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Abstract

Laboratory procedures performed in water treatment studies frequently require the
characterization of (oo)cyst suspensions. Standard methods commonly used are laborious,
expensive and time-consuming, besides requiring well-trained personnel to prepare samples
with fluorescent staining and perform analysis under fluorescence microscopy. In this study, an
easy cost-effective in situ microscope was assessed to acquire images of Giardia cysts directly
from agitated suspensions without using any chemical labels or sample preparation steps. An
image analysis algorithm analyzes the acquired images, and automatically enumerates and
provides morphological information of cysts within 10 min. The proposed system was
evaluated at different cyst concentrations, achieving a limit of detection of ~30 cysts/mL. The
proposed system overcomes cost, time and labor demands by standard methods and has the
potential to be an alternative technique for the characterization of Giardia cyst suspensions in

resource-limited facilities, since it is independent of experts and free of consumables.

Keywords: Water quality, Parasites, Protozoa, USEPA, Giardia, Computer
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1. INTRODUCTION

Giardia is an environmentally ubiquitous enteropathogen distributed worldwide, which has a
simple life cycle with two main stages, the proliferating trophozoite in the small intestine and
the infectious cysts that are spread most often via contaminated water (Einarsson et al., 2016).
This protozoan has previously been associated with several gastrointestinal waterborne
outbreaks, especially in developed countries, being responsible for 280 million gastrointestinal
infections (Thompson et al., 2005; Ankarklev et al., 2010), which makes Giardia spp. a public
health risk and an important target in environmental research and sanitation (Rosado-Garcia et
al., 2017).

Current methods for detecting protozoa in water samples, such as the Environmental
Protection Agency (EPA) 1623 (USEPA, 2012), rely on concentration, immunomagnetic
separation of cysts from debris, and staining with specific fluorescent dyes, followed by cyst
detection and counting by a manual process on laboratory fluorescence microscopes. These
methods are laborious, time-consuming, need bulky and expensive equipment, and well-trained
personnel to operate the microscope and perform analysis.

Only a few detection approaches compatible with field instrumentation have been
described to detect and count Giardia cysts in water samples. Commonly used approaches to
evaluate the microbial water quality using smartphone-based microscopy (Shrestha et al., 2020;
Koydemir et al., 2015) and portable imaging flow cytometer (Gordcs et al., 2020) require,
respectively, fluorescent reagents specific for Giardia cysts and disposable components (e.qg.,
plastic tubing and sample channel) for each measurement. This partially hinders their use in
low-resource settings including remote and field sites when waterborne monitoring is needed
on a more frequent basis.

In situ microscopy (Suhr et al., 1995) is an alternative technique enabling one to

overcome the aforementioned constraints. Its principle allows qualitative and quantitative
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characterization of cells and particles suspended in a liquid medium and has been used to
monitor the cell number, cell size distribution, and morphological characteristics of several
specimens, including yeasts (Belini et al., 2020; Belini et al., 2017; Marquard et al., 2016;
Lindner et al., 2007; Wei et al., 2007; Briickerhoff et al., 2005; Camisard et al., 2002; Frerichs
et al., 2001; Bittner et al., 1998; Suhr et al., 1995), Chinese hamster ovary cells (Luder et al.,
2014), and the viability of mammalian cells (Wiedemann et al., 2011). The imaging
performance of the in situ microscopy has already been evaluated in wastewater for the
morphological characterization of filamentous bacteria (Dias et al., 2016; Dunkel et al., 2016).
To the best of our knowledge, no study has been carried out using in situ microscopy to
acquire microscopic images of unstained Giardia cysts. Based on this, we aimed to assess the
potential of this technology in conjunction with image analysis algorithms to automatically
detect and enumerate Giardia cysts in agitated suspensions without the need for any chemical

labels, sampling chamber replacement, or sample concentration.

2. MATERIALS AND METHODS

2.1 Preparation of Giardia cyst suspensions

To obtain the suspensions for the in situ experiments, 1 mL standard Giardia spp. cyst
suspension (Waterborne™, Inc., New Orleans, LA, USA) containing ~10° cysts was
homogenized for 2 min in vortex and vigorously pipetted 20 times, and used as the stock
suspension. Afterwards, this suspension was serially diluted with distilled water. For each
suspension, aliquots of 50 uL were prepared with a Merifluor® (Meridian Bioscience, Inc.) kit
according to the manufacturer’s recommendations and Method 1623.1 (USEPA, 2012), and the
number of cysts was measured in duplicate on a fluorescence microscopy (BX51, Olympus®,

Aexcitation = 475 NM, Aemission = 520 nm). From this process, average concentrations of Giardia
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were obtained at 30, 50, 250, 510 cysts/mL. A negative control was also prepared using 1 mL

of diluted cyst-free water.

2.2 Image acquisition

A high-resolution (~0.3 pum) in situ microscope (Suhr et al., 1991) was built and used to
acquire microscopic images directly from Giardia cysts suspensions. A photograph of the
imaging system is shown in Fig. 1.

i Tip of the Front of the
CCD camera Imaging chamber optical fiber objective lens

_Optical fiber

I
..... = - )
i — ——N
€ >\
1 /
\

(a) (b)

Fig. 1. Photograph of the in situ microscopy-based system for label-free detection and
enumeration of Giardia cysts directly from water samples. (a) Perspective view of the whole
system. (b) Top view of the sample holder. The sampling container equipped with the in situ
microscope was designed to have a working volume of 1.5 mL, which is 30-fold larger than the
volume of aliquots commonly analyzed using standard methods under fluorescence
microscopy. The magnetic bar (2 x 2 x 5 mm) inside the imaging chamber is not shown. Scale

bar=1cm.

Essentially, the in situ microscope (ISM) consists of a transmitted brightfield
microscope that is directly coupled to moving suspensions to capture micrographs of the

suspended cells and particles. The 1.5 mL working volume container was machined from an
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aluminum block and equipped with the ISM and inoculated with 1 mL cyst suspension for the
in situ experiments.

The LED (DieMOUNT, Wernigerode, Germany) peak-wavelength at 650 nm,
nominally 4 mW at 20 mA, peak current approximately 2 A, pulse-length 0.5-10 ps, was used
for illumination. An optical fiber pigtail was used to guide light to provide direct light
microscopy. The micrographs were acquired by a digital camera (SCA1400-17 gm, Basler,
Ahrensburg, Germany, CCD-size 8.98 mm X 6.71 mm, 1392 x 1040 pixels, pixel size 6.45 x
6.45 um?, bitmap, 8 bits) through a solid immersion lens-objective (20x, NA = 0.75). The latter
was designed and characterized by Suhr & Herkommer (2015).

In order to avoid cross-contamination between measurements for different cyst
concentrations, the imaging container was systematically cleaned. Before the in situ
experiments, a first cleaning procedure was performed ~30 times, until no more objects were
visualized in the real-time Graphical User Interface of the image acquisition system. The
cleaning process involved vigorous pipetting of cyst-free distilled water into the container and
subsequently sucking out the whole water volume from the container. The cleaning procedure
was also performed three times between each measurement.

The image acquisition parameters such as light pulse width, camera gain, and exposure
time, were all set up once at the beginning of the study and remained unchanged throughout the
experiment.

For the in situ experiments, the container was inoculated with 1 mL of suspension, and
a magnetic stirrer (~150 rpm) was used for agitation. Microscopic images were acquired

immediately after the cyst suspensions were inoculated into the imaging container.

2.3 Image analysis

An image analysis algorithm was implemented using the MATLAB Image Processing Toolbox

in an Intel PC, Quad-CPU, 2.66 GHz, 4.0 GB RAM. As shown in Fig. 2, the algorithm
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comprises two main sections: (i) detection of objects from ISM images followed by portrait
generation, and (ii) feature extraction followed by cyst classification.

Portrait generation Cyst classification

a—[ Portrait } i

]
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Fig. 2. Flowchart of all operations performed to generate portraits containing candidate objects

and to perform classification for each detected object.

2.3.1 Object detection

The first step is to detect objects from the ISM image to create portraits containing a single
object. Due to the sparse images, a large number of images was needed to capture a single cyst.
In order to optimize the algorithm with respect to computational time, it was essential to first
reduce the original image resolution (1392 x 1040 pixels) by a factor of four, resulting in 348 x
260 pixels images. Prior to detecting objects in the acquired images, the following image
preprocessing steps were performed: first, a noise reduction step was carried out usinga 5 x 5
median filter (Gonzalez & Woods, 2008) to reduce high-frequency noises. Afterwards, a high-
pass filter (disk-shaped, 2 pixels) was applied in the smoothed image to sharpen the objects”
border. To find objects in the processed image, the Canny operation was computed (Gonzalez
& Woods, 2008) to create a binary image containing closed lines of connected white pixels on
a black background. Short gaps in the lines of pixels are closed by a morphological dilation

7
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operation (Gonzalez & Woods, 2008) using 2-pixel line structuring elements followed by hole
filling and border image cleaning. Afterwards, the shape of the object is further smoothed by
applying morphological opening operation (Gonzalez & Woods, 2008) in the resulting binary
image. Detected objects in the reduced image, which have sizes not within the range of values
expected for cysts (100 — 210 pixels), are discarded by size filtering.

This first step of the algorithm only performs a preliminary segmentation of objects
from the background to localize them and generate portraits containing detected objects. Only
in these portraits are the detected objects evaluated and classified by the algorithm as candidate
cysts. As the analyzed water samples contain a diversity of objects exhibiting a variety of sizes
and shapes, their influence on the image analysis is minimized by detecting only regularly
shaped objects. This selection is made by computing the solidity factor (Soltys et al., 2005) of
each object. This is a scalar that specifies the proportion of pixels in the convex hull that are
also inside the detected object. By applying a threshold value (0.90) for the solidity factor of
every binary object, irregularly shaped structures are discarded.

From the final binary image, the centroid of the pre-classified objects is determined,
and this information is used to crop corresponding portraits (70 x 70 pixels) from the original

(unreduced) ISM image.

2.3.2 Feature extraction

Once the objects are successfully detected using the steps described above, the classification of
objects contained in the portraits as cysts or non-cysts is carried out by performing the
operations shown in Fig. 2. First, a noise reduction step is carried out in the portrait cropped
from the original ISM image using a 5 x 5 median filter (Gonzalez & Woods, 2008) to reduce
high-frequency noises. Afterwards, a high-pass filter (disk-shaped, 3 pixels) is applied in the
smoothed image to sharpen the objects” border. To find objects in the processed image, the

Canny operation was computed (Gonzalez & Woods, 2008) to create a binary image containing
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closed lines of connected white pixels on a black background. Short gaps in the lines of pixels
are closed by a morphological closing operation (Gonzalez & Woods, 2008) using 4-pixel disk
structuring elements followed by hole filling and selection of the largest object contained
inside the portrait.

Afterwards, the size of the object is determined as the number of pixels forming it. This
information is used to identify only those objects that have sizes within the range of values
expected for cysts in the unreduced image.

Due to the typical elliptical shape of the cysts, this feature was parameterized by the
eccentricity of the ellipse that has the same second moments as the region under analysis
(MathWorks ", 2021):

Distance between the foci of the ellipse

Eccentricity = (D

Major axis length
where the major axis length is the length (in pixels) of the major axis of the ellipse that has the
same normalized second central moments as the region. A null eccentricity designates a perfect
circle, while values increasing towards 0.5 describe shapes increasingly more elliptical, and
unitary eccentricity describes a line segment. By applying a threshold value for the eccentricity
factor of every binary object, irregularly shaped structures can be discarded from further
analysis by the algorithm.

As portraits containing naturally existing micro-objects in sample water, whose shapes
and sizes could resemble those of cysts, may still remain after applying the two above-
computed parameters, the completeness for cyst classification involves the computation of their
inhomogeneity. Following the image evaluation steps described by Wiedemann et al. (2011),
the average local entropy was computed for each original (unreduced) grayscale portrait as a
measure of inhomogeneity. To confine the computation of the entropy inside the object, firstly

the object boundary, as determined by the algorithm, was used to define the region of interest
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(ROI) in which the entropy is computed. Afterwards, for each pixel inside this region, the local
entropy E in the pixel’s 3 x 3 neighborhood is computed (Gonzalez & Woods, 2008):

E ==Y P(i).log,[P(i)] bits 2
where i runs over all gray values occurring in the 3 x 3 pixels neighborhoods. Finally, the mean
value of all local entropies in the ROI is computed as a measure of inhomogeneity of the object.

In addition, the length and the width of the cysts was determined as the maximum and
minimum Feret’s diameters (MathWorks ", 2021), respectively. Each imaged pixel corresponds

to a real dimension given by the pixel size over optical magnification:

6.45 um

Length represented by one pixel = = 0.32 um (3)

2.3.3 Object classification

It was observed in the experiments that the cyst sizes were typically in a narrower range of
values (~900 — 1400 pixels) compared to other micro-objects contained in the analyzed water
samples. This information was used as one of the criteria for cyst classification. In logical
AND in conjunction with this criterion, a narrow range of values (~0.60 — 0.86) for the
eccentricity factor was used. An interval of inhomogeneity inside the ROI (~050 — 0.83 bits),
measured as entropy, was used as a third criterion in logical AND conjunction with the two
other criteria. Since objects having size, inhomogeneity, and eccentricity values within the
range of those expected for cysts, may be falsely classified as cysts, the maximum pixel
intensity (> 250) inside the ROI was also used as a classification criterium in logical AND

conjunction with the three other criteria.

2.4 Performance evaluation

Each object portrait was visually inspected to evaluate the performance of the algorithm.
Regarding cyst classification, the algorithm’s outcome was manually classified as true positive

(TP), false positive (FP), false negative (FN), or true negative (TN), defined as follows:

10
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complete cyst bodies, the largest fragment of over-segmented cysts (i.e., cysts divided into
many parts), and one cyst for each case of under-segmentation (i.e., cysts agglomerates
segmented as one cyst) are classified as TP. Halo artifacts and intensity irregularities in the
image background are classified as FP. Missed cysts and remaining cysts in cases of under-
segmentation are classified as FN. The listed terms were adapted from Buggenthin et al.
(2013).

Finally, the sensitivity (SE), precision (PR), and accuracy (ACC) values are computed

to quantitatively evaluate the performance of the algorithm (Buggenthin et al., 2013):

SE = e 4
" TP+ FN 4
PR = e 5
TP+ FP ®)
ACC = i 6
TP+ FN + FP (6)

3. RESULTS AND DISCUSSION

3.1 Detection of objects within ISM images

Figure 3 shows examples of portraits of cysts captured by the in situ microscope at suspensions

containing different cyst concentrations.

11
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Fig. 3. Examples of in situ microscopy cyst-portraits acquired directly from the suspension
using the proposed system. Thick arrow points to cyst wall (Al Saad & Al Emarah, 2014). Thin
arrow and arrowhead point to structures that resemble nuclei and axoneme, respectively. The
red line depicts the object contour as determined by the algorithm for determining size and
shape and also indicates the region of interest inside which the local entropy was computed.
The corresponding values represent the size in pixels, the eccentricity, and the mean entropy

(in bits). Scale bar = 10 pum.

As shown in Fig. 3, the detected cysts exhibit a moderate range of sizes and
inhomogeneities with respect to the intracellular content. In common with most detected cysts
is their regular elliptical-like shape. It can be seen that the more regular cysts in shape
(elliptical) are more homogeneous with respect to size and intracellular content and slightly
smaller than non-elliptical cysts.

In-focus, slightly over-focused (i.e., cysts located between the light source and the focal

plane generating smooth dark edges and cyst content brighter than the rest of the cyst) and

12
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slightly under-focused cysts (i.e., cysts located between the objective lens and the focal plane
appearing as slightly dark and blurred structures, as shown in the last row and column in Fig.
3), were captured. More complex textures inside cysts can be observed when they are in-focus
(Fig. 3). The occurrence of these different focusing conditions poses extra challenges to the
cyst detection stage with fixed parameters such as the threshold values and the cut-off
frequencies in the filters. To tune the algorithm’s parameters, we prioritized minimizing the
likelihood of false positives as misclassifying water samples would make the whole water
sample under analysis positive (false) for Giardia contamination, as inspired by Gordcs et al.
(2020). These parameters were optimized once by experiment and kept constant during the
whole study.

Besides single cysts and some internal structures, the ISM also captured the diversity of
other possible micro-objects contained in the analyzed water samples and that of cyst

configurations (Fig. 4).
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Fig. 4. Examples of different non-cyst particles and cyst agglomerates from ISM images. (a)
The first two objects from left to right in the first row are probably gas bubbles. The objects in
the other portraits could not be identified. (b) Cyst agglomerates. The red line depicts the
object contour as determined by the algorithm for determining size and shape and also
indicates the region of interest inside which the local entropy was computed. The
corresponding values represent the size in pixels, the eccentricity, and the mean entropy in bits.

Scale bar = 10 um. All portraits share the same scale bar.

As shown in Fig. 4, contaminating particles having size and shape heterogeneity and
inhomogeneity regarding the internal content were also acquired by the ISM. However, these
particles were not classified as cysts by the algorithm. When compared to typical values for
size, eccentricity factor, and mean entropy (Fig. 3), cysts can be easily distinguished from non-
cyst particles. More oblong objects (most resembling Giardia cysts) were selected by using the
eccentricity index, while the attribute size helped exclude objects with sizes not within the
range of values expected for cysts. Finally, the two latter parameters in logical AND
combination with the mean entropy, computed in the region of interest inside the object’s
boundary, as determined by the algorithm, eliminated objects morphologically similar to cysts
(Fig. 4).

In addition to the counting, the cysts were also characterized with respect to their
dimensions by the proposed system, which is not available using standard methods. From the
image analysis computed in the classified portraits, Giardia cysts are most elliptical-shaped
objects having an average length and width of 16.37 + 1.76 um and 11.13 + 1.63 um,
respectively. Since the observed cyst agglomerates are much larger than single cysts (Fig. 4b),
they were excluded from the computation of the dimensions. The computed dimensions are
consistent with those reported elsewhere for Giardia spp. cysts (Efstratious et al., 2017;

Karanis et al., 2007; Filice et al., 1952).
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The acquired images were analyzed using size, shape, and texture-based thresholding
for the elimination of contaminating particles and morphologically similar objects to the cysts,
as well as for the isolation of strongly out-of-focus particles. Despite the diversity of non-cyst
particles (Fig. 4), standard operations of image processing (Gonzalez & Woods, 2008) were
sufficient to detect and enumerate Giardia cysts directly from suspensions. Different from
using machine learning algorithms to analyze dozens of extracted parameters derived to
characterize Giardia cysts (Koydemir et al., 2015) or using complex deep-based neural
networks requiring experts and time-consuming training steps (e.g., Gordcs et al., 2020), the
proposed algorithm combines only standard techniques of digital image processing, making it
much simpler, intuitive, easy-to-use, reliable, and reproducible with any common image
evaluation software package on a standard computer.

Each cyst concentration was documented with ~4500 ISM images acquired at a rate of
15 images per second, totalizing ~5 min for image acquisition plus ~5 min for image analysis.
The analysis of the data for the five concentrations resulted in the relationship between the ISM

signal and counts under fluorescence microscopy shown in Fig. 5.
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Fig. 5. Correlation between the total cyst count using the proposed system and the manual cyst
count using the standard method. For each concentration, duplicate measurements were made
by both the proposed method and manual counting. The solid dots represent the experimental
data points. The vertical and horizontal error bars denote the standard deviation for the
proposed and manual method, respectively. The data point null for both data sets is shown in

blue. The correlation coefficients are also shown.

The results show a satisfactory relationship (R?> = 0.97) between cysts counted by the
proposed system and manual count in the range 0 — 510 cysts/mL, as assessed by fluorescence
microscopy according to the standard method.

In Fig. 5, the achieved limit of detection (LoD) is 30 cysts/mL. This value is much
lower than that using lens free microscopy (~190 cysts/mL; Mudanyali et al., 2010), but
significantly larger than those by other imaging-based approaches involving holographic
microscopy (~0.4 cysts/mL; Gordcs et al., 2020) and smartphone-based microscopy in samples
prepared with Lugols™ iodine (~0.7/mL derived from reported 73 cysts/100 g; Shrestha et al.,
2020) or fluorescent dyes (~1.2 cysts/mL; Koydemir et al., 2015). However, the proposed
system is also fast and does not require sample concentration steps, inputs and/or disposable
components. Thus, it is independent of experts to prepare samples and dedicated sampling
devices, which make sample preparation difficult and discourage the use of mobile platforms in
field analysis for pathogen detection (Wu et al., 2017). Based on the imaging performance of
the built ISM, this LoD might be improved by acquiring larger numbers of images in cyst
concentrations one order of magnitude lower, at the expense of larger times for image
acquisition and analysis. Alternatively, similar to observations by other authors (e.g.,
Mudanyali et al., 2010), the usage of sample concentration methods such as centrifugation and
filtering (Fava et al., 2021; Franco et al., 2016; USEPA, 2012) might further improve the

detection limit by a factor of ~100-fold to claim a detection sensitivity of ~0.3 cyst/mL.
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The literature describes Giardia cyst concentration in raw water that are several orders
of magnitude below those used in the work described (Efstratiou et al., 2017). At the current
state presented here, we propose to apply the proposed system for the characterization of
Giardia cyst suspensions commonly used, e.g., in water treatment studies in laboratory-scale
experiments (Adeyemo et al., 2015; Fava et al., 2021; Franco et al., 2016; Freitas et al., 2021).
Since this system requires neither reagents nor sample preparation steps, its application to
rapidly enumerate Giardia cysts in an automated process would reduce detection time, reduce
the level of human intervention required, and contribute to the saving of resources (McGrath et
al., 2017). With slight modifications in the image analysis algorithm aiming to cope with larger
numbers and diversity of other particles, this system has the potential to be used for the
detection of cysts in high-concentration suspensions in water treatment plants with operating
problem or in those that adopt the recirculation of the filter backwash water (Karanis et al.,
1996), which may be responsible for an increased risk of reinserting large amount of (oo)cysts
into the system (Freitas et al., 2010).

As a matter of fact, the in situ microscopy-based system proposed herein has significant
advantages over other imaging-based approaches. First, its real-time imaging system enables
direct screening of water samples, since no processing steps are needed to visually localize and
reconstruct the particles present in the liquid volume as in the case of holographic microscopy
(Gordcs et al., 2020). Second, in terms of application in resource-limited settings, the field-
portable design of the proposed system is quite advantageous as it requires neither disposable
components (Gorocs et al., 2020) nor fluorescent labeling (Koydemir et al., 2015), in which the
latter further complicates sample preparation and discourages mobile platforms from the field
testing of pathogen detection (Wu et al., 2017). In regions with limited infrastructure, a ready-
to-use system such as the one proposed here could benefit laboratory personnel in terms of the
ability of characterizing Giardia cyst suspensions in a few minutes, with the added advantage

of not requiring specialists to prepare samples or replace sampling devices. In addition, the
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sub-micrometric optical resolution (~0.3 um) of the solid immersion-based objective in situ
microscope (Suhr & Herkommer, 2015) enables detecting even smaller waterborne pathogens,
such as Cryptosporidium oocysts, which also present a major health challenge globally (Gérécs

et al., 2020).

3.2 Performance evaluation of the proposed method

The overall performance of the cyst segmentation algorithm was evaluated by comparing its

outcome with portraits inspected manually. The results are summarized in Table 1.

Table 1. Performance evaluation of the algorithm. The average number of cysts, as determined
in duplicate by both algorithm and standard methods, is shown as the mean = SD. On average,
98 + 14, 81 £ 5, 239 + 67, and 412 + 18 portraits were segmented by the algorithm, and then

examined manually for the concentrations of 30, 50, 250, and 510 cysts/mL, respectively.

Concentration (cysts/mL)?
Parameter 510 250 50 30

Total number of cysts
by manual inspection

Total number of cysts

285+3.5 155+£25 8.0+1.0 45+05

31.5+35 16.5+35 9.0+0.0 6.0+ 0.0

by proposed system

True positives 28.5 155 8.0 4.5
False positives 3.0 1.0 1.0 15
False negatives 4.5 2.5 0.5 0.0
Sensitivity 0.87+0.05 0.86+0.04 095+0.05 1.00+0.00
Precision 092+0.01 0.95+0.05 1.00+0.00 0.83+0.17
Accuracy 0.80+0.04 0.82+0.00 0.84+0.06 0.75+0.08

& Giardia cyst concentration based on fluorescence microscopy.

The image analysis performance described by an average sensitivity (92%), precision
(93%), and accuracy (80%) shows that the algorithm performed satisfactorily well by applying
the same classification strategy with fixed values for all algorithm’s parameters regardless of
cyst concentration. Most misclassifications were observed in images of cysts acquired under
different imaging conditions. Specifically, missing cysts (i.e., FN cases) occurred for poorly

contrasted cysts. The few FP cases were caused mainly by objects having parameters with
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values within those expected for cysts. The occurrence of cysts agglomerates was observed in
the two highest concentrations. In these cases, one two-agglomerate cysts (Fig. 4b, left) and
one three-agglomerate cysts (Fig. 4b, right) were correctly classified as containing two cysts
each on the basis of its 2-fold size larger than the average size for single cysts, in conjunction
with the other regular criteria for cyst classification adjusted for agglomerate detection. In the
latter case, however, one cyst was missed due to its poorer contrast compared to the neighbor

cysts in the same agglomerate (Fig. 4b, right).

4. CONCLUSIONS

This paper proposed using in situ microscopy in conjunction with image analysis algorithms
for detecting and enumerating unstained Giardia cysts directly from agitated suspensions. The
automatic counting results were compared to manual counting from standard methods,
showing satisfactory performance at different cyst concentrations. Besides to a rapid
quantification, the proposed system also provided in a short time information related to the
morphology of the cysts, without requiring chemical labels or sample concentration steps. The
results presented herein, provide subsidies for the improvement of the technology, so that it can,
in the near future, become a simple, ready-to-use, and reliable method for the detection of
Giardia cyst, and/or other pathogens, in field or laboratory experiments, demanding less effort
and reduced cost when compared to standard detection methods, given that the presented

system is automatic and free of consumables.
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