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ABSTRACT

This report describes a computational method for the solution of incompressible
turbulent free-surface fluid flow problems. The closure of the time—averaged Navier-
Stokes equations is achieved by using two—equation It — a turbulence model. In order
to stabilize the numerical calculations, a high—order upwinding technique is adopted
for the discretization of the non—linear derivatives. The flexibility of the method
is demonstrated by application to several two-dimensional and axisymmetric fluid
flows.
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1 Introduction
Numerical solutions of the time-averaged Navier—Stokes equations for turbulent flow field have
received a great deal of attention in recent years, since, in principle, they describe fluid flow
problems with any level of complexity. The only uncertanty in this approach is that introduced
by turbulence model to effect closure of the mean conservation equations. The effects of the
turbulence in the fluid flow sometimes play an important part in the physical process because of
its increased mixing properties, which can affect the overall temperature, density and velocity
distributions in the flow. However, compared to confined fluid flow problems, the numerical
solution of turbulent free-surface fluid flow problems represents a challenge, since the free-
surface itself is one of the unknowns



The main purpose of this report is to present a computational technique for predicting in-
compressible turbulent free-surface fluid flow problems using two versions of the two-equation
n— e turbulencemodel. The numerical solution procedure is applied to a zero-pressure-gradient
turbulent boundary-layer on a flat plate and jets impinging onto a flat surface.

2 Governing Equations
The conservation equations for time—dependent, viscous incompressible turbulent newtonian
fluid flow are the time-averaged Navier-Stokes equations, the mass conservation equation, and
the It and 5 transport equations

ag+16<rauw+6<uw __6pe+;_6_ a}: ;6t 7" 6T 62 _ 6r Re 62 62 67 Frzgr

+ i2—1—t9 raua—u +3 1/ @+@ —2M 1
Re 7‘" 67‘ 26—1" 62 t 62 6r (17‘2“ ‘ ( )

6_v+16__(r“vu)+6(vv)__%_ii6Ta@_6_v +i6t 7“ 6r 62 _ 62 Re T“ 67 62 61" Fr292

L 23 6—7) 1 3 M +_611 2
Re 62 ”62 + 567‘ TuW 6—2 61‘ ()

1 6(rau) 6v _Tu ar + a — 0’ (3)

6n 1 6(r‘1urt) 6(1m)_ 1 1 6 6K 3 6—K5+; ar + a “E rue—r (1+Vt/a‘)6:+62 (1+Vt/U")62

+ P — e, (4)
65 1 6(ra‘u5) 6(v5)_ 1 1 6 65 6 65
E + 7—" 6r + 62 —R—e r—D‘ 6—r

7010 + 14/05); + 62 (1 + ”Mada
+ (CIEP — CZEE)/T¢ + BE, (5)

where t is the time, u = u(r,2,t) and v = 11(r, 2, t) are, respectively, the components in the r
and 2 directions of the local time-averaged velocity vector field 11 = u(r, 2, t), K, = K(7‘, z, t) is
the local time-averaged turbulent kinetic energy of the fluctuating motion, 6—— 6(7‘, 2 ,t) is the
dissipation of K, 116—- p +2iR—/t is the effective scalar pressure field divided by the density, and
g = (9,, g,) is the gravitational acceleration. The non—dimensional parameters Re: UoLo/u
and Fr : Uo/‘/Lo|g| denote the associated Reynolds and Froude numbers, respectively, in
which U0 is a characteristic velocity scale, L0 is a length scale, and 1/ is the kinematic viscosity
of the fluid. The isotropic eddy-viscosity 1/1, the turbulent shear stress production P, the time
scale T1, and the gradient dissipation E are, respectively, defined as

u, = 0mm, (6)
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where, in Eq. (8), [5|2 2 D :D, with D=Vu+ (Vu)T. Together with the model constants C”,
015, 025, 0,, and 08, the parameter fl in Eqs. (5) and (8) is used to specify the two-equation n—s
turbulence models considered in this work. In the case of C), = 0.09, 015 = 1.44, 025 = 1.92,
a,c = 1.0, 05 = 1.3 and [3 = 0, we deal with the standard high-Reynolds number form of the
K — 5 model [13] (named in this paper of HRe R — 5 model), with the time scale proposed by
Durbin [6] for appropriate treatment of stagnationvpoint anomaly. When the model constants
are that proposed by Hoffman [11]; that is, C" = 0.09, 015 = 1.81, C2: = 2.0, 0,, = 2.0,
as = 3.0 and fl = 1, we treat with a low-Reynolds number form of the K? — 5 model (named
here of LRe It — 5 model), which is similar to that proposed by Yang and Shih [26].

The dumping function f,‘ in Eq. (6) assumes the value f), = l in the case of the HRe I9 — 5
model, and takes the following expression in the case of the LRe K —— 5 model

1/2
f” = (1— Ezp(—a1Rezw — agRegw — (15391)) , (10)

where (11, a3 and (15 are constants given by (11 21.5 X 10—4, a3=5.0 X 10—7, (1521.0 x 10‘10 [26],
and Ream is the local Reynolds number defined as Rezw = szenl/Z, 2“, being the normal
distance from the rigid—boundary to a point into the flow. The parameter a in Eqs. (1) through
(7) is used to specify the coordinate system, namely: when a = 0, plane cartesian coordinates
are considered; and when a = 1, cylindrical polar coodinates are assumed. Equations (1)—(8)
have been nondimensionalized by the following transformations

u*=qu, r*=rL, v*=vUo, z‘=zL, t*=tL/Uo, gz=g.-Igl.

pe‘ =ng02, n" = nqu/L, 8‘ = qug/Lz, u“ = 11,11, (11)

where variables with a star refer to their corresponding dimensional variables.

3 Initial and Boundary Conditions
Equations (1) through (5) are coupled, non—linear, partial differential equations and, together
with the eddy-viscosity model (6), are sufficient, in principle, to solve for the five unknowns u,
7/, p6, K and 6 when appropriated initial and boundary conditions are specified. In this work,
a staggered mesh is used where the effective pressure, the turbulent kinetic energy and the
dissipation rate are stored at the center of a computational grid cell, whereas velocities are
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Figure 1: Staggered grid cell showing locations of the dependent variables.

stored at the cell edges. A typical cell showing the physical locations at which this dependent
variables are defined is illustrated in Fig. 1. With this grid system, efl'ective pressure boundary
conditions are not needed. The initial and boundary conditions are implemented into the
GENSMAC codes [18]—[19] as follows.
The initial conditions for the mean velocities and effective pressure are specified in the same way
as in the laminar case [18]—[19]; that is, these variables are prescribed. It is difficult to specify
initial conditions for turbulent variables since they must be in agreement with the physics of
the problem. For the free-surface fluid flow problems considered in this work, we prescribe the
initial conditions for Ii and 5, and hence for Vt, as functions of a turbulent intensity I [5], [23],
and the large-scale characteristic velocity U0. The variable a is estimated by

n = 5(1, U0) = IUOZ. (12)

From dimensional reasoning, the variable E is then determined as [15]

Pia/2
e = 5091,) = l—’ (13)

where l, is a characteristic length associated to large scales and it is defined as l; 2 BL, being
[i constant. In non-dimensional form, Eqs. (12) and (13) can, respectively, be written as

1/2

[C = [Re and 5 = %<Re_lns> . (14)

In all computations presented in this paper, 5 = 1.0 x 10‘2 and I 2 8.0 x 10‘2 were employed.
Five types of boundary conditions are implemented in this work, namely: inflow, outflow,
symmetry, free—surface, and rigid-wall boundaries. At the inflow, the velocities u and ’l) are
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prescribed while the values of It and 5 are estimated consistently with the initial conditions
(14). At the outflow, the streamwise gradient for each variable is required to be equal to zero.
At symmetry boundaries, we are setting

Bu, an 65 _un=0, an=0’ E=0 and 57—1—0, (15)

where n and 7' denote normal and tangential directions to the boundary, respectively. At
the free-surface, we are considering that the fluid is moving into a passive atmosphere (zero-
pressure) and, in the absence of surface tension forces, the normal and tangential components
of the stress must be continuous across any free—surface, so that on such a surface we have (see,
for example, Landau and Lifshitz [12])

n-(U-n)=0, (16)

m.(a.n)=0_ (17)

Here, n and m are unit normal and tangent vectors to the surface, and a is the general
constitutive equation (Cauchy stress—tensor) defined as

a = —peI+Re‘1(1+I/t)D, (18)

where I denotes the identity tensor. In the same way as is made in [19], the Eqs. (16) and (17)
are applied by making accurate local finite-diflerence approximations on the free—surface: from
condition (16) one determines the effective pressure; and from (17) one obtain the velocities at
the free-surface. Due to the complexity of the dynamics of the turbulence near to the interface,
the values of the turbulent variables It and e at the free-surface of the fluid are difficult to
specify. For instance, it is not known how the turbulence interacts with the surface tension
and, therefore, it is difficult to specify the distribution of It on an irregularmoving free-surface.
So, as a first approximation, we assume that the free-surface is locally flat and the movement
of the fluid does not cause discontinuity at this boundary. In summary, the turbulent variables
at the free-surface are determined by imposing

an 88
an — 0 and

an _ 0. (19)

The derivatives in Eq. (19) are approximated by first-order finite-differences.

The boundary conditions at rigid-wall depend on the It — a viscosity model considered. When
the simulation is performed with the HRe Ic—e model, the wall—function approach is employed.
In this case, the fundamental equation for determining the fictitious velocities and turbulent
variables near a rigid-wall is the total wall shear stress 7'“, given by [23]

>

where 11 represents the velocity component tangential to the rigid-wall, and u, is the friction
velocity. The values of the it and s in the inertial sublayer are, respectively, prescribed by well
known relations

811

an z 11,2 = 7",, (20)(Re—10 + 11;)

wall

'r 7’ u
K=R6—1u;2 and 521213}? T,

C“ 210
(21)



where K = 0.41 is the von Karman constant. In the viscous sublayer, we use the strategy of
Sondak and Pletecher [17]; that is,

ft = 138%
p

where 2+ is defined as 2*” = Reurzw, and 1‘ represents the length scale proposed by Norris and
Reynolds [16]. Neglecting the buffer layer of a turbulent boundary-layer, the critic z+ (zc‘r) in
Eq. (22) delimits the viscous sublayer and the inertial sublayer. A detailed discussion of the
initial and boundary conditions using the HRe K — 5 turbulencemodel is given in Ferreira [8].
When the LRe It — a model is used in the computations, the velocity at solid boundary is set
to zero, in order to represent the no-slip velocity boundary conditions (11 = 0), and the values
of the turbulent variables It and E at this boundary are, respectively, specified as [1]

61cm 2

an > '

+ 2 3/2

(:7) and EzRe'mKl—‘, (22)
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3.1 Wall Functions Aspects

It is well known that the HRe K —5 model requiresmodification for the simulation of flows near
rigid boundaries, so as to account for damping of velocity flutuations and viscous effects. In
general, the solution of the conservation equations in the inner layer of a turbulent boundary—
layer is not necessary since the flow mechanism in such a region can be described reasonably
well by employing wall-functions (for a more detailed discussion see, for example, Ferreira [8]).
In what follows, we describe our implementation of wall-functions for the free-surface fluid flow
treated in this paper.

The behavior of the mean velocity profiles in the viscous and inertial sublayers are, respec—
tively, given by (see, for example, Refs. [3], [22] and [24])

u+ — 2+ = 0, (24)

ln(Ez+) — Ku+ :2 0, (25)
where 11+ 2 fl/u, and E = ezp(KB), B constant.
One of the central questions in the application of the wall—functions (20)-(22) is the accurate
determination of the friction velocity, and hence the wall shear stress. It is determined from
relation (24) or (25), depending on the local Reynolds number 2+. When u, is obtained by
(25), the Newton-Raphson’s method is applied with u, : 11.60 as the initial condition. We
initiate the calculations by determining the critic Reynolds number 23“, solution of the non-
linear equation defined by the intersection of (24) and (25), and by imposing, in principle,
that it is in the viscous sublayer. By neglecting the transition sublayer, in every cycle of the
computational procedure, the friction velocity is estimated in the following manner: with the
tangential velocity 11 known in the first grid cell adjacent to the wall, u, is updated according
to the value of the 2+ given by (24). If 2+ is less than 26+, we use (24); on the other hand, we
employ (25). The fictitious velocities are calculated by central-difference approximation of the
Eq. (20) for a known wall shear stress.



4 Computational Procedure
The governing equations (1) through (5) are solved with an extension of the GENSMAC
methodology for turbulent flow field (see Ferreira [8]). The detailed information of the GENS-
MAC code for laminar flow field is provided by Tomé and McKee [18] and Tomé et a1. [19]. It is
a finite-difference, explicit, first/second-order accurate numerical method based on a predictor-
corrector scheme. By using a guessed effective pressure fie and an eddy-viscosity, the method
consists of solving the time-averaged Navier—Stokes equations at the (k + 1) time-step for a
tentative velocity field 11. The 1': velocity is related to the true velocity field 11, at the (k + 1)
time-step, by an auxiliary potential function 1b which is calculated by a Poisson equation, orig-
inated by imposingV . u = 0 at the (k + 1) time—step. The effective pressure and the turbulent
variables I: and a are then updated, and the procedure is repeated at each time-step. In partic-
ular, when calculating 1'1 in step 1, we employ an adaptive time-stepping routine (see Tomé and
McKee [18]). The numerical solution proceduremay be summarized as follows. It is supposed
that, at a given time t = to, the velocity field 11 is known and suitable boundary conditions for
the velocity and turbulent variables are given. Let 135(r, z, t) be an arbitrary effective pressure
field, which satisfies the correct pressure condition on the free-surface. This pressure field is
constructed employing the normal-stress condition (16) at the free-surface, and it is chosen
arbitrarily (for instance [360“, z, t) = 0) into the fluid. The updated velocity field, the effective
pressure and the turbulent variables, at time t = to + it, are calculated by the following steps:

1. With the eddy-viscosity 1/, known at t = to, compute an approximate velocity field
fi(r, z, t) from a finite-difference discretization of

BE _ _ iB(r"‘uu) _ B(uv) _
B17e

+ii B_u _ 6—1)) +iB? t=to
_ r“ Br Bz Br Re Bz Bz Br Fr297
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E [2;E-0—T (7‘ 11155) + a (V; (E + 5)) — 207.27] }
t=tn,

(26)

BE _
1 B(r°‘vu) _ B(vu) _

B'p}
_ iii 7""

B_u _ Q +iE t—to
_ _ r—a Br Bz Bz Re r“ Br Bz Br Fr292

1 B BU 1 B a Bu BU
+ E [25 (Via—Z) + 7—05 (7‘ 1/; (a + 57))] }

L=to,
(27)

with fi(r,z,to) = u(r, 2,710) using the correct boundary conditions for u(r, z,t0). It can
be shown (see, for example, Ferreira [8]) that fi(r, z,t) possesses the correct vorticity at
time t but does not satisfy (3), in general. By writting

u(r, z, t) = fi(r, z, t) — V¢(r, z, t) (28)

and imposing
V21/1(r, z, t) = V ~ fi(r, z, t), (29)

a velocity field is obtained in which the vorticity and mass are conserved;



2. Solve the Poisson equation (29). The appropriate boundary conditions for this elliptic
equation are homogeneous Dirichlet-typeon the free-surface and homogeneous Neumann-
type on fixed boundaries [2]. These are treated in a similar way as in the GENSMAC
code of Tomé and McKee [18] and Torné et a1. [19];

3. Calculate the velocity field u(r, 2,13) from (28);

4. Compute the effective pressure. It can be shown (see Ferreira [8]) that this pressure field
is given by

pe(7‘, 2: t) = [347.» z: t) + [$0.7 2? t)/6ti (30)

Compute the kinetic energy It from a finite-difference approximation of (4);

Compute the dissipation rate a from a finite—difference approximation of (5);

Update the eddy—viscosity u, from (6);
9°T'9‘P‘

Particle movement. The last step in the calculation involves the movement of the marker
particles to their new positions. These are virtual particles (without mass, volume, or
other properties), whose coordinates are stored and updated at the end of each cycle by
solving the ordinary differential equations

r" = u(r, z, t) and 22 = v(r, z, t) (31)

by Euler’s method. This provides a particle with its new coordinates, allowing us to
determine whether or not it has moved into a new computational cell, or if it has left the
containment region through an outflow—boundary. Update the boundary conditions and
go back to the first step.

5 Discretization of the Governing Equations
In the solution procedure described in the previous section, the differential equations are dis-
cretized, using a finite—difference formulation on a uniform staggered grid, in time and space in
precisely the same manner for all dependent variables. Particularly, the temporal derivatives
are discretized using the first—order forward difference, while the spatial derivatives are approx-
imated with standard second-order central differences, with the exception of the convective
terms (named here of CONV(~)), which are handled with the VONOS (Variable-Order Non-
Oscillatory) scheme of Varonos and Bergeles [20]: a high-order accurate upwinding scheme,
which satisfy the Convection Boundedness Criterion (CBC) proposed by Gaskell and Lau [10].
The VONOS scheme has the property of reducing unphysical numerical oscillations and, at
the same time, minimizing the effects of artificial numerical diffusion. A detailed discussion of
this convection scheme would go beyond the scope of this paper, and the reader is referred to
Ferreira et a1. [7] for details of implementation and application in laminar free-surface flows.
The Poisson equation (29) is discretized using the usual five—point Laplacian operator, and
the corresponding symmetric—positive definite linear system is solved by the conjugate—gradient
method. In summary, the fluid flow equations (1)—(5) take the following discretized form:
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where

CONV(e)
"
= [l8(r°‘ue) + 6015)]

"
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i,j 1,1‘
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The eddy-viscosity, the production of turbulence, the gradient dissipation, and the time scale
are, respectively, discretized as

”M Z Cflfu’iiij 2",}? (41)
1 2 1 U‘+1/2,' + Uzi/2'P31 = 1’37 {2 [WWHl/W — “i-1/2J) + EWIRJ‘Hfl — vi.j-l/2)2 + (#432

1
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1 2 "
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214'. . 1 2
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TI
1 2
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KI}. 2 3 NT}. 1 1/2
T". 4 = 1— M‘ fl _ A _ _t 1,]

( 18) m{
62.7130“ 8|S|2 }+ IB{

6:].
+ (52].) } (44)

5.1 Discretizatz'on of the Convective Terms

We now consider the use of the high-order upwinding VONOS scheme for the discretization of
the convective terms in the transport equations. It should be pointed out that, based on the
local velocity direction of the flow, this composite differencing scheme is a good compromise
between numerical stability and accuracy. For brevity, only the discretizationsof two non-linear
derivatives are presented; all the other convective derivatives are treated similarly (for more
details, see [8]).

Let us consider, for example, the convective terms (33) and (38). Then, these terms can be,
respectively, written as

Heparin) + 62%)] = [ m1 .3(rauu) + agw) ] , (45)
T T Z

i+1/2,j
T "Fl/2’] T

i+1/2,j
z

i+1/2,j
71 n

1 6(raurc) 6(1m) _
1 6(ruu5) (9(1m)

[7“ 6r + Bz
, _

_ Tam (97
. .

+ 62
.

a (46)
w m w
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where the non-linear derivatives are approximated by

6(rauu)

i+1/2,J’

6(uv)

i+1/2,j

6(ruun)
0r

ixj

3(1m)
32

id

”4 [T°i+1,j(fii+1,jui+1,j) — Tatjwnuumfl/‘sh (47)

% (17i+1/2,j+1/2Ui+1/2,j+1/2 — 17H1/2,j*1/2ui+1/2J‘1/2)/62’ (48)

“ [Tai+1/2,j(fii+1/2,j’€i+l/2,j) — Tai—l/ZJ(fii—1/2,jK'i—1/2.j)i/6TI (49)

z (fii,j+1/2M,j+1/2 — 17i.j—1/2'€i,j—1/2)/‘53- (50)

The convective velocities in Eqs. (47)-(50) are obtained as

fli+1,j = 0-5(ui+3/2,j + Ui+1/2,j)7

7114' = 0-5(u1‘+1/2,j + ui-1/2,j)y

17i+1/2,j+1/2 = 0-5(7-’i+1,j+1/2 + Ui,j+1/2):

17i+1,j—1/2 = 0-5(Ui+1,j—1/2 + 'Ui,j—1/2)1

firm/24' : uni/24‘, fii—l/ZJ = iii—um.

Tina/2 = ”MM/2: Tim—V2 = Ui,j—1/2-

In Eqs. (47)-(50), the transported propertiesu and n at grid points (i + l, j), (i, j), (i + 1/2, j + 1/2),
(i+ 1/2,j—1/2) and (i+1/2,j), (i—1/2,j), (i,j + 1/2), (i,j—1/2), respectively, are ap—

proximated by using the upwinding VONOS scheme. For example, the velocity u at the point
(i + 1/2,j + 1/2) and the kinetic energy It at the point (i + 1/2,j) are, respectively, approxi-
mated by

ui+1/2,j+1/2 x (1’31)

+51

ui+%,j , if ai-H/ZJ ¢ [01 1]

lOui+%,j — Qui+%,j—1 , lffii+1/2J E [0, 3/74)
gui+%,j+1+ 215+“ — éufl'g'j—l , if fii+1/2‘j é [3/74, 1/2)
1.5ui+%’j — 0.5ui+%yj_1 , if fii+1/2,j 6 [U1 2/3)
ui+%,j+1 , if 17i+1/2,j 6 [2/31 1]

ui+%,j+1 w if ai+1/2,j+1 ¢ [0: 1]

10Ui+%,j+1 — 9U{+%yj+2 a if fii+1/2,j+1 E [07 3/74)
guifia + Eui+%,j+1 ‘ ilk-+5142 7 if 17i+1/2,j+1 6 [3/74, 1/2)

if 3111/sz e [1/2, 2/3)
if a1'+i/2>,j+1 E [2/3, 1]

1-5ui+§,j+1 ‘ 0‘5ui+%,j+2 :

ui+§J ,
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KM , 1f Rm- ¢ [0, 1]

10Ki,j — QKi—lj , if Rm" 6 [0, 3/74)
ni+1/2,j z (1 — 32) gNi+1J + 2K.” — éfipm‘ , 1f Rid 6 [3/74, 1/2)

1'5Kiuj — O-SKi—IJ , if kid 6 [1/2, 2/3)
Ni+l‘j , 1f kid 6 [2/3, 1]

Ram , if 75141,: ¢ [0, 1l

10I€5+1J — 9K5+21j , if Ri+1j E [0, 3/74)
+52 g’czj + 3514.14' — élfii+2J , 1f Ri+1,j 6 [3/74, 1/2) ,

1.5K4+1’j — 0.5lii+2J , 1f 214.1%»; E [ii/2, 2/3)
K'ij , if Ei+1jj E [2/3, 1]

where the parameters 51 and .32 are given by

S = 0, if fii+1/2,j+1/2 Z 0 S = 01 if 1“141/” Z 0
1 1, otherwise ’ 2 1, otherwise

and the normalized variables fiifl/ZJ, fiHl/gg-H, 75m- and 75th are defined as [14]

A _ ui+%.j — “Haj—1 A _ ”H5141 _ ”Ham
ui+1/2,j —_u_ 7 ui+1/2,j+1 ——,i+%,j+l “£44,141 uii'ixj ui+i~i+2

A Kij — Hi—l j A Ni+1j “ Ei+2j
Niki = ’—+’ Ki+1,j =#flKi+i,j — M—IJ ”in — ”H24

6 Results and Discussions
A two-dimensional zero—pressure-gradientturbulent boundary-layerover a flat plate is first used
to validate the numerical technique. This fluid flow problem has frequently appeared in the
literature, and several methods have been proposed to estimate the skin-friction coefficient
Cf [9]. For this problem, the Reynolds number based on the inflow velocity U0 2 1.0 m/s
and the channel height H = 1.0 m is Re 2 2.0 x 106. Three different meshes are used,
namely: the coarse mesh (20 X 100 computational cells, 69: 2 6y 2 0.05 m); the medium mesh
(40 x 200 computational cells, (in 2 6y = 0.025 m); and the fine mesh (80 x 400 computational
cells, 61 = 6y = 0.0125 In). In what follows, we present three well established estimates to
this coefficient and the numerical estimate given by the GENSMAC code adapted with the
HRe rt — 5 model.

Figure 2 illustrates a comparison between the dimensionless turbulent skin—friction coefficient
profiles C, = 271,, as a function of the local Reynolds number R81 2 Uoz/u, obtained by the
HRe K — 5 model, in the three meshes and at the non-dimensional time t = 6.477, and the
estimates given by Prandtl, power—law and White (see, for example, White [24] for details). In
this picture, for simple comparison, the laminar profile is also presented. As shown in Figs.
2 a), b) and c), the numerical estimates are generally satisfactory for Re: beyond 1.0 x 106.
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It can also be observed from Fig. 2 d) that when the coarse mesh is twice refined, there was
convergence of the numerical solution for a profile near the power-law and White profiles. On
the other hand, for ReI g 1.0 x 106, the discrepancy may be due to the uniformmeshes used
and the initial velocity profile not being sufliciently turbulent at the entrance region. Of course,
near to R6; = 1.0 X 106, it may be noticed the tendency of the numerical profile, in the fine
mesh (Fig. 2 c)), to follow the theoretical profiles.
In order to investigate the performance of the numerical method where the turbulent stress is
predominant,we fix the non-dimensional position :1: : 3.75 at the plate and extract the velocity
profile u+ = u+(lnz+), at this point, using the numerical solution in the medium mesh. This
profile was then compared with experimental data of Wieghardt and Tillmann [25] and two
profiles derived by variation of the constants K and B in the law (25). One these profiles,
proposed by Nikuradse and Prandtl (see, for instance, [24]), assumes the values K = 0.40 and
B = 5.50, and the other, estimated by Coles and Hirst [4], uses the values K = 0.41 and
B = 5.00. Figure 3 presents a comparison these two profiles and some experimental data with
the computed profile. One can see, from this picture, that the results indicate compatibility
between these data and profiles, and the numerical solution in the turbulent wake, showing that
the efective stress tensor estimated at the wall correctly transfers its effects to regions where
2+ > 500. This confirms that the numerical solution, using the HRe a — 5 model, simulates
reasonably well the effects of the turbulence in regions remote to the rigid boundary.
Results with both the HRe K — e and LRe Ii — 5 models will be now examined for a two-
dimensional jet impinging onto a flat surface. For this free—surface fluid flow problem, the
Reynolds number based on the inflow velocity U0 = 2.0 m/s and inflow diameter D = 1.0 x 10‘2
m is Re = 3.2 x 10“, and the Froude number is F, = Uo/Jg—D = 6.39. Three different meshes
are also used for this free-surface flow, namely: the coarse mesh (25 X 50 computational cells,
6:5 = 63/ = 0.002 m); the medium mesh (50 X 200 computational cells, 6x = 6y 2 0.001 m);
and the fine mesh (100 X 400 computational cells, 6:1: 2 6y = 0.0005 In). In the following,
a quantitative comparison between two-dimensional Watson’s analytical predictions [21] and
numerical results will be performed. Figure 4 shows a comparison between the variation of the
non-dimensional free-surface height h/0.5D with non-dimensional distance (z/0.5D)Re’1/4,
obtained by the HRe rt — 5 (Figs. 4 a), c) and e) — left column) and LRe K, — 5 (Figs. 4 b), d)
and f) - right column) models in the three meshes and at the non—dimensional time t = 38.0,
and approximateviscous and inviscid two-dimensional solutions by Watson [21]. In this picture,
for simple information, Watson’s boundary-layer thickness is also presented. It can be seen,
from Fig. 4 (left column) and Fig. 5 a), that the calculations using the HRe K —- 6 model on
fine mesh (200 x 400 grid points) provide, practically, the same results as those obtained in the
coarse and medium meshes, indicating grid independence of the numerical results. One can
note also that the numerical results on the coarse and mediummeshes monotonicaly converge
to the numerical solution on the fine mesh, and that the numerical solution on the fine mesh is
in good agreement with the Watson’s viscous solution.

At the same non-dimensional time of the simulationwith the HRe K—E model, the comparison
between the free—surface height obtained from the LRe n — a model and the Watson’s viscous
solutionwas also made, and the results are displayed in the Fig. 4 (right column) and Fig. 5

b). It is obvious that the numerical results with this turbulence model on the three meshes are
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unsatisfactory. We believe that, for this specific fluid flow problem, the disagreement between
viscous analytical solution, developed by Watson, and the numerical solution, obtained by the
LRe n—e model, may be attributed to the fact that the numerical solution has been calculated
on a uniform mesh, resulting in a poor resolution of the viscous sublayer. In fact, for this high
Reynolds number flow, the viscous sublayer of the turbulent boundary-layer is so thin that it
is time consuming to use enough grid points to solve it.
Next, results with both the HRe It — E and LRe K, — 5 models will be examined for an axisym-
metric jet impinging onto a flat surface. For this problem, the Reynolds number based on the
inflow velocity U0 = 1.0 m/s and inflow diameter D = 0.02 m is Re 2 gUoD/V = 5.03 X 104,
and the Froude number is F, = Ugh/977 = 2.26. For this free-surface flow, three different
meshes are also used which will be referred to as the coarse (50 x 100 computational cells,
6r 2 62 = 0.001 m), medium (100 x 200 computational cells, 6r : dz 2 0.0005 m), and fine
(200 x 400 computational cells, 6r 2 62 = 0.00025 m) meshes. In the following, a quanti—
tative comparison between axisymmetric Watson’s analytical predictions [21] and numerical
results will be performed. Figure 6 displays a comparison between the variation of the non-
dimensional free-surface height (h/O.5D)Rel/9 with non-dimensional distance (r/0.5D)Re‘1/9,
obtained from the HRe K—E (Figs. 6 a), c) and e) — left column) and LRe n—e (Figs. 6 b), d)
and f) - right column) models in the three meshes and at the non-dimensional time t = 20.48,
and approximate general viscous and inviscid axisymmetric solutions by Watson [21]. It can
be seen, from the left column of this picture, that the numerical solutions using the HRe It — 5
model on coarse and medium meshes monotonicaly converge to the numerical solution on the
fine mesh, and the numerical solution on the fine mesh shows reasonable agreement with the
Watson’s viscous solution.
At the same non—dimensional time of the simulationwith the HRe re —5 model, the comparison
between the surface height obtained from the LRe rc—Emodel and theWatson’s viscous solution
was also made, and the results are displayed in the right column of the Fig. 6. It is clear that the
numerical results with this turbulence model on coarse and medium meshes are unsatisfactory,
whereas the solution on the fine mesh converges to a solution near Watson’s viscous solution.
As in the two-dimensional calculations, a possible explanation of the discrepancy between the
viscous analytical solution developed by Watson and the numerical solution obtained by the
LRe It — 5 model is attributed to the poor resolution of the viscous sublayer. On the other
hand, the discrepancy between the viscous solution of Watson and the HRe It—e model may be
attributed to Watson’s hypotheses to obtain his analytical solutions. In fact, the approximate
general viscous solution, according to Watson, is in disagreement with experimental data.
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Figure 2: Comparison between the skin-friction coefficient profiles Cf = Cf(R8$) for the tur-
bulent boundary—layer on a flat plate, showing theoretical estimates and that by HRe K. — 5
model: a) Comparison in the coarse mesh; b) Comparison in the medium mesh; c) Comparison
in the fine mesh; d) Comparison of the three numerical solutions.
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7 Conclusion
A finite-difference numerical method has been presented for the solution of turbulent free-
surface fluid flow problems by using two versions of the it — E turbulent models. In order
to describe the turbulent effects on the mean flow, the It and 5 conservation equations were
analysed and implemented into the two-dimensional and axisymmetric GENSMAC codes.
In an attempt to ensure bounded transient solutions during the course of iterations, the con-
vection VONOS scheme was adopted for all non-linear derivatives of the convective transport
equations. The numerical results show that it is beneficial to incorporate this high-order up-
winding method in order to reduce the effects of numerical diffusion in turbulent free-surface
flow problems.
According to the numerical results, the HRe It — E model yields favorable predictions of zero-
pressure—gradient turbulent boundary-layer on a flat plate and jet impingement flows. On the
other hand, the numerical results using the LRe a — 5 model were unsatisfactory. In terms of
computational cost, it is important to note that when the Ft — 5 viscosity model was applied
with wall-functions the computer cost was reduced by approximately a factor of 3.
In order to include more physics in the turbulence modeling, the authors are looking at adap-
tation of the RNG (Renormalization Group Method) and Realizable K, — E models.
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