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Abstract 29 

Laboratory procedures performed in water treatment studies frequently require the 30 

characterization of (oo)cyst suspensions. Standard methods commonly used are laborious, 31 

expensive and time-consuming, besides requiring well-trained personnel to prepare samples 32 

with fluorescent staining and perform analysis under fluorescence microscopy. In this study, an 33 

easy cost-effective in situ microscope was assessed to acquire images of Giardia cysts directly 34 

from agitated suspensions without using any chemical labels or sample preparation steps. An 35 

image analysis algorithm analyzes the acquired images, and automatically enumerates and 36 

provides morphological information of cysts within 10 min. The proposed system was 37 

evaluated at different cyst concentrations, achieving a limit of detection of ~30 cysts/mL. The 38 

proposed system overcomes cost, time and labor demands by standard methods and has the 39 

potential to be an alternative technique for the characterization of Giardia cyst suspensions in 40 

resource-limited facilities, since it is independent of experts and free of consumables. 41 

 42 
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1. INTRODUCTION 44 

Giardia is an environmentally ubiquitous enteropathogen distributed worldwide, which has a 45 

simple life cycle with two main stages, the proliferating trophozoite in the small intestine and 46 

the infectious cysts that are spread most often via contaminated water (Einarsson et al., 2016). 47 

This protozoan has previously been associated with several gastrointestinal waterborne 48 

outbreaks, especially in developed countries, being responsible for 280 million gastrointestinal 49 

infections (Thompson et al., 2005; Ankarklev et al., 2010), which makes Giardia spp. a public 50 

health risk and an important target in environmental research and sanitation (Rosado-Garcia et 51 

al., 2017). 52 

Current methods for detecting protozoa in water samples, such as the Environmental 53 

Protection Agency (EPA) 1623 (USEPA, 2012), rely on concentration, immunomagnetic 54 

separation of cysts from debris, and staining with specific fluorescent dyes, followed by cyst 55 

detection and counting by a manual process on laboratory fluorescence microscopes. These 56 

methods are laborious, time-consuming, need bulky and expensive equipment, and well-trained 57 

personnel to operate the microscope and perform analysis. 58 

Only a few detection approaches compatible with field instrumentation have been 59 

described to detect and count Giardia cysts in water samples. Commonly used approaches to 60 

evaluate the microbial water quality using smartphone-based microscopy (Shrestha et al., 2020; 61 

Koydemir et al., 2015) and portable imaging flow cytometer (Göröcs et al., 2020) require, 62 

respectively, fluorescent reagents specific for Giardia cysts and disposable components (e.g., 63 

plastic tubing and sample channel) for each measurement. This partially hinders their use in 64 

low-resource settings including remote and field sites when waterborne monitoring is needed 65 

on a more frequent basis. 66 

 In situ microscopy (Suhr et al., 1995) is an alternative technique enabling one to 67 

overcome the aforementioned constraints. Its principle allows qualitative and quantitative 68 
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characterization of cells and particles suspended in a liquid medium and has been used to 69 

monitor the cell number, cell size distribution, and morphological characteristics of several 70 

specimens, including yeasts (Belini et al., 2020; Belini et al., 2017;  Marquard et al., 2016; 71 

Lindner et al., 2007; Wei et al., 2007; Brückerhoff et al., 2005; Camisard et al., 2002; Frerichs 72 

et al., 2001; Bittner et al., 1998; Suhr et al., 1995), Chinese hamster ovary cells (Lüder et al., 73 

2014), and the viability of mammalian cells (Wiedemann et al., 2011). The imaging 74 

performance of the in situ microscopy has already been evaluated in wastewater for the 75 

morphological characterization of filamentous bacteria (Dias et al., 2016; Dunkel et al., 2016). 76 

 To the best of our knowledge, no study has been carried out using in situ microscopy to 77 

acquire microscopic images of unstained Giardia cysts. Based on this, we aimed to assess the 78 

potential of this technology in conjunction with image analysis algorithms to automatically 79 

detect and enumerate Giardia cysts in agitated suspensions without the need for any chemical 80 

labels, sampling chamber replacement, or sample concentration. 81 

2. MATERIALS AND METHODS 82 

2.1 Preparation of Giardia cyst suspensions 83 

To obtain the suspensions for the in situ experiments, 1 mL standard Giardia spp. cyst 84 

suspension (Waterborne, Inc., New Orleans, LA, USA) containing ~10
5
 cysts was 85 

homogenized for 2 min in vortex and vigorously pipetted 20 times, and used as the stock 86 

suspension. Afterwards, this suspension was serially diluted with distilled water. For each 87 

suspension, aliquots of 50 µL were prepared with a Merifluor® (Meridian Bioscience, Inc.) kit 88 

according to the manufacturer’s recommendations and Method 1623.1 (USEPA, 2012), and the 89 

number of cysts was measured in duplicate on a fluorescence microscopy (BX51, Olympus®, 90 

excitation = 475 nm, emission = 520 nm). From this process, average concentrations of Giardia 91 

about:blank
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were obtained at 30, 50, 250, 510 cysts/mL. A negative control was also prepared using 1 mL 92 

of diluted cyst-free water. 93 

2.2 Image acquisition 94 

A high-resolution (0.3 µm) in situ microscope (Suhr et al., 1991) was built and used to 95 

acquire microscopic images directly from Giardia cysts suspensions. A photograph of the 96 

imaging system is shown in Fig. 1. 97 

 98 

Fig. 1. Photograph of the in situ microscopy-based system for label-free detection and 99 

enumeration of Giardia cysts directly from water samples. (a) Perspective view of the whole 100 

system. (b) Top view of the sample holder. The sampling container equipped with the in situ 101 

microscope was designed to have a working volume of 1.5 mL, which is 30-fold larger than the 102 

volume of aliquots commonly analyzed using standard methods under fluorescence 103 

microscopy. The magnetic bar (2  2  5 mm) inside the imaging chamber is not shown. Scale 104 

bar = 1 cm. 105 

Essentially, the in situ microscope (ISM) consists of a transmitted brightfield 106 

microscope that is directly coupled to moving suspensions to capture micrographs of the 107 

suspended cells and particles. The 1.5 mL working volume container was machined from an 108 
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aluminum block and equipped with the ISM and inoculated with 1 mL cyst suspension for the 109 

in situ experiments. 110 

The LED (DieMOUNT, Wernigerode, Germany) peak-wavelength at 650 nm, 111 

nominally 4 mW at 20 mA, peak current approximately 2 A, pulse-length 0.5–10 µs, was used 112 

for illumination. An optical fiber pigtail was used to guide light to provide direct light 113 

microscopy. The micrographs were acquired by a digital camera (SCA1400–17 gm, Basler, 114 

Ahrensburg, Germany, CCD-size 8.98 mm × 6.71 mm, 1392  1040 pixels, pixel size 6.45  115 

6.45 m
2
, bitmap, 8 bits) through a solid immersion lens-objective (20×, NA = 0.75). The latter 116 

was designed and characterized by Suhr & Herkommer (2015). 117 

In order to avoid cross-contamination between measurements for different cyst 118 

concentrations, the imaging container was systematically cleaned. Before the in situ 119 

experiments, a first cleaning procedure was performed ~30 times, until no more objects were 120 

visualized in the real-time Graphical User Interface of the image acquisition system. The 121 

cleaning process involved vigorous pipetting of cyst-free distilled water into the container and 122 

subsequently sucking out the whole water volume from the container. The cleaning procedure 123 

was also performed three times between each measurement. 124 

The image acquisition parameters such as light pulse width, camera gain, and exposure 125 

time, were all set up once at the beginning of the study and remained unchanged throughout the 126 

experiment. 127 

For the in situ experiments, the container was inoculated with 1 mL of suspension, and 128 

a magnetic stirrer (~150 rpm) was used for agitation. Microscopic images were acquired 129 

immediately after the cyst suspensions were inoculated into the imaging container. 130 

2.3 Image analysis 131 

An image analysis algorithm was implemented using the MATLAB Image Processing Toolbox 132 

in an Intel PC, Quad-CPU, 2.66 GHz, 4.0 GB RAM. As shown in Fig. 2, the algorithm 133 
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comprises two main sections: (i) detection of objects from ISM images followed by portrait 134 

generation, and (ii) feature extraction followed by cyst classification. 135 

 136 

Fig. 2. Flowchart of all operations performed to generate portraits containing candidate objects 137 

and to perform classification for each detected object. 138 

2.3.1 Object detection 139 

The first step is to detect objects from the ISM image to create portraits containing a single 140 

object. Due to the sparse images, a large number of images was needed to capture a single cyst. 141 

In order to optimize the algorithm with respect to computational time, it was essential to first 142 

reduce the original image resolution (1392  1040 pixels) by a factor of four, resulting in 348  143 

260 pixels images. Prior to detecting objects in the acquired images, the following image 144 

preprocessing steps were performed: first, a noise reduction step was carried out using a 5  5 145 

median filter (Gonzalez & Woods, 2008) to reduce high-frequency noises. Afterwards, a high-146 

pass filter (disk-shaped, 2 pixels) was applied in the smoothed image to sharpen the objects´ 147 

border. To find objects in the processed image, the Canny operation was computed (Gonzalez 148 

& Woods, 2008) to create a binary image containing closed lines of connected white pixels on 149 

a black background. Short gaps in the lines of pixels are closed by a morphological dilation 150 
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operation (Gonzalez & Woods, 2008) using 2-pixel line structuring elements followed by hole 151 

filling and border image cleaning. Afterwards, the shape of the object is further smoothed by 152 

applying morphological opening operation (Gonzalez & Woods, 2008) in the resulting binary 153 

image. Detected objects in the reduced image, which have sizes not within the range of values 154 

expected for cysts (100 – 210 pixels), are discarded by size filtering. 155 

This first step of the algorithm only performs a preliminary segmentation of objects 156 

from the background to localize them and generate portraits containing detected objects. Only 157 

in these portraits are the detected objects evaluated and classified by the algorithm as candidate 158 

cysts. As the analyzed water samples contain a diversity of objects exhibiting a variety of sizes 159 

and shapes, their influence on the image analysis is minimized by detecting only regularly 160 

shaped objects. This selection is made by computing the solidity factor (Soltys et al., 2005) of 161 

each object. This is a scalar that specifies the proportion of pixels in the convex hull that are 162 

also inside the detected object. By applying a threshold value (0.90) for the solidity factor of 163 

every binary object, irregularly shaped structures are discarded. 164 

 From the final binary image, the centroid of the pre-classified objects is determined, 165 

and this information is used to crop corresponding portraits (70  70 pixels) from the original 166 

(unreduced) ISM image. 167 

2.3.2 Feature extraction 168 

Once the objects are successfully detected using the steps described above, the classification of 169 

objects contained in the portraits as cysts or non-cysts is carried out by performing the 170 

operations shown in Fig. 2. First, a noise reduction step is carried out in the portrait cropped 171 

from the original ISM image using a 5  5 median filter (Gonzalez & Woods, 2008) to reduce 172 

high-frequency noises. Afterwards, a high-pass filter (disk-shaped, 3 pixels) is applied in the 173 

smoothed image to sharpen the objects´ border. To find objects in the processed image, the 174 

Canny operation was computed (Gonzalez & Woods, 2008) to create a binary image containing 175 
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closed lines of connected white pixels on a black background. Short gaps in the lines of pixels 176 

are closed by a morphological closing operation (Gonzalez & Woods, 2008) using 4-pixel disk 177 

structuring elements followed by hole filling and selection of the largest object contained 178 

inside the portrait.  179 

Afterwards, the size of the object is determined as the number of pixels forming it. This 180 

information is used to identify only those objects that have sizes within the range of values 181 

expected for cysts in the unreduced image. 182 

Due to the typical elliptical shape of the cysts, this feature was parameterized by the 183 

eccentricity of the ellipse that has the same second moments as the region under analysis 184 

(MathWorks


, 2021): 185 

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑓𝑜𝑐𝑖 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑒

𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 𝑙𝑒𝑛𝑔𝑡ℎ
                 (1) 

where the major axis length is the length (in pixels) of the major axis of the ellipse that has the 186 

same normalized second central moments as the region. A null eccentricity designates a perfect 187 

circle, while values increasing towards 0.5 describe shapes increasingly more elliptical, and 188 

unitary eccentricity describes a line segment. By applying a threshold value for the eccentricity 189 

factor of every binary object, irregularly shaped structures can be discarded from further 190 

analysis by the algorithm. 191 

As portraits containing naturally existing micro-objects in sample water, whose shapes 192 

and sizes could resemble those of cysts, may still remain after applying the two above-193 

computed parameters, the completeness for cyst classification involves the computation of their 194 

inhomogeneity. Following the image evaluation steps described by Wiedemann et al. (2011), 195 

the average local entropy was computed for each original (unreduced) grayscale portrait as a 196 

measure of inhomogeneity. To confine the computation of the entropy inside the object, firstly 197 

the object boundary, as determined by the algorithm, was used to define the region of interest 198 
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(ROI) in which the entropy is computed. Afterwards, for each pixel inside this region, the local 199 

entropy E in the pixel´s 3  3 neighborhood is computed (Gonzalez & Woods, 2008):  200 

𝐸 = − ∑ 𝑃(𝑖). 𝑙𝑜𝑔2[𝑃(𝑖)]      𝑏𝑖𝑡𝑠                                   (2) 201 

where i runs over all gray values occurring in the 3  3 pixels neighborhoods. Finally, the mean 202 

value of all local entropies in the ROI is computed as a measure of inhomogeneity of the object. 203 

In addition, the length and the width of the cysts was determined as the maximum and 204 

minimum Feret´s diameters (MathWorks


, 2021), respectively. Each imaged pixel corresponds 205 

to a real dimension given by the pixel size over optical magnification: 206 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑏𝑦 𝑜𝑛𝑒 𝑝𝑖𝑥𝑒𝑙 =
6.45 µm

20
= 0.32 µm                        (3) 207 

2.3.3 Object classification 208 

It was observed in the experiments that the cyst sizes were typically in a narrower range of 209 

values (~900 – 1400 pixels) compared to other micro-objects contained in the analyzed water 210 

samples. This information was used as one of the criteria for cyst classification. In logical 211 

AND in conjunction with this criterion, a narrow range of values (~0.60 – 0.86) for the 212 

eccentricity factor was used.  An interval of inhomogeneity inside the ROI (~050 – 0.83 bits), 213 

measured as entropy, was used as a third criterion in logical AND conjunction with the two 214 

other criteria. Since objects having size, inhomogeneity, and eccentricity values within the 215 

range of those expected for cysts, may be falsely classified as cysts, the maximum pixel 216 

intensity (> 250) inside the ROI was also used as a classification criterium in logical AND 217 

conjunction with the three other criteria. 218 

2.4 Performance evaluation 219 

Each object portrait was visually inspected to evaluate the performance of the algorithm. 220 

Regarding cyst classification, the algorithm´s outcome was manually classified as true positive 221 

(TP), false positive (FP), false negative (FN), or true negative (TN), defined as follows: 222 
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complete cyst bodies, the largest fragment of over-segmented cysts (i.e., cysts divided into 223 

many parts), and one cyst for each case of under-segmentation (i.e., cysts agglomerates 224 

segmented as one cyst) are classified as TP. Halo artifacts and intensity irregularities in the 225 

image background are classified as FP. Missed cysts and remaining cysts in cases of under-226 

segmentation are classified as FN. The listed terms were adapted from Buggenthin et al. 227 

(2013). 228 

Finally, the sensitivity (SE), precision (PR), and accuracy (ACC) values are computed 229 

to quantitatively evaluate the performance of the algorithm (Buggenthin et al., 2013): 230 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                 (4) 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                 (5) 

𝐴𝐶𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
                                                   (6) 

3. RESULTS AND DISCUSSION 231 

3.1 Detection of objects within ISM images 232 

Figure 3 shows examples of portraits of cysts captured by the in situ microscope at suspensions 233 

containing different cyst concentrations. 234 
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 235 

Fig. 3. Examples of in situ microscopy cyst-portraits acquired directly from the suspension 236 

using the proposed system. Thick arrow points to cyst wall (Al Saad & Al Emarah, 2014). Thin 237 

arrow and arrowhead point to structures that resemble nuclei and axoneme, respectively. The 238 

red line depicts the object contour as determined by the algorithm for determining size and 239 

shape and also indicates the region of interest inside which the local entropy was computed. 240 

The corresponding values represent the size in pixels, the eccentricity, and the mean entropy 241 

(in bits). Scale bar = 10 µm. 242 

As shown in Fig. 3, the detected cysts exhibit a moderate range of sizes and 243 

inhomogeneities with respect to the intracellular content. In common with most detected cysts 244 

is their regular elliptical-like shape. It can be seen that the more regular cysts in shape 245 

(elliptical) are more homogeneous with respect to size and intracellular content and slightly 246 

smaller than non-elliptical cysts. 247 

In-focus, slightly over-focused (i.e., cysts located between the light source and the focal 248 

plane generating smooth dark edges and cyst content brighter than the rest of the cyst) and 249 
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slightly under-focused cysts (i.e., cysts located between the objective lens and the focal plane 250 

appearing as slightly dark and blurred structures, as shown in the last row and column in Fig. 251 

3), were captured. More complex textures inside cysts can be observed when they are in-focus 252 

(Fig. 3). The occurrence of these different focusing conditions poses extra challenges to the 253 

cyst detection stage with fixed parameters such as the threshold values and the cut-off 254 

frequencies in the filters. To tune the algorithm´s parameters, we prioritized minimizing the 255 

likelihood of false positives as misclassifying water samples would make the whole water 256 

sample under analysis positive (false) for Giardia contamination, as inspired by Göröcs et al. 257 

(2020). These parameters were optimized once by experiment and kept constant during the 258 

whole study. 259 

Besides single cysts and some internal structures, the ISM also captured the diversity of 260 

other possible micro-objects contained in the analyzed water samples and that of cyst 261 

configurations (Fig. 4). 262 

 263 
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Fig. 4. Examples of different non-cyst particles and cyst agglomerates from ISM images. (a) 264 

The first two objects from left to right in the first row are probably gas bubbles. The objects in 265 

the other portraits could not be identified. (b) Cyst agglomerates. The red line depicts the 266 

object contour as determined by the algorithm for determining size and shape and also 267 

indicates the region of interest inside which the local entropy was computed. The 268 

corresponding values represent the size in pixels, the eccentricity, and the mean entropy in bits. 269 

Scale bar = 10 µm. All portraits share the same scale bar. 270 

As shown in Fig. 4, contaminating particles having size and shape heterogeneity and 271 

inhomogeneity regarding the internal content were also acquired by the ISM. However, these 272 

particles were not classified as cysts by the algorithm. When compared to typical values for 273 

size, eccentricity factor, and mean entropy (Fig. 3), cysts can be easily distinguished from non-274 

cyst particles. More oblong objects (most resembling Giardia cysts) were selected by using the 275 

eccentricity index, while the attribute size helped exclude objects with sizes not within the 276 

range of values expected for cysts. Finally, the two latter parameters in logical AND 277 

combination with the mean entropy, computed in the region of interest inside the object´s 278 

boundary, as determined by the algorithm, eliminated objects morphologically similar to cysts 279 

(Fig. 4). 280 

In addition to the counting, the cysts were also characterized with respect to their 281 

dimensions by the proposed system, which is not available using standard methods. From the 282 

image analysis computed in the classified portraits, Giardia cysts are most elliptical-shaped 283 

objects having an average length and width of 16.37  1.76 µm and 11.13  1.63 µm, 284 

respectively. Since the observed cyst agglomerates are much larger than single cysts (Fig. 4b), 285 

they were excluded from the computation of the dimensions. The computed dimensions are 286 

consistent with those reported elsewhere for Giardia spp. cysts (Efstratious et al., 2017; 287 

Karanis et al., 2007; Filice et al., 1952). 288 
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The acquired images were analyzed using size, shape, and texture-based thresholding 289 

for the elimination of contaminating particles and morphologically similar objects to the cysts, 290 

as well as for the isolation of strongly out-of-focus particles. Despite the diversity of non-cyst 291 

particles (Fig. 4), standard operations of image processing (Gonzalez & Woods, 2008) were 292 

sufficient to detect and enumerate Giardia cysts directly from suspensions. Different from 293 

using machine learning algorithms to analyze dozens of extracted parameters derived to 294 

characterize Giardia cysts (Koydemir et al., 2015) or using complex deep-based neural 295 

networks requiring experts and time-consuming training steps (e.g., Göröcs et al., 2020), the 296 

proposed algorithm combines only standard techniques of digital image processing, making it 297 

much simpler, intuitive, easy-to-use, reliable, and reproducible with any common image 298 

evaluation software package on a standard computer. 299 

Each cyst concentration was documented with ~4500 ISM images acquired at a rate of 300 

15 images per second, totalizing ~5 min for image acquisition plus ~5 min for image analysis. 301 

The analysis of the data for the five concentrations resulted in the relationship between the ISM 302 

signal and counts under fluorescence microscopy shown in Fig. 5. 303 

 304 
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Fig. 5. Correlation between the total cyst count using the proposed system and the manual cyst 305 

count using the standard method. For each concentration, duplicate measurements were made 306 

by both the proposed method and manual counting. The solid dots represent the experimental 307 

data points. The vertical and horizontal error bars denote the standard deviation for the 308 

proposed and manual method, respectively. The data point null for both data sets is shown in 309 

blue. The correlation coefficients are also shown. 310 

 The results show a satisfactory relationship (R
2
 = 0.97) between cysts counted by the 311 

proposed system and manual count in the range 0 – 510 cysts/mL, as assessed by fluorescence 312 

microscopy according to the standard method. 313 

In Fig. 5, the achieved limit of detection (LoD) is 30 cysts/mL. This value is much 314 

lower than that using lens free microscopy (~190 cysts/mL; Mudanyali et al., 2010), but 315 

significantly larger than those by other imaging-based approaches involving holographic 316 

microscopy (~0.4 cysts/mL; Göröcs et al., 2020) and smartphone-based microscopy in samples 317 

prepared with Lugols´ iodine (~0.7/mL derived from reported 73 cysts/100 g; Shrestha et al., 318 

2020) or fluorescent dyes (~1.2 cysts/mL; Koydemir et al., 2015). However, the proposed 319 

system is also fast and does not require sample concentration steps, inputs and/or disposable 320 

components. Thus, it is independent of experts to prepare samples and dedicated sampling 321 

devices, which make sample preparation difficult and discourage the use of mobile platforms in 322 

field analysis for pathogen detection (Wu et al., 2017). Based on the imaging performance of 323 

the built ISM, this LoD might be improved by acquiring larger numbers of images in cyst 324 

concentrations one order of magnitude lower, at the expense of larger times for image 325 

acquisition and analysis. Alternatively, similar to observations by other authors (e.g., 326 

Mudanyali et al., 2010), the usage of sample concentration methods such as centrifugation and 327 

filtering (Fava et al., 2021; Franco et al., 2016; USEPA, 2012) might further improve the 328 

detection limit by a factor of ~100-fold to claim a detection sensitivity of ~0.3 cyst/mL.  329 
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The literature describes Giardia cyst concentration in raw water that are several orders 330 

of magnitude below those used in the work described (Efstratiou et al., 2017). At the current 331 

state presented here, we propose to apply the proposed system for the characterization of 332 

Giardia cyst suspensions commonly used, e.g., in water treatment studies in laboratory-scale 333 

experiments (Adeyemo et al., 2015; Fava et al., 2021; Franco et al., 2016; Freitas et al., 2021). 334 

Since this system requires neither reagents nor sample preparation steps, its application to 335 

rapidly enumerate Giardia cysts in an automated process would reduce detection time, reduce 336 

the level of human intervention required, and contribute to the saving of resources (McGrath et 337 

al., 2017). With slight modifications in the image analysis algorithm aiming to cope with larger 338 

numbers and diversity of other particles, this system has the potential to be used for the 339 

detection of cysts in high-concentration suspensions in water treatment plants with operating 340 

problem or in those that adopt the recirculation of the filter backwash water (Karanis et al., 341 

1996), which may be responsible for an increased risk of reinserting large amount of (oo)cysts 342 

into the system (Freitas et al., 2010). 343 

As a matter of fact, the in situ microscopy-based system proposed herein has significant 344 

advantages over other imaging-based approaches. First, its real-time imaging system enables 345 

direct screening of water samples, since no processing steps are needed to visually localize and 346 

reconstruct the particles present in the liquid volume as in the case of holographic microscopy 347 

(Göröcs et al., 2020). Second, in terms of application in resource-limited settings, the field-348 

portable design of the proposed system is quite advantageous as it requires neither disposable 349 

components (Göröcs et al., 2020) nor fluorescent labeling (Koydemir et al., 2015), in which the 350 

latter further complicates sample preparation and discourages mobile platforms from the field 351 

testing of pathogen detection (Wu et al., 2017). In regions with limited infrastructure, a ready-352 

to-use system such as the one proposed here could benefit laboratory personnel in terms of the 353 

ability of characterizing Giardia cyst suspensions in a few minutes, with the added advantage 354 

of not requiring specialists to prepare samples or replace sampling devices.  In addition, the 355 
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sub-micrometric optical resolution (~0.3 µm) of the solid immersion-based objective in situ 356 

microscope (Suhr & Herkommer, 2015) enables detecting even smaller waterborne pathogens, 357 

such as Cryptosporidium oocysts, which also present a major health challenge globally (Göröcs 358 

et al., 2020). 359 

3.2 Performance evaluation of the proposed method 360 

The overall performance of the cyst segmentation algorithm was evaluated by comparing its 361 

outcome with portraits inspected manually. The results are summarized in Table 1. 362 

Table 1. Performance evaluation of the algorithm. The average number of cysts, as determined 363 

in duplicate by both algorithm and standard methods, is shown as the mean ± SD. On average, 364 

98  14, 81  5, 239  67, and 412  18 portraits were segmented by the algorithm, and then 365 

examined manually for the concentrations of 30, 50, 250, and 510 cysts/mL, respectively. 366 

   Concentration (cysts/mL)
a 

 
Parameter 510 250 50 30 

Total number of cysts  

by manual inspection 
28.5  3.5 15.5  2.5 8.0  1.0 4.5  0.5 

Total number of cysts  

by proposed system 
31.5 ± 3.5  16.5 ± 3.5 9.0 ± 0.0 6.0 ± 0.0 

True positives 28.5 15.5 8.0 4.5 

False positives 3.0 1.0 1.0 1.5 

False negatives 4.5 2.5 0.5 0.0 

Sensitivity 0.87 ± 0.05 0.86  0.04 0.95  0.05 1.00  0.00 

Precision 0.92 ± 0.01 0.95  0.05 1.00  0.00 0.83  0.17  

Accuracy 0.80 ± 0.04 0.82  0.00 0.84  0.06 0.75  0.08 

 
a
 Giardia cyst concentration based on fluorescence microscopy. 367 

The image analysis performance described by an average sensitivity (92%), precision 368 

(93%), and accuracy (80%) shows that the algorithm performed satisfactorily well by applying 369 

the same classification strategy with fixed values for all algorithm´s parameters regardless of 370 

cyst concentration. Most misclassifications were observed in images of cysts acquired under 371 

different imaging conditions. Specifically, missing cysts (i.e., FN cases) occurred for poorly 372 

contrasted cysts. The few FP cases were caused mainly by objects having parameters with 373 
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values within those expected for cysts. The occurrence of cysts agglomerates was observed in 374 

the two highest concentrations. In these cases, one two-agglomerate cysts (Fig. 4b, left) and 375 

one three-agglomerate cysts (Fig. 4b, right) were correctly classified as containing two cysts 376 

each on the basis of its 2-fold size larger than the average size for single cysts, in conjunction 377 

with the other regular criteria for cyst classification adjusted for agglomerate detection. In the 378 

latter case, however, one cyst was missed due to its poorer contrast compared to the neighbor 379 

cysts in the same agglomerate (Fig. 4b, right). 380 

4. CONCLUSIONS 381 

This paper proposed using in situ microscopy in conjunction with image analysis algorithms 382 

for detecting and enumerating unstained Giardia cysts directly from agitated suspensions. The 383 

automatic counting results were compared to manual counting from standard methods, 384 

showing satisfactory performance at different cyst concentrations. Besides to a rapid 385 

quantification, the proposed system also provided in a short time information related to the 386 

morphology of the cysts, without requiring chemical labels or sample concentration steps. The 387 

results presented herein, provide subsidies for the improvement of the technology, so that it can, 388 

in the near future, become a simple, ready-to-use, and reliable method for the detection of 389 

Giardia cyst, and/or other pathogens, in field or laboratory experiments, demanding less effort 390 

and reduced cost when compared to standard detection methods, given that the presented 391 

system is automatic and free of consumables. 392 
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