

1 **Label-free detection and enumeration of *Giardia* cysts in agitated suspensions using *in situ***
2 **microscopy**

3

4 **Valdinei L. Belini^{a*}, Natália de Melo Nasser Fava^b, Lucas Ariel Totaro Garcia^c, Maria Júlia**
5 **Rodrigues da Cunha^d, Lyda Patrícia Sabogal-Paz^e**

6

7 ^a Valdinei L. Belini (*Corresponding author)

8 Department of Electrical Engineering, Universidade Federal de São Carlos, Rodovia Washington Luís,
9 km 235, São Carlos-SP, CEP 13565-905, Brazil

10 Phone: +55 (16) 3306-6618, Fax: +55 (16) 3351-9701

11 E-mail: belini@ufscar.br

12

13 ^b Natália de Melo Nasser Fava

14 Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo,
15 Avenida Trabalhador São-Carlense, 400. São Carlos-SP, CEP 13566-590, Brazil

16

17 ^c Lucas Ariel Totaro Garcia

18 Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo,
19 Avenida Trabalhador São-Carlense, 400. São Carlos-SP, CEP 13566-590, Brazil

20

21 ^d Maria Júlia Rodrigues da Cunha

22 Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo,
23 Avenida Trabalhador São-Carlense, 400. São Carlos-SP, CEP 13566-590, Brazil

24

25 ^e Lyda Patrícia Sabogal-Paz

26 Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo,
27 Avenida Trabalhador São-Carlense, 400. São Carlos-SP, CEP 13566-590, Brazil

28

29 **Abstract**

30 Laboratory procedures performed in water treatment studies frequently require the
31 characterization of (oo)cyst suspensions. Standard methods commonly used are laborious,
32 expensive and time-consuming, besides requiring well-trained personnel to prepare samples
33 with fluorescent staining and perform analysis under fluorescence microscopy. In this study, an
34 easy cost-effective *in situ* microscope was assessed to acquire images of *Giardia* cysts directly
35 from agitated suspensions without using any chemical labels or sample preparation steps. An
36 image analysis algorithm analyzes the acquired images, and automatically enumerates and
37 provides morphological information of cysts within 10 min. The proposed system was
38 evaluated at different cyst concentrations, achieving a limit of detection of ~30 cysts/mL. The
39 proposed system overcomes cost, time and labor demands by standard methods and has the
40 potential to be an alternative technique for the characterization of *Giardia* cyst suspensions in
41 resource-limited facilities, since it is independent of experts and free of consumables.

42

43 **Keywords:** Water quality, Parasites, Protozoa, USEPA, *Giardia*, Computer

44 **1. INTRODUCTION**

45 *Giardia* is an environmentally ubiquitous enteropathogen distributed worldwide, which has a
46 simple life cycle with two main stages, the proliferating trophozoite in the small intestine and
47 the infectious cysts that are spread most often via contaminated water (Einarsson et al., 2016).
48 This protozoan has previously been associated with several gastrointestinal waterborne
49 outbreaks, especially in developed countries, being responsible for 280 million gastrointestinal
50 infections (Thompson et al., 2005; Ankarklev et al., 2010), which makes *Giardia* spp. a public
51 health risk and an important target in environmental research and sanitation (Rosado-Garcia et
52 al., 2017).

53 Current methods for detecting protozoa in water samples, such as the Environmental
54 Protection Agency (EPA) 1623 (USEPA, 2012), rely on concentration, immunomagnetic
55 separation of cysts from debris, and staining with specific fluorescent dyes, followed by cyst
56 detection and counting by a manual process on laboratory fluorescence microscopes. These
57 methods are laborious, time-consuming, need bulky and expensive equipment, and well-trained
58 personnel to operate the microscope and perform analysis.

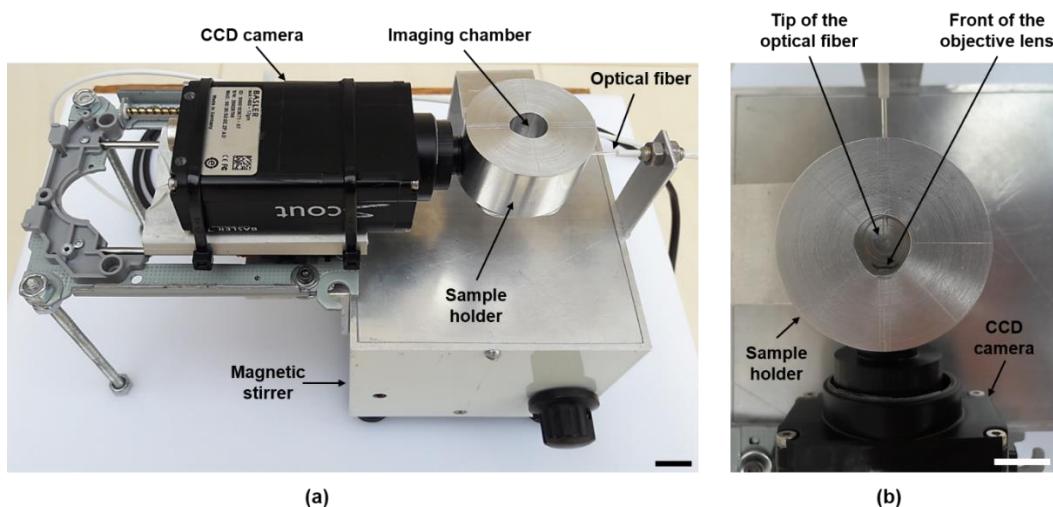
59 Only a few detection approaches compatible with field instrumentation have been
60 described to detect and count *Giardia* cysts in water samples. Commonly used approaches to
61 evaluate the microbial water quality using smartphone-based microscopy (Shrestha et al., 2020;
62 Koydemir et al., 2015) and portable imaging flow cytometer (Göröcs et al., 2020) require,
63 respectively, fluorescent reagents specific for *Giardia* cysts and disposable components (e.g.,
64 plastic tubing and sample channel) for each measurement. This partially hinders their use in
65 low-resource settings including remote and field sites when waterborne monitoring is needed
66 on a more frequent basis.

67 *In situ* microscopy (Suhr et al., 1995) is an alternative technique enabling one to
68 overcome the aforementioned constraints. Its principle allows qualitative and quantitative

69 characterization of cells and particles suspended in a liquid medium and has been used to
70 monitor the cell number, cell size distribution, and morphological characteristics of several
71 specimens, including yeasts (Belini et al., 2020; Belini et al., 2017; Marquard et al., 2016;
72 Lindner et al., 2007; Wei et al., 2007; Brückerhoff et al., 2005; Camisard et al., 2002; Frerichs
73 et al., 2001; Bittner et al., 1998; Suhr et al., 1995), Chinese hamster ovary cells (Lüder et al.,
74 2014), and the viability of mammalian cells (Wiedemann et al., 2011). The imaging
75 performance of the *in situ* microscopy has already been evaluated in wastewater for the
76 morphological characterization of filamentous bacteria (Dias et al., 2016; Dunkel et al., 2016).

77 To the best of our knowledge, no study has been carried out using *in situ* microscopy to
78 acquire microscopic images of unstained *Giardia* cysts. Based on this, we aimed to assess the
79 potential of this technology in conjunction with image analysis algorithms to automatically
80 detect and enumerate *Giardia* cysts in agitated suspensions without the need for any chemical
81 labels, sampling chamber replacement, or sample concentration.

82 **2. MATERIALS AND METHODS**


83 **2.1 Preparation of *Giardia* cyst suspensions**

84 To obtain the suspensions for the *in situ* experiments, 1 mL standard *Giardia* spp. cyst
85 suspension (Waterborne™, Inc., New Orleans, LA, USA) containing $\sim 10^5$ cysts was
86 homogenized for 2 min in vortex and vigorously pipetted 20 times, and used as the stock
87 suspension. Afterwards, this suspension was serially diluted with distilled water. For each
88 suspension, aliquots of 50 μ L were prepared with a Merifluor® (Meridian Bioscience, Inc.) kit
89 according to the manufacturer's recommendations and Method 1623.1 (USEPA, 2012), and the
90 number of cysts was measured in duplicate on a fluorescence microscopy (BX51, Olympus®,
91 $\lambda_{\text{excitation}} = 475$ nm, $\lambda_{\text{emission}} = 520$ nm). From this process, average concentrations of *Giardia*

92 were obtained at 30, 50, 250, 510 cysts/mL. A negative control was also prepared using 1 mL
93 of diluted cyst-free water.

94 **2.2 Image acquisition**

95 A high-resolution (~0.3 μm) *in situ* microscope (Suhr et al., 1991) was built and used to
96 acquire microscopic images directly from *Giardia* cysts suspensions. A photograph of the
97 imaging system is shown in Fig. 1.

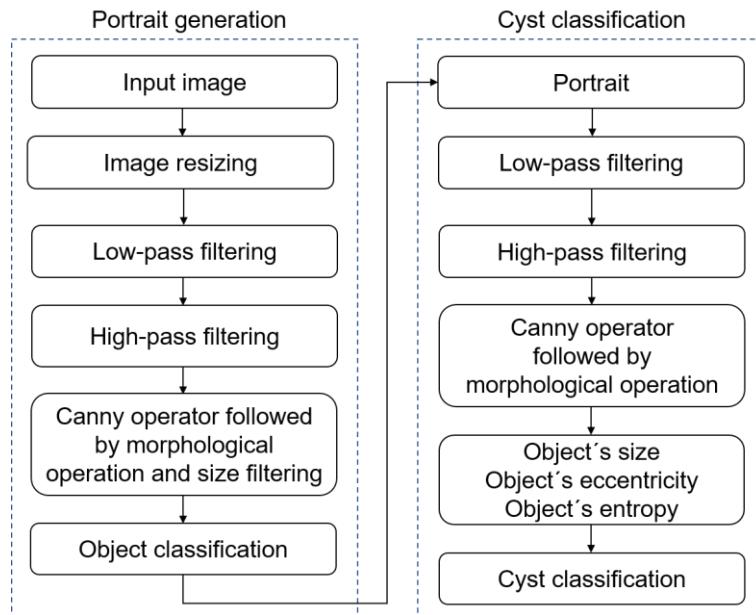
98 **Fig. 1.** Photograph of the *in situ* microscopy-based system for label-free detection and
99 enumeration of *Giardia* cysts directly from water samples. (a) Perspective view of the whole
100 system. (b) Top view of the sample holder. The sampling container equipped with the *in situ*
101 microscope was designed to have a working volume of 1.5 mL, which is 30-fold larger than the
102 volume of aliquots commonly analyzed using standard methods under fluorescence
103 microscopy. The magnetic bar ($2 \times 2 \times 5$ mm) inside the imaging chamber is not shown. Scale
104 bar = 1 cm.

106 Essentially, the *in situ* microscope (ISM) consists of a transmitted brightfield
107 microscope that is directly coupled to moving suspensions to capture micrographs of the
108 suspended cells and particles. The 1.5 mL working volume container was machined from an

109 aluminum block and equipped with the ISM and inoculated with 1 mL cyst suspension for the
110 *in situ* experiments.

111 The LED (DieMOUNT, Wernigerode, Germany) peak-wavelength at 650 nm,
112 nominally 4 mW at 20 mA, peak current approximately 2 A, pulse-length 0.5–10 μ s, was used
113 for illumination. An optical fiber pigtail was used to guide light to provide direct light
114 microscopy. The micrographs were acquired by a digital camera (SCA1400–17 gm, Basler,
115 Ahrensburg, Germany, CCD-size 8.98 mm \times 6.71 mm, 1392 \times 1040 pixels, pixel size 6.45 \times
116 6.45 μ m², bitmap, 8 bits) through a solid immersion lens-objective (20 \times , NA = 0.75). The latter
117 was designed and characterized by Suhr & Herkommer (2015).

118 In order to avoid cross-contamination between measurements for different cyst
119 concentrations, the imaging container was systematically cleaned. Before the *in situ*
120 experiments, a first cleaning procedure was performed \sim 30 times, until no more objects were
121 visualized in the real-time Graphical User Interface of the image acquisition system. The
122 cleaning process involved vigorous pipetting of cyst-free distilled water into the container and
123 subsequently sucking out the whole water volume from the container. The cleaning procedure
124 was also performed three times between each measurement.


125 The image acquisition parameters such as light pulse width, camera gain, and exposure
126 time, were all set up once at the beginning of the study and remained unchanged throughout the
127 experiment.

128 For the *in situ* experiments, the container was inoculated with 1 mL of suspension, and
129 a magnetic stirrer (\sim 150 rpm) was used for agitation. Microscopic images were acquired
130 immediately after the cyst suspensions were inoculated into the imaging container.

131 **2.3 Image analysis**

132 An image analysis algorithm was implemented using the MATLAB Image Processing Toolbox
133 in an Intel PC, Quad-CPU, 2.66 GHz, 4.0 GB RAM. As shown in Fig. 2, the algorithm

134 comprises two main sections: (i) detection of objects from ISM images followed by portrait
135 generation, and (ii) feature extraction followed by cyst classification.

136
137 **Fig. 2.** Flowchart of all operations performed to generate portraits containing *candidate* objects
138 and to perform classification for each detected object.

139 **2.3.1 Object detection**

140 The first step is to detect objects from the ISM image to create portraits containing a single
141 object. Due to the sparse images, a large number of images was needed to capture a single cyst.
142 In order to optimize the algorithm with respect to computational time, it was essential to first
143 reduce the original image resolution (1392×1040 pixels) by a factor of four, resulting in $348 \times$
144 260 pixels images. Prior to detecting objects in the acquired images, the following image
145 preprocessing steps were performed: first, a noise reduction step was carried out using a 5×5
146 median filter (Gonzalez & Woods, 2008) to reduce high-frequency noises. Afterwards, a high-
147 pass filter (disk-shaped, 2 pixels) was applied in the smoothed image to sharpen the objects'
148 border. To find objects in the processed image, the Canny operation was computed (Gonzalez
149 & Woods, 2008) to create a binary image containing closed lines of connected white pixels on
150 a black background. Short gaps in the lines of pixels are closed by a morphological dilation

151 operation (Gonzalez & Woods, 2008) using 2-pixel line structuring elements followed by hole
152 filling and border image cleaning. Afterwards, the shape of the object is further smoothed by
153 applying morphological opening operation (Gonzalez & Woods, 2008) in the resulting binary
154 image. Detected objects in the reduced image, which have sizes not within the range of values
155 expected for cysts (100 – 210 pixels), are discarded by size filtering.

156 This first step of the algorithm only performs a preliminary segmentation of objects
157 from the background to localize them and generate portraits containing detected objects. Only
158 in these portraits are the detected objects evaluated and classified by the algorithm as *candidate*
159 cysts. As the analyzed water samples contain a diversity of objects exhibiting a variety of sizes
160 and shapes, their influence on the image analysis is minimized by detecting only regularly
161 shaped objects. This selection is made by computing the *solidity factor* (Soltys et al., 2005) of
162 each object. This is a scalar that specifies the proportion of pixels in the convex hull that are
163 also inside the detected object. By applying a threshold value (0.90) for the solidity factor of
164 every binary object, irregularly shaped structures are discarded.

165 From the final binary image, the centroid of the pre-classified objects is determined,
166 and this information is used to crop corresponding portraits (70×70 pixels) from the original
167 (unreduced) ISM image.

168 **2.3.2 Feature extraction**

169 Once the objects are successfully detected using the steps described above, the classification of
170 objects contained in the portraits as cysts or non-cysts is carried out by performing the
171 operations shown in Fig. 2. First, a noise reduction step is carried out in the portrait cropped
172 from the original ISM image using a 5×5 median filter (Gonzalez & Woods, 2008) to reduce
173 high-frequency noises. Afterwards, a high-pass filter (disk-shaped, 3 pixels) is applied in the
174 smoothed image to sharpen the objects' border. To find objects in the processed image, the
175 Canny operation was computed (Gonzalez & Woods, 2008) to create a binary image containing

176 closed lines of connected white pixels on a black background. Short gaps in the lines of pixels
177 are closed by a morphological closing operation (Gonzalez & Woods, 2008) using 4-pixel disk
178 structuring elements followed by hole filling and selection of the largest object contained
179 inside the portrait.

180 Afterwards, the size of the object is determined as the number of pixels forming it. This
181 information is used to identify only those objects that have sizes within the range of values
182 expected for cysts in the unreduced image.

183 Due to the typical elliptical shape of the cysts, this feature was parameterized by the
184 eccentricity of the ellipse that has the same second moments as the region under analysis
185 (MathWorksTM, 2021):

$$\text{Eccentricity} = \frac{\text{Distance between the foci of the ellipse}}{\text{Major axis length}} \quad (1)$$

186 where the *major axis length* is the length (in pixels) of the major axis of the ellipse that has the
187 same normalized second central moments as the region. A null eccentricity designates a perfect
188 circle, while values increasing towards 0.5 describe shapes increasingly more elliptical, and
189 unitary eccentricity describes a line segment. By applying a threshold value for the eccentricity
190 factor of every binary object, irregularly shaped structures can be discarded from further
191 analysis by the algorithm.

192 As portraits containing naturally existing micro-objects in sample water, whose shapes
193 and sizes could resemble those of cysts, may still remain after applying the two above-
194 computed parameters, the completeness for cyst classification involves the computation of their
195 inhomogeneity. Following the image evaluation steps described by Wiedemann et al. (2011),
196 the average local entropy was computed for each original (unreduced) grayscale portrait as a
197 measure of inhomogeneity. To confine the computation of the entropy inside the object, firstly
198 the object boundary, as determined by the algorithm, was used to define the region of interest

199 (ROI) in which the entropy is computed. Afterwards, for each pixel inside this region, the local
200 entropy E in the pixel's 3×3 neighborhood is computed (Gonzalez & Woods, 2008):

201
$$E = - \sum P(i) \cdot \log_2[P(i)] \quad \text{bits} \quad (2)$$

202 where i runs over all gray values occurring in the 3×3 pixels neighborhoods. Finally, the mean
203 value of all local entropies in the ROI is computed as a measure of inhomogeneity of the object.

204 In addition, the length and the width of the cysts was determined as the maximum and
205 minimum Feret's diameters (MathWorks™, 2021), respectively. Each imaged pixel corresponds
206 to a real dimension given by the pixel size over optical magnification:

207
$$\text{Length represented by one pixel} = \frac{6.45 \mu\text{m}}{20} = 0.32 \mu\text{m} \quad (3)$$

208 **2.3.3 Object classification**

209 It was observed in the experiments that the cyst sizes were typically in a narrower range of
210 values (~900 – 1400 pixels) compared to other micro-objects contained in the analyzed water
211 samples. This information was used as one of the criteria for cyst classification. In logical
212 AND in conjunction with this criterion, a narrow range of values (~0.60 – 0.86) for the
213 eccentricity factor was used. An interval of inhomogeneity inside the ROI (~0.50 – 0.83 bits),
214 measured as entropy, was used as a third criterion in logical AND conjunction with the two
215 other criteria. Since objects having size, inhomogeneity, and eccentricity values within the
216 range of those expected for cysts, may be falsely classified as cysts, the maximum pixel
217 intensity (> 250) inside the ROI was also used as a classification criterium in logical AND
218 conjunction with the three other criteria.

219 **2.4 Performance evaluation**

220 Each object portrait was visually inspected to evaluate the performance of the algorithm.
221 Regarding cyst classification, the algorithm's outcome was manually classified as true positive
222 (TP), false positive (FP), false negative (FN), or true negative (TN), defined as follows:

223 complete cyst bodies, the largest fragment of over-segmented cysts (*i.e.*, cysts divided into
224 many parts), and one cyst for each case of under-segmentation (*i.e.*, cysts agglomerates
225 segmented as one cyst) are classified as *TP*. Halo artifacts and intensity irregularities in the
226 image background are classified as *FP*. Missed cysts and remaining cysts in cases of under-
227 segmentation are classified as *FN*. The listed terms were adapted from Buggenthin et al.
228 (2013).

229 Finally, the sensitivity (*SE*), precision (*PR*), and accuracy (*ACC*) values are computed
230 to quantitatively evaluate the performance of the algorithm (Buggenthin et al., 2013):

$$SE = \frac{TP}{TP + FN} \quad (4)$$

$$PR = \frac{TP}{TP + FP} \quad (5)$$

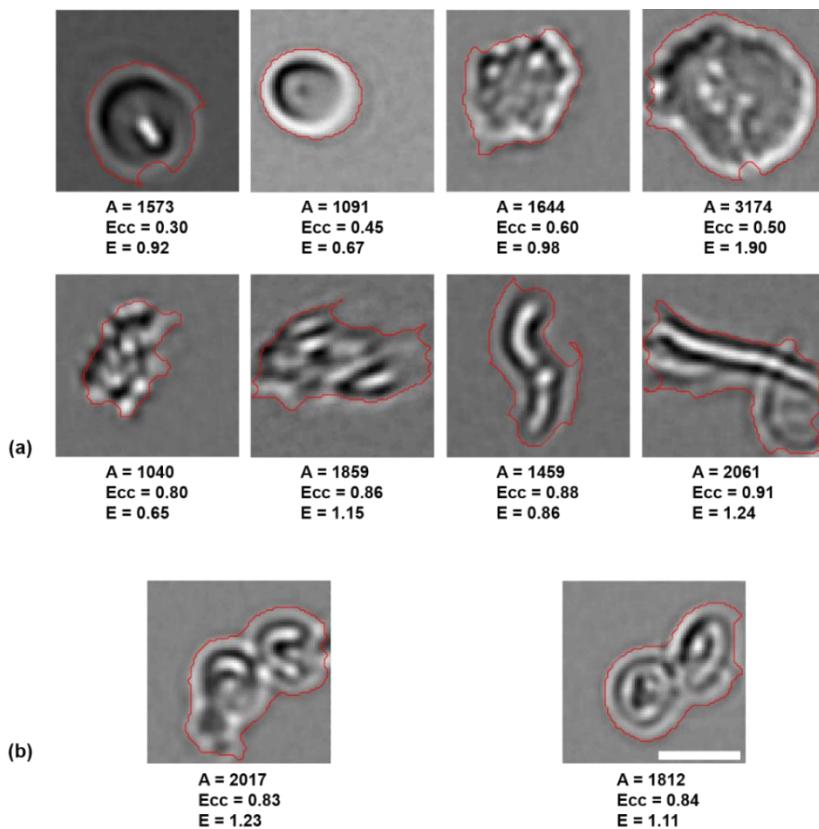
$$ACC = \frac{TP}{TP + FN + FP} \quad (6)$$

231 **3. RESULTS AND DISCUSSION**

232 **3.1 Detection of objects within ISM images**

233 Figure 3 shows examples of portraits of cysts captured by the *in situ* microscope at suspensions
234 containing different cyst concentrations.

235


236 **Fig. 3.** Examples of *in situ* microscopy cyst-portraits acquired directly from the suspension
 237 using the proposed system. Thick arrow points to cyst wall (Al Saad & Al Emarah, 2014). Thin
 238 arrow and arrowhead point to structures that resemble nuclei and axoneme, respectively. The
 239 red line depicts the object contour as determined by the algorithm for determining size and
 240 shape and also indicates the region of interest inside which the local entropy was computed.
 241 The corresponding values represent the size in pixels, the eccentricity, and the mean entropy
 242 (in bits). Scale bar = 10 μ m.

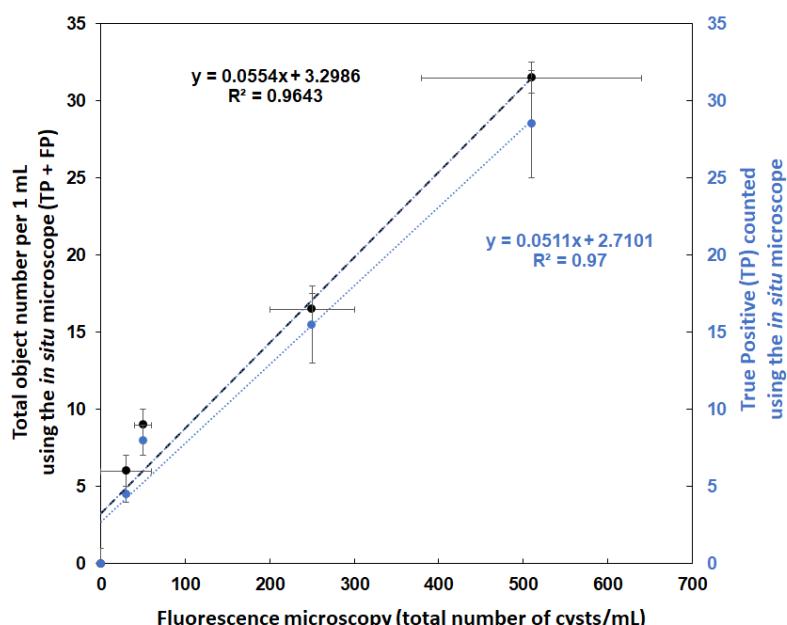
243 As shown in Fig. 3, the detected cysts exhibit a moderate range of sizes and
 244 inhomogeneities with respect to the intracellular content. In common with most detected cysts
 245 is their regular elliptical-like shape. It can be seen that the more regular cysts in shape
 246 (elliptical) are more homogeneous with respect to size and intracellular content and slightly
 247 smaller than non-elliptical cysts.

248 In-focus, slightly over-focused (*i.e.*, cysts located between the light source and the focal
 249 plane generating smooth dark edges and cyst content brighter than the rest of the cyst) and

250 slightly under-focused cysts (*i.e.*, cysts located between the objective lens and the focal plane
 251 appearing as slightly dark and blurred structures, as shown in the last row and column in Fig.
 252 3), were captured. More complex textures inside cysts can be observed when they are in-focus
 253 (Fig. 3). The occurrence of these different focusing conditions poses extra challenges to the
 254 cyst detection stage with fixed parameters such as the threshold values and the cut-off
 255 frequencies in the filters. To tune the algorithm's parameters, we prioritized minimizing the
 256 likelihood of false positives as misclassifying water samples would make the whole water
 257 sample under analysis positive (false) for *Giardia* contamination, as inspired by Göröcs et al.
 258 (2020). These parameters were optimized once by experiment and kept constant during the
 259 whole study.

260 Besides single cysts and some internal structures, the ISM also captured the diversity of
 261 other possible micro-objects contained in the analyzed water samples and that of cyst
 262 configurations (Fig. 4).

263


264 **Fig. 4.** Examples of different non-cyst particles and cyst agglomerates from ISM images. (a)
265 The first two objects from left to right in the first row are probably gas bubbles. The objects in
266 the other portraits could not be identified. (b) Cyst agglomerates. The red line depicts the
267 object contour as determined by the algorithm for determining size and shape and also
268 indicates the region of interest inside which the local entropy was computed. The
269 corresponding values represent the size in pixels, the eccentricity, and the mean entropy in bits.
270 Scale bar = 10 μm . All portraits share the same scale bar.

271 As shown in Fig. 4, contaminating particles having size and shape heterogeneity and
272 inhomogeneity regarding the internal content were also acquired by the ISM. However, these
273 particles were not classified as cysts by the algorithm. When compared to typical values for
274 size, eccentricity factor, and mean entropy (Fig. 3), cysts can be easily distinguished from non-
275 cyst particles. More oblong objects (most resembling *Giardia* cysts) were selected by using the
276 eccentricity index, while the attribute size helped exclude objects with sizes not within the
277 range of values expected for cysts. Finally, the two latter parameters in logical AND
278 combination with the mean entropy, computed in the region of interest inside the object's
279 boundary, as determined by the algorithm, eliminated objects morphologically similar to cysts
280 (Fig. 4).

281 In addition to the counting, the cysts were also characterized with respect to their
282 dimensions by the proposed system, which is not available using standard methods. From the
283 image analysis computed in the classified portraits, *Giardia* cysts are most elliptical-shaped
284 objects having an average length and width of $16.37 \pm 1.76 \mu\text{m}$ and $11.13 \pm 1.63 \mu\text{m}$,
285 respectively. Since the observed cyst agglomerates are much larger than single cysts (Fig. 4b),
286 they were excluded from the computation of the dimensions. The computed dimensions are
287 consistent with those reported elsewhere for *Giardia* spp. cysts (Efstratious et al., 2017;
288 Karanis et al., 2007; Filice et al., 1952).

289 The acquired images were analyzed using size, shape, and texture-based thresholding
290 for the elimination of contaminating particles and morphologically similar objects to the cysts,
291 as well as for the isolation of strongly out-of-focus particles. Despite the diversity of non-cyst
292 particles (Fig. 4), standard operations of image processing (Gonzalez & Woods, 2008) were
293 sufficient to detect and enumerate *Giardia* cysts directly from suspensions. Different from
294 using machine learning algorithms to analyze dozens of extracted parameters derived to
295 characterize *Giardia* cysts (Koydemir et al., 2015) or using complex deep-based neural
296 networks requiring experts and time-consuming training steps (e.g., Göröcs et al., 2020), the
297 proposed algorithm combines only standard techniques of digital image processing, making it
298 much simpler, intuitive, easy-to-use, reliable, and reproducible with any common image
299 evaluation software package on a standard computer.

300 Each cyst concentration was documented with ~4500 ISM images acquired at a rate of
301 15 images per second, totalizing ~5 min for image acquisition plus ~5 min for image analysis.
302 The analysis of the data for the five concentrations resulted in the relationship between the ISM
303 signal and counts under fluorescence microscopy shown in Fig. 5.

304

305 **Fig. 5.** Correlation between the total cyst count using the proposed system and the manual cyst
306 count using the standard method. For each concentration, duplicate measurements were made
307 by both the proposed method and manual counting. The solid dots represent the experimental
308 data points. The vertical and horizontal error bars denote the standard deviation for the
309 proposed and manual method, respectively. The data point null for both data sets is shown in
310 blue. The correlation coefficients are also shown.

311 The results show a satisfactory relationship ($R^2 = 0.97$) between cysts counted by the
312 proposed system and manual count in the range 0 – 510 cysts/mL, as assessed by fluorescence
313 microscopy according to the standard method.

314 In Fig. 5, the achieved limit of detection (LoD) is 30 cysts/mL. This value is much
315 lower than that using lens free microscopy (~190 cysts/mL; Mudanyali et al., 2010), but
316 significantly larger than those by other imaging-based approaches involving holographic
317 microscopy (~0.4 cysts/mL; Göröcs et al., 2020) and smartphone-based microscopy in samples
318 prepared with Lugols' iodine (~0.7/mL derived from reported 73 cysts/100 g; Shrestha et al.,
319 2020) or fluorescent dyes (~1.2 cysts/mL; Koydemir et al., 2015). However, the proposed
320 system is also fast and does not require sample concentration steps, inputs and/or disposable
321 components. Thus, it is independent of experts to prepare samples and dedicated sampling
322 devices, which make sample preparation difficult and discourage the use of mobile platforms in
323 field analysis for pathogen detection (Wu et al., 2017). Based on the imaging performance of
324 the built ISM, this LoD might be improved by acquiring larger numbers of images in cyst
325 concentrations one order of magnitude lower, at the expense of larger times for image
326 acquisition and analysis. Alternatively, similar to observations by other authors (e.g.,
327 Mudanyali et al., 2010), the usage of sample concentration methods such as centrifugation and
328 filtering (Fava et al., 2021; Franco et al., 2016; USEPA, 2012) might further improve the
329 detection limit by a factor of ~100-fold to claim a detection sensitivity of ~0.3 cyst/mL.

330 The literature describes *Giardia* cyst concentration in raw water that are several orders
331 of magnitude below those used in the work described (Efstratiou et al., 2017). At the current
332 state presented here, we propose to apply the proposed system for the characterization of
333 *Giardia* cyst suspensions commonly used, *e.g.*, in water treatment studies in laboratory-scale
334 experiments (Adeyemo et al., 2015; Fava et al., 2021; Franco et al., 2016; Freitas et al., 2021).
335 Since this system requires neither reagents nor sample preparation steps, its application to
336 rapidly enumerate *Giardia* cysts in an automated process would reduce detection time, reduce
337 the level of human intervention required, and contribute to the saving of resources (McGrath et
338 al., 2017). With slight modifications in the image analysis algorithm aiming to cope with larger
339 numbers and diversity of other particles, this system has the potential to be used for the
340 detection of cysts in high-concentration suspensions in water treatment plants with operating
341 problem or in those that adopt the recirculation of the filter backwash water (Karanis et al.,
342 1996), which may be responsible for an increased risk of reinserting large amount of (oo)cysts
343 into the system (Freitas et al., 2010).

344 As a matter of fact, the *in situ* microscopy-based system proposed herein has significant
345 advantages over other imaging-based approaches. First, its real-time imaging system enables
346 direct screening of water samples, since no processing steps are needed to visually localize and
347 reconstruct the particles present in the liquid volume as in the case of holographic microscopy
348 (Göröcs et al., 2020). Second, in terms of application in resource-limited settings, the field-
349 portable design of the proposed system is quite advantageous as it requires neither disposable
350 components (Göröcs et al., 2020) nor fluorescent labeling (Koydemir et al., 2015), in which the
351 latter further complicates sample preparation and discourages mobile platforms from the field
352 testing of pathogen detection (Wu et al., 2017). In regions with limited infrastructure, a ready-
353 to-use system such as the one proposed here could benefit laboratory personnel in terms of the
354 ability of characterizing *Giardia* cyst suspensions in a few minutes, with the added advantage
355 of not requiring specialists to prepare samples or replace sampling devices. In addition, the

356 sub-micrometric optical resolution (~0.3 μm) of the solid immersion-based objective *in situ*
357 microscope (Suhr & Herkommer, 2015) enables detecting even smaller waterborne pathogens,
358 such as *Cryptosporidium* oocysts, which also present a major health challenge globally (Göröcs
359 et al., 2020).

360 **3.2 Performance evaluation of the proposed method**

361 The overall performance of the cyst segmentation algorithm was evaluated by comparing its
362 outcome with portraits inspected manually. The results are summarized in Table 1.

363 **Table 1.** Performance evaluation of the algorithm. The average number of cysts, as determined
364 in duplicate by both algorithm and standard methods, is shown as the mean \pm SD. On average,
365 98 \pm 14, 81 \pm 5, 239 \pm 67, and 412 \pm 18 portraits were segmented by the algorithm, and then
366 examined manually for the concentrations of 30, 50, 250, and 510 cysts/mL, respectively.

Parameter	Concentration (cysts/mL) ^a			
	510	250	50	30
Total number of cysts by manual inspection	28.5 \pm 3.5	15.5 \pm 2.5	8.0 \pm 1.0	4.5 \pm 0.5
Total number of cysts by proposed system	31.5 \pm 3.5	16.5 \pm 3.5	9.0 \pm 0.0	6.0 \pm 0.0
True positives	28.5	15.5	8.0	4.5
False positives	3.0	1.0	1.0	1.5
False negatives	4.5	2.5	0.5	0.0
Sensitivity	0.87 \pm 0.05	0.86 \pm 0.04	0.95 \pm 0.05	1.00 \pm 0.00
Precision	0.92 \pm 0.01	0.95 \pm 0.05	1.00 \pm 0.00	0.83 \pm 0.17
Accuracy	0.80 \pm 0.04	0.82 \pm 0.00	0.84 \pm 0.06	0.75 \pm 0.08

367 ^a *Giardia* cyst concentration based on fluorescence microscopy.

368 The image analysis performance described by an average sensitivity (92%), precision
369 (93%), and accuracy (80%) shows that the algorithm performed satisfactorily well by applying
370 the same classification strategy with fixed values for all algorithm's parameters regardless of
371 cyst concentration. Most misclassifications were observed in images of cysts acquired under
372 different imaging conditions. Specifically, missing cysts (*i.e.*, *FN* cases) occurred for poorly
373 contrasted cysts. The few *FP* cases were caused mainly by objects having parameters with

374 values within those expected for cysts. The occurrence of cysts agglomerates was observed in
375 the two highest concentrations. In these cases, one two-agglomerate cysts (Fig. 4b, *left*) and
376 one three-agglomerate cysts (Fig. 4b, *right*) were correctly classified as containing two cysts
377 each on the basis of its 2-fold size larger than the average size for single cysts, in conjunction
378 with the other regular criteria for cyst classification adjusted for agglomerate detection. In the
379 latter case, however, one cyst was missed due to its poorer contrast compared to the neighbor
380 cysts in the same agglomerate (Fig. 4b, *right*).

381 **4. CONCLUSIONS**

382 This paper proposed using *in situ* microscopy in conjunction with image analysis algorithms
383 for detecting and enumerating unstained *Giardia* cysts directly from agitated suspensions. The
384 automatic counting results were compared to manual counting from standard methods,
385 showing satisfactory performance at different cyst concentrations. Besides to a rapid
386 quantification, the proposed system also provided in a short time information related to the
387 morphology of the cysts, without requiring chemical labels or sample concentration steps. The
388 results presented herein, provide subsidies for the improvement of the technology, so that it can,
389 in the near future, become a simple, ready-to-use, and reliable method for the detection of
390 *Giardia* cyst, and/or other pathogens, in field or laboratory experiments, demanding less effort
391 and reduced cost when compared to standard detection methods, given that the presented
392 system is automatic and free of consumables.

393

394 **Acknowledgments**

395 The authors would like to thank Prof. Hajo Suhr, Department of Information Technology of
396 Mannheim University of Applied Sciences, Mannheim, Germany, for kindly providing the
397 camera, electronic hardware, image acquisition software, and the lenses and mechanical
398 mounting of the objective.

399

400 **CRediT author statement**

401 **Valdinei Luís Belini:** Conceptualization, Methodology, Software, Investigation, Validation,
402 Writing-Original Draft & Editing. **Natália de Melo Nasser Fava:** Methodology, Investigation,
403 Writing-Original Draft. **Lucas Ariel Totaro Garcia:** Methodology, Writing-Original Draft.
404 **Maria Júlia Rodrigues da Cunha:** Methodology, Writing-Original Draft. **Lyda Patricia**
405 **Sabogal Paz:** Funding acquisition, Project administration, Conceptualization, Writing-Review
406 & Editing.

407

408 **Data and code availability**

409 The datasets generated during the current study and the developed code are available from the
410 corresponding author on reasonable request.

411 **Funding**

412 This work was partially supported by The Royal Society (ICA\R1\201373 - International
413 Collaboration Awards 2020) and National Council for Scientific and Technological
414 Development (CNPq 308070/2021-6).

415

416 **Competing interests**

417 The authors have no competing interests to declare that are relevant to the content of this article.

418 **References**

419 Adeyemo, F. E., Kamika, I., Momba, M. N. B. 2015. Comparing the effectiveness of five low-
420 cost home water treatment devices for *Cryptosporidium*, *Giardia* and somatic coliphages
421 removal from water sources. *Desalin. Water Treat.*, 56(9), 2351-2367.
422 Al Saad, R. K., Al Emarah, G. Y. 2014. Morphological descriptive study of *giardia lamblia* in
423 man and cow at basrah. *International Journal of Biological Research*, 2(2), 125-128.

424 Ankarklev, J., Jerlström-Hultqvist, J., Ringqvist, E., Troell, K., Svärd, S. G. 2010. Behind the
425 smile: cell biology and disease mechanisms of *Giardia* species. *Nat. Rev. Microbiol.*, 8,
426 413-422.

427 Belini, V. L., Suhr, H., Wiedemann, P. 2020. Online monitoring of the morphology of an
428 industrial sugarcane biofuel yeast strain *via in situ* microscopy. *J. Microbiol. Methods*, 175,
429 105973.

430 Belini, V. L., Caurin, G. A. P., Wiedemann, P., Suhr, H. 2017. Yeast fermentation of sugarcane
431 for ethanol production: Can it be monitored by using *in situ* microscopy? *Braz. J. Chem.*
432 *Eng.*, 34(4), 949-959.

433 Bittner, C., Wehnert, G., Scheper, T. 1998. *In situ* microscopy for on-line determination of
434 biomass. *Biotechnol. Bioeng.*, 60, 24–35.

435 Brückerhoff, T., Frerichs, J. G., Joeris, K., Konstantinov, K., Scheper, T. 2005. Animal cell
436 technology meets genomics. In: Godia F., Fussenegger M. (eds), *Proceedings of the 18th*
437 *ESACT Meeting*. Springer, Spain, pp. 589-592.

438 Buggenthin, F., Marr, C., Schwarzfischer, M., Hoppe, P. S., Hilsenbeck, O., Schroeder, T.,
439 Theis, F. J. 2013. An automatic method for robust and fast cell detection in bright field
440 images from high-throughput microscopy. *BMC Bioinform.*, 14, 297.

441 Camisard, V., Brienne, J. P., Cassar, J. Ph., Hammann, J., Suhr, H. 2002. Inline
442 Characterization of cell-concentration and cell-volume in agitated bioreactors using *in situ*
443 microscopy: application to volume variation induced by osmotic stress. *Biotechnol.*
444 *Bioeng.*, 78, 73-80.

445 Dias, P. A., Dunkel, T., Fajado, D. A., Gallegos, Ede L., Denecke, M., Wiedemann, P.,
446 Schneider, F. K., Suhr, H. 2016. Image processing for identification and quantification of
447 filamentous bacteria in *in situ* acquired images. *Biomed. Eng. Online*, 15, 64.

448 Dunkel, T., Dias, P. A., de León Gallegos, E. L., Tacke, V., Schielke, A., Hesse, T., Fajado, D.
449 A., Suhr, H., Wiedemann, P., Denecke, M. 2016. *In situ* microscopy as a tool for the

450 monitoring of filamentous bacteria: a case study in an industrial activated sludge system
451 dominated by *M. parvicella*. *Water Sci. Technol.*, 73, 1333-1340.

452 Efstratiou, A., Ongerth, J., Karanis, P. 2017. Evolution of monitoring for *Giardia* and
453 *Cryptosporidium* in water. *Water Res.*, 123, 96-112.

454 Einarsson, E., Ma'ayeh, S., Svärd, S. G. 2016. An up-date on *Giardia* and giardiasis. *Curr.*
455 *Opin. Microbiol.*, 34, 47–52.

456 Fava, N. M. N., Silva, K. J. S., Snelling, W. J., Ternan, N. G., Dooley, J. S. G., Sabogal-Paz, L.
457 P. 2021. Does each bead count? A reduced-cost approach for recovering waterborne
458 protozoa from challenge water using immunomagnetic separation. *J. Water Health.* 19,
459 436-447.

460 Filice, F. P. 1952. Studies on the cytology and life history of a *Giardia* from the laboratory rat.
461 *University California Public Zoology*, 57, 53–146.

462 Franco, R. M. B., Branco, N., Amaro, B. C. T., Neto, R. C., Fiúza, V. R. S. 2016.
463 *Cryptosporidium* species and *Giardia* genotypes detected in surface water supply of
464 Campinas, southeast Brazil, by molecular methods. *J. Vet. Med. Res.* 3, 1053-1059.

465 Freitas, B. L. S., Terin, U. C., Fava, N. M. N., Sabogal-Paz, L.P. 2021. Filter Media Depth and
466 Its Effect on the Efficiency of Household Slow Sand Filter in Continuous Flow. *J. Environ.*
467 *Manage*, 288, 112412.

468 Freitas, A. G. de, Bastos, R. K. X., Bevilacqua, P. D., Pádua, V. L., Pimenta, J. F. de P.,
469 Andrade, R. C. de. 2010. Recirculação de água de lavagem de filtros e perigos associados
470 a protozoários. *Eng. Sanit. e Ambient.* 15, 37–46.

471 Frerichs, J. G., Joeris, K., Scheper, T., Konstantinov, K. 2001. *In situ* microscopy for on-line
472 and in-line monitoring of cell populations in bioreactors. *Animal cell technology: from*
473 *target to market*. ESACT Proceedings, 452-454.

474 Gonzalez, R., Woods, R. Digital image processing. 3rd Ed. Pearson Education, 2008. pp. 62-
475 449.

476 Göröcs, Z., Baum, D., Song, F., de Haan, K., Koydemir, H.C., Yunzhe, Q., Cai, Z.,
477 Skandakumar, T., Peterman, S., Tamamitsu, M., Ozcan, A. 2020. Label-free detection of
478 *Giardia lamblia* cysts using a deep learning-enabled portable imaging flow cytometer. *Lab*
479 *on a Chip*, 20, 4404-4412.

480 Karanis, P., Kourenti, C., Smith, H. 2007. Waterborne transmission of protozoan parasites: a
481 worldwide review of outbreaks and lessons learnt. *J. Water Health*. 5, 1–38.

482 Karanis, P., Schoenen, D., Seitz, H. M. 1996. *Giardia* and *Cryptosporidium* in backwash water
483 from rapid sand filters used for drinking water production. *Zentralblatt fur Bakteriol*. 284,
484 107–114.

485 Koydemir, H. C., Gorocs, Z., Tseng, D., Cortazar, B., Feng, S., Chan, R. Y., Burbano, J.,
486 Mcleod, E., Ozcan, A. 2015. Rapid imaging, detection and quantification of *Giardia*
487 *lamblia* cysts using mobile-phone based fluorescent microscopy and machine
488 learning. *Lab on a Chip*, 15(5), 1284-1293.

489 Lindner, P., Krabichler, C., Rudolph, G., Schepers, T., Hitzmann, B. 2007. Application of in-
490 situ-microscopy and digital image processing in yeast cultivations. 10th International
491 IFAC Symposium on Computer Application in Biotechnology 1, Mexico.

492 Lüder, C., Lindner, P., Bulnes-Abundis, D., Lu, S. M., Lücking, T., Dörte, S., Schepers, T. 2014.
493 *In situ* microscopy and MIR-spectroscopy as non-invasive optical sensors for cell
494 cultivation process monitoring. *Pharm. Bioprocess.*, 2(2), 157–166.

495 Marquard, D., Enders, A., Roth, G., Rinas, U., Schepers, T., Lindner, P. 2016. *In situ*
496 microscopy for online monitoring of cell concentration in *Pichia pastoris* cultivations. *J.*
497 *Biotechnol.*, 20(234), 90-98.

498 MathWorks™. 2021. *Image Processing Toolbox (TM): User's Guide* (R2021b). Retrieved
499 January 10, 2022 from www.mathworks.com/help/images/ref/regionprops.html.

500 McGrath, J. S., Honrado, C., Spencer, D., Horton, B., Bridle, H. L., Morgan, H. 2017.
501 Analysis of parasitic protozoa at the single-cell level using microfluidic impedance
502 cytometry. *Sci. Rep.* 7, 2601.

503 Mudanyali, O., Oztoprak, C., Tseng, D., Erlinger, A., Ozcan, A. 2010. Detection of waterborne
504 parasites using field-portable and cost-effective lensfree microscopy. *Lab on a Chip*, 10,
505 2419-2423.

506 Rosado-García, F. M., Guerrero-Flórez, M., Karanis, G., Hinojosa, M. D.C., Karanis, P. 2017.
507 Water-borne protozoa parasites: The Latin American perspective. *Int. J. Hyg. Environ.
508 Health*, 220, 783–798.

509 Shrestha, R., Duwal, R., Wagle, S., Pokhrel, S., Giri, B., Neupane, B. B. 2020. A smartphone
510 microscopic method for simultaneous detection of (oo)cysts of *Cryptosporidium* and
511 *Giardia*. *PLoS Negl. Trop. Dis.*, 8, 14(9): e0008560.

512 Soltys, Z., Orzylowska-Sliwinska, O., Zaremba, M., Orlowski, D., Piechota, M., Fiedorowicz,
513 A., Janeczko, K., Oderfeld-Nowak, B. 2005. Quantitative morphological study of
514 microglial cells in the ischemic rat brain using principal component analysis. *J. Neurosci.
515 Methods*, 146, 50–60.

516 Suhr, H., Herkommer A. M. 2015. *In situ* microscopy using adjustment-free optics. *J. Biomed.
517 Opt.*, 20(11): 116007.

518 Suhr, H., Speil, P., Wehnert, G., Storhas, W. 1991. In-situ mikroskopiesonde und
519 meßverfahren. offenlegungsschrift. Deutsches Patentamt. DE 4032002 A1.

520 Suhr, H., Wehnert, G., Schneider, K., Bittner, C., Scholz, T., Geissler, P., Jähne, B., Scheper, T.
521 1995. *In situ* microscopy for on-line characterization of cell-populations in bioreactors,
522 including cell-concentration measurements by depth from focus. *Biotechnol. Bioeng.*, 47:
523 106-116.

524 Thompson, R. C. A., Olson, M. E., Zhu, G., Enomoto, S., Abrahamsen, M. S., Hijjawi, N. S.
525 2005. *Cryptosporidium* and cryptosporidiosis. *Adv. Parasitol.*, 59, 77–158.

526 United States Environmental Protection Agency – USEPA. 2012. Method 1623.1
527 *Cryptosporidium* and *Giardia* in Water by Filtration/IMS/FA. EPA 816 – R-12-001.
528 Office of Water (MS-140). Environmental Protection Agency, Washington, D.C.
529 Wei, N., You, J., Friehs, K., Flaschel, E., Nattkemper, T. W. 2007. An *in-situ* probe for on-line
530 monitoring of cell density and viability on the basis of dark field microscopy in
531 conjunction with image processing and supervised machine learning. *Biotechnol. Bioeng.*,
532 97, 1489-1500.
533 Wiedemann, P., Guez, J. S., Wiegemann, H. B., Egner, F., Quintana, J. C., Asanza-Maldonado,
534 D., Filipaki, M., Wilkesman, J., Schwiebert, C., Cassar, J. P., Dhulster, P., Suhr H. 2011.
535 *In situ* microscopic cytometry enables noninvasive viability assessment of animal cells by
536 measuring entropy states. *Biotechnol. Bioeng.*, 108, 2884-2893.
537 Wu, T. F., Chen, Y. C., Wang, W. C., Kucknoor, A. S., Lin, C. J., Lo, Y. H., Yao, C. W., Lian,
538 I. 2017. Rapid Waterborne Pathogen Detection with Mobile Electronics. *Sensors* (Basel,
539 Switzerland), 17(6), 1348.