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We investigate a Lorentz-violating chiral model composed of two fermions, a complex scalar field, and a
gauge field. We show that, by conveniently adjusting the parameters of the model, it is possible to generate
an unambiguous Carroll-Field-Jackiw term and, at the same time, provide the cancellation of the chiral
anomaly. The renormalizability of the model is investigated, and it is shown that the same counterterms
needed in the symmetric phase also renormalize the model with broken symmetry.
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I. INTRODUCTION

Symmetries play a fundamental role in nature. Physical
concepts and conservation laws are deeply intertwined with
symmetries of nature, as stated by the Noether theorem.
However, symmetries sometimes impose such restrictions
that, if they were exact, observed phenomena would be
impossible. Thus, as important as the symmetries are their
breaking mechanisms. Actually, it is desired that a
Lagrangian density for a model be symmetric, although
the world which it describes is not. This is the reason why
one of the important subjects of research is the study of
symmetry-breaking mechanisms. In fact, one of the basic
ingredients of the Standard Model (SM) is the so-called
Higgs mechanism, which is based on the spontaneous
gauge symmetry breaking and allows the generation of the
masses of elementary particles, which are initially massless
in the symmetric phase.
In some circumstances, symmetries which occur at the

classical level are broken in the quantum process. This is
caused by the so-called anomalies, and their presence may
have deep consequences. For example, the quantum non-
conservation of the chiral current, known as the chiral
anomaly, opens the possibility for the theoretical explan-
ation of the decay of a neutral pion in two photons. The
chiral symmetry is considered as a global symmetry in
some models. However, in the known chiral theories, which
are part of the Standard Model of elementary particles, the
local symmetry has a chiral component. In this way, the
nonconservation of the chiral current has, as a consequence,
the breaking of the gauge symmetry of the theory. The
quantum breaking of a local symmetry of the classical

model is harmful, causing the violation of unitarity and,
consequently, spoiling the renormalizability of the model.
Thus, for the consistency of chiral theories, it is necessary
that the quantum anomalies are canceled out. For this, the
model must encompass a set of fermions with chiral
charges Qi, such that they combine to cancel the anomaly.
For example, for a set of left-handed fermions in an Abelian
model, the condition is

P
Q3

i ¼ 0. In general, the anomaly
is odd in the chiral charge and if the fermions (in Abelian
models) come in pairs of opposite axial charges, the
condition for restoration of gauge symmetry is fulfilled
[1]. It is instigating when the elementary particles which are
part of the Standard Model all combine such that the chiral
anomaly is canceled out.
The Lorentz and CPT symmetries, which are basic for

the construction of all modern phenomenological quantum
field models, have been observed in all experimental tests
[2]. However, even for these primordial symmetries,
investigations are carried out to study the would-be
implications of small violations not yet experimentally
discovered. In this context, the interest in Lorentz- and
CPT-violating models has increased since a Chern-
Simons-like term in four dimensions was first considered
by Carroll, Field, and Jackiw [3]. This so-called Carroll-
Field-Jackiw (CFJ) term was included in a Standard Model
extension (SME), constructed to provide Lorentz and CPT
violations, controlled by coefficients constrained by experi-
ments [4–7].
The investigation of the possibility that the CFJ term

could be radiatively induced from the fermionic sector,
whenever the axial term bμψ̄γμγ5ψ is included, generated
some controversy. The discussion was focused on the
following aspects: first, the dependence of the induced
term on the regularization scheme; second, the possibility
of imposing the vanishing of this term on physical grounds,
like gauge invariance, causality, and unitarity; and, finally,
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the question of whether or not the stringent limits on the
magnitude of the coefficient of the CFJ term impose
restrictions on the existence of the CPT- and Lorentz-
breaking axial term in the fermionic sector. Many papers
have been devoted to this subject (see, for example,
Refs. [8–18]).
An alternative model was then proposed in which the

CFJ term induced by quantum corrections has no ambi-
guities in its coefficient [19]. It is a chiral model, in which
the background vector field bμ and the gauge field couple
with opposite chiralities to the fermion. This interesting
model, however, needs some further development since,
containing only one fermion, it is not capable of dealing
with the gauge anomaly which is inherent to the chiral
theories. Furthermore, the fermion mass part, which is
necessary to the generation of the unambiguous Chern-
Simons-like term, should be justified by a Higgs mecha-
nism since it explicitly violates the gauge symmetry of the
model. In this paper, we study a more general Lorentz-
violating chiral model composed of two fermions, a
complex scalar field, and a gauge field. The model respects
a modified gauge symmetry. By means of the Higgs
mechanism, the fermions and the gauge field acquire mass.
We show that by adjusting certain coefficients, it is possible
to generate an unambiguous CFJ term and, at the same
time, provide the desired cancellation of the anomaly. The
renormalizability of the model is investigated, and it is
shown that the same counterterms needed in the symmetric
phase also renormalize the model with broken symmetry.
Although this is a well-known result for Lorentz invariant
theories, it has not been deeply investigated in the case of
Lorentz-breaking models. As we will see, a Lorentz-
violating part must be included in the covariant derivative
of the scalar field in order to preserve this feature at one-
loop order.
This work is organized as follows. In Sec. II, the model is

presented. Since the local gauge symmetry is spontane-
ously broken, the complex scalar field is decomposed in
two real fields and the final Lagrangian density is written.
We obtain the condition to the induction of an unambigu-
ous CFJ term in Sec. III. In Sec. IV, the cancellation of the
anomaly is discussed. The renormalization of the model is
discussed in Sec. V. In Sec. VI, we summarize our results
and present some concluding comments. In Appendix A,
the details of the one-loop renormalization are shown, and
the results of individual graphs of Appedndix A are
presented in Appendix B.

II. THE LORENTZ-VIOLATING
CHIRAL MODEL

We begin with the following Lorentz-violating model,

L ¼ −
1

4
FμνFμν þ ðDμϕÞ�ðDμϕÞ þ μ2ϕ�ϕ −

λ

4
ðϕ�ϕÞ2

þ ψ̄ ½i∂ − bðCPL þDPRÞ − eAðMPL þ NPRÞ�ψ
þ χ̄½i∂ − bðC0PL þD0PRÞ − eAðNPL þMPRÞ�χ
− gðψ̄LψRϕþ ψ̄RψLϕ

�Þ − g0ðχ̄RχLϕþ χ̄LχRϕ
�Þ;

ð1Þ

where ψ and χ are Dirac fermions and

ψR;L ¼ PR;Lψ ; ð2Þ

with

PR;L ¼ 1� γ5
2

ð3Þ

the chiral projectors. Besides, C, D, C0, D0, M, and N are
real constants, and bμ is a constant four-vector which
breaks the Lorentz symmetry. The covariant derivative
acting on the complex scalar field is given by

Dμϕ ¼ ð∂μ þ iκbμ þ ie0AμÞϕ; ð4Þ

in which κ is a dimensionless constant. The introduction of a
Lorentz-violating sector in the covariant derivative is neces-
sary for the closure of the model when radiative corrections
are considered. This will be evident in the study of the
renormalizability of the model. The parameter κ will allow
us to follow what happens when we turn off this part in the
covariant derivative. The Lagrangian density of Eq. (1) is
invariant under the following local transformations:

ψ → e−ieαðxÞðMPLþNPRÞψ ;

ψ̄ → ψ̄eieαðxÞðNPLþMPRÞ;

χ → e−ieαðxÞðNPLþMPRÞχ;

χ̄ → χ̄eieαðxÞðMPLþNPRÞ;

ϕ → e−ie
0αðxÞϕ;

ϕ� → eie
0αðxÞϕ�;

Aμ → Aμ − ∂μαðxÞ; ð5Þ

with e0 ¼ ðM − NÞe.
This model, as we will see in more detail in Sec. IV,

avoids the problem of the gauge anomaly, since the two
fermionic fields, ψ and χ, posses opposite chiral charges
[1]. The Lagrangian density (1), if the covariant derivative
is written explicitly, takes the form
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L ¼ −
1

4
FμνFμν þ ð∂μϕ

�Þð∂μϕÞ þ μ02ϕ�ϕ −
λ

4
ðϕ�ϕÞ2 þ e02AμAμϕ�ϕþ ie0Aμðϕ∂μϕ

� − ϕ�∂μϕÞ
þ 2e0κbμAμϕ�ϕþ iκbμðϕ∂μϕ

� − ϕ�∂μϕÞ þ ψ̄ ½i∂ − bðCPL þDPRÞ − eAðMPL þ NPRÞ�ψ
þ χ̄½i∂ − bðC0PL þD0PRÞ − eAðNPL þMPRÞ�χ − gðψ̄LψRϕþ ψ̄RψLϕ

�Þ − g0ðχ̄RχLϕþ χ̄LχRϕ
�Þ: ð6Þ

Rewriting the Lagrangian (6) in terms of real scalar fields ρ and φ, such as ϕ ¼ 2−
1
2ðρþ vþ iφÞ, with v a constant, we

obtain

L ¼ Lϕ þ LA þ Lψ þ Lχ ; ð7Þ

with

Lϕ ¼ 1

2
ð∂μρÞ2 þ

1

2
ð∂μφÞ2 −

1

2
m2

ρρ
2 þ e02

2
AμAμðρ2 þ φ2 þ 2vρþ v2Þ

þ e0κbμAμðρ2 þ φ2 þ 2vρþ v2Þ þ e0Aμðρ∂μφ − φ∂μρÞ þ evAμ∂μφþ κbμðρ∂μφ − φ∂μρÞ

−
λ

16
ðρ2 þ φ2Þ2 − λ

4
vρðρ2 þ φ2Þ − 1

2
δm2ðρ2 þ φ2 þ 2vρÞ; ð8Þ

LA ¼ −
1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2; ð9Þ

Lψ ¼ ψ̄

�
i∂ −mψ − bðCPL þDPRÞ

− eAðMPL þ NPRÞ −
gffiffiffi
2

p ρ − i
gffiffiffi
2

p γ5φ

�
ψ ð10Þ

and

Lχ ¼ χ̄

�
i∂ −mχ − bðC0PL þD0PRÞ

− eAðNPL þMPRÞ −
g0ffiffiffi
2

p ρþ i
g0ffiffiffi
2

p γ5φ

�
χ; ð11Þ

where δm2 ¼ −μ02 þ λ
4
v2, m2

ρ ¼ λv2
2
, mψ ¼ gvffiffi

2
p , mχ ¼ g0vffiffi

2
p ,

m2
A ¼ v2e2 and we have added a gauge-fixing term,

LGF ¼ −ð2ξÞ−1ð∂μAμÞ2.
For λ and μ02 ¼ μ2 þ κ2b2 real and positive,1 the com-

plex scalar field ϕ develops a non-null vacuum expectation
value hϕi0 ¼ vffiffi

2
p , with μ02 ¼ λ

4
v2 and, so, the local Uð1Þ

symmetry is spontaneously broken. The model presented
above, which is power-counting renormalizable, will be
carefully investigated in the next sections. We begin by
establishing the conditions to have an ambiguity-free
induced CFJ term.

III. THE AMBIGUITY-FREE CFJ TERM

In this section, we calculate the one-loop vacuum
polarization tensor at first order in bμ to verify under
which conditions the induced CFJ term is ambiguity free. It
is natural to conclude that the unique possibility of
radiatively generating this term is by means of fermion
loops, since the desired term encompasses an antisymmet-
ric Levi-Civita tensor. This is because only the fermionic
sector contains an axial part (proportional to γ5). There are
two approaches which could be carried out to extract the
first order in bμ. The first one consists of taking the ψ and χ
fermion loops and then expanding the propagators as

SψðkÞ ¼
i

k −mψ − bðCPL þDPRÞ

¼
X∞
n¼0

i
k −mψ

�
−ibðCPL þDPRÞ

i
k −mψ

�
n

≡X∞
n¼0

SnðkÞ; ð12Þ

to consider only the first order in bμ,

Sψ ðkÞ ≈ S0ðkÞ þ S1ðkÞ: ð13Þ

The second method consists of considering the bμ-
dependent terms as interactions and taking only the con-
tributions with one insertion of these interactions.
Following this second approach, the graphs which con-
tribute to the CFJ term are depicted in Fig. 1, in which the
dots indicate insertions of bμ.
We now calculate in detail the contribution of the first

graph,
1Actually, b2 can be negative. However, for small Lorentz

violations, it is reasonable to require that μ2 > jκ2b2j.
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Πb
μν1 ¼ −e2

Z
d4k
ð2πÞ4

Nμν

ðk2 −m2
ψÞ2½ðkþ pÞ2 −m2

ψ �
; ð14Þ

with

Nμν ¼ trfγμðMPL þ NPRÞðkþmψ ÞbðCPL þDPRÞ
× ðkþmψÞγνðMPL þ NPRÞðkþ pþmψ Þg:

ð15Þ

Since we are interested in the Chern-Simons-like term, we
will only consider here the terms which can yield the Levi-
Civita symbol. After carrying out the traces of products of
Dirac matrices in four dimensions, we obtain

Nμν ¼ 2iεμναβf−bαkβ½ðM2C − N2DÞk2
þ ðN2C −M2Dþ 2MNðD − CÞÞm2

ψ �
− bαpβ½ðM2C − N2DÞk2 þ ðN2C −M2DÞm2

ψ �
þ 2ðb · kÞkαpβðM2C − N2DÞg þ N0

μν; ð16Þ

where N0
μν represents the terms which do not involve the

Levi-Civita tensor. We split the result in two parts,

Πb
μν1 ¼ Π5

μν1 þ Π0b
μν1; ð17Þ

with Π5
μν1 being the contribution to the CFJ term. So, we

have

Π5
μν1 ¼ −2ie2εμναβf−bα½ðM2C − N2DÞJ0β

þ ðN2C −M2Dþ 2MNðD − CÞÞm2
ψJβ

− pβððM2C − N2DÞJ0 þ ðN2C −M2DÞm2
ψJÞ�

þ 2bρpβðM2C − N2DÞJαρg; ð18Þ

in which we have defined the integrals

J; Jβ; Jαβ ¼
Z

d4k
ð2πÞ4

1; kβ; kαkβ

ðk2 −m2
ψÞ2½ðkþ pÞ2 −m2

ψ �
; ð19Þ

J0; J0β ¼
Z

d4k
ð2πÞ4

k2; k2kβ

ðk2 −m2
ψÞ2½ðkþ pÞ2 −m2

ψ �
: ð20Þ

In the above result, the integrals Jαβ, J0, and J0β are
divergent. We would like to show that the total result,
considering all the graphs of Fig. 1, can be unambiguous
for some choice of the coefficientsM, N, C, D, C0, and D0.
To make this evident, at least in this section, we will use an
approach which does not resort explicitly to any particular

regularization procedure. For dealing with the divergent
integrals, we use recursively the identity

1

ðpþ kÞ2 −m2
¼ 1

k2 −m2
−

p2 þ 2p · k
ðk2 −m2Þ½ðpþ kÞ2 −m2� ;

ð21Þ
in order to extract the external momentum, p, from the
divergent integrals. We then employ the implicit regulari-
zation approach based on extracting the surface terms (for a
description of this method, see, for example, [20]).
Following this procedure, we obtain, for the first graph,

Π5
μν1 ¼ −2ie2εμναβbαpβ

�
i

48π2
ðM2 þ N2 þMNÞðC −DÞ

− ðM2C − N2DÞα
�
; ð22Þ

where the surface term,

αgμν ≡ gμν

Z
d4k
ð2πÞ4

1

ðk2 −m2
ψ Þ2

− 4

Z
d4k
ð2πÞ4

kμkν
ðk2 −m2

ψÞ3
ð23Þ

is responsible for the regularization dependence of this first
contribution and the limit p2 → 0 is taken. It should be
noticed that the mass m2

ψ in the definition of α can be
replaced by an arbitrary mass scale, since the finite final
result will not depend on m2

ψ in any regularization
prescription.
Adopting the same procedures for the other three graphs,

one obtains

Π5
μν2 ¼ −ie2εμναβbαpβ

�
i

24π2
ðM2 þ N2 þMNÞðC −DÞ

�
;

ð24Þ

Π5
μν3 ¼ −2ie2εμναβbαpβ

�
i

48π2
ðN2 þM2 þMNÞðC0 −D0Þ

− ðN2C0 −M2D0Þα
�

ð25Þ

and

Π5
μν4 ¼−ie2εμναβbαpβ

�
i

24π2
ðN2þM2þMNÞðC0 −D0Þ

�
;

ð26Þ
so that

FIG. 1. Contributions to the CFJ term.
In the two first graphs, we have a loop of
the ψ fermion, whereas the other two
graphs have a loop of the fermion χ.
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Π5
μν ¼ e2εμναβbαpβ

�
2iα½M2ðC −D0Þ − N2ðD − C0Þ�

þ 1

12π2
ðM2 þ N2 þMNÞðCþ C0 −D −D0Þ

�
:

ð27Þ

Examining the final result for the Chern-Simons-like
term above, we can find that it represents itself an
undetermined number of combinations of the coefficients
M, N, C, D, C0, and D0, whose relation can be fixed to
obtain an α-independent and, hence, finite and unambigu-
ous result. If we take, for example, C −D0 ¼ 4ðD − C0Þ
and N ¼ 2M, we have

Π5
μν ¼

7e2

4π2
εμναβbαpβM2ðD − C0Þ: ð28Þ

Another interesting peculiarity of the result in Eq. (27) is
the possibility of the vanishing of the unambiguous part, if
the condition Cþ C0 ¼ DþD0 is satisfied. It is worth
understanding what happens in this situation. A particular
solution is C ¼ D and C0 ¼ D0. In this case, the axial part
of the coupling of the background vector bμ with the
fermions is zero. The remaining coupling is of the type
−ψ̄bψ , which can be absorbed in a redefinition of the
fields. For this particular case, it is expected that, even at
higher-loop orders, the unambiguous part of the CFJ term is
not induced. Nevertheless, there is an infinite number of
solutions which maintain the chiral part of the coupling of
bμ with the fermions. We conjecture that, in this situation,
the one-loop cancellation of the unambiguous sector is only
casual and probably does not hold at higher-loop orders.
In the next section, we will discuss the cancellation of the

anomaly.

IV. ANOMALY CANCELLATION

An important issue related to chiral models is the
problem of the axial anomaly. Since the local symmetry
of such models includes a chiral component, the anomaly
can have undesirable consequences, like violation of
unitarity and destruction of the renormalizability of the
theory. Let us discuss how our model is constructed in order
to provide the desired cancellation of the anomaly. For this
discussion, we consider the model in the symmetric phase
and without the presence of the complex scalar field (for the
case of broken symmetry phase, the scalar fields, ρ and φ,
should be taken into account). Let us also initially consider
only one fermion and write down the field equations for ψ
and ψ̄ ,

½i∂ − bðCPL þDPRÞ − eAðMPL þ NPRÞ�ψ ¼ 0 ð29Þ

and

ψ̄ ½i ⃖∂ þ bðCPL þDPRÞ þ eAðMPL þ NPRÞ� ¼ 0: ð30Þ

The most simple current to be constructed is the vectorial
one, given by jμ ¼ eψ̄γμψ, such that

∂μjμ ¼ eψ̄ ⃖∂ ψ þ eψ̄∂ψ ; ð31Þ

in which the field equations are to be used. It is straightfor-
ward to obtain ∂μjμ ¼ 0. Let us consider now the chiral
current, j5μ ¼ eψ̄γμγ5ψ . We get

∂μj5μ ¼ eðψ̄ ⃖∂ γ5ψ − ψ̄γ5∂ψÞ ¼ 0; ð32Þ

where again we made use of the field equations. We can
further combine the two currents in order to get

jTμ ¼ eψ̄γμðMPL þ NPRÞψ ; ð33Þ

so that

∂μjTμ ¼ 0: ð34Þ

The conservation of the current JTμ is the one that is
required by the local symmetry as exposed in the trans-
formations (5). If one considers a triangle graph with three
external photons, as depicted in Fig. 2, based on the
classical symmetry, one can expect that

qαVμνα ¼ 0; ð35Þ

kμ1Vμνα ¼ 0; ð36Þ

kν2Vμνα ¼ 0: ð37Þ

Before continuing, it is important to remember that the
anomaly cancellation of the Lorentz-invariant version of
the present model has been shown in [1]. In fact, there is no
difference here. The superficial degree of divergence of the
Feynman graphs in our model is given by

FIG. 2. Contributions to the vertex Vμνα.
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D ¼ 4 − Nb −
3

2
Nf −

X
i

ciVSR
i ; ð38Þ

where Nb is the number of external boson lines, Nf is the
number of external fermion lines, and VSR

i are the number
of superrenormalizable vertices with the coefficients ci,
which, depending on the case, is 1 or 2. The insertion of a
bμ in one of the fermion lines of Fig. 2 will turn the integral
logarithmically divergent and, so, the Lorentz-breaking
vector will not contribute to the anomaly. The discussion
which follows is then restricted to the zeroth order in bμ and
is just illustrative, since it matches perfectly that one of [1].
We have for the graphs of Fig. 2,

Vμνα ¼ e3
Z

d4k
ð2πÞ4

Nμνα

k2ðkþ k1Þ2ðk − k2Þ2
þ crossed graph;

ð39Þ
with

Nμνα ¼ trfγνðMPL þ NPRÞkγμðMPL þ NPRÞðkþ k1Þ
× γαðMPL þ NPRÞðk − k2Þg: ð40Þ

The chiral projectors can be moved through the gamma
matrices, using that PLγμ ¼ γμPR and PRγμ ¼ γμPL. So,
we obtain

Nμνα ¼ trfγνkγμðkþ k1ÞγαðM3PL þ N3PRÞðk − k2Þg

¼ M3 þ N3

2
trfγνkγμðkþ k1Þγαðk − k2Þg

þ N3 −M3

2
trfγνkγμðkþ k1Þγαγ5ðk − k2Þg; ð41Þ

which will give

Vμνα ¼ e3
�
M3 þ N3

2
Vð1Þ
μνα þ N3 −M3

2
Vð2Þ
μνα

�

þ crossed diagram; ð42Þ

where Vð1Þ
μνα is the triangle with three vectorial vertices and

Vð2Þ
μνα is the triangle with one axial and two vectorial vertices.

The first part will give a zero result when contracted with the
external momenta, whereas the second part gives the axial
anomaly. Before addressing the other fermionic field, we
rewrite the coupling of ψ to the gauge field as

−eψ̄AðMPL þ NPRÞψ ¼ −eψ̄A
�
M þ N

2
þ N −M

2
γ5

�
ψ

ð43Þ

and identify f ¼ eMþN
2

as the vectorial charge and g ¼
e N−M

2
as the axial charge. In this way, we can see that the

coefficient of the anomaly is given by

N3 −M3

2
¼ gðg2 þ 3f2Þ; ð44Þ

which is odd in the chiral charge and coincides with the
result of [1].
We now consider the other fermion, χ, which couples to

the gauge field with opposite chiral charge. Since the
coefficients M and N are exchanged in its Lagrangian
density, it is easy to see that the anomaly is canceled out
when the two fermions are considered together.

V. RENORMALIZATION

Lorentz-invariant theories with spontaneous symmetry
breaking are known to be renormalized, in the broken
phase, by the same counterterms of the symmetric phase.
However, there is not a general proof which includes the
case where the Lorentz and CPT symmetries are broken.
For the present model, this is not an obvious issue. As
presented in Sec. II, we included a Lorentz-violating part in
the covariant derivative of the complex scalar field. In a first
view, one could consider this unnecessary. However, when
the one-loop corrections are computed, it is found that new
terms arise which are not present in the Lagrangian without
the mentioned contribution from the covariant derivative.
This will be evident in Appendix A, in which we carry out
the one-loop renormalization of the present model.

VI. CONCLUDING COMMENTS

We studied a Lorentz-breaking chiral model which has the
interesting particularity of allowing the quantum induction of
a finite ambiguity-free Carroll-Field-Jackiw term and which
is a generalization of the model presented in Ref. [19]. The
present model, which includes two fermionic fields with
opposite chiral charges and a Higgs sector, provides the
cancellation of the gauge anomaly, which would be harmful
for the unitarity and the renormalizability of the model.
Furthermore, the Higgs field provides the desired mecha-
nism allowing us to generate the fermionic masses which are
necessary for the induction of the ambiguity-free Chern-
Simons-like term.
The one-loop renormalization was also studied. In this

respect, there are some subtleties in the model, which is
power-counting renormalizable. For consistency of the
renormalization, a Lorentz-violating part was included in
the covariant derivative of the complex scalar field. This
covariant derivative provides exactly the terms that would
be lacking for the one-loop renormalization of the model.
All superficially divergent one-loop graphs with depend-
ence in the Lorentz-breaking background vector were
computed, and we showed that the same counterterms that
renormalize the theory in the symmetric phase are needed
after the Higgs mechanism takes place. This is an example
of a consistent Lorentz-violating chiral model.
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It was shown in [21] that new contributions to the chiral
anomalies depending on the Lorentz violating parameters
cannot arise in absence of the term ψ̄bγ5ψ . So, it is natural
to expect that the mechanism for cancellation of the chiral
anomaly presented in this paper also works in other
possible Lorentz-breaking extensions of QED, including
the nonminimal ones [21]. We are planning to discuss this
issue in a forthcoming paper.
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APPENDIX A: ONE-LOOP RENORMALIZATION

The Lorentz-invariant version of the model (7) is
renormalizable at all loop orders, as shown in [1]. Thus,
it remains to investigate the terms which depend on the
background vector bμ. Concerning the bμ-dependent terms,
we adopt a procedure similar to the one used in [22]. The
redefinition of the complex scalar field is such that the
vacuum expectation value hρi0 of the field ρ should vanish
at the classical level, that is, δm2 ¼ 0. This gives the ρ field
a massmρ. It is well known that the field φ is the Goldstone
boson. Actually, we can fix δm2 as a counterterm to each
order of perturbation theory using the normalization con-
dition,

hρi0 ¼ 0; ðA1Þ
at some renormalization scale.
In traditional theories, the renormalization of models in

which the symmetry has been spontaneously broken is
carried out with the same counterterms used in the original
model in the symmetric phase. We follow the same
procedure here. There are groups of terms in the
Lagrangian density in which the gauge symmetry is broken
which are generated from the same term of the Lagrangian
of the model in the symmetric phase. So, they must
renormalize together, with just one counterterm. We will
treat each one of these groups separately.

1. The first group

We begin with the group

e0κbμAμðρ2 þ φ2 þ 2vρþ v2Þ; ðA2Þ

which was generated from the term 2e0κbμAμϕ�ϕ. We
define the counterterm

LCT−1 ¼ 2δ1κbμAμϕ�ϕ; ðA3Þ

so that the following relation,

vFAρΛ
μ ¼ v2ΓAρρΛ

μ ¼ v2 ~ΓAφφΛ
μ ¼ TAΛ

μ ; ðA4Þ

between the divergent parts, indicated by the index Λ, of the
corrections to the Aρ line, to the Aρρ and Aφφ vertices, and
to the A tadpole, respectively, must be respected. We
remember that, although v is constant, it should be taken
as a background field. It should be noticed that, although
some of the terms in the first group have different coef-
ficients, when the symmetry factors of the counterterms are
taken into account, we obtain the condition (A4). This
observation is important also for the other groups of terms.
For the one-loop Aμ tadpole, we have the bμ-dependent

divergent contributions given by Fig. 3, where the continu-
ous lines represent fermions, the dashed lines represent the
Higgs field ρ, the dotted lines represent the Goldstone field
φ, and the wavy lines stand for the photon. The vertices
represented by a big dot indicate where the Lorentz-violating
vector bμ is inserted. These graphs are all of first order in bμ.
There are also superficially divergent graphs of higher order
in the Lorentz-violating parameter. However, they all either
vanish or cancel out. The individual results, considering only
the divergent contributions, where the Feynman gauge
(ξ ¼ 1) has been adopted, are displayed in Appendix B.
The integrals can be solved, for example, by dimensional
reduction, in which only the integrals are extended to a
dimension d. We obtain the following result for the divergent
part of the sum of the graphs, with ϵ ¼ 4 − d,

TΛ
μ ¼ −

i
8π2

v2bμ

�
2κe03 þ eg2ðM − NÞðD − CÞ

þ eg02ðN −MÞðD0 − C0Þ
�
1

ϵ
: ðA5Þ

Considering the corrections to the Aρ line, we have the
superficially divergent contributions given by Fig. 4, which
are also linear in bμ. All the graphs together give us the
divergent part

FIG. 3. One-loop contributions to the one-point function in Aμ

at first order in bμ.
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FΛ
μ ¼ −

i
8π2

vbμ½2κe03 þ eg2ðM − NÞðD − CÞ

þ eg02ðN −MÞðD0 − C0Þ� 1
ϵ
: ðA6Þ

For the correction to the vertex Aρρ, the divergent graphs
which depend on the background vector are shown in Fig 5.
Collecting all the terms, we get

ΓΛ
μ ¼ −

i
8π2

bμ½2κe03 þ eg2ðM − NÞðD − CÞ

þ eg02ðN −MÞðD0 − C0Þ� 1
ϵ
: ðA7Þ

Finally, for the Aφφ vertex we have the same graphs as the
Aρρ vertex, with the replacement of the ρ lines with the φ
lines, giving the same result:

~ΓΛ
μ ¼ −

i
8π2

bμ½2κe03 þ eg2ðM − NÞðD − CÞ

þ eg02ðN −MÞðD0 − C0Þ� 1
ϵ
: ðA8Þ

Thus, we checked that the divergent parts of the one-loop
Green functions of this first group are equal, as written in
Eq. (A4). Consequently, we verified that the counterterm
that renormalizes the original term in the symmetric model,
which originates this first group, also renormalizes the four
terms of the group in the model with broken symmetry.

2. The second group

We now turn our attention to the second group,

−
1

2
δm2ðρ2 þ φ2 þ 2vρÞ; ðA9Þ

FIG. 4. One-loop contributions to the
two-point function ρA at first order in bμ.

FIG. 5. One-loop contributions to the
vertex Aρρ at first order in bμ.
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which is related to the preservation of the zero vacuum
expectation value of the Higgs field. This group should
renormalize together, with δm2 being the common coef-
ficient of the counterterms expressed by Eq. (A9). Thus, it
is expected that the divergent parts of the Higgs self-energy,
the Goldstone self-energy, and the Higgs tadpole respect
the relation

vΣΛ
ρρ ¼ v ~ΣΛ

φφ ¼ TΛ
ρ : ðA10Þ

Again, we observe that the above relation holds because of
the symmetry factors in the counterterms. We begin with
the ρ self-energy. For this two-point function, the super-
ficial degree of divergence is given by D ¼ 2 −

P
ciVSR

i .
Since the vertices which contain bμ are all superrenorma-
lizable, we have divergent contributions only until second
order in bμ. In first order, the graphs combine to give a zero-
divergent part. In second order, the contributions are given
by the graphs displayed in Fig. 6. Collecting all the terms,
we obtain

ΣΛ¼ i
16π2

b2½−g2ðC−DÞ2−g02ðC0−D0Þ2þκ2λ−3κ2e02�1
ϵ
:

ðA11Þ

Next, we consider the Goldstone field self-energy. The
graphs are similar to the ones of Fig. 6, with the unique
difference being the exchange of the ρ lines with the φ
lines. The terms together give the same result,

~ΣΛ ¼ i
16π2

b2½−g2ðC −DÞ2 − g02ðC0 −D0Þ2 þ κ2λ

− 3κ2e02� 1
ϵ
: ðA12Þ

The last Green function to be considered in this group is
the ρ tadpole. Its superficial degree of divergence is given
by D ¼ 3 −

P
ciVSR

i and, thus, it is possible to have
divergent contributions up to third order in bμ. However,
only the second-order part survives after considering all the
graphs. The second order in bμ-divergent graphs is depicted
in Fig. 7. When summed, they will give us the result

TΛ ¼ i
16π2

vb2½−g2ðC −DÞ2 − g02ðC0 −D0Þ2

þ κ2λ − 3κ2e02� 1
ϵ
: ðA13Þ

The coefficients of the divergent pieces of the three Green
functions match, as was stated in Eq. (A10).

3. The third group

The renormalization of the next set of terms to be
considered is a kind of consistency test. For the term

e02AμAμϕ�ϕ ðA14Þ

of Eq. (6), we have the counterterm

LCT3 ¼ δ3e02AμAμϕ�ϕ

¼ δ3
e02

2
AμAμðρ2 þ φ2 þ 2vρþ v2Þ: ðA15Þ

So, we have four Green functions which should have their
divergent parts interconnected. The interesting fact is that
the four-point functions AAρρ and AAφφ have superficial
degrees of divergence given by D ¼ −

P
ciVSR

i . This
means that any graph with a superrenormalizable vertex
is finite and that the divergent part of these Green functions
does not depend on the vector bμ. At the same time, for the
three-point function AAρ, a divergent graph with one
superrenormalizable vertex is possible. However, it is not

FIG. 6. Divergent one-loop contribu-
tions to the ρ self-energy with depend-
ence on bμ.

FIG. 7. Divergent one-loop contributions to the ρ tadpole with
dependence on bμ.
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possible to construct such a divergent graph with one
insertion of bμ and no other superrenormalizable vertex.
Thus, we are left with the vacuum polarization tensor

AA, which, for consistency, should not have a divergent
part dependent on bμ. The contributions which are linear in
bμ have already been considered in Sec. III in the
calculation of the induced finite CFJ term. The diagrams
which represent the superficially divergent contributions to
this two-point function with two insertions of bμ are shown
in Fig. 8, and their results are presented in Appendix B. The
total divergent part is null, as expected.

4. Corrections to the fermionic lines

The fermionic self-energies have the superficial degree
of divergence given by D ¼ 1 −

P
ciVSR

i . Thus, it is
possible to have divergent contributions of first order in
bμ. The one-loop diagrams that represent these corrections
are shown in Fig. 9, which are the same for the fermions ψ
and χ. The final results are given by

SΛψ ¼ −
i

16π2
b

��
e2M2Cþ g2

2
ðD − 1Þ

�
PL

þ
�
e2N2Dþ g2

2
ðCþ 1Þ

�
PR

�
1

ϵ
ðA16Þ

and

SΛχ ¼ −
i

16π2
b

��
e2N2C0 þ g02

2
ðD0 − 1Þ

�
PL

þ
�
e2M2D0 þ g02

2
ðC0 þ 1Þ

�
PR

�
1

ϵ
: ðA17Þ

The results above have the general form of the coupling of
the fermions to the background field already present in the
Lagrangian density of the model.

5. The mixed ρφ line

Finally, we have a divergent Lorentz-breaking part in the
mixed two-point function ρφ, which in principle could be
quadratic in bμ. However, only the linear piece is nonzero,
since the contributions cancel out in the case of fermionic
loops and, in the absence of fermions, it is not possible to
construct a second order graph in bμ without another
superrenormalizable vertex. The divergent Lorentz-violat-
ing graphs yielding this contribution are displayed in
Fig. 10. The total result is given by

Σ̄Λ ¼ 1

8π2
ðb · pÞfg2ðC −DÞ þ g02ðC0 −D0Þ − 2κe02g 1

ϵ
:

ðA18Þ
The divergent contribution above is perfectly absorbed by
the terms already present in the Lagrangian density of
the model.

6. The necessity of the Lorentz-breaking part in the
covariant derivative

To end this section, we comment on the necessity of
including the Lorentz breaking part in the covariant
derivative of the complex scalar field. Let us consider that
the parameter κ is zero. In this situation, we do not have the
terms

e0κbμAμðρ2 þ φ2 þ 2vρþ v2Þ þ κbμðρ∂μφ − φ∂μρÞ
ðA19Þ

in the Lagrangian density of the model. Nevertheless, in the
quantum computations corresponding to the first group of

FIG. 8. Divergent one-loop contri-
butions to the photon self-energy
with dependence on bμ.

FIG. 9. Divergent one-loop contributions to the fermion self-
energy with dependence on bμ.

FIG. 10. Divergent one-loop contributions to the two-point
function ρφ with dependence on bμ.
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terms and to the mixed two-point function ρφ, we obtain
divergent contributions from other sectors, even if κ ¼ 0.
Thus, the terms of (A19) should be included by hand if they
were not generated from the covariant derivative.

APPENDIX B: DIVERGENT bμ-DEPENDENT
ONE-LOOP CORRECTIONS

In the integrals below, we write a fictitious mass m2
φ for

the Goldstone boson which will not interfere in the
calculation of the divergent parts. If the finite part is
calculated, the limit m2

φ → 0 should be taken.
The bμ-dependent divergent contributions to the one-

point function in Aμ are given by

Tμ1þTμ2þTμ3 ¼ e0κ
�
−bμ

Z
d4k
ð2πÞ4

1

ðk2−m2
ρÞ

−bμ

Z
d4k
ð2πÞ4

1

ðk2−m2
φÞ

þ 4bρ
Z

d4k
ð2πÞ4

kρkμ
ðk2−m2

ρÞðk2−m2
φÞ
�
¼ 0;

ðB1Þ
Tμ4 ¼ −4v2κe03bμ

Z
d4k
ð2πÞ4

1

ðk2 −m2
ρÞðk2 −m2

AÞ

¼ −
i

4π2
v2κe03bμ

1

ϵ
þ FT; ðB2Þ

Tμ5 ¼ −4v2κe03bρ
Z

d4k
ð2πÞ4

k2kρkμ
ðk2 −m2

ρÞðk2 −m2
AÞðk2 −m2

φÞ2

¼ −
i

16π2
v2κe03bμ

1

ϵ
þ FT; ðB3Þ

Tμ6 ¼ −v2κe03bμ
Z

d4k
ð2πÞ4

k2

ðk2 −m2
AÞðk2 −m2

φÞ2

¼ −
i

16π2
v2κe03bμ

1

ϵ
þ FT; ðB4Þ

Tμ7 ¼ 4v2κe03bρ
Z

d4k
ð2πÞ4

kρkμ
ðk2 −m2

ρÞðk2 −m2
AÞðk2 −m2

φÞ

¼ i
16π2

v2κe03bμ
1

ϵ
þ FT; ðB5Þ

Tμ8 ¼ 4v2κe03bρ
Z

d4k
ð2πÞ4

kρkμ
ðk2 −m2

ρÞðk2 −m2
AÞðk2 −m2

φÞ

¼ i
16π2

v2κe03bμ
1

ϵ
þ FT; ðB6Þ

Tμ9 ¼ −e
Z

d4k
ð2πÞ4

Nμ1

ðk2 −m2
ψ Þ2

¼ −
i

8π2
v2eg2ðM − NÞðD − CÞbμ

1

ϵ
þ FT ðB7Þ

and

Tμ10 ¼ −e
Z

d4k
ð2πÞ4

Nμ2

ðk2 −m2
χÞ2

−
i

8π2
v2eg02ðN −MÞðD0 − C0Þbμ

1

ϵ
þ FT; ðB8Þ

with

Nμ1 ¼ trfγμðMPL þ NPRÞðkþmψÞ
× bðCPL þDPRÞðkþmψÞg ðB9Þ

and

Nμ2 ¼ trfγμðNPL þMPRÞðkþmχÞ
× bðC0PL þD0PRÞðkþmχÞg ðB10Þ

where FT stands for finite terms.
The contributions to the divergent part of the mixed

two-point function Aρ which depend on bμ are given by

Fμ1 ¼ −
3

2
κe0vλbμ

Z
d4k
ð2πÞ4

1

ðk2 −m2
ρÞ2

þ FT

¼ −
3i

32π2
κe0vλbμ

1

ϵ
þ FT; ðB11Þ

Fμ2 ¼ −
1

2
κe0vλbμ

Z
d4k
ð2πÞ4

1

ðk2 −m2
φÞ2

þ FT

¼ −
i

32π2
κe0vλbμ

1

ϵ
þ FT; ðB12Þ

Fμ3¼ 6e0vλκbρ
Z

d4k
ð2πÞ4

kμkρ
ðk2−m2

ρÞ2ðk2−m2
φÞ
þFT

¼ 3i
32π2

κe0vλbμ
1

ϵ
þFT; ðB13Þ

Fμ4¼ 2κe0vλbρ
Z

d4k
ð2πÞ4

kμkρ
ðk2−m2

ρÞðk2−m2
φÞ2

þFT

¼ i
32π2

κe0vλbμ
1

ϵ
þFT; ðB14Þ

Fμ5¼−4κe03vbμ
Z

d4k
ð2πÞ4

1

ðk2−m2
ρÞðk2−m2

AÞ
þFT

¼−
i

4π2
κe03vbμ

1

ϵ
þFT; ðB15Þ

Fμ6 ¼ 4κe03vbρ
Z

d4k
ð2πÞ4

kμkρ
ðk2−m2

ρÞðk2−m2
φÞðk2−m2

AÞ
þFT

¼ i
16π2

κe03vbμ
1

ϵ
þFT; ðB16Þ
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Fμ7¼4κe03vbρ
Z

d4k
ð2πÞ4

kμkρ
ðk2−m2

ρÞðk2−m2
φÞðk2−m2

AÞ
þFT

¼ i
16π2

κe03vbμ
1

ϵ
þFT; ðB17Þ

Fμ8 ¼ −4κe03vbμ
Z

d4k
ð2πÞ4

1

ðk2 −m2
ρÞðk2 −m2

AÞ
þ FT

¼ −
i

4π2
κe03vbμ

1

ϵ
þ FT; ðB18Þ

Fμ9 ¼ −4κe03vbρ
Z

d4k
ð2πÞ4

k2kμkρ
ðk2 −m2

ρÞðk2 −m2
φÞ2ðk2 −m2

AÞ
þ FT

¼ −
i

16π2
κe03vbμ

1

ϵ
þ FT; ðB19Þ

Fμ10 ¼ −4κe03vbρ
Z

d4k
ð2πÞ4

k2kμkρ
ðk2 −m2

ρÞðk2 −m2
φÞ2ðk2 −m2

AÞ
þ FT

¼ −
i

16π2
κe03vbμ

1

ϵ
þ FT; ðB20Þ

Fμ11 ¼ 2κe03vbμ

Z
d4k
ð2πÞ4

k2

ðk2 −m2
φÞ2ðk2 −m2

AÞ
þ FT

¼ i
8π2

κe03vbμ
1

ϵ
þ FT; ðB21Þ

Fμ12 ¼ 4κe03vbρ
Z

d4k
ð2πÞ4

kμkρ
ðk2 −m2

ρÞðk2 −m2
φÞðk2 −m2

AÞ
þ FT

¼ i
16π2

κe03vbμ
1

ϵ
þ FT; ðB22Þ

Fμ13¼4κe03vbρ
Z

d4k
ð2πÞ4

kμkρ
ðk2−m2

ρÞðk2−m2
φÞðk2−m2

AÞ
þFT

¼ i
16π2

κe03vbμ
1

ϵ
þFT; ðB23Þ

Fμ14 ¼ −
geffiffiffi
2

p
Z

d4k
ð2πÞ4

Rμ1

ðk2 −m2
ψÞ2½ðkþ pÞ2 −m2

ψ �

¼ −
i

16π2
g2evðM − NÞðD − CÞbμ

1

ϵ
þ FT; ðB24Þ

Fμ15 ¼ −
geffiffiffi
2

p
Z

d4k
ð2πÞ4

Rμ2

ðk2 −m2
ψÞ½ðkþ pÞ2 −m2

ψ �2

¼ −
i

16π2
g2evðM − NÞðD − CÞbμ

1

ϵ
þ FT; ðB25Þ

Fμ16 ¼ −
g0effiffiffi
2

p
Z

d4k
ð2πÞ4

Rμ3

ðk2 −m2
χÞ2½ðkþ pÞ2 −m2

χ �

¼ −
i

16π2
g02evðN −MÞðD0 − C0Þbμ

1

ϵ
þ FT ðB26Þ

and

Fμ17 ¼ −
g0effiffiffi
2

p
Z

d4k
ð2πÞ4

Rμ4

ðk2 −m2
χÞ½ðkþ pÞ2 −m2

χ �2

¼ −
i

16π2
g02evðN −MÞðD0 − C0Þbμ

1

ϵ
þ FT; ðB27Þ

with

Rμ1 ¼ trfðkþ pþmψ ÞγμðMPL þ NPRÞðkþmψÞb
× ðCPL þDPRÞðkþmψÞg; ðB28Þ

Rμ2 ¼ trfðkþ pþmψ ÞbðCPL þDPRÞðkþ pþmψÞγμ
× ðMPL þ NPRÞðkþmψ Þg; ðB29Þ

Rμ3 ¼ trfðkþ pþmχÞγμðNPL þMPRÞðkþmχÞb
× ðC0PL þD0PRÞðkþmχÞg ðB30Þ

and

Rμ4 ¼ trfðkþ pþmχÞbðC0PL þD0PRÞðkþ pþmχÞγμ
× ðNPL þMPRÞðkþmχÞg: ðB31Þ

For the divergent graphs of Fig. 5, we have the following
results:

Γμ1 ¼ −
3

2
κe0λbμ

Z
d4k
ð2πÞ4

1

ðk2 −m2
ρÞ2

þ FT

¼ −
3i

32π2
κe0λbμ

1

ϵ
þ FT; ðB32Þ

Γμ2 ¼ −
1

2
κe0λbμ

Z
d4k
ð2πÞ4

1

ðk2 −m2
φÞ2

þ FT

¼ −
i

32π2
κe0λbμ

1

ϵ
þ FT; ðB33Þ

Γμ3 ¼ 6κe0λbρ
Z

d4k
ð2πÞ4

kμkρ
ðk2 −m2

ρÞ2ðk2 −m2
φÞ

þ FT

¼ 3i
32π2

κe0λbμ
1

ϵ
þ FT; ðB34Þ

Γμ4 ¼ 2κe0λbρ
Z

d4k
ð2πÞ4

kμkρ
ðk2 −m2

ρÞðk2 −m2
φÞ2

þ FT

¼ i
32π2

κe0λbμ
1

ϵ
þ FT; ðB35Þ
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Γμ5 ¼ 2κe03bμ

Z
d4k
ð2πÞ4

k2

ðk2−m2
φÞ2ðk2−m2

AÞ
þFT

¼ i
8π2

κe03bμ
1

ϵ
þFT; ðB36Þ

Γμ6 ¼ −8κe03bρ
Z

d4k
ð2πÞ4

k2kμkρ
ðk2 −m2

ρÞðk2 −m2
φÞ2ðk2 −m2

AÞ
þ FT

¼ −
i

8π2
κe03bμ

1

ϵ
þ FT; ðB37Þ

Γμ7¼ 8κe03bρ
Z

d4k
ð2πÞ4

kμkρ
ðk2−m2

ρÞðk2−m2
φÞðk2−m2

AÞ
þFT

¼ i
8π2

κe03bμ
1

ϵ
þFT; ðB38Þ

Γμ8 ¼ −8κe03bμ
Z

d4k
ð2πÞ4

1

ðk2 −m2
ρÞðk2 −m2

AÞ
þ FT

¼ −
i

2π2
κe03bμ

1

ϵ
þ FT; ðB39Þ

Γμ9 ¼ 8κe03bρ
Z

d4k
ð2πÞ4

kμkρ
ðk2 −m2

ρÞðk2 −m2
φÞðk2 −m2

AÞ
þ FT

¼ i
8π2

κe03bμ
1

ϵ
þ FT; ðB40Þ

Γμ10 þ Γμ11 þ Γμ12 ¼ eg2
Z

d4k
ð2πÞ4

Gμ1

ðk2 −m2
ψÞ4

þ FT

¼ −
i

8π2
g2eðM − NÞðD − CÞbμ

1

ϵ

þ FT ðB41Þ

and

Γμ13 þ Γμ14 þ Γμ15 ¼ eg02
Z

d4k
ð2πÞ4

Gμ2

ðk2 −m2
χÞ4

þ FT

¼ −
i

8π2
g02eðN −MÞðD0 − C0Þbμ

1

ϵ

þ FT; ðB42Þ

with

Gμ1 ¼ trfγμðMPL þ NPRÞkbðCPL þDPRÞkkk
þγμðMPL þ NPRÞkkbðCPL þDPRÞkk
þγμðMPL þ NPRÞkkkbðCPL þDPRÞkg ðB43Þ

and

Gμ2 ¼ trfγμðNPL þMPRÞkbðC0PL þD0PRÞkkk
þγμðNPL þMPRÞkkbðC0PL þD0PRÞkk
þγμðNPL þMPRÞkkkbðC0PL þD0PRÞkg: ðB44Þ

For the graphs of Fig. 6, we have the following
results:

Σ1 ¼ −4κ2e02b2
Z

d4k
ð2πÞ4

1

ðk2 −m2
ρÞðk2 −m2

AÞ
þ FT

¼ −
i

4π2
κ2e02b2

1

ϵ
þ FT; ðB45Þ

Σ2 ¼ 8κ2e02bαbβ
Z

d4k
ð2πÞ4

kαkβ
ðk2 −m2

ρÞðk2 −m2
φÞðk2 −m2

AÞ
þ FT

¼ i
8π2

κ2e02b2
1

ϵ
þ FT; ðB46Þ

Σ3 ¼ −4κ2e02bαbβ
Z

d4k
ð2πÞ4

k2kαkβ
ðk2 −m2

ρÞðk2 −m2
φÞ2ðk2 −m2

AÞ
þ FT ¼ −

i
16π2

κ2e02b2
1

ϵ
þ FT; ðB47Þ

Σ4 ¼ 3λκ2bαbβ
Z

d4k
ð2πÞ4

kαkβ
ðk2 −m2

ρÞ2ðk2 −m2
φÞ

þ FT ¼ 3i
64π2

λκ2b2
1

ϵ
þ FT; ðB48Þ

Σ5 ¼ λκ2bαbβ
Z

d4k
ð2πÞ4

kαkβ
ðk2 −m2

ρÞ2ðk2 −m2
φÞ

þ FT ¼ i
64π2

λκ2b2
1

ϵ
þ FT; ðB49Þ

Σ6 þ Σ7 þ Σ8 ¼
g2

2

Z
d4k
ð2πÞ4

1

ðk2 −m2
ψÞ4

trfkbðCPL þDPRÞkbðCPL þDPRÞkk

þ kbðCPL þDPRÞkkbðCPL þDPRÞkþ kkbðCPL þDPRÞkbðCPL þDPRÞkg þ FT

¼ −
i

16π2
g2b2

1

ϵ
þ FT ðB50Þ
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and

Σ9 þ Σ10 þ Σ11 ¼
g02

2

Z
d4k
ð2πÞ4

1

ðk2 −m2
χÞ4

trfkbðCPL þDPRÞkbðCPL þDPRÞkk

þ kbðCPL þDPRÞkkbðCPL þDPRÞkþ kkbðCPL þDPRÞkbðCPL þDPRÞkg þ FT

¼ −
i

16π2
g02b2

1

ϵ
þ FT: ðB51Þ

The results for the amplitudes represented by the dia-
grams of Fig. 7 read

T1 ¼ 3vλκ2bαbβ
Z

d4k
ð2πÞ4

kαkβ
ðk2 −m2

ρÞ2ðk2 −m2
φÞ

¼ 3i
64π2

vλκ2b2
1

ϵ
þ FT; ðB52Þ

T2 ¼ vλκ2bαbβ
Z

d4k
ð2πÞ4

kαkβ
ðk2 −m2

ρÞðk2 −m2
φÞ2

¼ i
64π2

vλκ2b2
1

ϵ
þ FT; ðB53Þ

T3 ¼ −4ve02κ2b2
Z

d4k
ð2πÞ4

1

ðk2 −m2
ρÞðk2 −m2

φÞ

¼ −
i

4π2
ve02κ2b2

1

ϵ
þ FT; ðB54Þ

T4 ¼ −4ve02κ2bαbβ

×
Z

d4k
ð2πÞ4

k2kαkβ
ðk2 −m2

ρÞðk2 −m2
φÞ2ðk2 −m2

AÞ

¼ −
i

16π2
ve02κ2b2

1

ϵ
þ FT; ðB55Þ

T5 ¼ 4ve02κ2bαbβ
Z

d4k
ð2πÞ4

kαkβ
ðk2 −m2

ρÞðk2 −m2
φÞðk2 −m2

AÞ

¼ i
16π2

ve02κ2b2
1

ϵ
þ FT; ðB56Þ

T6 ¼ 4ve02κ2bαbβ
Z

d4k
ð2πÞ4

kαkβ
ðk2 −m2

ρÞðk2 −m2
φÞðk2 −m2

AÞ

¼ i
16π2

ve02κ2b2
1

ϵ
þ FT; ðB57Þ

T7 ¼
gffiffiffi
2

p
Z

d4k
ð2πÞ4

1

ðk2 −m2
ψ Þ3

trfðkþmψÞbðCPL þDPRÞ

× ðkþmψ ÞbðCPL þDPRÞðkþmψÞg

¼ −
i

16π2
vg2ðC −DÞ2b2 1

ϵ
þ FT ðB58Þ

and

T8 ¼
g0ffiffiffi
2

p
Z

d4k
ð2πÞ4

1

ðk2 −m2
χÞ3

trfðkþmχÞbðC0PL þD0PRÞ

× ðkþmχÞbðC0PL þD0PRÞðkþmχÞg

¼ −
i

16π2
vg02ðC0 −D0Þ2b2 1

ϵ
þ FT: ðB59Þ

The diagrams displayed in Fig. 8 have the following
results:

Πμν1 ¼ 2e02κ2bμbν

Z
d4k
ð2πÞ4

1

ðk2 −m2
ρÞ2

þ FT

¼ i
8π2

e02κ2bμbν
1

ϵ
þ FT; ðB60Þ

Πμν2 ¼ 2e02κ2bμbν

Z
d4k
ð2πÞ4

1

ðk2 −m2
φÞ2

þ FT

¼ i
8π2

e02κ2bμbν
1

ϵ
þ FT; ðB61Þ

Πμν3 ¼ 16e02κ2bαbβ
Z

d4k
ð2πÞ4

kαkβkμkν
ðk2 −m2

ρÞ2ðk2 −m2
φÞ2

þ FT

¼ i
24π2

κ2ðb2gμν þ 2bμbνÞ
1

ϵ
þ FT; ðB62Þ

Πμν4 ¼ 16e02κ2bαbβ
Z

d4k
ð2πÞ4

kαkβkμkν
ðk2 −m2

ρÞ2ðk2 −m2
φÞ2

þ FT

¼ i
24π2

κ2ðb2gμν þ 2bμbνÞ
1

ϵ
þ FT; ðB63Þ

Πμν5 ¼ 16e02κ2bαbβ
Z

d4k
ð2πÞ4

kαkβkμkν
ðk2 −m2

ρÞ2ðk2 −m2
φÞ2

þ FT

¼ i
24π2

κ2ðb2gμν þ 2bμbνÞ
1

ϵ
þ FT; ðB64Þ

Πμν6 ¼ −16e02κ2bμbα
Z

d4k
ð2πÞ4

kαkν
ðk2 −m2

ρÞ2ðk2 −m2
φÞ

þ FT

¼ −
i

4π2
κ2bμbν

1

ϵ
þ FT; ðB65Þ

Πμν7 ¼ −16e02κ2bμbα
Z

d4k
ð2πÞ4

kαkν
ðk2 −m2

ρÞðk2 −m2
φÞ2

þ FT

¼ −
i

4π2
κ2bμbν

1

ϵ
þ FT; ðB66Þ
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Πμν8 ¼ −4e02gμνκ2bαbβ
Z

d4k
ð2πÞ4

kαkβ
ðk2 −m2

ρÞðk2 −m2
φÞ2

þ FT

¼ −
i

16π2
κ2b2gμν

1

ϵ
þ FT; ðB67Þ

Πμν9¼−4e02gμνκ2bαbβ
Z

d4k
ð2πÞ4

kαkβ
ðk2−m2

ρÞ2ðk2−m2
φÞ
þFT

¼−
i

16π2
κ2b2gμν

1

ϵ
þFT; ðB68Þ

Πμν10 þ Πμν11 þ Πμν12 ¼ −e2
Z

d4k
ð2πÞ4

1

ðk2 −m2
ψ Þ4

× trfγμðMPL þ NPRÞkbðCPL þDPRÞkbðCPL þDPRÞkγνðMPL þ NPRÞk
þ γμðMPL þ NPRÞkbðCPL þDPRÞkγνðMPL þ NPRÞkbðCPL þDPRÞk
þ γμðMPL þ NPRÞkγνðMPL þ NPRÞkbðCPL þDPRÞkbðCPL þDPRÞkg þ FT ¼ 0 ðB69Þ

and

Πμν13 þ Πμν14 þ Πμν15 ¼ −e2
Z

d4k
ð2πÞ4

1

ðk2 −m2
χÞ4

× trfγμðNPL þMPRÞkbðC0PL þD0PRÞkbðC0PL þD0PRÞkγνðNPL þMPRÞk
þ γμðNPL þMPRÞkbðC0PL þD0PRÞkγνðNPL þMPRÞkbðC0PL þD0PRÞk
þ γμðNPL þMPRÞkγνðNPL þMPRÞkbðC0PL þD0PRÞkbðC0PL þD0PRÞkg þ FT ¼ 0:

ðB70Þ

The corrections corresponding to the graphs of Fig. 9 for
the fermion ψ are given by

Sψ1 ¼ −e2
Z

d4k
ð2πÞ4

γρkbkγρðM2CPL þ N2DPRÞ
ðk2 −m2

ψ Þ2ðk2 −m2
AÞ

þ FT

¼ −
i

16π2
e2bðM2CPL þ N2DPRÞ

1

ϵ
þ FT; ðB71Þ

Sψ2 ¼
g2

2

Z
d4k
ð2πÞ4

kbkðDPL þ CPRÞ
ðk2 −m2

ψÞ2ðk2 −m2
ρÞ

þ FT

¼ −
i

64π2
g2bðDPL þ CPRÞ

1

ϵ
þ FT; ðB72Þ

Sψ3 ¼
g2

2

Z
d4k
ð2πÞ4

kbkðDPL þ CPRÞ
ðk2 −m2

ψÞ2ðk2 −m2
φÞ

þ FT

¼ −
i

64π2
g2bðDPL þ CPRÞ

1

ϵ
þ FT ðB73Þ

and

Sψ4 ¼ −2g2γαγ5bβ
Z

d4k
ð2πÞ4

kαkβ
ðk2 −m2

ψÞðk2 −m2
ρÞðk2 −m2

φÞ
þ FT

¼ −
i

32π2
g2bð−PL þ PRÞ

1

ϵ
þ FT: ðB74Þ

Finally, the divergent Lorentz-violating contributions to
the mixed two-point function depicted in Fig. 10 have the
following results:

Σ̄1 ¼ 2ie02κbα
Z

d4k
ð2πÞ4

ð2pþ kÞα
ðk2 −m2

AÞ½ðkþ pÞ2 −m2
φ�

¼ −
3

16π2
e02κðb · pÞ 1

ϵ
þ FT; ðB75Þ

Σ̄2 ¼ 2ie02κbα
Z

d4k
ð2πÞ4

ð2pþ kÞα
ðk2 −m2

AÞ½ðkþ pÞ2 −m2
ρ�

¼ −
3

16π2
e02κðb · pÞ 1

ϵ
þ FT; ðB76Þ
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Σ̄3 ¼ −2ie02κbα
Z

d4k
ð2πÞ4

ð2pþ kÞ2ðpþ kÞα
ðk2 −m2

AÞ½ðkþ pÞ2 −m2
φ�½ðkþ pÞ2 −m2

ρ�

¼ 1

8π2
e02κðb · pÞ 1

ϵ
þ FT; ðB77Þ

Σ̄4 ¼ −i
g2

2
bα

Z
d4k
ð2πÞ4

trfðkþ pÞγ5kbðCPL þDPRÞkg
ðk2 −m2

ψ Þ2½ðkþ pÞ2 −m2
ψ �

þ FT

¼ 1

16π2
g2ðC −DÞðb · pÞ 1

ϵ
þ FT; ðB78Þ

Σ̄5 ¼ −i
g2

2
bα

Z
d4k
ð2πÞ4

trfðkþ pÞbðCPL þDPRÞðkþ pÞγ5kg
ðk2 −m2

ψ Þ½ðkþ pÞ2 −m2
ψ �2

þ FT

¼ 1

16π2
g2ðC −DÞðb · pÞ 1

ϵ
þ FT; ðB79Þ

Σ̄6 ¼ −i
g02

2
bα

Z
d4k
ð2πÞ4

trfðkþ pÞγ5kbðC0PL þD0PRÞkg
ðk2 −m2

χÞ2½ðkþ pÞ2 −m2
χ �

þ FT

¼ 1

16π2
g02ðC0 −D0Þðb · pÞ 1

ϵ
þ FT; ðB80Þ

and

Σ̄7 ¼ −i
g02

2
bα

Z
d4k
ð2πÞ4

trfðkþ pÞbðC0PL þD0PRÞðkþ pÞγ5kg
ðk2 −m2

χÞ½ðkþ pÞ2 −m2
χ �2

þ FT

¼ 1

16π2
g02ðC0 −D0Þðb · pÞ 1

ϵ
þ FT; ðB81Þ
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