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We investigate a Lorentz-violating chiral model composed of two fermions, a complex scalar field, and a
gauge field. We show that, by conveniently adjusting the parameters of the model, it is possible to generate
an unambiguous Carroll-Field-Jackiw term and, at the same time, provide the cancellation of the chiral
anomaly. The renormalizability of the model is investigated, and it is shown that the same counterterms
needed in the symmetric phase also renormalize the model with broken symmetry.
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I. INTRODUCTION

Symmetries play a fundamental role in nature. Physical
concepts and conservation laws are deeply intertwined with
symmetries of nature, as stated by the Noether theorem.
However, symmetries sometimes impose such restrictions
that, if they were exact, observed phenomena would be
impossible. Thus, as important as the symmetries are their
breaking mechanisms. Actually, it is desired that a
Lagrangian density for a model be symmetric, although
the world which it describes is not. This is the reason why
one of the important subjects of research is the study of
symmetry-breaking mechanisms. In fact, one of the basic
ingredients of the Standard Model (SM) is the so-called
Higgs mechanism, which is based on the spontaneous
gauge symmetry breaking and allows the generation of the
masses of elementary particles, which are initially massless
in the symmetric phase.

In some circumstances, symmetries which occur at the
classical level are broken in the quantum process. This is
caused by the so-called anomalies, and their presence may
have deep consequences. For example, the quantum non-
conservation of the chiral current, known as the chiral
anomaly, opens the possibility for the theoretical explan-
ation of the decay of a neutral pion in two photons. The
chiral symmetry is considered as a global symmetry in
some models. However, in the known chiral theories, which
are part of the Standard Model of elementary particles, the
local symmetry has a chiral component. In this way, the
nonconservation of the chiral current has, as a consequence,
the breaking of the gauge symmetry of the theory. The
quantum breaking of a local symmetry of the classical
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model is harmful, causing the violation of unitarity and,
consequently, spoiling the renormalizability of the model.
Thus, for the consistency of chiral theories, it is necessary
that the quantum anomalies are canceled out. For this, the
model must encompass a set of fermions with chiral
charges Q;, such that they combine to cancel the anomaly.
For example, for a set of left-handed fermions in an Abelian
model, the condition is Z Q% = 0. In general, the anomaly
is odd in the chiral charge and if the fermions (in Abelian
models) come in pairs of opposite axial charges, the
condition for restoration of gauge symmetry is fulfilled
[1]. It is instigating when the elementary particles which are
part of the Standard Model all combine such that the chiral
anomaly is canceled out.

The Lorentz and CPT symmetries, which are basic for
the construction of all modern phenomenological quantum
field models, have been observed in all experimental tests
[2]. However, even for these primordial symmetries,
investigations are carried out to study the would-be
implications of small violations not yet experimentally
discovered. In this context, the interest in Lorentz- and
CPT-violating models has increased since a Chern-
Simons-like term in four dimensions was first considered
by Carroll, Field, and Jackiw [3]. This so-called Carroll-
Field-Jackiw (CFJ) term was included in a Standard Model
extension (SME), constructed to provide Lorentz and CPT
violations, controlled by coefficients constrained by experi-
ments [4-7].

The investigation of the possibility that the CFJ term
could be radiatively induced from the fermionic sector,
whenever the axial term b,@y"ysy is included, generated
some controversy. The discussion was focused on the
following aspects: first, the dependence of the induced
term on the regularization scheme; second, the possibility
of imposing the vanishing of this term on physical grounds,
like gauge invariance, causality, and unitarity; and, finally,
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the question of whether or not the stringent limits on the
magnitude of the coefficient of the CFJ term impose
restrictions on the existence of the CPT- and Lorentz-
breaking axial term in the fermionic sector. Many papers
have been devoted to this subject (see, for example,
Refs. [8-18]).

An alternative model was then proposed in which the
CFJ term induced by quantum corrections has no ambi-
guities in its coefficient [19]. It is a chiral model, in which
the background vector field b, and the gauge field couple
with opposite chiralities to the fermion. This interesting
model, however, needs some further development since,
containing only one fermion, it is not capable of dealing
with the gauge anomaly which is inherent to the chiral
theories. Furthermore, the fermion mass part, which is
necessary to the generation of the unambiguous Chern-
Simons-like term, should be justified by a Higgs mecha-
nism since it explicitly violates the gauge symmetry of the
model. In this paper, we study a more general Lorentz-
violating chiral model composed of two fermions, a
complex scalar field, and a gauge field. The model respects
a modified gauge symmetry. By means of the Higgs
mechanism, the fermions and the gauge field acquire mass.
We show that by adjusting certain coefficients, it is possible
to generate an unambiguous CFJ term and, at the same
time, provide the desired cancellation of the anomaly. The
renormalizability of the model is investigated, and it is
shown that the same counterterms needed in the symmetric
phase also renormalize the model with broken symmetry.
Although this is a well-known result for Lorentz invariant
theories, it has not been deeply investigated in the case of
Lorentz-breaking models. As we will see, a Lorentz-
violating part must be included in the covariant derivative
of the scalar field in order to preserve this feature at one-
loop order.

This work is organized as follows. In Sec. II, the model is
presented. Since the local gauge symmetry is spontane-
ously broken, the complex scalar field is decomposed in
two real fields and the final Lagrangian density is written.
We obtain the condition to the induction of an unambigu-
ous CFJ term in Sec. III. In Sec. IV, the cancellation of the
anomaly is discussed. The renormalization of the model is
discussed in Sec. V. In Sec. VI, we summarize our results
and present some concluding comments. In Appendix A,
the details of the one-loop renormalization are shown, and
the results of individual graphs of Appedndix A are
presented in Appendix B.

II. THE LORENTZ-VIOLATING
CHIRAL MODEL

We begin with the following Lorentz-violating model,
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£ = =3 Fu + (D) (D) + 10 = ()
+ylid — b(CP; + DPg) — eA(MP; + NPg)|y
+ 7[id = B(C'P, + D'Py) — eA(NP, + MPR)lx
—9WLyrd +Wrwrd”) — 9 rxLd + 2ixrd”).

(1)

where y and y are Dirac fermions and

Ve = Prrv, (2)
with

]:l:yS
2

Prp = (3)
the chiral projectors. Besides, C, D, C', D', M, and N are
real constants, and b, is a constant four-vector which
breaks the Lorentz symmetry. The covariant derivative
acting on the complex scalar field is given by

D,¢ = (0, + ixb, + ie'A,)¢, (4)

in which « is a dimensionless constant. The introduction of a
Lorentz-violating sector in the covariant derivative is neces-
sary for the closure of the model when radiative corrections
are considered. This will be evident in the study of the
renormalizability of the model. The parameter x will allow
us to follow what happens when we turn off this part in the
covariant derivative. The Lagrangian density of Eq. (1) is
invariant under the following local transformations:

iea(x)(MP; +NPpg)

Y — e v,

W — l/—/eiea(x) (NP+MPy) ,

7 - e—iea(x) (NPL+MPR))(’

)—(_))—(eiea(x)(MPL-!—NPR)’
¢_>e—ie’a(x)¢’
¢* _)eie’a(x)¢*’

A, = A, - 0,a(x), (5)

with ¢/ = (M — N)e.

This model, as we will see in more detail in Sec. IV,
avoids the problem of the gauge anomaly, since the two
fermionic fields, y and y, posses opposite chiral charges
[1]. The Lagrangian density (1), if the covariant derivative
is written explicitly, takes the form
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1 A
L= = FuF" 4+ (0,7)(09) + 124" = 5 (¢ 9)° + PAMG" + i A (90,0 = ¢ 0, h)
+2¢'kb, AG* P + ik (PO, " — 70, p) + (i — B(CP, + DPg) — eA(MP,, + NPg)ly

+21id = B(C'PL + D'Pg) — eA(NP, + MPg)ly — g(fryrdp + Wryrd*) — 9 Trerd + 2ixrd”*)- (6)
Rewriting the Lagrangian (6) in terms of real scalar fields p and ¢, such as ¢ = 27 (p + v+ ip), with v a constant, we
obtain
L=Ly+Ly+L,+L, (7)
with
e/2

1 1 1
‘Cqﬁ =5 (8;4:0)2 + E (8M§0)2 - _m%pZ +

2 2 2

AAH(p* + @ + 2up +0?)

+ €'kb, A" (p* + @ + 2up + 1) + €A (p0, — 9O,p) + evA* D, + kb* (pD,p — 9D,p)

A A 1
— 15 P+ @) = up(p? + ¢?) = 56m(p? + 7 + 20p), (8)
III. THE AMBIGUITY-FREE CFJ TERM
1 1
Ly= _ZF W — 2—5(6,414” )%, 9) In this section, we calculate the one-loop vacuum

EVI:V_/ la—mw—b(ch+DPR)

g . g
—eA(MP; +NPp) ——=p—i—= 10
( L R) ﬂ/’ ﬁ75€0ll/ ( )
and
EZ:}_{ lﬁ—m)(—b(C’PL+D/PR)
J J
_eA/<NPL+MPR)—EP+iﬁ}’5(ﬂ)(, (11)
where om> = —u'? + 207, m2 =% m, =% m)(:%,
2 2,2

my = v-e~ and we have added a gauge-fixing term,
Lgr = —(25)_1(8;/4”)2-

For A and y'? = y% 4 k2b? real and positive,' the com-
plex scalar field ¢ develops a non-null vacuum expectation
value ($)y = J5, with W'?* =%4v* and, so, the local U(1)
symmetry is spontaneously broken. The model presented
above, which is power-counting renormalizable, will be
carefully investigated in the next sections. We begin by
establishing the conditions to have an ambiguity-free
induced CFJ term.

lActually, b? can be negative. However, for small Lorentz
violations, it is reasonable to require that u> > |k*b?|.

polarization tensor at first order in b, to verify under
which conditions the induced CFJ term is ambiguity free. It
is natural to conclude that the unique possibility of
radiatively generating this term is by means of fermion
loops, since the desired term encompasses an antisymmet-
ric Levi-Civita tensor. This is because only the fermionic
sector contains an axial part (proportional to y5). There are
two approaches which could be carried out to extract the
first order in b,,. The first one consists of taking the y and y
fermion loops and then expanding the propagators as

i

Svlk) == m, —b(CP, + DPy)
= ;k . [—ib(CPL + DPR)k —lmw n
=5, (k). (12)
n=0
to consider only the first order in bﬂ,
Sy (k) = So(k) + S, (k). (13)

The second method consists of considering the b,-
dependent terms as interactions and taking only the con-
tributions with one insertion of these interactions.
Following this second approach, the graphs which con-
tribute to the CFJ term are depicted in Fig. 1, in which the
dots indicate insertions of b,,.

We now calculate in detail the contribution of the first
graph,
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I, = +
djv HZVl @Z” HIZU/2 X nv3
. = —¢? / 'k N (14)
- (2a)* (k2 = my )2 [(k + p)? = my]’
with

N,, = tr{y,(MP + NPg)(k + m,)b(CP + DPyg)

x (k +my )y, (MPL + NPg)(k+ ¢+ my,)}.
(15)
Since we are interested in the Chern-Simons-like term, we
will only consider here the terms which can yield the Levi-

Civita symbol. After carrying out the traces of products of
Dirac matrices in four dimensions, we obtain

N

w = 2i€,,45{—b"K’[(M>C — N*D)K?

+ (N?C — M*D + 2MN(D — C))m3,]
— b?pP|(M*C — N°D)k?* + (N*C — M*D)m}
+2(b - k)kpP(M?C — N?D)} + N, (16)

where N, represents the terms which do not involve the
Levi-Civita tensor. We split the result in two parts,

Hb

— 1715 1b
vl T H;wl +1I

vl

(17)

with l'[fw1 being the contribution to the CFJ term. So, we
have
szl = —2iezeﬂmﬁ{—b“[(M2C — N2D)J'P

+ (N?°C = M?D +2MN(D - C))m J*

— pP((M>C = N?D)J' + (N*C — M*D)m2J))

+ 2b,p? (M?C — N*D)J*}, (18)

in which we have defined the integrals

4 p p
J,Jﬁ,Jaﬁ_/ ak LRV (9
(27)* (k% = my,)*[(k + p)* —my]
= / &k i . (0
(27)* (k* = my)?*[(k + p)* — m}]

In the above result, the integrals J%, J', and J'# are
divergent. We would like to show that the total result,
considering all the graphs of Fig. 1, can be unambiguous
for some choice of the coefficients M, N, C, D, C’, and D'.
To make this evident, at least in this section, we will use an
approach which does not resort explicitly to any particular
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FIG. 1. Contributions to the CFJ term.
In the two first graphs, we have a loop of
the y fermion, whereas the other two

b4 graphs have a loop of the fermion y.

regularization procedure. For dealing with the divergent
integrals, we use recursively the identity

1 1

(p+k)2—m2 kz_mz_

pP+2p-k
(K =m*)[(p + k)* = m?]’
(21)

in order to extract the external momentum, p, from the
divergent integrals. We then employ the implicit regulari-
zation approach based on extracting the surface terms (for a
description of this method, see, for example, [20]).
Following this procedure, we obtain, for the first graph,

(M? + N? 4+ MN)(C - D)

5 -2 a . f .
D, = —2ie*e,,q5b P’ {487:2

- (M*C - NZD)a}, (22)

where the surface term,

d*k 1 d*k k,k,
W =9 | a7 35— 4 .
=0 | Gap e —m? ") Caf (@ - mly

(23)

is responsible for the regularization dependence of this first
contribution and the limit p> — 0 is taken. It should be
noticed that the mass mg, in the definition of a can be
replaced by an arbitrary mass scale, since the finite final
result will not depend on mg, in any regularization
prescription.

Adopting the same procedures for the other three graphs,
one obtains

i

a2 (M? + N* + MN)(C - D)},

szz = —iezsﬂmﬁb"p/j{
(24)
i

T (N? + M? + MN)(C' - D')

H,Sm = —2iezsﬂmﬂb“p/}{
_ (N2 - MZD’)a} (25)

and

i
IL,4 = —ie*e,qsb" p’ {24”2 (N> 4+M?*+MN)(C' -D') }
(26)

so that
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I, = e2sﬂmﬁb"pﬁ{2ia[M2(C - D)= N?*(D-C)]

+

o (M? + N? 4+ MN)(C+C —D—D’)}.

(27)

Examining the final result for the Chern-Simons-like
term above, we can find that it represents itself an
undetermined number of combinations of the coefficients
M, N, C, D, C', and D', whose relation can be fixed to
obtain an a-independent and, hence, finite and unambigu-
ous result. If we take, for example, C — D' =4(D — (')
and N = 2M, we have

7e?
wa = W&"waﬂbapﬂMQ(D - C/) (28)

Another interesting peculiarity of the result in Eq. (27) is
the possibility of the vanishing of the unambiguous part, if
the condition C+ C' = D + D’ is satisfied. It is worth
understanding what happens in this situation. A particular
solution is C = D and C' = D'. In this case, the axial part
of the coupling of the background vector b, with the
fermions is zero. The remaining coupling is of the type
—wby, which can be absorbed in a redefinition of the
fields. For this particular case, it is expected that, even at
higher-loop orders, the unambiguous part of the CFJ term is
not induced. Nevertheless, there is an infinite number of
solutions which maintain the chiral part of the coupling of
b, with the fermions. We conjecture that, in this situation,
the one-loop cancellation of the unambiguous sector is only
casual and probably does not hold at higher-loop orders.

In the next section, we will discuss the cancellation of the
anomaly.

IV. ANOMALY CANCELLATION

An important issue related to chiral models is the
problem of the axial anomaly. Since the local symmetry
of such models includes a chiral component, the anomaly
can have undesirable consequences, like violation of
unitarity and destruction of the renormalizability of the
theory. Let us discuss how our model is constructed in order
to provide the desired cancellation of the anomaly. For this
discussion, we consider the model in the symmetric phase
and without the presence of the complex scalar field (for the
case of broken symmetry phase, the scalar fields, p and ¢,
should be taken into account). Let us also initially consider
only one fermion and write down the field equations for y
and v,

i — B(CP, + DPg) — eA(MP, + NPp)ly =0 (29)

and
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@[id + B(CP, + DPg) + eA(MP, + NPg)] = 0. (30)

The most simple current to be constructed is the vectorial
one, given by j, = eyry,y, such that

Mj, = ey + eidy. (31)
in which the field equations are to be used. It is straightfor-

ward to obtain 0%j, = 0. Let us consider now the chiral
current, j, = eyry,ysy. We get

M = e dysw - wysdy) =0, (32)

where again we made use of the field equations. We can
further combine the two currents in order to get

Ju = ey (MP, + NPy, (33)

so that
il =0. (34)
The conservation of the current Jlf is the one that is
required by the local symmetry as exposed in the trans-
formations (5). If one considers a triangle graph with three

external photons, as depicted in Fig. 2, based on the
classical symmetry, one can expect that

qavﬂya = 07 (35)
k’fVMW =0, (36)
K5V 4o = 0. (37)

Before continuing, it is important to remember that the
anomaly cancellation of the Lorentz-invariant version of
the present model has been shown in [1]. In fact, there is no
difference here. The superficial degree of divergence of the
Feynman graphs in our model is given by

FIG. 2. Contributions to the vertex V.
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3
D=4-Ny=5N;=) Vit (38)

where N, is the number of external boson lines, Ny is the
number of external fermion lines, and V5® are the number
of superrenormalizable vertices with the coefficients c;,
which, depending on the case, is 1 or 2. The insertion of a
b, in one of the fermion lines of Fig. 2 will turn the integral
logarithmically divergent and, so, the Lorentz-breaking
vector will not contribute to the anomaly. The discussion
which follows is then restricted to the zeroth order in b, and
is just illustrative, since it matches perfectly that one of [1].
We have for the graphs of Fig. 2,

DY (L S—|
pea (27)* k> (k + ki) (k — ky)

5 + crossed graph,
(39)
with
Nywa = tr{y,(MPy + NPg)ky,(MPy, + NPg)(k + ki)
X yo(MPy + NPg)(k — )} (40)
The chiral projectors can be moved through the gamma

matrices, using that P;y, =y,Pg and Pgy, =7,Pr. So,
we obtain

N/wa = tr{y,,léyﬂ(k +k1)}/a(M3PL + N3PR>(k - kZ)}

M+ N
= #U‘{}/Dk}/}l (k + kl)}/a(k - k2>}
N3 _ M3
+———tu{rnkn(k+K)rars(k = k). (41)

which will give

M3+ N3 N3 =M
thx = 63 (# V;(JL)a + ? VL%){:)

+ crossed diagram, (42)
where V,(,})a is the triangle with three vectorial vertices and
Vf,zy)a is the triangle with one axial and two vectorial vertices.
The first part will give a zero result when contracted with the
external momenta, whereas the second part gives the axial
anomaly. Before addressing the other fermionic field, we
rewrite the coupling of y to the gauge field as

M+N N-M
) 2 Vs |

—eWwA(MP; + NPR)y = —el/7A< +
(43)

and identify f = ¢ as the vectorial charge and g =

e%5M as the axial charge. In this way, we can see that the

coefficient of the anomaly is given by

PHYSICAL REVIEW D 93, 025010 (2016)
N3 _ M3
— =9 +3/), (44)
which is odd in the chiral charge and coincides with the
result of [1].

We now consider the other fermion, y, which couples to
the gauge field with opposite chiral charge. Since the
coefficients M and N are exchanged in its Lagrangian
density, it is easy to see that the anomaly is canceled out
when the two fermions are considered together.

V. RENORMALIZATION

Lorentz-invariant theories with spontaneous symmetry
breaking are known to be renormalized, in the broken
phase, by the same counterterms of the symmetric phase.
However, there is not a general proof which includes the
case where the Lorentz and CPT symmetries are broken.
For the present model, this is not an obvious issue. As
presented in Sec. II, we included a Lorentz-violating part in
the covariant derivative of the complex scalar field. In a first
view, one could consider this unnecessary. However, when
the one-loop corrections are computed, it is found that new
terms arise which are not present in the Lagrangian without
the mentioned contribution from the covariant derivative.
This will be evident in Appendix A, in which we carry out
the one-loop renormalization of the present model.

VI. CONCLUDING COMMENTS

We studied a Lorentz-breaking chiral model which has the
interesting particularity of allowing the quantum induction of
a finite ambiguity-free Carroll-Field-Jackiw term and which
is a generalization of the model presented in Ref. [19]. The
present model, which includes two fermionic fields with
opposite chiral charges and a Higgs sector, provides the
cancellation of the gauge anomaly, which would be harmful
for the unitarity and the renormalizability of the model.
Furthermore, the Higgs field provides the desired mecha-
nism allowing us to generate the fermionic masses which are
necessary for the induction of the ambiguity-free Chern-
Simons-like term.

The one-loop renormalization was also studied. In this
respect, there are some subtleties in the model, which is
power-counting renormalizable. For consistency of the
renormalization, a Lorentz-violating part was included in
the covariant derivative of the complex scalar field. This
covariant derivative provides exactly the terms that would
be lacking for the one-loop renormalization of the model.
All superficially divergent one-loop graphs with depend-
ence in the Lorentz-breaking background vector were
computed, and we showed that the same counterterms that
renormalize the theory in the symmetric phase are needed
after the Higgs mechanism takes place. This is an example
of a consistent Lorentz-violating chiral model.
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It was shown in [21] that new contributions to the chiral
anomalies depending on the Lorentz violating parameters
cannot arise in absence of the term wbysy. So, it is natural
to expect that the mechanism for cancellation of the chiral
anomaly presented in this paper also works in other
possible Lorentz-breaking extensions of QED, including
the nonminimal ones [21]. We are planning to discuss this
issue in a forthcoming paper.
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APPENDIX A: ONE-LOOP RENORMALIZATION

The Lorentz-invariant version of the model (7) is
renormalizable at all loop orders, as shown in [1]. Thus,
it remains to investigate the terms which depend on the
background vector b,,. Concerning the b,-dependent terms,
we adopt a procedure similar to the one used in [22]. The
redefinition of the complex scalar field is such that the
vacuum expectation value (p), of the field p should vanish
at the classical level, that is, 5m? = 0. This gives the p field
amass m,,. Itis well known that the field ¢ is the Goldstone
boson. Actually, we can fix Sm? as a counterterm to each
order of perturbation theory using the normalization con-
dition,

{p)o =0, (A1)
at some renormalization scale.

In traditional theories, the renormalization of models in
which the symmetry has been spontaneously broken is
carried out with the same counterterms used in the original
model in the symmetric phase. We follow the same
procedure here. There are groups of terms in the
Lagrangian density in which the gauge symmetry is broken
which are generated from the same term of the Lagrangian
of the model in the symmetric phase. So, they must
renormalize together, with just one counterterm. We will
treat each one of these groups separately.

1. The first group

We begin with the group
¢'kb, A (p* + @ + 2up + 7). (A2)

which was generated from the term 2e'xb,A*¢p*¢. We
define the counterterm

Ler-y = 26,kb, A, (A3)
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so that the following relation,

vFpPN = 2T = 2Teeh — AN (A4)
between the divergent parts, indicated by the index A, of the
corrections to the Ap line, to the App and Ap¢ vertices, and
to the A tadpole, respectively, must be respected. We
remember that, although v is constant, it should be taken
as a background field. It should be noticed that, although
some of the terms in the first group have different coef-
ficients, when the symmetry factors of the counterterms are
taken into account, we obtain the condition (A4). This
observation is important also for the other groups of terms.

For the one-loop A, tadpole, we have the b,-dependent
divergent contributions given by Fig. 3, where the continu-
ous lines represent fermions, the dashed lines represent the
Higgs field p, the dotted lines represent the Goldstone field
@, and the wavy lines stand for the photon. The vertices
represented by a big dot indicate where the Lorentz-violating
vector b, is inserted. These graphs are all of first order in b,,.
There are also superficially divergent graphs of higher order
in the Lorentz-violating parameter. However, they all either
vanish or cancel out. The individual results, considering only
the divergent contributions, where the Feynman gauge
(¢ =1) has been adopted, are displayed in Appendix B.
The integrals can be solved, for example, by dimensional
reduction, in which only the integrals are extended to a
dimension d. We obtain the following result for the divergent
part of the sum of the graphs, with ¢ =4 — d,

i
Th = —@1)217”{21«3’3 +eg*?(M - N)(D-C)
1
+eg®(N = M)(D' — C’)}—. (AS)
€

Considering the corrections to the Ap line, we have the
superficially divergent contributions given by Fig. 4, which
are also linear in b,. All the graphs together give us the
divergent part

N

S A A S S ;} +
T m Tus T
S T U T s T 5 .
T‘;LS Tuﬁ Tﬂ7 THS
+ )
Y, Tho X Tyuio
FIG. 3. One-loop contributions to the one-point function in A,

at first order in b,,.

025010-7



SCARPELLI, GOMES, PETROV, and DA SILVA PHYSICAL REVIEW D 93, 025010 (2016)

FIG. 4. One-loop contributions to the
two-point function pA at first order in b,,.

FLo Euo Fun ﬁdz Fas
¥, Fua ¥, Fus X Fue X £t
Fi = —8%2 vb,[2ke"> + eg*(M — N)(D — C) = —ébﬂ[m“ +eg*(M —N)(D - C)
+eg2(N = M)(D' = C)] L (A6) +eg2(N = M)(D' = C)] L (AS)

Thus, we checked that the divergent parts of the one-loop
Green functions of this first group are equal, as written in
Eq. (A4). Consequently, we verified that the counterterm
that renormalizes the original term in the symmetric model,
which originates this first group, also renormalizes the four
b, [2ke”® + eg?(M — N)(D - C) terms of the group in the model with broken symmetry.

For the correction to the vertex App, the divergent graphs
which depend on the background vector are shown in Fig 5.
Collecting all the terms, we get

A
e

1

+eg?(N=M)(D' = )]

(A7) 2. The second group

We now turn our attention to the second group,
Finally, for the Ap¢g vertex we have the same graphs as the

App vertex, with the replacement of the p lines with the ¢ _ l S (pz o+ 20p) (A9)
lines, giving the same result: 2 ’
§ § H H FIG. 5. One-loop contributions to the
2R n n Id + ‘ + vertex App at first order in b,,.

Ful FMZ PMS Pu4
+ A+ PNt + o+
FME) Fu6 ry,’? FMS Fug
A " & " ﬁ "
¥, Lo P, T P, Tpio
Z& | Zl i Zi |
X I1;L13 X Fu14 X FplS
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m “LW; W to
Yo Y3 Y4
e EomNes
1/126 1/)727 1/}~28
QD O
X9 X>210 X211

which is related to the preservation of the zero vacuum
expectation value of the Higgs field. This group should
renormalize together, with m? being the common coef-
ficient of the counterterms expressed by Eq. (A9). Thus, it
is expected that the divergent parts of the Higgs self-energy,
the Goldstone self-energy, and the Higgs tadpole respect
the relation

vEh, =X, = T). (A10)
Again, we observe that the above relation holds because of
the symmetry factors in the counterterms. We begin with
the p self-energy. For this two-point function, the super-
ficial degree of divergence is given by D=2 -3 ¢; V3R
Since the vertices which contain b, are all superrenorma-
lizable, we have divergent contributions only until second
order in b,,. In first order, the graphs combine to give a zero-
divergent part. In second order, the contributions are given
by the graphs displayed in Fig. 6. Collecting all the terms,
we obtain

1
A= [-*(C=D)*>—g¢*(C'=D')*+Kk*1—3k*e"*]~.
€

1672
(A11)

Next, we consider the Goldstone field self-energy. The
graphs are similar to the ones of Fig. 6, with the unique
difference being the exchange of the p lines with the ¢
lines. The terms together give the same result,

16 [ (C— D)Z _g/Z(C/ _D/)z +K21
T

1
—3k2e?) = (A12)

The last Green function to be considered in this group is
the p tadpole. Its superficial degree of divergence is given
by D=3-3 ¢;V{® and, thus, it is possible to have
divergent contributions up to third order in b,. However,
only the second-order part survives after considering all the

graphs. The second order in b,,-divergent graphs is depicted
in Fig. 7. When summed, they will give us the result

PHYSICAL REVIEW D 93, 025010 (2016)
FIG. 6. Divergent one-loop contribu-

I S . tions to the p self-energy with depend-
ence on b,.
D)3
i
TA — T zvbz[—gz(C—D)z _g/Z(C/ _D/)2
V4

1
+ K22 = 3Kk%e"?] - (A13)
€

The coefficients of the divergent pieces of the three Green
functions match, as was stated in Eq. (A10).

3. The third group

The renormalization of the next set of terms to be
considered is a kind of consistency test. For the term

e’zA#A”(p*qb (A14)
of Eq. (6), we have the counterterm
Ly = 53¢2A,A "
= %IZAﬂA”(pZ +¢* +2vp+0%).  (Al5)

So, we have four Green functions which should have their
divergent parts interconnected. The interesting fact is that
the four-point functions AApp and AAp@ have superficial
degrees of divergence given by D = -3 ¢;ViR This
means that any graph with a superrenormalizable vertex
is finite and that the divergent part of these Green functions
does not depend on the vector b,,. At the same time, for the
three-point function AAp, a divergent graph with one
superrenormalizable vertex is possible. However, it is not

é)‘*+{}-+2:)+g%,‘.~+

T, Ts T3 T,
Vo O 0
I Ts ¥, Tr x: Ts

FIG. 7. Divergent one-loop contributions to the p tadpole with
dependence on b,,.
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TN N N A N Pl N PadliaN FIG. 8. Divergent one-loop contri-
R S I N s N A S A I W M butions to the photon self-energy

1 .0 U3 s s with dependence on b,,.

e e, $o ‘

Hut/6 Hm/? H;U/S H,ul/() w7H,u,V10

O D O

/J,Vll ;w12 ;wlB

possible to construct such a divergent graph with one
insertion of b, and no other superrenormalizable vertex.

Thus, we are left with the vacuum polarization tensor
AA, which, for consistency, should not have a divergent
part dependent on b,,. The contributions which are linear in
b, have already been considered in Sec. IIl in the
calculation of the induced finite CFJ term. The diagrams
which represent the superficially divergent contributions to
this two-point function with two insertions of b, are shown
in Fig. 8, and their results are presented in Appendix B. The
total divergent part is null, as expected.

4. Corrections to the fermionic lines

The fermionic self-energies have the superficial degree
of divergence given by D=1-> ¢;V{R Thus, it is
possible to have divergent contributions of first order in
b,. The one-loop diagrams that represent these corrections
are shown in Fig. 9, which are the same for the fermions y
and y. The final results are given by

2
sh=——pdle2mrc+ L (p-1)|P
$ == jamt{ |ePC+ S0

+ { 2N2p 4+ L 7 (C+ )] }é (A16)
and
Sh=-— 16”213{ [e2N2C' +%2(D’ - 1)] P,
+ {ezMZD’ +g;(c’ + 1)]PR}é (A17)

The results above have the general form of the coupling of
the fermions to the background field already present in the
Lagrangian density of the model.

PSRN PN, Lo
i + L + + L

Sl S2 53 S4

FIG. 9. Divergent one-loop contributions to the fermion self-
energy with dependence on b,,.

X5 H;wl4

X H;wl5

5. The mixed p@ line

Finally, we have a divergent Lorentz-breaking part in the
mixed two-point function p¢g, which in principle could be
quadratic in b,. However, only the linear piece is nonzero,
since the contributions cancel out in the case of fermionic
loops and, in the absence of fermions, it is not possible to
construct a second order graph in b, without another
superrenormalizable vertex. The divergent Lorentz-violat-
ing graphs yielding this contribution are displayed in
Fig. 10. The total result is given by

SA 1 2 12(c" / 2 1
)y :@(lrp){g (C=D)+¢g*(C'=D') —2ke }E
(A18)

The divergent contribution above is perfectly absorbed by
the terms already present in the Lagrangian density of
the model.

6. The necessity of the Lorentz-breaking part in the
covariant derivative

To end this section, we comment on the necessity of
including the Lorentz breaking part in the covariant
derivative of the complex scalar field. Let us consider that
the parameter « is zero. In this situation, we do not have the
terms

¢'kb, A (p* + @ + 2vp + v?) + kb (p0,p — pO,p)
(A19)

in the Lagrangian density of the model. Nevertheless, in the
quantum computations corresponding to the first group of

oo PEN o

b Yo 33
W,y b, T Xs Z6 Xs E7

FIG. 10. Divergent one-loop contributions to the two-point
function pg with dependence on b,,.
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terms and to the mixed two-point function pg, we obtain
divergent contributions from other sectors, even if x = 0.
Thus, the terms of (A19) should be included by hand if they
were not generated from the covariant derivative.

APPENDIX B: DIVERGENT b,-DEPENDENT
ONE-LOOP CORRECTIONS

In the integrals below, we write a fictitious mass mé for
the Goldstone boson which will not interfere in the
calculation of the divergent parts. If the finite part is
calculated, the limit mg, — 0 should be taken.

The b,-dependent divergent contributions to the one-
point function in A, are given by

, k1
Tﬂ1+T”2+Tﬂ3:€K —bﬂ WM
b / d*k 1
] 2r)*(k* - mg,)
d*k k,k
+4b° / pr }:0,
(27)* (k* — mﬁ) (k* — mg,)
(B1)
d*k 1
T, = —4v°ke’3b
g "] @)t (k2 = mp) (k> — m3)
' 1
—_ 4% v*xe’*b, ~ + FT, (B2)
T €
d*k K2k k
T, = —41}2Ke’3b/’/ PR
! (27)* (K> = mp) (k* — m3) (k> — mg)?
i 1
ST v*ke*b, ot FT, (B3)
d*k K>
T = —p2 /Sb /
w0 T TR | @)t R = md) (k2 — m2)?
' 1
—_ 16‘ S v*ke3b, ~ + FT, (B4)
JT €
d*k k,k
T, =4 2 /3bp/ PH
w1 ZIRET | a) (R = ) (K = m2) (K2 = m2)
j 1
= ]6lﬂ2 v*ke*b, - + FT, (B5)
d*k k,k
T .=4 2 /3bp/ PH
u ZERET | ) (R = ) (K = m2) (K2 = m2)
1
T v*ke”b, - + FT, (B6)
. / &k Ny,
9 = —e R
g (27)* (k2 = my)?

' 1
- —évzeg%M ~N)(D = C)b,—+FT  (B7)
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and
4
Tyo= —e/ (jﬂ]; (kz]jﬂ;)%)z

- é vieg* (N = M)(D' - C')b, é +FT, (B8)

with

N, = t{y,(MP; + NPg)(k + m,,)

X b(CP, + DPg)(k+m,)} (B9)

and

N, = tr{y, (NP, + MPg)(k 4 m,)

xb(C'P, + D'Pg)(k+m,)} (B10)

where FT stands for finite terms.
The contributions to the divergent part of the mixed
two-point function Ap which depend on b, are given by

3 d*k 1
F, = —Ke’v/lb,,/

——— + FT
2 (2m)* (K - m,z,)2
3i 1
=30 Ke’vﬁbﬂz—&—FT, (B11)
1 d*k 1
F,,=—=xe'vib /——+FT
H 2 H (271.)4 (k2 _ m(ZP)Z
i 1
=302 ke'vab, - + FT, (B12)
F 3 =6evA bﬂ/ 'k Kk, +FT
=6e'vik
2n) (C =) (K =)
3, 1
=322 v/lbﬂz+FT, (B13)
F 4 =2Ke' vAb? / d'k Kk +FT
4 =
" ) (@ = m2) (=2
ST |
=322%e vAb, €+FT, (B14)
d*k 1
F s =—4kevb / +FT
& v Gy (@ =mB) (= m3)
i 1
— —4-—71:2K€I3Ubﬂg+FT, (BIS)
F —4Ke’3vb/’/ 'k Kuky +FT
o (27)* (k2 = m2) (K2 = m3) (K = m3)
] 1
_ 3 _
= 16”21<e vb, €—|—FT, (B16)
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4
FM7:4Ke’3vb/’/ d k4 5> 2k & +FT
(2m)* (K —m3) (k* —mg ) (K> —m3)
L 3 l
=T6.2%¢ vbﬂe—i-FT, (B17)
d*k 1
F,s = —4xe"3vb / +FT
" v ] e = mE) (= nd)
i 1
e —4771-2K€,3’l}b”g+FT, (Blg)
d*k Kk, k
F= —4Ke’3vb”/ £r
: (o) (@ = w2 — m2) (% = )
+FT
o]
=—Tg2ke vb, " +FT, (B19)
d*k Kk, k
F =4 3 b’ 1P
HO T T ) ) (R = ) = m2 )R — m3)
+ FT
i 1
=~ Ten ke3vb, - + FT, (B20)
d*k k?
F, = 2ke*vb / +FT
# | Cay @ = w2y =)
j 1
:#Ke’vaﬂz—l—FT, (B21)
d*k k,k
F =4 /3 bp/ 1P
2T G (0 = m) (0 = mi) (€ = )
+FT
1
_ B L
=162 "¢ vb, - + FT, (B22)
d*k k,k
F 13=4Ke’3vb/’/ £ +FT
: @) (=) (=) (=i
1
_ 16’ﬂ2 K¢*0b,—+FT, (B23)
P d*k R,
W4 =" @R Wk + pY = ]
L (- _ow L
=129 ev(M —N)(D - C)b, s FT, (B24)
Pl d*k R,
g f (2m)* (k2 2)[(/<+P)2— my?
= g*ev(M — N)(D - C)b, + FT,  (B25)

162

PHYSICAL REVIEW D 93, 025010 (2016)
P d*k R,
e ﬂ (2n)* (k2 = mp)*[(k + p)* = my]

1
_ D —C -z
= 16 ——¢*ev(N - M)(D' - C')b, ot FT (B26)
and
P d*k R4
V2 @)t (R = m)[(k+ p)t - miP
— _L /2 _ I 1
= 1627 ev(N—-M)(D' - C')b, . +FT, (B27)

with

R, =t{(k+p+m,)y,(MP, + NPg)(k +m,)b

X (CPy, + DPg)(k+m,)}, (B28)

R, = tr{(k+ p + m,)b(CP + DPg)(k + p +m,)y,

x (MPy, + NPg)(k+m,)}. (B29)
R = tr{(k+ p+m,)y, (NP, +MPg)(k + m,)b
X (C'Pp + D'Pg)(k+m,)} (B30)

and

Ry =t{(k+p+m,)b(C'P,+ D'Pg)(k+p+m,)y,
x (NP, + MPg)(k + m,)}. (B31)

For the divergent graphs of Fig. 5, we have the following
results:

3 d*k 1
I, =—=xe'lb — FT
ME TR | G T
Y
S 321 Sxe'db, ~ + FT, (B32)
T
d*k 1
T, =—=ke FT
u2 2K ib# / (27[)4 (kz )2 +
= 32 _xe'Ab, - + FT, (B33)
d*k k, k
= 6Kke'Ab? / £P +FT
3
b (27)* (K = mp)?(k* — my)
3i 1
= 52 %¢b, -+ FT. (B34)
d*k k, k
Iy = 2Ke’/1b”/ £ +FT
H (2m)* (K* - mlz))(k2 - mﬁ,)2
I 1
= 5 ake'ib,_+ FT. (B35)
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d*k K2 and
I <=2xe3b FT
ns = oK / (2n) (R =m2 (=)

T3+ T,y +T /2/ ¢k Gy +FT
i 1 p13 T Lyt T Luls = €9 I72 _ 0
:éxe%ﬂ—wn (B36) (22)* (k% = my)
T € - 1
=~ g%e(N = M)(D' = C')b,~
&k K2k 8 c
[, = —8ke'3b” p +FT, B42
w0 =TT ] @a)t 0 = m) (K = m3 ) (R = m}) (542
+FT with
j 1
= —ékegbﬂg + FT, (B37) G = tr{y,(MP + NPg)kb(CP| + DPg)kkk
+7,(MP, + NPg)kkb(CP,, + DPy)kk
Fh K +7,(MP, + NPg)kkkb(CP, + DPR)k}  (B43)
— /3 pp uwp
L7 =8ke b/ T ey T
(27)* (k> —m) (k> — my,) (k* — m3) and
_ i /3 1
=g b +FT, (B38) G, = w{y, (NP, + MPR)kB(C'P, + D' Py)kkk
+y/4(NPL +MPR)kkb(C/PL + D/PR)kk
d*k 1
I = —8Kke'3b / FT +7, (NP, + MPR)kkkb(C'P, + D'Pp)k}. (B44
8 ke~b, (27 (kz—m%)(kz—m%)—'_ 7’”( L ®) (C'PL r)K} ( )
B | For the graphs of Fig. 6, we have the following
a _2_71'2’(6 bﬂ g * FT’ (B39) results:
d*k k,k d*k 1
o= 8/<e’3bﬂ/ e Y = —d4x2 ’2b2/ FT
o 2 (= ) (& — m2) (% = ) Y | et e —miE =)
j 1
+FT = — L k2?2~ 4 FT, (B45)
i 1 dr €
= ——«ke*b,—+FT, (B40)
8z ¢ ) d*k kaks
¥, = 8k2e*beb’ 1772 2\(12 2\(1,2 2
&k G (2m)* (k2 = m3) (k* — mg) (K> — m3)
L+, +T = e92 / B ) S 4+ FT 4 (% A
ul0 ull ul2 (27[)4 (kz _ mi)“ +FT
i 1 i 1
— —ggze(M —N)(D-C)b, - = g,@e%ZE + FT, (B46)
+FT (B41)
|
d*k K2k k i 1
3, = —4k? %abﬁ/ «p +FT =- 2e'?b? ~ + FT, B47
T e 2n)* (k2 = m2) (2 = m2)2(k2 — m2) 622" ¢ 7€ (B47)
d*k k,k 3i 1
Y, = 342bobP / ap FT = M2b? = + FT, B48
4 = Cof E—m)2 () T et (B48)
d*k k. k i 1
Yo = AK2bobP / ap FT = b2~ + FT, B49
5T (2m)* (K* = m2)?(k* — m3) * o427 e * (B49)

2 4
& [ d*k 1
S-S+ =2 [ tt{kB(CP, + DPR)kb(CP, + DPg)kk
6 7 8 ) (27[)4 (k2 _ m&/)4 L R L R
+ kB(CP; + DPR)kkB(CPy, + DPg)k + kkb(CP, + DPR)kb(CP; + DPg)k} + FT

1
_ _2p2_
=~ e b FT (B50)
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and

g2
2

+ kb(CP; + DPR)Iékb(CPL + DPg)k + kkb(CP; + DPg)kb(CP; + DPp)k} + FT

Ik
1
o+ T+ Ty = / 5y (= KP(CPL + DPQRB(CP, + DP K

— ! /2b2

16712 + FT.

(B51)

The results for the amplitudes represented by the dia-
grams of Fig. 7 read

V2 (2”)4(]‘2_1’”;2()3tr{(k T mﬂf)b(C/PL + D'Py)

T, = 3”i’<2babﬂ/ %) 2az ! 2 2 i
(2ﬂ> (k mp) (k - mga) = — 6 Ug (C D')2b2 -+ FT. (B59)
34,1 i
6T vAk"b +FT (BS2) The diagrams displayed in Fig. 8 have the following
. results:
d*k k, k
T, = vA2bebP / a-p d*k 1
(27[)4 (k2_m2)(k2_m2)2 Hyl :26/2K2b bb/———FFT
| 1 A g W | Gy =y
= Ak2b* — + FT, B53 j 1
7 ACH —+ (B33) = b b, - + FT, (B60)
8 €
d*k 1 4
_ 2,212 1
T3 = —4ve"x°b / 2n)* (k2 = m/z))(kz _ mz,) I, = 2e’2xzbﬂby/%( n2)? + FT
4 n,
_ i 2.2 21 ] 1
=~ ve b+ FT, (B54) = L ¢%2b,b,~ +FT, (B61)
b €
T, = —4vek2bebP d*k kykgk, k
! IL,; = 166,2’<2babﬁ/ P2 3 f 5 HFT
x/ d*k k“kokp (27)* (k* = m3)* (k> — my)
T772 — N2 — o 2\2 (12 — 2 i
i(zn) (k 1m,, (k> = mg)* (k> — m3) :_24; K2(b2g,, + 2b,b ) +FT, (B62)
= ———ve/’k*h* -+ FT, (B55)
167 € P d*k kokgk,k,
1,4 = 16¢"**b*b’ 173 555 5 + FT
d*k ko k (27)* (k* = my,)* (K — mg,)
Ts = 406,2K2babﬂ/ ) N2 : ﬂz 2 2 i 1
. (27)* (k= = mp) (k> — mgy) (k* — mj) =523 (V%G +2b,b,) - +FT. (B63)
_ ! PR
1622 verxh +FT (B56) | 166/2K2bab[}’/ d*k erkﬂkﬂku +FT
v5 —
o Kok ' (2m)* (k= m3)2 (2 = m)*
T = 4ve’2K2b"bﬁ/ 173 N2 - ﬁ2 2 2 ‘
(27)* (k* = m3) (k* — mg,) (k* — m3) =542k K2 (b*g,, +2b,b ) + FT, (B64)
i PITERS
= ve'’k*b +FT (B57) d*k k.k,
(27)* (k2 = mp)* (k> — mg,)
g .
A ————tr{(k+ m,)b(CP, + DP o 1
T, m2)’ {( y)b(CPL ®) _ _4_712,(.2%[?1/E +FT, (B65)
7 = _166/2K2buba/ 4,2 GAVTE) 7z T FT
== 6 ——vg?(C - D)2b2 +FT (B58) ! 27)* (k2 — m2)(K* — m2)
by
and T bub. et T (B66)
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d*k k k
M, = —4¢?g, K>b*bP / «”p FT
8 € Gk 2n) (k2 = mg)(kz — mé)z +
i 1
= — szbzg/w E + FT, (B67)
d*k ko kg
I,,0 = —4¢'2g,, K2bebP / £ FT
T I ] e = =)
i 1
= 162 bizgﬂyg+ FT, (B68)

d*k 1
Mo + Tyt + 10 = —€? / 2n)* (kK2 —=m2)*

+7,(MP, + NPg)ky,(MP, + NPg)kb(CP, + DPg)kb(CP, + DPg)k} +FT =0  (B69)

and
d*k 1
IT IT I1 = —¢? —_—
uvl3 + uvl4 + uvls / (27[) (k2 )4
X tr{]/ﬂ(NPL +MPR>kb(C/PL + D/PR)kb(C/PL + D/PR)k}/y(NPL +MPR)k
+ yﬂ(NPL +MPR)kb<C/PL + D/PR)kyy(NPL + MPR)kb(CIPL + D,PR)k
+ yﬂ(NPL + MPg)ky, (NP, + MPg)kb(C'P; + D'Pg)kb(C'P; + D'Pg)k} + FT = 0.
(B70)
[
The corrections corresponding to the graphs of Fig. 9 for ) d*k kokg
the fermion y are given b Sya = =20°7ysb’ / ) 2\(12 (12 2
v g y (27)* (k* — my,) (k* — m3) (k* — my)
FT
, [ d*k y’kbky,(M*CP + N*DPyg) + _
Sy1 = —e 7} 2 _ 2212 _ o2 +FT ) 1

; 1
= - _B(M2CP, + N*DPp)-+FT,  (BTl)
€

1672 Finally, the divergent Lorentz-violating contributions to

the mixed two-point function depicted in Fig. 10 have the
following results:

d*k léblé DP; +CP
_ / L+2 ) LFT ,
my,)* (K = mp) o onaa [ Ak (2p + k),
2, = 2ie’“kb 175 5 5 5
(27)* (k% = m3)[(k + p)” — mg)]

3 1
= — @elzl((b . p) g + FT, (B75)

1

2 4
Sys = g—/ A’k KbK(DPy + CPr) | gy _ d*k (2p + k)
2 ) @) (= m2) (K — m2) 5, = 2ie"kb" a
v v @r) (= m)[(k+ p)? — ]

3 1
= — @elzl((b . p) E + FT, (B76)

' 1
= —#ﬂz FB(DP, + CPy)~ + FT (B73)

and
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2p +k)>*(p + k),

23 = —2i€/2Kba/

(2m)* (k2 = m3)[(k + p)? = mi][(k + p)* — my]

1 1
g Kb ) T (77)
s % / d'k uw{(k+ p)yskb(CPL + DPK} Lo
4 2 (271')4 (k2 _ mi)Z[(k + p)z — mi]
1
= —F 2 —_— . —
- 167[29 (C D)(b p)g"‘FT’ (B78)
5, 0 o [ Lk 0l + PBCPL+ DPR)(k+ prsk} |
2 (27)* (k* = mg)[(k + p)* = my?
1 1
= — 2 —_ . —
=T 9 (C-DIb-p)C+FT. (B79)
s _ _l.g_’2 b d*k tr{(k+ p)yskb(C'P, + D'Pg)k} .
6 2 (27[)4 (k2 _ mﬁ)Q[(k n p)z _ m}z(]
— 1 200 _ D l
=o€ Db P HET. (B8O)
and
5 = i / d*k w{(k+ p)BC'Py + D'PRK+ p)rsk) | o
2 (27)* (k* = m)[(k + p)* — mp)?
— 1 1207 ! l
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