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Abstract Although several grasses have been
evaluated for cadmium (Cd) phytoextraction, there
are few studies assessing how Cd is accumulated
and distributed in the tissues of Panicum maximum
grown in mildly spiked soils. The evaluation of till-
ering, nutritional status and biomass yield of this
grass, mainly along successive shoot regrowths, is
not well studied so far. Thus, P. maximum Jacq. cv.
Massai was grown for two periods in an Oxisol pre-
senting bioavailable Cd concentrations varying from
0.04 (control) to 10.91 mg kg~! soil. Biomass yield
of leaves and stems’ growth has decreased under
the highest Cd exposure, but it did not occur in the
regrowth period, indicating that Cd-induced toxic-
ity is stronger in the early stages of development of
P. maximum. The tillering was not compromised even
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the basal node presenting Cd concentrations higher
than 100 mg kg~! DW. We identified a restriction on
Cd transport upwards from basal node, which was the
main localization of Cd accumulation. Apparently,
P, K, Mg, S and Cu are involved in processes that
restrict Cd translocation and confer high tolerance to
Cd in P. maximum. The Cd-induced nutritional dis-
orders did not negatively correlate with factors used
to calculate phytoextraction efficiency. However, the
nutritional adjustments of P. maximum to cope with
Cd stress restricted the upward Cd transport, which
decreased the phytoextraction efficiency from the
available Cd concentration of 5.93 mg kg™ soil.

Keywords Cadmium toxicity - Growth of grasses -
Nutritional disorders - Poaceae - Oxisol

1 Introduction

Several species of grass have been evaluated for cad-
mium (Cd) phytoextraction as they present desirable
characteristics such as high biomass yield, fast growth
and successive shoot regrowth after shoot harvest
(Rabélo et al., 2021). Between the grasses assessed,
Panicum maximum has stood out for surviving when
exposed to very high Cd concentrations (de Anicésio
& Monteiro, 2022), despite Cd is more transported to
aboveground plant tissues at such conditions, com-
promising tiller emission, inducing nutritional disor-
ders and decreasing biomass yield, which results in
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lowered Cd phytoextraction efficiency (de Anicésio
& Monteiro, 2019). As tillering and nutrient homeo-
stasis are essential for grass development, the use of
P. maximum for Cd phytoextraction is supposed to be
feasible only in mildly polluted soils (Rabélo et al.,
2021); otherwise, the Cd-induced phytotoxicity could
prevent further growth and biomass yield. However,
to the best of our knowledge, there are few studies
reporting how Cd is accumulated and distributed into
the tissues of P. maximum in mildly polluted soils and
how it affects the tillering, nutritional status and bio-
mass yield of this grass, especially along successive
shoot regrowth.

Each tiller in grasses is originated from the
emission of a single apical meristem initiated
in the axillary buds located at the basal node of
the plant (Chrysler, 1906). In other species of the
family Poaceae, such as rice (Oryza sativa), there
is evidence that Cd is highly accumulated in the
basal node of such plant and compromises the
tillering (Fujimaki et al., 2010). Nutritional dis-
orders also can decrease the tillering of P. maxi-
mum by increasing the number of dormant buds
(Garcez Neto et al., 2012). As Cd strongly induces
nutritional disorders at high concentrations in
such grass (Rabélo et al., 2020), the relationship
between Cd accumulation, tillering and biomass
yield of P. maximum used for Cd phytoextraction
in mildly polluted soil should be better under-
stood. Thereby, our aims with this study were to

(i) assess how Cd affects the growth and biomass
yield of P. maximum used for Cd phytoextraction
in mildly polluted soil along two successive shoot
growths; (ii) identify the main local of Cd accu-
mulation (basal node?) in P. maximum used for Cd
phytoextraction; (iii) check if a possible Cd accu-
mulation in the basal node could limit successive
shoot emissions due to reduced tillering and (iv)
diagnose eventual Cd-induced nutritional disor-
ders and correlate such event with the Cd phytoex-
traction efficiency of P. maximum.

2 Materials and Methods

2.1 Soil Collection and Physic-Chemical
Characterization

The soil was collected from the upper layer
(0.0-0.2-m depth) of an area under native pasture in
Piracicaba, state of Sao Paulo, Brazil (S 22°43'04"; W
47°36'55"). The soil was classified as Typic Hapludox
(USDA 1999). Soil characteristics were determined
on air-dried soil sieved with a 2-mm mesh (Table 1).
The determination of pH (0.01 mol L! CaCl,), Al
(extraction with 1 mol L™' KCI) and soil organic mat-
ter (oxidation with 0.2 mol L™' K,Cr,0,) followed
the methods of the Brazilian Agricultural Research
Corporation—EMBRAPA  (EMBRAPA, 1997).
Potential acidity (H+ Al) was estimated following

Table 1 Descriptive pHO.0l molL™' CaCl, 4.6 Al (mmol_ dm~) 2
analysis of chemical and
physical properties of Fhe . H+ Al (mmol, dm™) 5
Typic Hapludox used in this 3
study P (mg dm™) 4
S (mg dm™3) 45 SB (mmol, dm~?) 15
K (mmol, dm~3) 0.5 CEC, (mmol, dm) 40
Ca (mmol, dm™) 10.5 CEC, (mmol, dm™) 17
Mg (mmol, dm™3) 4
B (mg dm™>) 0.2 BS (%) 37
Cu (mg dm™3) 0.5 m (%) 11
Fe (mg dm™) 39
Mn (mg dm™3) 6.4 SOM (gkg™h) 14
Zn (mg dm™>) 2.1 Sand (g kg™") 828
Silt (g kg™h) 23
Cd (mg kg™ 0.67 Clay (g kg™") 149

SB sum of bases, CEC, effective cation exchange capacity, CEC, total cation exchange capacity,
BS% base saturation, m% aluminum saturation, SOM soil organic matter
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the method of pH SMP (van Raij et al., 2001). The
available concentrations of P, K, Ca and Mg were
extracted with ion exchange resin (van Raij et al.,
2001), S with 0.01 mol L™ Ca(H,PO,), (Tabatabai
& Bremner, 1970), B with hot water in a microwave
oven (Bataglia & van Raij, 1990) and Cu, Fe, Mn and
Zn with diethylene triamine pentaacetic acid—DTPA
at pH 7.3 (Abreu et al.,, 2001). From these results,
the sum of bases, effective cation exchange capacity,
total cation exchange capacity, base saturation and
saturation by aluminum were calculated (EMBRAPA,
1997). The initial pseudo-total Cd concentration
was determined following the method 3050B pro-
posed by the United States Environmental Protec-
tion Agency—USEPA (USEPA, 1996). Blank rea-
gent samples and standard reference material (SRM
2709a—San Joaquin soil) were used during digestion
for quality control. Cadmium recovery in this analysis
ranged from 98 to 101%. The granulometric fractions
sand, silt and clay were obtained by the hydrometer
method (Gee & Bauder, 2002).

2.2 Plant Material and Experimental Setup

Panicum maximum Jacq. cv. Massai was grown under
greenhouse under natural conditions (31.5+5 °C and
63.7 + 14% relative humidity during plant growth, and
26.0+5 °C and 66.0+12% relative humidity during
plant regrowth), in pots containing 5 kg of the Typic
Hapludox (Table 1). Treatments were composed of
a control (0.67 mg Cd kg~! soil, Table 1) and three
added Cd doses attempting to reach the final pseudo-
total Cd concentrations of 7.2, 14.4 and 28.8 mg kg™
soil. Such Cd concentrations were defined from the
study of Farnezi et al. (2020), in which the authors
estimated that P. maximum can grow up in soils pre-
senting Cd concentrations close to 30 mg kg™! soil.
However, the final Cd concentrations reached were
lower (Fig. 1). Pots were distributed in completely
randomized design with four replicates per condition.

2.3 Soil Pollution, Growth Conditions and Plant
Harvesting

The Oxisol was spiked with Cd by using CdCl,,
which was applied through a solution. Then, the
soil was incubated for 30 days. The soil water con-
tent was maintained at constant level (70% of the
maximum water holding capacity) throughout the
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Fig. 1 Cadmium concentration determined by USEPA 3050B,
DTPA and 0.01 mol L.”! CaCl, methods in the Oxisol culti-
vated with Panicum maximum in function of the initial Cd
doses applied. Distinct letters on the bars indicate difference
between Cd concentrations for each Cd extractor (n=4, Tukey
test, p <0.05)

study by adding deionized water. The basic fertili-
zation was performed after the soil incubation by
applying 100 mg N (NH,NO;), 150 mg P (KH,PO,),
100 mg K (KH,PO,) and 50 mg S (MgS0O,.7H,0)
per kg of soil, according to Werner et al. (1997).
Seeds of P. maximum Jacq. cv. Massai were sown
in the same day of the basic fertilization. A thinning
leaving 10 seedlings per pot was carried out 21 days
after sowing. Twenty-six days after sowing, the fer-
tilization with 100 mg N (NH4;NO;) and 100 mg K
(KCI) per kg of soil was performed on the top (Wer-
ner et al., 1997). Aboveground plant parts were har-
vested (5 cm above the basal node to allow plant
regrowth; Pautler et al., 2013) 54 days after sow-
ing, adopting the beginning of the senescence of the
mature leaves of plants in a more advanced physi-
ological stage as the criterion for the harvest (Rabélo
etal., 2017).

To stimulate shoot regrowth, 100 mg N (NH,NO;)
and 100 mg K (KCI) per kg of soil were top dressed
1 day after the first shoot harvest (Werner et al.,
1997). Twenty-five days after, a second top-dressed
fertilization was performed with 100 mg N (NH,NO)
and 100 mg K (KCl) per kg of soil (Werner et al.,
1997). Nutrients were applied through a solution in
the first and second growths. The second and final
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harvest was made 59 days after the first harvest,
adopting the same criterion for the first harvest.

At the end of the study, the plant material was
separated into roots, basal node and shoot. The col-
lected plant material was washed with deionized
water in order to avoid any contamination by the soil
particles adhered. The shoot collected at the end of
the two growth periods was divided from the top
to basal node into leaves I (the first fully expanded
leaf), II, IIT and other leaves (leaves IV, V etc.), and
stems. We counted the number of tillers 1 day before
the first and second harvests. After the end of both
growth periods, the fresh weight of each plant tissue
was recorded. Then, the plant tissues were placed in a
forced ventilation oven at 60 °C for 72 h to determine
the dry weight and the concentrations of nutrients and
Cd.

2.4 Determination of the Cd Bioavailability at the
End of the Study

For the determination of Cd concentration extracted
by DTPA (0.005 mol L™' DTPA+0.01 mol L'
CaCl,+0.1 mol L~! triethanolamine (TEA), at pH
7.3) (Abreu et al., 2001), 5 g of soil was dispersed in
20 mL of DTPA solution, shaken for 2 h and analyzed
using an induced coupled plasma mass spectroscopy
(ICP-MS, iCAP 7000 SERIES, Thermo Fisher Sci-
entific, Waltham, USA). The concentrations of Cd
extracted with 0.01 mol L™' CaCl, (Houba et al.,
2000) were determined placing 4 g of soil in 50-mL
centrifuge tubes and 40 mL of the extraction solution
added. The samples were agitated for 2 h at 25 °C,
centrifuged at 1800 X g for 10 min and filtered through
filter paper (0.45 pm). Then, the extracts were ana-
lyzed by ICP-MS. The pseudo-total Cd concentration
was determined as described in the Sect. 2.1.

2.5 Determination of the Concentration of Nutrients
and Cd in the Plant Tissues

The dried material was ground in a Wiley type mill
(Model 4, Thomas Scientific, Swedesboro, NJ, USA).
For determination of the concentrations of P, K, Ca,
Mg, S, B, Cu, Fe, Mn, Zn and Cd, the plant material
was digested in a microwave oven (Model ultraWAVE
SRC—Single Reaction Chamber—Technology, Mile-
stone, Sorisole, Italy) by using a mixture composed
by nitric acid (HNO; 20%) and hydrogen peroxide

@ Springer

(H,0, 30%) (v/v), according to USEPA 3051A
method (USEPA, 2007). The contents were deter-
mined by inductively coupled plasma optical emis-
sion spectrometry (ICP-OES, iCAP 7000 SERIES,
Thermo Fisher Scientific, Waltham, USA). Standard
reference material (SRM 1515—apple leaves) and
blank reagent samples were used during the digestion
to assure the accuracy and precision of the extraction
and analytical method.

2.6 Calculation of Nutrient Use Efficiency (NUE)

The NUE (g mg™' for macronutrients and g ng™!
for micronutrients) was calculated for each nutrient:
NUE =|[(dried biomass of the plant tissue)? / nutri-
ent accumulated in the plant tissue] (Siddiqi & Glass,
1981), where nutrient accumulated in the plant tissue
(mg/plant for macronutrients and pg/plant for micro-
nutrients) was obtained by multiplying the nutrient
concentration (g kg~! DW for macronutrients and mg
kg~! DW for micronutrients) in each tissue by the dry
weight of the respective tissue.

2.7 Calculation of the Factors Related to Cd
Phytoextraction Efficiency

Cadmium phytoextraction efficiency was calculated
through the bioconcentration factor—BCF (BCF=Cd
concentration in the aerial tissue / Cd concentration
extracted by CaCl, in the Oxisol) and translocation
factor—TF (TF =sum of Cd accumulated in the aerial
tissues in the two growth periods / Cd accumulated in
the roots) (adapted from Ali et al., 2013).

2.8 Statistical Analysis

Normality and homoscedasticity were checked before
proceeding with the analysis of variance. Then,
the data were submitted to analysis of variance and
post hoc Tukey test (p <0.05) to compare the means
between Cd concentrations within each plant tissue
for each growth period. Two-by-two comparisons
were conducted using the 7 test to compare the means
between growth periods within each Cd concentration
for each plant tissue. The statistical analyses were per-
formed in the Statistical Analysis System v. 9.2 (SAS
Institute, 2008), whereas the graphs were plotted with
SigmaPlot v. 10.0 (Systat Software Inc., Chicago, IL,
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USA). Results were expressed as mean + standard
error of the mean (SEM).

3 Results

3.1 The Highest Cd Concentrations Decreased Shoot
Biomass Yield of P. maximum in the Growth
but not in the Regrowth Period, Indicating that
Cd Is More Harmful in the Early Stages of
Development.

Only the leaf and stem biomass collected at the end
of the growth period of P. maximum grown under
the available Cd concentration of 10.91 mg kg~!
soil was lower compared to control (Fig. 2A-B).
The leaf and stem biomass of P. maximum at the
end of the regrowth period was not affected by Cd
concentrations in the Oxisol, as well as the bio-
mass of basal node and roots (Fig. 2A-D). Plants
of the control treatment presented lower leaf bio-
mass in the regrowth compared to growth period
of P. maximum, but when this grass was exposed
to the available Cd concentration of 10.91 mg kg™!
soil the opposite was observed (Fig. 2A). The stem
biomass of P. maximum was higher in the regrowth

compared to growth period, regardless of Cd con-
centration in the Oxisol (Fig. 2B), which indicates
that other factor than the own Cd concentration
affected stem biomass yield of this grass.

The number of tillers emitted by P. maximum
was not affected by the available Cd concentra-
tions in the Oxisol, in both growth periods. How-
ever, except for the control treatment, the number
of tillers emitted during regrowth period was higher
compared to the growth period (Fig. 3A). Cadmium
accumulated in the basal node presented a trend to
reduce the number of tillers of P. maximum only in
the growth period (Fig. 3B). Conversely from which
was observed for the number of tillers, the leaf/stem
ratio of P. maximum exposed to the higher available
Cd concentration increased in relation to control
(Fig. 3C) due to the more pronounced Cd-induced
inhibition on the stem than leaf biomass yield under
such conditions (Fig. 2A-B). The leaf/stem ratio in
the regrowth period of P. maximum was not affected
by the available Cd concentrations. Regardless of
Cd concentration in the Oxisol, the leaf/stem ratio
was lower in the regrowth compared to growth
period (Fig. 3C), which reinforces the assumption
that other factor than the own Cd concentration
affected the grass regrowth.

Fig. 2 Biomass yield of 4
leaves (A), stems (B), basal
nodes (C) and roots (D) of
Panicum maximum estab-
lished in non-polluted and
Cd-polluted Oxisol. Distinct
letters on the bars indicate
difference between Cd con-
centrations for each growth
period of P. maximum

Leaf biomass (mg/plant)
(S8 ]
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Fig. 3 Number of tillers per plant (A), correlation between
number of tillers per plant and Cd concentration in the basal
node (B) and leaf/stem ratio (C) during the growth and
regrowth of Panicum maximum established in non-polluted
and Cd-polluted Oxisol. Distinct letters on the bars indicate
difference between Cd concentrations for each growth period
of P. maximum (n=4, Tukey test, p <0.05). Asterisks represent
differences at p <0.05 between growth periods within each Cd
concentration (ANOVA, ¢ test). ns=not significant
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3.2 Cadmium Concentration, Cd BCF and Cd
TF Pointed Out the Existence of Restrictive
Mechanisms on Cd Translocation from Lower
Plant Parts to Upper Plant Parts, Mainly Under
Highest Cd Exposure.

Cadmium concentration increased in all plant tis-
sues of P. maximum due to Cd exposure (Fig. 4).
However, the Cd concentrations measured in the
leaves (Fig. 4A-D) were similar to those observed
in the stems (Fig. 4E) and much lower in relation
to basal node and roots (Fig. 4F-G) of P. maximum
exposed to the highest available Cd concentrations
in the Oxisol. The leaves I, II, III and other leaves
presented Cd concentrations lower than 30 mg kg™!
DW in both growth periods (Fig. 4A-D), whereas
Cd concentrations in the basal node and roots of P.
maximum exposed to the available Cd concentra-
tion of 10.91 mg kg™! soil were higher than 100 and
70 mg kg~! DW, respectively (Fig. 4F-G). There was
effect of the growth period on Cd concentration only
for the stems of P. maximum grown with the available
Cd concentration of 10.91 mg kg™! soil, in which Cd
concentration in the regrowth period was 86% higher
compared to growth period (Fig. 4E).

In general, the highest Cd BCF values were found
in P. maximum exposed to the available Cd concentra-
tion of 2.86 mg kg~! soil (Fig. SA-E). The Cd BCF
values in the leaf II and stems of P. maximum exposed
to the available Cd concentration of 2.86 mg kg™
soil were higher in the regrowth compared to growth
period (Fig. 5B, E). Cadmium BCFs remained higher
than 1 when the grass was exposed to the available
Cd concentrations of 2.86, 5.93 and 10.91 mg kg™!
soil, regardless of the aerial plant tissue. Similarly
to which was observed for Cd BCFs, the highest Cd
TF was found in P. maximum exposed to the avail-
able Cd concentration of 2.86 mg kg~! soil, and Cd
TF also remained>1 when this grass was exposed
to the available Cd concentrations of 2.86, 5.93 and
10.91 mg kg~ soil in the Oxisol (Fig. 5F).

3.3 Both Cd Exposure and Growth Period Affected
Nutrient Concentration and NUE of P.
maximum, but the Decreased Cd-Induced NUEs
Did Not Negatively Correlate with Cd BCF

In general, the concentrations of P, K, S and Cu
increased, and the concentrations of B and Mn
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Fig. 4 Cadmium concentration in the leaf I (A), leaf II (B),
leaf III (C), other leaves (D), stems (E), basal node (F) and
roots (G) of Panicum maximum established in non-polluted
and Cd-polluted Oxisol. Distinct letters on the bars indicate

tended to decrease in the plant tissues of P. maxi-
mum exposed to the highest available Cd concen-
trations (Table 2). Phosphorus, Mg, S and Cu pre-
sented higher concentrations in the tissues collected
at the end of the growth compared to regrowth
period, whereas K, Fe and Mn were found in higher
concentrations in the regrowth period. P, K, Ca,
Mg and S tended to follow an increasing gradi-
ent of concentration in the sequence: roots < basal
node < stems < leaves. On the other hand, the higher
concentrations of B, Cu and Fe were found in
the roots, and Mn and Zn in the basal node of P.
maximum.

Cadmium exposure reduced the NUE of P, K, Ca,
S, Cu, Fe, Mn and Zn compared to control (Table 3).
However, there was no significant correlation
between the NUE of each nutrient and the Cd BCFs
(Supplementary Fig. 1). Only Mn-NUE was higher in
the growth compared to regrowth period of P. maxi-
mum, whereas P, Ca, Mg, S, B, Cu and Zn presented
higher NUEs at the end of the regrowth period. The
highest NUEs for P, K, Ca, Mg, S, B, Cu, Mn and
Zn were found in the roots (Table 3), followed by the
lower plant parts and then the upper plant parts, dif-
ferently from that observed for nutrient concentration

(mg kg™ soil)

(mg kg™ soil)

difference between Cd concentrations for each growth period
of P. maximum (n=4, Tukey test, p <0.05). Asterisks represent
differences at p <0.05 between growth periods within each Cd
concentration (ANOVA, ¢ test)

(Table 2), when we analyzed the NUE of each nutri-
ent within the plant tissues of P. maximum.

4 Discussion

4.1 Cadmium Effect on Biomass Yield and Tillering
of P. maximum Used for Phytoextraction
in Mildly Polluted Oxisol Along with Two
Successive Shoot Growths

The exposure of P. maximum to the highest Cd con-
centrations decreased both leaves and stems biomass
yield in the growth period (Fig. 2A-B), but there
was no reduction on the number of tillers per plant in
this growth period (Fig. 3A). Thereby, the reduction
observed on shoot biomass yield can be attributed to a
Cd-induced reduced number of leaves and shortening
of stems and leaves (Supplementary Fig. 2). As gib-
berellins regulate the stem elongation rate in grasses
(Zhang et al., 2016), Cd may have repressed gibberel-
lin synthesis in P. maximum by affecting the KNOT-
TEDI1- like homeodomain (KNOX) proteins. KNOX
proteins either activate or repress gibberellin synthe-
sis genes, modifying levels of active gibberellins in

@ Springer
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the meristems and boundary regions of grasses (Paut-
ler et al., 2013), which is the tiller initiation region
(Chrysler, 1906). Cadmium-induced changes on shoot
meristematic region are also pointed out as a factor to
reduce the number and length of leaves in plants of
the family Poaceae. The decreased Cd-induced leaf
length in maize (Zea mays) grown in a mildly pol-
luted soil (46.5 mg Cd kg™ soil) was attributed to the
lower number of meristematic cells, longer cell cycle
duration and inhibition of cell elongation rate (Bertels
et al., 2020).

During the regrowth, leaf and stem biomass yields
of P. maximum exposed to the highest Cd concen-
trations did not differ from those plants of control
treatment (Fig. 2A-B). These data indicate that P.
maximum was able to cope with Cd-induced stress
under prolonged exposure by adapting its mecha-
nisms of tolerance against Cd-induced stress (for

@ Springer

5.93 1091 0.04 2.86 5.93 10.91

Available Cd concentration
(mg kg'1 soil)

a comprehensive review we suggest Rabélo et al.,
2021). Such assumption is supported by the increased
number of tillers observed during plant regrowth
compared to growth period (Fig. 3A), even in condi-
tions of high Cd concentration in the tiller initiation
region (basal node, Fig. 4F). Moreover, there was
not the trend of Cd accumulated in the basal node
reduces the number of tillers during regrowth, differ-
ently from which was observed in the plant growth
(Fig. 3B). It means that Cd probably is more harm-
ful in the early stages of development of P. maximum
grown in mildly polluted soils. Sunflower (Helianthus
annuus) is also more susceptible to Cd-induced stress
in the early stages of development because an uncon-
trolled Cd uptake results in high Cd concentrations
in its plant tissues (De Maria et al., 2013). However,
as Cd concentrations in the leaf and stem tissues col-
lected at the end of the growth and regrowth period
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were similar (Fig. 4A-E), other factors than Cd con-
centrations in the plant tissues limited the growth of
P. maximum exposed to the highest Cd concentration
in the first growth.

As the number of tillers of P. maximum was higher
in the regrowth compared to growth period (Fig. 3A),
we can assume that plant density was higher in the
regrowth period. Under such circumstance, plants
show a clear increase in the stem fraction due to
changes on carbohydrate allocation (Poorter et al.,
2012). This explains why the stem biomass yield
was higher and the leaf/stem ratio was lower in the
regrowth than growth period (Figs. 2B and 3C). Fur-
thermore, there was no reduction on basal node bio-
mass under Cd exposure (Fig. 2B), which may have
contributed for the higher tillering in the regrowth
period, since the tillers grow up from the axillary
buds located at the basal node of the plant (Chrysler,
1906). As observed for basal node biomass, the root
biomass of P. maximum did not decrease due to Cd
exposure (Fig. 2D), even this structure presenting
high Cd concentrations (Fig. 4G). Maybe such result
is associated to the fact that P. maximum preferen-
tially accumulates Cd bound to cell wall in the root
apoplast (Rabélo et al., 2021). In this case, the del-
eterious effects of Cd are more noticeable on root
length and root surface than root weight (Rabélo
et al., 2020), since the thickening of the roots due to
lignification and suberization (Lux et al., 2011) can
compensate the root weight.

4.2 Distribution and Accumulation of Cd Within
the Plant Tissues of P. maximum and Its
Relationship with Cd Phytoextraction Efficiency
and Nutritional Disorders

Cadmium concentration increased in all plant tissues
of P. maximum as a consequence of Cd exposure, but
our results suggest the existence of restrictive mecha-
nisms on Cd translocation from lower to upper plant
parts because Cd concentration followed a decreasing
gradient in the sequence: basal node > stems > leaves
(Fig. 4). With exception of hyperaccumulator plants,
a restriction on Cd translocation upwards is expected
because during Cd translocation in the xylem Cd**
ions interact with the cell walls of xylem vessels and
are partly adsorbed on them (Sterckeman & Thom-
ine, 2020). Cadmium translocation from roots to
shoot was higher when P. maximum was grown in
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the Oxisol presenting the available Cd concentration
of 2.86 mg kg™! soil, but from this point there was a
reduction on Cd TF (Fig. 5F). Our results are similar
to those reported for lettuce (Lactuca sativa), spinach
(Spinacia oleracea), caulifiower (Brassica oleracea)
and oat (Avena sativa), in which Cd concentrations
were higher in the shoots than roots when plants were
grown on low Cd-polluted soil, but Cd concentra-
tions in the roots became higher than of the shoots
when these plants were grown on more polluted soil
(John, 1973). Similarly to Cd TF, the higher Cd BCFs
were observed when P. maximum was exposed to the
available Cd concentration of 2.86 mg kg~! soil, and
from this point the Cd BCFs decreased (Fig. 5A-E).
Although the two factors remained higher than 1
under Cd exposure, Cd TF and Cd BCFs decreased
under the highest Cd concentrations in the Oxisol,
indicating lowered phytoextraction efficiency in such
conditions. The potential of phytoextraction tends to
decrease when grass species are faced to higher Cd
concentrations due to Cd-induced toxicity, such as
nutritional disorders (Rabélo et al., 2021).

Nutritional disorders are common in grasses
exposed to Cd (Rabélo & Borgo, 2016), which can
decrease Cd phytoextraction efficiency (Rabélo et al.,
2020); even the lower NUE of P, K, Ca, S, Cu, Fe,
Mn and Zn observed in P. maximum under Cd expo-
sure (Table 3) did not negatively correlate with Cd
BCF (Supplementary Fig. 1). Changes on nutrients’
concentration and use are coupled to negative out-
comes on the development of plants under Cd expo-
sure, but there is evidence that nutritional adjustments
are necessary for plants to cope with Cd stress (for
a review, see Carvalho et al., 2020). For instance, a
decrease in Mg concentration in the leaves has been
associated with plant protection against Cd-induced
stress under prolonged exposure by improving the
action of the antioxidant system (Chou et al., 2011;
Hermans et al., 2011). Such mechanism possibly was
employed by P. maximum, since lower Mg concentra-
tions were observed in the leaves compared to stems,
in the plants exposed to the highest Cd concentration
compared to the other Cd concentrations, and in the
regrowth compared to growth period (Table 2). This
conferred higher tolerance to plants exposed to the
highest Cd concentration in the regrowth period, but
not in the growth period. Other nutritional adjust-
ments occurred in P. maximum under Cd exposure
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(Table 2) and probably contributed for a higher Cd
tolerance in the regrowth compared to growth period.

Potassium is involved on biomass allocation due
its role on carbohydrate loading into the phloem for
long-distance transport. Under lower K concentration,
sucrose export into the phloem is reduced (Cakmak
et al., 1994), but increased K™ may promote sugar
unloading in sink tissues and speed the conversion
of sucrose to synthetic metabolites (Conti & Geiger,
1982), which allow biomass yield. Thus, the increase
in the stem biomass yield induced by the higher plant
density in the regrown P. maximum (Figs. 2B and
3A), especially in those plants exposed to the high-
est Cd concentrations, possibly is associated with the
increased K concentrations verified in the stems, in
the regrown plants and in the plants exposed to the
highest Cd concentration (Table 2).

The concentrations of P, S and Cu of P. maximum
increased after Cd exposure (Table 2). Under high
P concentrations, more P is accumulated in the root
and may form insoluble phosphate precipitates with
Cd in the cell wall and vacuoles, which prevents
the transport of Cd to the protoplasm and xylem
and inhibits the transport of Cd to the shoot (Guo
et al., 2018). Indeed, Cd TF was reduced in P. maxi-
mum exposed to the available Cd concentrations of
5.93 and 10.91 mg kg~! soil (Fig. 5F), where higher
shoot P concentrations were found (Table 2). Plants
under Cd exposure tend to uptake more S due its
role on glutathione (GSH, y-Glu-Cys-Gly) and phy-
tochelatins (PCs, (y-Glu-Cys),-Gly, with n=2-11)
synthesis, which are peptides involved in plant tol-
erance against Cd-induced stress (for a compre-
hensive review, we suggest Gill & Tuteja, 2011).
Sulfur concentration was higher in the growth than
regrowth period (Table 2), which makes sense,
since Cd is often stored as chelates (e.g. PC-Cd) in
the vacuoles of plants in the early stages of devel-
opment, whereas other detoxification mechanisms
(e.g. Cd bound to cell walls) are more employed
under prolonged Cd exposure (Rabélo et al., 2018;
Rabélo et al., 2021; Sterckeman & Thomine, 2020).
As an increase on antioxidant activity of P. maxi-
mum was speculated due to decreased Mg and
increased S concentrations, an increase on Cu con-
centration due to Cd exposure, especially in the
growth period (Table 2), makes sense since Cu is
a cofactor of the enzyme superoxide dismutase
(SOD, EC 1.15.1.1) (Gratdo et al., 2005). This
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assumption needs to be carefully investigated fur-
ther. Superoxide dismutases, such as the isoenzyme
Cu/Zn-SOD, act as the first line of defense against
reactive oxygen species by dismutating superoxide
(0,*7) in H,0, (Gratao et al., 2005). In addition, the
presence of Cu/Zn-SOD in the apoplast of spinach
was positively correlated to sites of lignification
(Ogawa et al., 1996). In this sense, it is plausible to
assume that the higher Cu concentration observed
in the roots of P. maximum (Table 2) favored root
lignification through the action of Cu/Zn-SOD in
the root apoplast (main local of Cd storage in this
species; Rabélo et al., 2021), which avoids a strong
reduction on the root weight of plants exposed to
the highest Cd concentrations in the Oxisol due to a
root thickening (Fig. 2D).

The concentrations of B and Mn tended to
decrease in the plant tissues of P. maximum exposed
to the highest Cd concentrations, differently from
which was observed for P, K, S and Cu (Table 2).
In tomato (Solanum lycopersicum), Cd toxicity was
related to B and Mn excess in leaves, in addition to
the own Cd accumulation, since the symptoms of Cd
toxicity in leaf tissues resembled those triggered by B
and Mn excess (Carvalho et al., 2018). It is possible
that P. maximum had decreased both B and Mn con-
centrations in its tissues as a strategy of adaptation to
Cd-induced stress, as no visual symptoms similar to
those triggered by B and Mn excess were observed in
our study (Supplementary Fig. 2).

The data regarding nutrient concentrations
recorded in our study (Table 2) indicate that P. maxi-
mum cv. Massai poses strategies to cope with Cd-
induced stress through nutritional adjustment (Car-
valho et al., 2020). Even so, the NUE of P, K, Ca, S,
Cu, Fe, Mn and Zn by P. maximum decreased under
Cd exposure (Table 3). Lower NUEs in plants grown
in polluted soils are expected due to phytotoxicity
or internal adjustments which affect plant growth in
such conditions (Baligar et al., 2001). Although there
were no significant negative correlations between the
NUEs and Cd BCFs (Supplementary Fig. 1), the data
of NUE (Table 3) together with Cd TF and Cd BCFs
(Fig. 5) support the statement of Rabélo et al. (2021),
who described that the potential of phytoextraction of
grass species faced to higher Cd concentrations tends
to decrease due to Cd-induced toxicity.
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5 Conclusions

Cadmium toxicity was stronger in the early stages
of development of P. maximum, not by reducing the
tillering but to induce a stem shortening. Tillering
was not compromised by the high Cd accumulation
in the basal node of P. maximum, suggesting that
the deleterious effects of Cd are more related with
processes involved on stem elongation than tiller
initiation from the axillary buds located in the basal
node of P. maximum.

P. maximum presented a clear restriction on Cd
transport upwards from basal node, which was the
main localization of Cd accumulation in this grass.
Such restriction was more evident in the plants
exposed to the highest Cd concentrations, and it
was related to nutritional adjustments to cope with
Cd-induced stress. Apparently, P, K, Mg, S and Cu
are involved in processes that restrict Cd movement
upwards and confer higher tolerance to Cd toxicity
in P. maximum, but further studies are necessary to
unravel the role of each one of these nutrients on
Cd tolerance in this grass. The Cd-induced nutri-
tional disorders did not negatively correlate with Cd
BCEF, but the data of NUE, Cd TF and Cd BCF sug-
gest that phytoextraction efficiency of P. maximum
decreases from the available Cd concentration of
5.93 mg kg~! soil.
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