · ,

where r is induced by the canonical inclusion (??), π associates to a deformation cocycle

c the class modulo Im(ρ) of the s-projection sc of c, and K will be discussed below. �

Proof. We will construct two cochain complexes, C and A, that fit into two short exact

sequences

0 −→ C∗(G, i)
r−→ C∗def(G)

R−→ C∗ −→ 0,

0 −→ C∗ −→ A∗ S−→ C∗(G, ν) −→ 0 (15)

and with the property that A∗ is acyclic. For A∗, define

Ak = Ck(G, TM)⊕ Ck−1(G, TM)

(see also Remark 2.6), with the differential given by

δ(φ, ψ) = (−δ′(φ),−φ + δ′(ψ)),

where

δ′ : Ck(G, TM) −→ Ck+1(G, TM),

(δ′φ)(g1, . . . , gk+1) =
k∑

i=1

(−1)i+1φ(g1, . . . , gigi+1, . . . , gk+1)+ (−1)k+1φ(g1, . . . , gk).

One can check directly that A∗ is acyclic. More conceptually, A∗ is the cylinder of

the complex (C∗(G, TM), δ′), and δ′ is clearly acyclic (with homotopy φ(g1, . . . , gk) 
→
φ(1, g1, . . . , gk)).

The map S : A∗ −→ C∗(G; ν) is defined by

S(φ, σ)(g1, . . . , gk) = g1 · [σ(g2, . . . , gk)]− [φ(g1, . . . , gk)],
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where [V] ∈ ν denotes the class of the tangent vector V ∈ TM and “g1·” refers to the

canonical action of G on ν. It is straightforward to check that S is compatible with

the differentials. Next, C∗ is defined as the kernel of S and R associates to a cochain

c ∈ Ck
def(G) the pair

R(c) = (φc, ψc) ∈ Ck(G, TM)⊕ Ck−1(G, TM)

characterized by

φc(g1, . . . , gk) = dt(c(g1, . . . , gk)), ψc(g2, . . . , gk) = ds(c(g1, . . . , gk)).

Lemma 4.5 implies that R takes values in C∗. Again, a straightforward computation

shows that R is compatible with the differentials. It is also clear that Ker(R) = Im(r).

Finally, we show that R is surjective; let (φ, ψ) ∈ Ck. One can first find c ∈ Ck
def(G) so that

ψ = ψc (e.g., use a splitting of ds : TG −→ TM to lift the expressions ψ(g2, . . . , gk) to

Tg1
G). Using again Lemma 4.5 we see that

g1 · [ψ(g2, . . . , gk)] = [dt(c(g1, . . . , gk)].

Therefore, the condition that (φ, ψ) ∈ Ck implies that φ − dt ◦ c takes values in the image

of the anchor map ρ; hence, (also using regularity) we can write φ = dt ◦ c + ρ ◦ ξ from

some ξ ∈ Ck(G, A). Then c′ ∈ Ck
def(G) defined by

c′(g1, . . . , gk) = c(g1, . . . , gk)+ rg1
(ξ(g2, . . . , gk))

is sent by R to (φ, ψ).

Back to the original sequences, consider the long exact sequences in cohomology

that they induce. The one induced by (15) gives rise to isomorphisms

∂ : Hk−1(G, ν) −→ Hk(C),

which combined with the one induced by (15) gives rise to a long exact sequence as in

the statement.

We still have to show that, modulo the isomorphism ∂, R is identified with π ,

that is, in cohomology, ∂ ◦ π = R. For that, let c ∈ Ck
def(G) be a cocycle representing

the cohomology class [c]. By definition of the connecting map ∂, the cohomology class

∂ ◦π [c] can be represented by δ(a) (seen as a cochain in the subspace Ck), where a ∈ Ak−1

is any cochain such that S(a) = π(c). From the definitions of S and of δ it is easy to see
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that S(−sc, 0) = π(c), and so ∂ ◦ π [c] can be represented by the cochain η = (δ′sc, sc). The

2nd component of R(c) is also sc; hence, the 2nd component of R(c) − η is then equal

to zero. On the other hand, since c is closed, R(c) − η is closed as well. Finally, it is an

easy computation to check that for (φ, 0) ∈ Ck, the 2nd component of δ(φ, 0) is equal to

−φ. With this we conclude that R(c) − η is in fact equal to zero, so R and ∂ ◦ π agree in

cohomology. �

Although the previous proof may seem rather ad-hoc at 1st sight, it becomes very

natural if one follows the intuition given by the adjoint representation interpretation of

deformation cohomology (see Remark 8.4 below). Furthermore, it reveals several new

aspects (see the remarks below), including a possible route to the discovery of the full

structure of the adjoint representation (next section).

Remark 8.2. (A deformation complex for morphisms) First of all, the complex A∗ is

similar to the deformation complex and this indicates the presence of a more general

construction: one has a deformation complex C∗def(F) associated to any morphism of Lie

groupoids

F : G −→ H

covering some base map f : M −→ N (cf. [22] for Lie groups). With the notation from

Remark 2.6,

Ck
def(F) ⊂ Ck(G, F∗TH)

so that k-cochains c are smooth maps

G(k) � (g1, . . . , gk) 
→ c(g1, . . . , gk) ∈ TF(g1)H.

The condition that c belongs to Ck
def(F) is that ds(c(g1, . . . , gk)) does not depend on g1.

Moreover, the differential δ of C∗def(F) is given by exactly the same formula as for the

deformation complex, but using the division m̄ of H. Denote the resulting cohomology

by H∗def(F). Of course,

H∗def(G) = H∗def(IdG).

More generally, the relation between the deformation complexes of F, G, and H
is given by the maps

Ck
def(G)

F∗−→ Ck
def(F)

F∗←− Ck
def(H),
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defined by F∗(c)(g1, . . . gk) = dF ◦ c(g1, . . . , gk) and F∗(c′)(g1, . . . , gk) = c′(F(g1), . . . , F(gk)),

for any c ∈ Ck
def(G) and c′ ∈ Ck

def(H).

Similar to the deformation cohomology of G, H∗def(F) can be seen as “the

differentiable cohomology of G with coefficients in F∗AdH—the pullback by F of the

adjoint representation of H”.

With this, the complex A∗ from the previous proof is C∗def(F) where F = (s, t) :

G −→ � := M ×M is the canonical map into the pair groupoid of M, hence, it is related

to F∗Ad�; the acyclicity of A is related to the fact that Ad�, that is, the complex TM
Id−→

TM, is acyclic. �

Remark 8.3. (The curvature map) One can also go on and compute the “curvature map

K” in the sequence. In degree 0 one finds the curvature discussed in Section 4.5. A careful

analysis in higher degrees shows that K is the cup product with a canonical cohomology

class, still denoted by K,

K ∈ H2(G, Hom(ν, i)).

Here we use the induced Hom-representation: for g : x −→ y, its action of ξ : νx −→ ix is

g · ξ : νy −→ iy given by

(g · ξ)(v) = g · ξ(g−1 · v).

Also, the cup-product operation that we refer to is

Ck(G, Hom(ν, i))× Ck′(G, ν) −→ Ck+k′(G, i), (ξ , v) 
→ ξ · v

defined by the same formula as (4) where the pointwise product of u and v is replaced

by the evaluation of u on v. We will explain in the next section how the point of view

of representations up to homotopy can be used to describe the class K (see Remark 9.5).

However, it is worth having in mind that one can proceed directly and analyze K as

it arises from the previous proposition; the analysis is not completely straightforward

(e.g., one has to realize the relevance of connections on groupoids) but, ultimately, it

reveals the full structure on Ad = A ⊕ TM (and the notion of representation up to

homotopy). Although we do not give here the full details of such a direct approach,

we hope that our comments motivate and clarify the next section. �

Remark 8.4. (Yoneda extensions) The heart of the previous proof is the exact sequence

0 −→ C∗(G, i)
r−→ C∗def(G)

R−→ A∗ S−→ C∗(G, ν) −→ 0.
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With Remark 8.2 in mind, this sequence represents a sequence involving the adjoint

and the related representations: i, AdG , Ad�, and ν; at the level of chain complexes, one

simply deals with:

This gives an interpretation of the curvature map from the previous proposition

in terms of Yoneda extensions (in the sense of homological algebra), as the cup product

with the element in the Ext-group represented by E ; moreover, since we basically deal

with vector bundles (for which Hom(E, F) = E∗ ⊗ F) the relevant group Ext2(ν, i) is

simply H2(G, Hom(ν, i)). Again, all these can be made precise within the framework of

representations up to homotopy, providing another way of looking at the cohomology

class K. �

9 Relation with the Adjoint Representation

In this section we describe the relationship between H∗def(G) and the adjoint representa-

tion of [2]. Actually, we will explain that, once a connection σ is fixed, C∗def(G) gives rise

right away to a representation up to homotopy Adσ and then we will identify it with the

adjoint representation from [2].

We fix a Lie groupoid G ⇒ M and we start by briefly recalling the notion of

representation up to homotopy. As in Remark 2.6, for a vector bundle E over M we

consider the space Ck(G, E) of E-valued differentiable cochains. If E is graded, then we

consider C(G, E)∗ with the total grading

C(G, E)n =
⊕

k+l=n

Ck(G, El).

As in Section 2.3, the cup product makes C(G, E) into a right-graded C(G)-module.

By definition, a representation up to homotopy of G is a graded vector bundle E

together with a differential D on C(G, E) (the structure operator), which makes it into

a differential graded (C(G), δ)-module (with respect to the total grading and the cup

products). This is precisely what the deformation complex of G gives us once we fix a

splitting of the short exact sequence:

t∗A r−→ TG ds−→ s∗TM. (16)
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Such a splitting can be seen as a right inverse σ : s∗TM −→ TG of (ds), that is, an

Ehresmann connection on the bundle s : G −→ M; we say that σ is an Ehresmann

connection on G if, moreover, at the units it coincides with the canonical splitting (du).

Lemma 9.1. Consider the graded vector bundle

Ad = A⊕ TM

with A in degree 0 and TM in degree 1. Then any Ehresmann connection σ induces

isomorphisms

Iσ : Ck
def(G) ∼= C(G, Ad)k = Ck(G, A)⊕ Ck−1(G, TM), c ←→ (u, v)

characterized by

c(g1, . . . , gk) = rg1
(u(g1, . . . , gk))− σg1

(v(g2, . . . , gk)). (17)

Moreover, this is an isomorphism of right C(G)-modules (see Lemma 2.5 for the module

structure on Cdef(G)). In particular, for any Ehresmann connection σ on G, there is a

unique operator Dσ on C(G, Ad), which makes Ad into a representation up to homotopy

of G and such that Iσ is an isomorphism between (Cdef(G), δ) and (C(G, Ad), Dσ ).

The resulting representation up to homotopy will be denoted Adσ . To make it

more explicit (and identify it with the one of [2]), let us first be more explicit about the

structure of representations up to homotopy of length 2, that is, of type

E = E0 ⊕ E1.

In this case, the structure operator

D : Ck(G, E0)⊕ Ck−1(G, E1) −→ Ck+1(G, E0)⊕ Ck(G, E1)

is necessarily of type

D(u, v) = (δλ(u)+ K · v,−δλ(v)+ ∂(u)),
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where

• ∂ : E0 −→ E1 is a vector bundle morphism, and we use the same letter for

∂ : Ck(G, E0) −→ Ck(G, E1), ∂(c) = ∂ ◦ c;

• λ is a quasi-action of G on E = E0 ⊕ E1 acting componentwise and

δλ : C∗(G, E) −→ C∗+1(G, E)

is the induced operator (cf. Remark 2.6);

• the “curvature term” K is a smooth section that associates to a pair (g, h)

of composable arrows a linear map K(g, h) : E1
s(h)

−→ E0
t(g), and we use the

cup-product operation

Ck−1(G, E1) −→ Ck+1(G, E0), c 
→ K · c

(K · c)(g1, . . . , gk+1) = K(g1, g2)(c(g3, . . . , gk+1)).

Note that the condition that D2 = 0 breaks into

∂ ◦ λg = λg ◦ ∂ (on E0), (18)

λgλh − λgh + K(g, h) ◦ ∂ = 0 (on E0), (19)

λgλh − λgh + ∂ ◦ K(g, h) = 0 (on E1), (20)

λgK(h, k)− K(gh, k)+ K(g, hk)− K(g, h)λk = 0 (on E1). (21)

Hence, Lemma 9.1 implies that Ad comes with operators ∂, λ, K associated to σ .

It is not difficult to check that ∂ is the anchor of A. We claim that λ and K coincide with

the quasi-action and the basic curvature of σ , introduced in [2]:

• the quasi-actions associate to every g : x −→ y the maps

λg : TxM −→ TyM, λg(X) = (dt)g(σg(X)),

λg : Ax −→ Ay, λg(α) = −ωg(←−α (g)),

where←−α is given by (1) and where ω : TG −→ t∗A is the induced left splitting

of the sequence 16, ωg(X) = rg−1(X − σgds(X));

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/21/7662/5098086 by Instituto de Física de São C
arlos U

SP user on 05 January 2021



7720 M. Crainic et al.

• the basic curvature, K = Kbas
σ , associates to a pair of composable arrows

y
g←− h←− x

and a vector v ∈ TxM, the element

K(g, h)v ∈ Ay,

characterized by

rgh(K(g, h)v) = σgh(v)− (dm)g,h(σg(λh(v)), σh(v)) ∈ TghG. (22)

In other words, we have the following:

Proposition 9.2. The structure operator of the representation up to homotopy Adσ =
A⊕TM arising from Lemma 9.1 is the one associated to the quasi-actions and the basic

curvature of σ and the bundle map ∂ = ρ : A −→ TM, that is,

Dσ (u, v) = (δλ(u)+ K · v,−δλ(v)+ ρ(u)).

�

Proof. Before we do the actual computation, let us first point out three general

formulas. First we note that, with respect to the decomposition induced by σ , the

expressions of type
←−
β (g) correspond to the pair (−λg(β), ρ(β)) ∈ At(g) ⊕ Ts(g)M; indeed,

the A component is obtained by applying ωg, hence it is−λg(β), while the TM-component

is obtained by applying ds, hence it is ds(lg(di(β))) = dt(β) = ρ(β). In conclusion,

←−
β (g) = −rg(λg(β))+ σg(ρ(β)).

Next, we claim that, for all α, β ∈ A, and (g, h) composable arrows, one has

(dm̄)gh,h(rgh(α), rh(β)) = −→α (g)+←−β (g) = rg(α)− rg(λg(β))+ σg(ρ(β)). (23)

Due to the previous discussion, we only have to show the 1st equality. Since both

(rgh(α), 0h) and (0g, rh(β)) are tangent to the domain G[2] of m̄, to prove this formula it

suffices to consider separately the cases when β = 0 and then when α = 0. When β = 0,
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the left-hand side is the differential of the map s−1(x) � a 
→ m̄(rgh(a), h) = ag = rg(a)

(x = t(g)), at the unit at x, applied to α; hence it gives rg(α(x)) = −→α (g). Similarly, when

α = 0, we deal with the differential of the map s−1(y) � b 
→ m̄(gh, rh(b)) = gb−1 =
lg(i(b)) (y = t(h) = s(g)), at the unit at y applied to β, that is (see (1)),

←−
β (g).

Finally we also need the fact that, for (g, h) composable and V ∈ Ts(h)M,

(dm̄)gh,h(σgh(V), σh(V)) = σg(λh(V))+ rg(K(g, h)(V)). (24)

Indeed, using the formula for σgh(V) that results from (22), we find

(dm̄)gh,h((dm)g,h(σg(λh(V)), σh(V)), σh(V)))+ (dm̄)gh,h(rgh(K(g, h)(V), 0h).

The 1st term is just σg(λh(V)) because m̄(m(g, h), h) = g, while the 2nd term is

rg(K(g, h)(V)).

Consider now a deformation cochain c written as (17); we will compute δ(c) in

terms of u and v.

The 1st term in the formula for δ(c)(g1, . . . , gk+1) is

−(dm̄)(rg1g2
(u(g1g2, g3, . . . , gk+1))− σg1g2

(v(g3, . . . , gk+1)), rg2
(u(g2, . . . , gk+1))

− σg2
(v(g3, . . . , gk+1)).

Using (23) we find that −(dm̄)(rg1g2
(u(g1g2, g3, . . . , gk+1)), rg2

(u(g2, . . . , gk+1))) is

−rg1
(u(g1g2, g3, . . . , gk+1))+ rg1

(λg1
(u(g2, . . . , gk+1)))− σg1

(ρ(u(g2, . . . , gk+1))),

and using (24) we find that (dm̄)(σg1g2
(v(g3, . . . , gk+1)), σg2

(v(g3, . . . , gk+1))) is

σg1
(λg2

(v(g3, . . . , gk+1)))+ rg1
(K(g1, g2)(v(g3, . . . , gk+1))).

Hence, the components of the 1st term in the formula for δ(c) are

−u(g1g2, g3, . . . , gk+1)+ λg1
(u(g2, . . . , gk+1))+ K(g1, g2)(v(g3, . . . , gk+1)) ∈ At(g1),

−ρ(u(g2, . . . , gk+1))+ λg2
(v(g3, . . . , gk+1)) ∈ Ts(g1)M.
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The next terms in the formula for δ(c)(g1, . . . , gk+1) are, for each i ∈ {2, . . . , k}:

(−1)i(rg1
(u(g1, . . . , gigi+1, . . . , gk+1))− σg1

(v(g2, . . . , gigi+1, . . . , gk+1))),

hence, give the components

(−1)iu(g1, . . . , gigi+1, . . . , gk+1) ∈ At(g1), (−1)i+1v(g2, . . . , gigi+1, . . . , gk+1) ∈ Ts(g1)M,

and similarly for the last term. All together, we see that the components corresponding

to δ(c) are

δλ(u)(g1, . . . , gk+1)+ K(g1, g2)(v(g3, . . . , gk+1)) ∈ A,

−ρ(u(g2, . . . , gk+1))+ δλ(v)(g2, . . . , gk+1) ∈ TM.

Therefore, with respect to the splitting given by (17) (which introduces a minus sign on

the TM component) we find

(δλ(u)+ K · v, ρ(u)− δλ(v)).
�

Remark 9.3. When comparing with [2], note that one has to take care with adjusting

signs: the formula in loc. cit. for the differential δu of a differentiable k-cochain (formula

(3)) differs from ours by a factor of (−1)k, and the formula for the cup product of a

k-cochain u and a k′-cochain v (formula (4)) differs by a factor of (−1)kk′ . By sending

f ∈ Cl(G) and (u, v) ∈ C(G, Ad)k to (−1)� l
2 �f and ((−1)� k

2 �u, (−1)� k−1
2 �v), respectively,

one obtains an isomorphism of chain complexes between the two versions, respecting

the DG-module structures. Here �x� denotes the largest integer that is smaller or equal

to x. �

Remark 9.4. It is straightforward to check that the isomorphism Iσ restricts to an

isomorphism between the normalized subcomplexes (Ĉdef(G), δ) and (Ĉ(G, Ad), Dσ ). A

cochain c ∈ Ck(G, Ad) is said to be normalized if c(g1, · · · , gk) = 0, whenever any of

the arrows gi is a unit, and Ĉk(G, Ad) denotes the subspace of normalized k-cochains. �

Remark 9.5. We now return to case of a regular Lie groupoid G and to the sequence

from Proposition 8.1, in order to give another description of the curvature map K.

Choose splittings μ : ν −→ TM of the canonical projection π and τ : Im(ρ) −→ A of
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the anchor map and a compatible Ehresmann connection σ ,that is, with the property

that μ and τ are equivariant with respect to the canonical actions of G on ν and i,

and the quasi-actions λ induced by σ on A and TM. Such a σ can always be obtained,

by starting with any Ehresmann connection σ ′ on G, and modifying it via a cochain

η ∈ C1(G, Hom(TM, A)), as explained in Lemma 6.10 of [14].

Then, composing Kσ with μ and τ , we have that any pair (g, h) of composable

arrows induces a map τKσ (g, h)μ : νs(h) −→ it(g); moving from νs(h) to νt(g) using

the action by gh, we end up with a map Kμ,τ
σ (g, h) : νt(g) −→ it(g), therefore with a

differentiable cochain

Kμ,τ
σ ∈ C2(G, Hom(ν, i)).

It can be proven that Kμ,τ
σ is a cocycle, the resulting cohomology class

[Kμ,τ
σ ] ∈ H2(G, Hom(ν, i))

does not depend on the choice of σ , μ, and τ (as long as σ is compatible with μ and τ ),

and the map K from Proposition 8.1 is given by the cup product with this class. �

10 Relation with the Infinitesimal Theory (the Van Est Map)

In this subsection we show that the deformation cohomology H∗def(G) is the global

(groupoid) analog of the similar cohomology H∗def(A) from the deformation theory of

Lie algebroids [9].

Recall first the definition of the deformation complex (C∗def(A), δ) (and the

deformation cohomology H∗def(A)) of a Lie algebroid A over a manifold M. The k-cochains

are antisymmetric multilinear maps D : �(A)k −→ �(A), which are multiderivations,

that is, such that there is a map σD : �(A)k−1 −→ X(M), called the symbol of D, which is

multilinear and satisfies

D(α1, α2, . . . , f αk) = fD(α1, α2, . . . , αk)+ LσD(α1,...,αk−1)(f )αk

for any f ∈ C∞(M) and αi ∈ �(A). The differential δ : Ck
def(A) −→ Ck+1

def (A) is given by

δ(D)(α1, . . . , αk+1) =
∑

i

(−1)i+1[αi, D(α1, . . . , α̂i, . . . , αk+1)]

+
∑
i<j

(−1)i+jD([αi, αj], α1, . . . , α̂i, . . . , α̂j, . . . , αk+1).
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Next, we relate the deformation cohomology H∗def(G) of a Lie groupoid G with

the deformation cohomology H∗def(A) of the Lie algebroid A of G. This can be seen as a

generalization of the more ordinary van Est map relating differentiable cohomology to

Lie algebroid cohomology. Given a section α ∈ �(A) we can define a map Rα : Ĉk+1
def (G) −→

Ĉk
def(G) by Rα(c) = [c,−→α ]|M when k = 0 and by

Rα(c)(g1, . . . , gk) = (−1)k d

dε

∣∣
ε=0

c(g1, . . . , gk, φα
ε (s(gk))−1)

when k ≥ 1, where φα
ε denotes the flow of the right-invariant vector field on G associated

to α. The van Est map is the map

V : Ĉ∗def(G) −→ C∗def(A)

defined by

(Vc)(α1, . . . , αk) =
∑
τ∈Sk

(−1)|τ |Rατ(k)
◦ . . . ◦ Rατ(1)

(c).

Note that the van Est map is only defined on the subcomplex of normalized

deformation cochains.

In analogy to the usual van Est theorem relating Lie groupoid cohomology to Lie

algebroid cohomology, we obtain the following result:

Theorem 10.1. For any Lie groupoid G the van Est map V is a chain map; hence, it

induces a map in cohomology

V : Hp
def(G) −→ Hp

def(A).

Moreover, if G has k-connected s-fibers then this map is an isomorphism in all degrees

p ≤ k. �

In Section 9 we have seen the construction of the adjoint representation of a Lie

groupoid, and the isomorphism of C∗def(G) with C∗(G, Adσ ); the infinitesimal analog of

this construction gives rise to the adjoint representation ad∇ of a Lie algebroid A [1]; it

is proven in loc. cit. that C∗def(A) is isomorphic to C∗(A; ad∇).

We prove Theorem 10.1 by showing that under the isomorphisms of C∗def(G) and

C∗def(A) with C∗(G, Adσ ) and C∗(A; ad∇), it translates to the van Est theorem of Arias Abad

and Schätz (Theorem 4.7 in [3]) for the van Est map relating the complexes C∗(G, Adσ )

and C∗(A; ad∇).
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We use the concepts and notations from [1, 3, 9] needed for the proof. Similarly

to the setting for Lie groupoids, �(A, E) = �(�∗(A∗)⊗E) is a right-graded �(A)-module;

a representation up to homotopy of A is a graded vector bundle E together with a

differential D on �(A, E), which makes it into a differential-graded (�(A), dA)-module.

The adjoint representation of a Lie algebroid A, seen as a representation up to

homotopy, is given by the graded vector bundle ad = A ⊕ TM, where A has degree 0

and TM has degree 1, so that �(A, ad)k = �k(A; A) ⊕ �k−1(A; TM), and a differential

D∇ , which is defined using a connection ∇ on A. When A is the Lie algebroid of a Lie

groupoid G, one can take ∇ to be induced by a Ehresmann connection σ on G by letting

∇Xα = [σ(X),−→α ]
∣∣
M , (25)

for any vector field X on M and α ∈ �(A). The resulting chain complex is denoted

C∗(A, ad∇).

We recall that the isomorphism Cdef(A) ∼= C∗(A; ad∇) induced by a connection ∇
on A is given by �∇ : Cdef(A) −→ C∗(A; ad∇), D 
→ (LD,−σD), where LD is defined by

LD(α1, . . . , αk) = D(α1, . . . , αk)+ (−1)k−1
∑

i

(−1)i∇σD(α1,...,̂αi,...,αk)αi.

We now recall the definition of the van Est map from [3], for cochains with values

in representations up to homotopy of length 2. Let E = E0⊕E1 be a graded vector bundle

over M and α a section of A. Define the map Rl
α : Ĉk+1(G; El) −→ Ĉk(G; El) by

Rl
α(c)(g1, . . . , gk) = d

dε

∣∣
ε=0

c(g1, . . . , gk, φα
ε (s(gk))−1).

The van Est map of [3] is the map VEl
: Ĉk(G; El) −→ �k(A; El), which is given by

(VEl
c)(α1, . . . , αk) = (−1)kl

∑
τ∈Sk

(−1)|τ |Rl
ατ(k)

◦ . . . ◦ Rl
ατ(1)

(c),

when k ≥ 1 and by the identity map when k = 0. The van Est map for the adjoint

representation is obtained by taking E0 = A and E1 = TM.

We will show that for an Ehresmann connection σ on G, and the connection

∇ on A induced by σ (see formula 25), the van Est map V of deformation cohomology

corresponds to the van Est map of [3], under the isomorphisms Iσ : Cdef(G) −→ C(G, Ad)

and �∇ : Cdef(A) −→ C(A, ad) induced by σ . Recall that Iσ (c) = (ω(c),−sc), where sc =
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ds ◦ c and (ω(c))(g1 . . . , gk) = r−1
g1

(c − σ ◦ sc)(g1, . . . , gk). In order to accommodate for the

sign convention of [3], we will actually use a slightly different map (see Remark 9.3)

Ĩσ (c) = ((−1)�
k
2 �ω(c), (−1)�

k−1
2 �+1sc).

Lemma 10.2 (Rα in degree 1). For c ∈ Ĉ1
def(G), it holds that

Rα(c) := [c,−→α ]|M = R0
α(ω(c))+ ∇sc

α. (26)

�

Proof. Since c(g) = rgω(c)(g)+ σgsc(s(g)), it is enough to prove the equation in the two

following cases:

Case 1: ω(c) = 0, or equivalently, c = σgsc; in this case Equation (26) holds since

it is exactly the defining expression for ∇.

Case 2: sc = 0, or equivalently, ω(c)(g) = rg−1c(g); in this case we want to prove

that

[c,−→α ]|M(x) = R0
α(ω(c))(x) := d

dε

∣∣
ε=0

rφα
ε (x)c(φα

ε (x)−1).

Given any 1-cochain, normalized or not, consider the section γc = c|M−sc ∈ �(A).

Define a projection π : C1
def(G) −→ Ĉ1

def(G) by π(c) = c − −→γc . For a deformation cochain

c satisfying sc = 0, we will prove that [c,−→α ]|M(x) = R0
α(ω(c))(x), which in the case of a

normalized cochain c gives the desired result. To do so, first note that [π(c),−→α ]|M(x) −
R0

α(ω(c))(x) is C∞(G)-linear in c. Indeed,

[fc,−→α ]|M(x)− [−→γfc,−→α ]|M(x)− R0
α(ω(fc))(x) =f [c,−→α ]|M(x)− f [−→γc ,−→α ]|M(x)− fR0

α(ω(c))(x)

− (
L−→α f

)
c(x)+

(
Lρ(α)f

)
c(x)− (

L←−α f
)

c(x),

and the sum of the last three terms is zero since −→α x +←−α x = ρ(αx). To see how the term(
L←−α f

)
c(x) shows up by expanding R0

α(ω(fc))(x), it is enough to notice that φα
ε (x)−1 =

φ
←−α
ε (x) and apply the chain rule.

Any cochain c with sc = 0 is a linear combination of right-invariant ones, with

coefficients in C∞(G), and since [π(c),−→α ]|M(x)−R0
α(ω(c))(x) is C∞(G)-linear, it is enough

to check that it is zero for a right-invariant c. This clearly holds because in this case

both [π(c),−→α ]|M(x) and R0
α(ω(c))(x) will be zero. �
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Note that Lemma 10.2 says precisely that the map V on Ĉ1
def(G) corresponds to

(VA,VTM) on Ĉ(G, Ad)1, through the isomorphisms Ĩσ and �∇ .

Lemma 10.3 (Rα in higher degrees). For all k ≥ 1, the maps Rα : Ĉk+1
def (G) −→ Ĉk

def(G)

satisfy

Rα = Ĩ−1
σ ◦ (R0

α,−R1
α) ◦ Ĩσ .

�

Proof. If c ∈ Ĉk+1
def (G), then

(
Ĩ−1
σ ◦ (R0

α, −R1
α) ◦ Ĩσ (c)

)
(g1, . . . , gk) =

= (−1)�
k
2 �+� k−1

2 �rg1
R0

α(ω(c))(g1, . . . , gk)

+ (−1)�
k−1

2 �+� k−2
2 �+1σg1

R1
α(sc)(g2, . . . , gk)

= (−1)k(rg1
R0

α(ω(c))(g1, . . . , gk)+ σg1
R1

α(ds ◦ c)(g1, . . . , gk))

= (−1)k(rg1
ωg1

+ σg1
ds)

(
d

dε

∣∣
ε=0

c(g1, . . . , gk, φα
ε (s(gk))−1)

)
,

where the last equality follows from checking that, since both ωg1
and (ds)g1

are linear

and do not depend on ε, they commute with the operation d
dε

∣∣
ε=0 in the definitions of

R0
α, R1

α, and Rα. �

Proof. (Theorem 10.1) We can compare the van Est maps V and (VA,VTM) in arbitrary

degree as follows. Consider a normalized deformation cochain c of degree k, and a

permutation τ ∈ Sk. Lemma 10.3 implies that

Rατ(k)
◦ . . . ◦Rατ(1)

(c) = Rατ(k)
◦ Ĩ−1

σ ◦ (R0
ατ(k−1)

◦ . . . ◦R0
ατ(1)

, (−1)k−1R1
ατ(k−1)

◦ . . . ◦R1
ατ(1)

) ◦ Ĩσ (c),

and since we are applying Rατ(k)
to a deformation 1-cochain, using Lemma 10.2 we see

that

Rατ(k)
◦ . . . ◦ Rατ(1)

(c) = (−1)�
k
2 �R0

ατ(k)
◦ R0

ατ(k−1)
◦ . . . ◦ R0

ατ(1)
(ω(c)) (27)

+ (−1)�
k−1

2 �+1∇(−1)k−1R1
ατ(k−1)

◦...◦R1
ατ(1)

(sc)ατ(k).

The van Est map V is obtained by summing the previous expressions over all

permutations in Sk. We can split this into a double sum, summing over i = 1, . . . , k and
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over the permutations τ ∈ Sk such that τ(k) = i. Using this resummation and Equation

(27), we have that

(Vc)(α1, . . . , αk) =
k∑

i=1

∑
τ∈Sk

τ(k)=i

(−1)|τ |Rατ(k)
◦ . . . ◦ Rατ(1)

(c)

= (−1)�
k
2 �

k∑
i=1

(−1)|τ |R0
ατ(k)

◦ R0
ατ(k−1)

◦ . . . ◦ R0
ατ(1)

(ω(c)) (28)

+ (−1)�
k−1

2 �+1
k∑

i=1

∑
τ∈Sk

τ(k)=i

(−1)|τ |∇(−1)k−1R1
ατ(k−1)

◦...◦R1
ατ(1)

(sc)αi.

If τ ∈ Sk is a permutation with τ(k) = i, by composing the cycle ri = (k k− 1 . . . i+ 1 i)

with it, we obtain a permutation τ ′ = ri ◦ τ that fixes k, so it can be seen as element of

Sk−1 (and any element of Sk−1 is of this form), for which we have (−1)|τ ′| = (−1)|τ |+|ri| =
(−1)|τ |+(k−(i−1)). From this, and the definitions of VA,VTM , we see that (28) is equal to

(−1)�
k
2 �VAω(c)(α1, . . . , αk)+ (−1)�

k−1
2 �+1

k∑
i

(−1)|ri|∇VTMsc(α1,··· ,̂αi,··· ,αk)(αi),

which is precisely the expression for �−1
∇ ◦ (VA,VTM) ◦ Ĩσ (c)(α1, . . . , αk), meaning that V

does indeed correspond to (VA,VTM). To finish the proof, we apply the van Est theorem

(Theorem 4.7 in [3]) for (VA,VTM). �

Remark 10.4. A version of the theorem above, valid for more general representations

up to homotopy, was proved by Arias Abad and Schätz in [3]. The main point of

our theorem is that it relates directly and canonically the deformation complexes of

groupoids and algebroids. Using the result of [3], one would only obtain the desired van

Est map after choosing connections and identifying the deformation complexes with the

respective adjoint complex.

An alternative proof using the VB-interpretation of the adjoint cohomology (see

[14] or Section 3.5) has been recently communicated to us by Cabrera and Drummond

and will appear in [4].

11 Morita Invariance

In this section we prove that Morita equivalent Lie groupoids have isomorphic defor-

mation cohomologies. This is useful not only for computations but also for conceptual
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Deformations of Lie Groupoids 7729

reasons: it shows that the deformation cohomology of a Lie groupoid G is an invariant

of the differentiable stack presented by G.

Remark 11.1. In this direction, it is interesting to note that the notion of invariant

vector fields up to isomorphism of [17] is related to H1
def(G), where G is an action

groupoid. �

We recall briefly some basics on Morita equivalences. Detailed expositions can

be found in [20, 21]. If G is a Lie groupoid over M, a (left) action of G on a manifold

P is given by a smooth map μ : P −→ M, called moment map, and a smooth map

G ×M P −→ P, with (g, p) 
→ g · p ∈ μ−1(t(g)), satisfying the usual action axioms. Here,

the fibred product is taken over the source map of G and over μ.

A left G-bundle is a left G-space P together with a G-invariant surjective

submersion P −→ B. It is called principal if the map G×M P −→ P×B P, (g, p) 
→ (gp, p) is

a diffeomorphism. The notions of right action and right G-bundle are defined similarly.

Lie groupoids G over M and H over N are said to be Morita equivalent if there is

a manifold P together with a left action of G on P with moment map α : P −→ M and a

right action of H on P with moment map β : P −→ N, such that β : P −→ N is a principal

G-bundle, α : P −→ M is a principal H-bundle and the two actions commute. We then

say that P is a bibundle realizing this Morita equivalence between G and H.

Example 11.2. (Isomorphisms) If f : G −→ H is an isomorphism of Lie groupoids,

then G and H are Morita equivalent. A bibundle can be given by the graph Graph(f ) ⊂
G × H, with moment maps t ◦ pr1 and s ◦ pr2, and the natural actions induced by the

multiplications of G and H.

Example 11.3. (Pullback groupoids) Let G be a Lie groupoid over M and a α : P −→ M

a surjective submersion. Then we can form the pullback groupoid α∗G ⇒ P, that has as

space of arrows P ×M G ×M P, meaning that arrows are triples (p, g, q) with α(p) = t(g)

and s(g) = α(q). The structure maps are determined by s(p, g, q) = q, t(p, g, q) = p and

(p, g1, q)(q, g2, r) = (p, g1g2, r).

The groupoids G and α∗G are Morita equivalent, a bibundle being given by G×M P.

The left action of G has moment map t ◦ pr1 : G ×M P −→ M is given by g · (h, p) =
(gh, p) and the right action of α∗G has moment map pr2 : G ×M P −→ P and is given by

(h, p) · (p, k, q) = (hk, q). �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/21/7662/5098086 by Instituto de Física de São C
arlos U

SP user on 05 January 2021



7730 M. Crainic et al.

Example 11.4. (Čech groupoids) The following special case of the example above arises

in Mayer–Vietoris-type arguments concerning Lie groupoids (see Proposition 11.9 and

the proof of Theorem 11.6 below).

Let U = {Ui}i∈J be an open cover of M and let π : �Ui −→ M denote the obvious

surjective submersion. The Čech groupoid of G w.r.t U is defined to be the groupoid

Ǧ(U) = π∗G ⇒ �Ui,

and it is Morita equivalent to G. Note that an arrow (x, g, y) of Ǧ(U) can be unambigu-

ously denoted by (i, g, j) where s(i, g, j) = y ∈ Uj and t(i, g, j) = x ∈ Ui. �

Remark 11.5. Let G and H be Morita equivalent, with bibundle P as above. Using that

P is a principal bibundle, it is easy to check that

α∗G = P ×M G ×M P ∼= P ×M P ×N P ∼= P ×N H×N P = β∗H,

as Lie groupoids over P.

This means that we can break a Morita equivalence between G and H, using

a bibundle P, into a chain of simpler Morita equivalences: G is Morita equivalent to

α∗G ∼= β∗H, which is Morita equivalent to H. Therefore, in order to check invariance

under Morita equivalences of a property or construction associated to a Lie groupoid,

it is enough to check invariance under isomorphisms and under Morita equivalences

between a Lie groupoid and its pullback by a surjective submersion.

Theorem 11.6 (Morita invariance). If two Lie groupoids are Morita equivalent, then

their deformation cohomologies are isomorphic. �

Proof. By Remark 11.5, it is enough to prove invariance under isomorphisms and

under pullback by a surjective submersion f : P −→ M.

For both cases we use that given a morphism of Lie groupoids F : G −→ H, we

have maps

Ck
def(G)

F∗−→ Ck
def(F)

F∗←− Ck
def(H)

relating the deformation cohomologies of G, F, and H (Remark 8.2). When F is an

isomorphism, F∗ and F∗ will be isomorphisms of chain complexes, so that takes care

of invariance under isomorphims. We will now focus on the case where f : P −→ M

is a surjective submersion, and F is the induced map F : f ∗G −→ G, g̃ = (p, g, q) 
→ g.
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Deformations of Lie Groupoids 7731

We will prove that C∗def(f
∗G) is quasi-isomorphic to C∗def(G) by showing that both are

quasi-isomorphic to C∗def(F).

Claim 1. F∗ is a quasi-isomorphism between C∗def(f
∗G) and C∗def(F).

�

Proof of Claim1. Recall that F∗c = dF ◦ c. We first note that F∗ is surjective. In fact, if

we chose a connection on TP, that is, a right-splitting � on the sequence

0 −→ ker(f ) −→ TP −→ f ∗TM −→ 0,

then given c ∈ C∗def(F), if we set c̃ = (�(dt(c)), c, �(ds(c))), we obtain that F∗c̃ = c.

We thus obtain a short exact sequence

0 −→ ker F∗ −→ C∗def(f
∗G) −→ C∗def(F) −→ 0,

so to prove the claim it is enough to show that ker F∗ is acyclic.

Note that k-cochains in ker F∗ may be identified with pairs of maps

u : (f ∗G)k −→ ker df , v : (f ∗G)k−1 −→ ker df ,

where u(g̃1, . . . , g̃k) ∈ ker(df )p1
, v(g̃2, . . . , g̃k) ∈ ker(df )q1

, and g̃i denotes the arrow

(pi, gi, qi).

A simple computation shows that under this identification, the differential of

the deformation complex satisfies

δ(u, 0) = (w, u),

for some w : (f ∗G)k+1 −→ ker df as above. Then, if (u, v) is a cocycle, it must actually

be exact, with (u, v) = δ(v, 0). Indeed, (u, v) − δ(v, 0) = (w, 0) and (w′, w) = δ(w, 0) =
δ(u, v)− δ2(v, 0) = 0, so w = 0. �

Next, we reduce our problem of showing that H∗def(f
∗G) � H∗def(G) to the case

where f : P −→ M admits a global section σ : M −→ P. For this we will need the

following Mayer–Vietoris argument, where we use the Čech groupoid Ǧ(U) associated to

an open cover U = {Ui} of M (Example 11.4).
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Claim 2 (Mayer–Vietoris Argument). If U is an open cover of M, then H∗def(G) �
H∗def(Ǧ(U)). �

Since the proof of this claim is formally identical to the proofs of claims 5 and 6

below (with the role of the section σ to be played by a partition of unity), we will

postpone it until Proposition 11.9.

Claim 3. We may assume without loss of generality that the map f : P −→ M admits a

global section σ : M −→ P. �

Proof of Claim3. Take a cover U = {Ui} of M by open sets, which admit local sections

σi : Ui −→ f−1Ui, and denote by V the open cover of P by the open sets Vi = f−1Ui. Note

that f induces a surjective submersion with a global section

f̌ : �Vi −→ �Ui.

Moreover, the Čech groupoid ˇ(f ∗G)(V) of f ∗G with respect to the cover V is

isomorphic to the pullback groupoid f̌ ∗(Ǧ(U)) of the Čech groupoid Ǧ(U) by the surjective

submersion f̌ . Thus, by Claim 2, and invariance under isomorphism, we have

H∗def(f̌
∗(Ǧ(U))) � H∗def(f

∗G)and H∗def(Ǧ(U)) � H∗def(G).

Thus, H∗def(G) � H∗def(f
∗G) if and only if H∗def(Ǧ(U)) � H∗def(f̌

∗(Ǧ(U))). �

From now until the end of the proof of the theorem we will assume that f : P −→
M admits a global section σ : M −→ P. We then obtain a left inverse to F∗:

�σ : C∗def(F) −→ C∗def(G), �σ (c)(g1, · · · , gk) = c(σ (t(g1)), g1, σ(s(g1)), . . . , σ(t(gk)), gk, σ(s(gk))).

It follows that the map induced by F∗ in cohomology is injective, and it is our task to

show that it is surjective. For this we consider the following decreasing sequence of

subcomplexes of C∗def(F).

We will call a cochain c ∈ Ck
def(F) strongly normalized in the j− th position, if it

satisfies the following two conditions:

c(g̃1, . . . , g̃j, . . . , g̃k) = c(g̃1, . . . , g̃′j, . . . , g̃k)whenever F(g̃j) = F(g̃′j) (29)
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and if F(g̃j) is a unit in G, then

c(g̃1, . . . , g̃j, . . . , g̃k) = 0 if 1 < j ≤ k

c(g̃1, . . . , g̃k)is a unit of TG if j = 1.
(30)

We denote by N ∗ ⊂ C∗def(F) the complex of strongly normalized cochains, that is, those

that are strongly normalized in all positions.

We obtain a decreasing sequence of subcomplexes

C∗def(F) = N ∗
0 ⊇ · · · ⊇ N ∗

� ⊇ · · · ⊇ N ∗,

where we set

N k
� = {c ∈ Ck

def(F) such that c is strongly normalized in position j for all k− � < j}.

Claim 4. The complex N ∗ is isomorphic to the complex Ĉ∗def(G) of normalized cochains

of G. �

Proof of Claim4. The map F∗ : Ck
def(G) −→ Ck

def(F) is given by

(F∗c)((p1, g1, q1), . . . , (pk, gk, qk)) = c(g1, . . . , gk),

so restricting it to normalized cochains on G, we obtain a map F∗ : Ĉk
def(G) −→ N k. This

restriction is injective because of surjectivity of f and is surjective because of condition

(29), which holds for all 1 ≤ � ≤ k. (Alternatively, the restriction of �σ to N ∗ is the

inverse of F∗). �

In order to show that F∗ is surjective in cohomology, we will prove that every

cocycle in N k
� is cohomologous to a cocycle in N k

�+1. We break this into two steps (the

next two claims).

Claim 5. If a cocycle c ∈ Ck
def(F) satisfies condition (30) for all � ≤ j ≤ k, then it also

satisfies condition (29) for all � ≤ j ≤ k. �

Proof of Claim5. For j ≥ �, non-dependence on qj follows from spelling out the cocycle

equation

δc((p1, g1, q1), . . . , (pj, gj, qj), (qj, 1, q′j), (pj+1, gj+1, qj+1), . . . , (pk, gk, qk)) = 0.
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If � > 1, since c satisfies condition (30) in positions �, . . . , k, only two terms survive, and

the result is

c(g̃1, . . . , (qj, gj+1, qj+1), . . . , g̃k) = c((g̃1, . . . , (q′j, gj+1, qj+1), . . . , g̃k),

where g̃i denotes the arrow (pi, gi, qi).

If � = 1 and j = 1, the only non-zero terms in the cocycle condition are the 1st

two, and the result is that

−dm̄(c((p1, g1, q′1), (q′1, g2, q2), . . . , g̃k), c((q1, 1, q′1), (q′1, g2, q2), . . . g̃k))

+ c((p1, g1, q1), (q1, g2, q2), . . . , g̃k) = 0.

Since c satisfies condition (30) in position 1, it follows that c(q1, 1, q′1, . . .) is a unit, and

thus

c((p1, g1, q′1), (q′1, g2, q2), . . . , g̃k) = c((p1, g1, q1), (q1, g2, q2), . . . , g̃k).

Non-dependence on p1 follows similarly from the cocycle equation

δc((p1, 1, p′1), (p′1, g1, q1), . . . , (pk, gk, qk)) = 0.

Spelling it out, we obtain

−dm̄(c((p1, g1, q1), . . . , g̃k), c((p′1, g1, q1), . . . , g̃k)) =
∑

i

Ui,

where condition (30) implies that each Ui is a unit of TG. The result then follows by

multiplying (in TG) both sides of the equation by c((p′1, g1, q1), . . . , g̃k) on the right. �

The next claim concludes the proof of the theorem.

Claim 6. Every cocycle c ∈ N k
� is cohomologous to a cocycle in N k

�+1. �

Proof of Claim6. The notation becomes quite heavy in the following computations,

so we make some simplifications, which we now explain, and which will not be used

outside of this proof. For arrows g̃i = (pi, gi, qi), we use the notation (g̃1, . . . , g̃k) =
(p1, g1, q1, g2, . . . , gk−1, qk−1, gk, qk), which is not ambiguous since pi+1 = qi. We also

abbreviate the expression by inserting g̃i = (pi, gi, qi) in parts of expressions where

the arrow is clear from its context. Moreover, we will implicitly assume when applying
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a cochain to a string of arrows, that they are composable, and omit the points of M

where we apply the unit map and the section σ if they are uniquely determined by

this requirement (composability). So, for example, we would simplify the expression

c((p, g, σ(s(g)), (σ (s(g)), 1s(g), q), (q, h, r)) to c(p, g, σ , 1, q, h, r).

We consider first the case � ≥ 2. Let c ∈ N k
k−�

⊂ Ck
def(F) be a cocycle. Consider

ϕ�
σ (c) ∈ Ck−1

def (F) given by

ϕ�
σ (c)(p1, g1, q1, . . . , gk−1, qk−1) = (−1)�+1c(p1, g1, q1, . . . , g�−1, q�−1, 1, σ , g�, q�, . . . ,

gk−1, qk−1).

We claim that c + δϕ�
σ (c) belongs to N k

k−�+1. In fact, let us compute (c +
δϕ�

σ (c))(g̃1, . . . g̃k) when F(g̃i) = 1. If i > �, then since c ∈ N k
k−�

, most terms cancel and the

only non-zero terms are the ones resulting from the strings containing g̃i−1g̃i and g̃ig̃i+1,

both with opposite signs, that is, up to a sign we obtain

c(p1, g1, . . . , q�−1, 1, σ ,g�, . . . , qi−2, gi−1, qi, . . . gk, qk)−
c(p1, g1, . . . , q�−1, 1, σ , g�, . . . , qi−2, gi−1, qi−1, . . . gk, qk) = 0,

which vanishes because c satisfies condition (29) in position i > �. This show that c +
δϕ�

σ (c) ∈ N k
k−�

.

Now let i = �. We will show that if F(g̃�) = 0, then (c + δϕ�
σ (c))(g̃1, . . . , g̃k) = 0,

that is, c+ δϕ�
σ (c) satisfies condition (30) in position �. It then follows from Claim 5 that

c + δϕ�
σ (c) ∈ N k

k−�+1.

After a straightforward computation we obtain that

(c + δϕ�
σ (c))(g̃1, . . . , g�−1, q�−1, 1, q�, . . . , g̃k) =

= (−1)�+1δc(g̃1, . . . , g�−1, q�−1, 1, q�, 1, σ , g�+1 . . . , g̃k) = 0,

which vanishes because c is a cocycle.

We are left with showing the cases � = 1. Let c ∈ N k
k−1 be a cocycle, which

is strongly normalized in positions 2, . . . , k. In this case we use the canonical splitting

T1x
G ∼= Ax ⊕ TxM and denote by XA the A-component of a vector X ∈ T1x

G, to define

ϕ1
σ (c) ∈ Ck−1

def (F) by

ϕ1
σ (c)(p1, g1, q1, . . . , gk−1, qk−1) = rg1

c(p1, 1, σ , g1, q1, . . . , gk−1, qk−1)A.
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Similarly, if c has degree 1, define ϕ1
σ (c) by ϕ1

σ (c)(p) = c(p, 1, σ)A.

We wish to show that (c+ δϕ1
σ (c))(p1, 1, q1, g2, . . . , gk) is a unit of TG. Most terms

of this expression are zero and we are left with

(c + δϕ1
σ (c))(p1, 1, q1, g2, . . . , gk) =

= c(p1, 1, q1, g2, . . . , gk)

− dm̄(rg2
c(p1, 1, σ , g2, . . . , gk)A, (rg2

c(q1, 1, σ , g2, . . . , gk)A)

If we decompose c(p1, 1, q1, g2, . . . , gk) = ds◦c(p1, 1, q1, g2, . . . , gk)+c(p1, 1, q1, g2, . . . , gk)A

and use the cocycle identity

−dm̄(rg2
c(p1, 1, σ , g2, . . . , gk)A, (rg2

c(q1, 1, σ , g2, . . . , gk)A)+ c(p1, 1, q1, g2, . . . , gk)A

= (δc(p1, 1, q1, 1, σg2, . . . , gk))A = 0,

we obtain that

(c + δϕ1
σ (c))(p1, 1, q1, g2, . . . , gk) = ds ◦ c(p1, 1, q1, g2, . . . , gk) is a unit.

The case k = 1 works exactly in the same way: (c + δϕ1
σ (c))(p, 1, q) is the unit

ds ◦ c(p, 1, q), plus the A-part of δc(p, 1, q, 1, σ). �

It follows from the previous two claims that F∗ : Hk
def(G) −→ Hk

def(F) is surjective,

and thus an isomorphism. This concludes the proof of the theorem. �
Remark 11.7. In the course of the proofs of claims 5 and 6, we actually showed that

every cocycle in C∗def(F) is cohomologous to one in N ∗, which we identify with Ĉ∗def(G)

(and not simply C∗def(G)). Thus, applying the proof above to the identity map yields the

following proposition: �

Proposition 11.8. The inclusion ι : Ĉ∗def(G) ↪→ C∗def(G) is a quasi-isomorphism. �

We now prove the Mayer–Vietoris argument used in the proof above (Claim 2)

Proposition 11.9. (Mayer–Vietoris Argument). If U is an open cover of M, then

H∗def(G) � H∗def(Ǧ(U)). �
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Proof. The proof is formally identical to the proofs of Theorem 11.6 above (Claims 5

and 6) with the role of the section σ replaced by a partition of unity {ρj} subordinate to

the open cover U = {Uj}. The following are the main ingredients:

• Ǧ(U) is the pullback of G by a submersion, so there is an obvious chain map

π∗ : Ck
def(G) −→ Ck

def(Ǧ(U)), π∗(c)((i1, g1, j1), . . . , (jk−1, gk, jk)) = c(g1, . . . , gk).

• Using the partition of unity we obtain a left inverse � : Ck
def(Ǧ(U)) −→

Ck
def(G),

�(c)(g1, . . . , gk) =
∑

ρi1ρj1 · · · ρjkc((i1, g1, j1), . . . , (jk−1, gk, jk)),

where the sum is taken over all indexes i1, jr such that t(g1) ∈ Ui1 and s(gr) ∈
Ujr , with r = 1, . . . , k.

• It follows that π∗ induces an injection in cohomology and all that is left to

prove is that it is also surjective.

• The normalized complex Ĉ∗def(G) can be identified via � with a subcomplex

N ∗ of strongly normalized cochains of Ck
def(Ǧ(U)). (Defined by conditions

analogous to (29) and (30)). In order to check that the map induced by

π∗ in cohomology is surjective, it is enough to show that every cocycle

c ∈ Ck
def(Ǧ(U)) is cohomologous to a cocycle in N k.

• We consider the descending sequence

C∗def(Ǧ(U)) = N ∗
0 ⊇ · · · ⊇ N ∗

� ⊇ · · · ⊇ N ∗,

defined as in the proof of Theorem 11.6.

• The statement and proof of Claim 5 in Theorem 11.6 follow identically with

pr replaced by ir and qr replaced by jr.

• The statement and proof of Claim 6 in Theorem 11.6 follow identically with

ϕ�
σ replaced by

ϕ�(c)(i1, g1, j1, . . . , gk, jk) = (−1)�+1
∑

j

ρjc(i1, g1, j1, . . . , g�−1, j�−1, 1, j, g�, j�, . . . , gk−1, jk−1)
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for � > 1, where the sum is taken over all indices j such that t(g�) ∈ Uj;

similarly, ϕ1
σ (c) is replaced by

ϕ1(c)(i1, g1, j1, . . . , gk, jk) =
∑

j

ρjrg1
c(i1, 1, j, g1, j1, . . . , gk, jk)A.

�

Remark 11.10. We have recently learned that Theorem 11.6 can be obtained also by

using an appropriate notion of Morita equivalence for VB-groupoids (and using the VB-

groupoid interpretation of the deformation cohomology, see Section 3.5). This is being

worked out in an ongoing project of del Hoyo and Ortiz [13].

Appendix: Another way of Looking at Groupoids

Since the main motivation (and applications) for the deformation cohomology comes

from the study of deformations of Lie groupoids, in order to gain some insight into its

definition it is worth contemplating a bit on the meaning of deformations (and of Lie

groupoids). Given a groupoid G, we want to allow deformations smoothly parametrized

by some real parameter ε of all the structure maps: sε, tε, mε, etc. The cohomology theory

that controls deformations should incorporate the variation of the structure maps

( d
dε

sε, etc); the cocycle conditions should be 1st order consequences of (i.e., obtained

by applying d
dε

to) the various equations that the structure maps satisfy. There are two

relevant points to be addressed right from the start:

• In the set of Lie groupoid axioms there is a certain redundancy (e.g., the

target map is determined by the source and the inversion: t = s ◦ i). In order

to study deformations, it is natural to look for a minimal set of axioms.

• Variations of type “ d
dε

mε(g, h)” are problematic because they make sense only

under very restrictive conditions (e.g., when sε and tε do not depend on ε, so

that the condition that g and h are composable does not depend on on ε).

Both points are answered by a very simple remark: it is better to use the division map m̄

of G instead of the multiplication; moreover, all the structure maps of G can be recovered

from only m̄ and s, themselves satisfying some simple axioms.

Proposition 11.11. Given the manifolds G and M, giving structure maps (m, s, t, u, i)

making G into a Lie groupoid over M is equivalent to giving pairs (s, m̄) consisting of
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surjective submersions s : G −→ M and m̄ : G ×s G −→ G (defined on the space of pairs

(g, h) with s(g) = s(h)) satisfying:

(i) For all g, h ∈ G with s(g) = s(h) one has

s(m̄(g, h)) = s(m̄(h, h))

(i.e., the expressions of type s(m̄(g, h)) only depend on h).

(ii) For all g, h, k ∈ G with s(g) = s(h) = s(k) one has

m̄(m̄(g, k), m̄(h, k)) = m̄(g, h)

(note: the 1st expression makes sense because of (i)).

(iii) The restriction of s to m̄(�) = {m̄(g, g) : g ∈ G} is injective.

�

Proof. We have to see how we can recover all the structure maps and their axioms

given a pair (s, m̄) as in 2. Note first that any x ∈ M can be written as s(m̄(g, g)) for some

g ∈ G. This follows by using the surjectivity of s and m̄ and the fact that s(m̄(g, h)) =
s(m̄(h, h)) (by (i)). We deduce that the map from (iii) is a bijection, and we denote by

u : M −→ m̄(�) ⊂ G its inverse. By construction,

u(s(m̄(g, h)) = m̄(h, h)

for all (g, h) ∈ G ×s G. The other structure maps are defined by

t(g) = s(m̄(g, g))

i(g) = m̄(u ◦ s(g), g)

m(g, h) = m̄(g, i(h)).

Next, we check the groupoid axioms.

First, note that t is a surjective submersion since both s and m̄ are. Note also

that, by definition, s(u(s(g))) = s(g). On the other hand, s(i(h)) = s(m̄(u(s(h)), h)), so by

the 1st axiom, s(i(h)) = s(m̄(h, h)), which is t(h) by definition, thus implying that m is

well defined and s ◦ i = t.

1. (t ◦ i(g) = s(g)):
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Using the 2nd axiom we can compute

(t ◦ i)(g) = s(m̄(i(g), i(g)))

= s(m̄(m̄(u(s(g)), g), m̄(u(s(g)), g))

= s(m̄(u(s(g)), u(s(g)))

= s(m̄(m̄(k, k), m̄(k, k)))

= s(m̄(k, k)),

where u(s(g)) = m̄(k, k) and so s(m̄(k, k)) = s(g) as desired.

2. (s(m(g, h)) = s(h) and t(m(g, h)) = t(g)):

For (g, h) ∈ G(2), we have

s(m(g, h)) = s(m̄(g, i(h)))

= s(m̄(i(h), i(h))

= t(i(h))

= s(h).

Here, the 2nd equality is the consequence of the 1st axiom, and the 3rd

equality is the definition of t.

Also, we have that

t(m(g, h)) = t(m̄(g, i(h)))

= s(m̄(m̄(g, i(h)), m̄(g, i(h)))

= s(m̄(g, g))

= t(g).

This time, the 3rd equality is due to the 2nd axiom.

3. (s ◦ u = idM and t ◦ u = idM ):

s ◦ u = idM is just by definition. For the other, let u(x) = m̄(k, k). Then

(t ◦ u)(x) = t(m̄(k, k)))

= s(m̄(m̄(k, k), m̄(k, k)))

= s(m̄(k, k))

= s(u(x))

= idM(x).
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4. (m(i(g), g) = u(s(g), m(g, i(g)) = u(t(g), and i2 = idG ):

Again, let u(s(g)) = m̄(k, k)

m(i(g), g) = m̄(i(g), i(g)))

= m̄(m̄(u(s(g)), g), m̄(u(s(g)), g))

= m̄(u(s(g)), u(s(g)))

= m̄(m̄(k, k), m̄(k, k)))

= m̄(k, k) = u(s(g)).

Next, suppose that g = m̄(h, k). Then

i(g) = m̄(u(s(m̄(h, k))), m̄(h, k)) = m̄(m̄(k, k))), m̄(h, k)) = m̄(k, h).

From this, it follows that i2 = idG (and consequently that i is a bijection).

Moreover,

m(g, i(g)) = s(m̄(i(i(g)), i(g)))

= u(s(i(g))

= u(t(g)).

5. (m(g, u(s(g))) = m(u(t(g)), g) = g):

First we are to prove that m(g, u(s(g))) = m(u(t(g)), g).

m(u(t(g)), g) = m̄(u(t(g)), i(g)))

= m̄(u(s(m̄(g, g))), m̄(u(s(g)), g))

= m̄(m̄(g, g), m̄(u(s(g)), g))

= m̄(g, u(s(g))),

but i(u(s(g))) = m̄(u(s(g)), u(s(g))) and we saw the latter was equal to u(s(g))

thus allowing us to remove the bar in the last equation.

Finally, let g = m̄(h, k), where

t(g) = s(m̄(m̄(h, k), m̄(h, k)) = s(m̄(h, h)).
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Then
m(u(t(g)), g) = m̄(u(t(g)), i(g)))

= m̄(u(s(m̄(h, h))), m̄(k, h))

= m̄(m̄(h, h), m̄(k, h))

= m̄(h, k) = g.

6. (m is associative):

Let (g, h), (h, k) ∈ G(2). We compute

m(g, m(h, k)) = m̄(g, i(m̄(h, i(k))))

= m̄(g, m̄(i(k), h))

= m̄(m̄(g, i(h)), m̄(m̄(i(k), h)), i(h))

= m̄(m(g, h), m̄(m̄(i(k), h)), m(u(t(h), i(h)))

= m̄(m(g, h), m̄(m̄(i(k), h)), m̄(u(t(h), h))

= m̄(m(g, h), m̄(i(k), u(t(h))

= m̄(m(g, h), m̄(i(k), i(u(t(h)))

= m̄(m(g, h), m(i(k), u(t(h)))

= m̄(m(g, h), i(k)))

= m(m(g, h), k)).

We turn now to the problem of whether the maps are smooth. We already pointed

out that t is a surjective submersion, in particular it is smooth. Notice that u fits in the

following diagram,

and is therefore smooth. Also, since s◦u = idM , d(s◦u)x = Idx. Let X ∈ TxM, if dx(X) = 0,

dsu(x)(dux(X)) = dsu(x)(0)

d(s ◦ u)x(X) = 0

Idx(X) = 0

X = 0.
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Summing up, u is an injective smooth immersion onto u(M) = m̄(�), and again since

s is a left inverse and s is continuous u is a homeomorphism onto its image that is an

embedding. From the smoothness of u and m̄, the smoothness of i and m follow. Finally,

i is its own inverse and it is a diffeomorphism. �

Corollary 11.12. Given two Lie groupoids G over M and H over N and two smooth maps

F : G −→ H, f : M −→ N, then (F, f ) is a groupoid morphism if and only if

s(F(g)) = f (s(g)), m̄(F(g), F(h)) = F(m̄(g, h)

for all g, h ∈ G with s(g) = s(h).

Continuing our previous motivating comments coming from deformations, here

is one more explanatory remark. Assume that we have a deformation sε, tε, mε, uε, iε with

s = sε not depending on ε (s-constant deformation). Proposition 11.11 reveals that, in

order to study the variation associated to the deformation, it is enough to concentrate

on the variation of m̄ε (since sε is constant in ε). This will induce a cocycle ξ0 ∈ C2
def(G)

(discussed in detail in Section 5). The fact that ξ0 is a cocycle incorporates, as we

wanted, precisely the 1st order consequences of the axioms for (sε, m̄ε) mentioned in

Proposition 11.11:

1. The equation from (i) will imply that ds(ξ0(g, h)) = ds(ξ(1, h)), that is,

precisely the condition of s-projectability defining the complex C∗def(G).

2. The associativity equation from (ii) will imply δ(ξ0) = 0.

Remark 11.13 (More natural variables). The previous proposition and remark indi-

cate that there is a more natural way of (re-)writing the deformation complex, so that it

only makes use of s and m̄ in its definition; we will denote it by C̄∗def(G) (a more suggestive

notation would be C∗def(G, s, m̄)). It arises by the standard change of variables

G(k) ∼←→ G[k], (g1, . . . , gk)←→ (a1, . . . , ak),

which relates strings of composable arrows to strings of arrows with the same source:

ai = gigi+1 . . . gk, gi =
{

aia
−1
i+1 for i ≤ k− 1

ak for i = k.
(31)
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Explicitly, the k-cochains u ∈ C̄k
def(G) are the smooth maps

u : G[k] −→ TG, (a1, . . . , ak) 
→ u(a1, . . . , ak) ∈ Tm̄(a1,a2)G = Ta1a−1
2
G

defined on the strings of arrows with the same source, with the property that

s(u(a1, . . . , ak)) ∈ Ts(m̄(a1,a2))G

does not depend on a1 (note: “the 1st axiom” for s and m̄, which is (i) of Proposition

11.11, ensures that s(m̄(a1, a2)) does not depend on a1).

The differential of u ∈ C̄k
def(G) is

(δ̄u)(a1, . . . , ak+1) = −dm̄(u(a1, a3, . . . , ak+1), u(a2, a3, . . . , ak+1)

+
k+1∑
i=3

(−1)i+1u(a1, . . . , âi, . . . , ak+1)+ (−1)k+1u(a1a−1
k+1, . . . , aka−1

k+1).

(For k = 0, one keeps the same definition as for C∗def(G)). The 2nd axiom for s and m̄, that

is, (ii) of Proposition 11.11, ensures that δ is well defined and squares to zero. Of course,

the change of variables (31) induces an isomorphism between (C∗def(G), δ) and (C̄∗def(G), δ̄).

Finally, let us mention that the reason we choose to use C∗def(G) instead of C̄∗def(G)

is that, searching in the existing literature involving cohomology of groupoids (and even

of groups), we see that one always uses the G(k)’s (and the corresponding formulas)

for the domains of the cochains. It is clear, however, that C̄∗def(G) and the entire view

point that arises from Proposition 11.11 is much more conceptual and we expect it

to be useful in various related problems (e.g., for finding a non-linear analog of the

Gerstenhaber bracket that makes the deformation complex of a Lie algebroid into a DG

Lie algebra structure and allows one to interpret Lie algebroid structures as Maurer–

Cartan elements [9] or in the study of higher groupoids, etc). �
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