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Abstract

A method for simulating incompressible, imiscible, Newtonian, unsteady, multi-fluid
flows with free surfaces is described. A sharp interface separates fluids of different den-
sity and viscosity. Surface and interfacial tensions are also considered and the required
curvature is geometrically approximated at the fronts by a least squares quadratic fit-
ting [4]. To remove small undulations at the fronts, a mass-conserving filter is employed.
The numerical method employed to solve the Navier-Stokes equations is based on the
GENSMAC-3D (28] front-tracking method. The velocity field is computed using a finite-
difference scheme on an Eulerian grid. The free-surface and the interfaces are represented
by an unstructured Lagrangian grid moving through an Eulerian grid. The method was
validated by comparing the numerical results with analytical results for a number of
simple problems. Complex numerical simulations show the capability and emphasize the
robustness of this new method.

Resumo

Neste trabalho é apresentado um novo método para simular escoamentos incompressiveis
multifisicos de fluidos imisciveis e Newtonianos, com superficies livres. Sao consideradas
tensoes superficial e interfacial, onde a curvatura necesséria para os célculos é aproximada,
geometricamente nas fronteiras livres por um método de minimos quadrados [4]. Para re-
mover pequenas ondulagGes nas fronteiras livres, foi utilizado um filtro que reposiciona as
particulas marcadoras da superficie, conservando a massa do fluido. O método numérico.
para solugao das equagdes de Navier-Stokes foi baseado no método GENSMAC-3D [28],
utilizando o método de front-tracking para representagao das fronteiras livres. O campo
de velocidades é calculado utilizando um esquema de diferencas finitas em uma malha
Euleriana, e a superficie livre e interfaces sao representadas por malhas Lagrangianas nao
estruturadas, movendo-se sobre a malha Euleriana. O método foi validado comparando-
se os resultados numéricos com solugoes analiticas de problemas conhecidos. Simulagoes

mais complexas mostram as capacidades e enfatizam a robustez deste novo método.

Key words: Front-tracking method, Multi-fluid flows, Numerical simulation, Surface
tension, Free surface flows, Finite Difference Method




1 Introduction

Numerical simulations of fluid flows are relevant to problems found in various in-
dustries such as oil, nuclear, chemical and the food industry. Applications involving
flows of several fluids, called multi-fluid flows, include heavy oil transport, food pro-
cessing, co-extrusion, bubble flows and so. If the fluid involves both gas and liquid,
the fluid is referred to as two-phase.

Multi-fluid flows are complicated because of the many physical phenomena that
need to be taken into account. Prime among these is surface or interfacial tension
between any two fluids. This can be particularly difficult. when the two fluids are
very different: a simple example is that of bubbles in water, where the dernsity ratio
is about 1000 to 1.

There are essential two techniques for approximating the interface: front capturing
and front tracking. Front capturing techniques are characterized by treating the
interface as a high variation region with no explicit elements to represent the in-
terface. With this approach it is arguably easier to deal with topological changes
in the interface (or interfaces) like merging and breaking. However, a major dis-
advantage of this technique is the interface diffusion over several cells, resulting in

loss of precision.

Early work on front capturing goes back to Glimm and his co-workers (see, eg
Glimm et al. [10]) where they represented the moving front by a connected set of -
points which form a moving internal boundary. An irregular grid is then constructed
in order to calculate the evolution of the fluid in the vicinity of the interface. A
special finite difference is then employed on the irregular grid. More recently the
level set approach [25] has found prominence. This approach employs a smooth
function ¢, called the level set function, to represent the free surface. Liquid regions
are regions which have ¢(x,t) > 0 while the region containing the other fluid
are regions in which ¢(x,t) < 0. The free surface is the set of points such that
¢(x,t) = 0. The unit normal and the mean curvature are then easily computed.
They are given by
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respectively. This method was introduced by Osher and Sethian {18], and strongly
promoted in two books by Sethian {20,21].
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Essentially front tracking involves explicit computational elements moving through
a (static) Eulerian grid. This approach can be more accurate than the above, but
can require additional computational resources. Futhermore, to take into account
topological changes in the interface, the implementation can become more complex.
‘A front tracking method has been described by Tryggvason and his co-workers
[7,8,32] in which the interface (or interfaces) are considered to be a linked set of
points forming an unstructured mesh. This unstructured mesh moves through a
staggered Eulerian grid upon which the fluid velocity and pressure are calculated.

The Marker-and-Cell (MAC) method was first introduced by Harlow and Welch
[11]). It was specifically designed for calculating incompressible viscous free sur-
face flows. It is a finite difference method based on a staggered grid that employs
the primitive variables of velocity and pressure. Due to computational difficulties,
Amsden and Harlow [1} developed a projection method called Simplified Marker-
and-Cell (SMAC) whereby essentially the velocity and pressure field are calculated
sequentially. In the years that followed many people have studied and worked on
the SMAC method (eg Armenio [2], Hirt and Nichols [12], Miyata [15], Viecelli
[34] and Veldman and Vogels [33] ). More recently, and motivated by the SMAC
philosophy, Tomé and McKee [26] developed the GENSMAC method for two di-
mensional incompressible viscous fluids with free surfaces in an arbitrary complex
domain. A three-dimensional version of this method, called GENSMAC-3D [28],
“extended this work.

The starting point for this work is the GENSMAC-3D [26,28] method. However,
rather than dealing with a single fluid, we shall be concerned with an arbitrary
number of Newtonian fluids with different densities and viscosities, all separated
by interfaces which must be determined. In addition there is also a free surface or
free surfaces that must be treated. The fronts, both free surface and interfaces, will
lie on Lagrangian meshes that will move through an Eulerian grid on which the
fluid velocity and pressure will be calculated. The approach is similar to Esmaeeli
and Tryggvason [7,8], but there are significant differences, both in the discretization
employed and in the way in which the interfacial forces are calculated. Both the
normal to the surface and its curvature are required. However, before these may
be calculated it is necessary to remove sub-cell undulations. Thus the technique
for determinig the normal and the curvature is two-stage: a novel technique for
sub-cell undulations removal is followed by the calculation of the normal and the

curvature.



2 Formulation and numerical method

The governing equations for incompressible flows are the Navier-Stokes equations.
The approach used here is to consider the density and viscosity as variables over
the whole domain, but constant in each specific fluid. Thus, each fluid is taken to
be incompressible, and the continuity equation is valid over the whole domain.

When taking into account the interfacial tension forces and the fact that the density
and the viscosity are variable over the whole region, the nondimensional momentum
equation is given by

ou
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where u = u(x,t) denotes the velocity field, p = p(x,t) is the pressure field,
p = p(x,t) and pu = p(x,t) are the density and viscosity fields of the fluid all in
nondimensional form. Here g denotes the gravitational field. Furthermore, Re =
poLU/po, Fr = U/+/Lg and We = pyLU? /0, denotes the Reynolds number, the
Froude number and the Weber number, respectively. Here, L and U are the length
and velocity scales, pg, 1o and og are the reference values of density, viscosity and
surface tension, and g denotes the gravitational constant. The interfacial force term

in the momentum equation

1
pWe

/ okn'8P(x — x')dS’ (2)

was proposed by Esmaeeli and Tryggvason [7,8], where oy is the nondimensional
interfacial tension coefficient, « is the curvature, n is the normal vector and §°(x —
x’) is a (-dimensional J-function, constructed by repeated multiplication of one-
dimensional §-functions. For example, for # = 3 we have

$(x —x) = 8(z — 2")o(y — y)é(z — &), (3)

where x = (z,y, z) and x’ = (2/, ¢/, 2’). The primed variables are computed on the
interface. The surface integral in (1) and (2) are evaluated over all the interfaces.

In this work an alternative form of the interface force term will be used. Let H :
R?® — {0, 1} be a Heaviside function, which can be defined as being 1 in the interior
of a specific fluid and 0 otherwise. Let V'(¢) be a time dependent three-dimensional



volume with its surface denoted by S(t). The Heaviside function can be defined
[29] as
H(z,y,2,t) = / 8(z — 2')8(y — ')0(z — 2) dV". (4)
140) :
. We are interested in the gradient of H

VH =V / [6(z — 2')8(y — ¥)8(z — 2)]dV", (5)
\4

where for brevity of notation, the dependence of ¢ has been dropped. Notice that
- the gradient operator is with respect to the unprimmed variables, and this operator
may be permuted with the integral operator,

VH = /V [6(z — 2)6(y — y)é(z — 2)]dV". (6)

Moreover, notice that the d-functions are antisymetric with relation to the un-
primmed and primmed variables (this follows directly from the chain rule). We

may therefore write

VH = — / V' [8(z — 2')8(y — 4')8(z — £)] dV", (7)
Vv

and so, by using a variant of the divergence theorem, we obtain

VH =~ }{ §(z — ')8(y — y')5(z — ) 0’ dS". 8)

In these equations, it was assumed that the volume occupied by the fluid is finite
so that S is a closed contour. Notice that the contribution of most of the integral
is zero so we can replace it by one over a part of the contour and hence write [29]:

VH = — / 8z — )0y — y')8(z — ) o’ dS'. 9)

Thus the interface can be identified as the region where V H is nonzero.

Finally, by using this property of the d-function under the integral sign, the inter-
facial force term can be written as

1
T pWe

o'’ 8% (x — x')dS’ = ——%VH, (10)



and the Navier-Stokes equations then take the form

du 1 1 T 1 oIk
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All the fluids are assumed to be incompressible, so the velocity field is divergence
free, that is

V-u=0. (12)

Equations (11) and (12) are solved based on the GENSMAC-3D method [28], using

an extension of the methodology described in [19] for the two-dimensional case. It -
is supposed that the velocity field u(x, ) is known at a given time #y, and the

boundary conditions for the velocity and pressure are given. The updated velocity

field u(x,t), at t = t; + At, is calculated using the following algorithm:

(1) Let p(x,t) be a pressure field which satisfies the correct pressure conditions
on the free surface. This pressure field is computed according to the required
boundary stress conditions. ‘ ‘

(2) The intermediate velocity field @i(x, t) is computed by the explicitly discretized

form of the momentum equations

o 11 r
—(;9?+V-(uu) = —;VP'FEEV'H(VU“‘“VU )
1 oIk
tFe e o 13)

with @(x,t) = u(x,%p) using the correct boundary conditions for u(x,tp).
It can be shown in [26] that G(x,t) possesses the correct vorticity at time t.
However, Gi(x,t) does not satisfy (12). Let

u(x, ) = fi(x, £) — %Vd)(x, ) (14)

with
v. %Vzp(x,t) — V- ii(x, 8). (15)

Thus, u(x,t) now satisfies (12) and the vorticity remains unchanged. There-
fore, u(x,t) is identified as the updated velocity field at time ¢.

(3) Solve the elliptic equation (15).

(4) Compute the velocity by (14).



(5) Compute the pressure using

p(x,t) = p(x,t) + ﬂ(;(—;t-)- . (16)

(6) Update the positions of the marker particles.

The last step in the calculation involves moving the marker‘.particles to their new
positions. These are virtual particles whose coordinates are stored and updated at
the end of each cycle by solving dx/dt = u by Euler’s method. This provides the
new coordinates of every particle, allowing us to determine whether or not it has
moved to a new computational cell or if it has left the containment region through
an outlet. Using the front-tracking methodology [28,32], only marker particles on
the free surface and the interfaces need to be considered.

For the solution of (13), appropriate boundary conditions are required. At solid
walls null velocities are enforced. At the free surface, the boundary conditions for
. pressure and velocity, assuming zero viscous stress in the empty phase, are given
by
(S'n) n=pegp, (S-n)-m =0 (S-n)-m,=0 (17)
where n, m; and m, are the local normal and tangential vectors to the free surface.
S is the viscous stress tensor, given by

S = —pl + '1% [(Vu) + (Vu)T], S 8)

and pep, = ok/We is the capillary pressure, originating from the effects of the
surface tension o. The elliptic equation (15) is solved using the conjugate gradient
method, satisfying homogeneous Dirichlet boundary conditions at the free surface
and homogeneous Neumann boundary conditions at the solid boundaries. However,
as the density variation across the interface increases, more iterations are required
for the convergence of the method. In these cases, a diagonal preconditioner was
used to speed-up the convergence of the conjugate gradient method.

3 Discretizations

In a similar manner to MAC [35], SMAC [1] and GENSMAC [26] methods, equa-
tions (13)—(15) are discretized by finite differences on a staggered grid. Figure 1
shows an example of a staggered grid cell and the position of the variables in this
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Fig. 1. Position of the variables in a cell. The velocities are computed on the faces of the
cell, and the pressure (p), density (p), viscosity (u) evaluated at the cell center.

cell: the velocities are calculated on the faces, and the other variables (pressure,
density and viscosity) are computed at the cell center.

Consider the z component of the nondimensional momentum equation, expressed
" in Cartesian coordinates

o)  ow)  Oww) _ 10p  p (62u 8%u 62u)

5t oz oy 8z  p Oz  pRe \0z? + Oy? + 022
1 Oudu Ou (Ov Ou Op (Ow Ou
+,0Re |28:c 5z " By dy (8&: + By) * oz (8:10 M az)]
1 ok OH
TR pWe Oz (19)
This equation can be written in the compact form,
ou 1 0p 1 ok OH
GO0 == Vi) + V) + g — s (20)
where
o(w?) | O(uw)  O(uw)
Clu) = Oz oy + 0z ’ (21)
_u (OPu OPu  O%u
iw) = pRe (812 + dy? toz) (22)
1 Oudu Ou (Ov Ou Ou {Ow Ou)| .
Va(u) = pRe [2837 Oz * 5y Oy (81 + 8y> + oz (% + 5)] ’ (23)

are the convective (C) and viscous (V;, V,) terms of (19). Eq. (20) is discretized by
finite differences at the point (¢ + 3,7, k) of the cell as follows. The time derivative



is discretized by the first order forward difference:

n+l B )
Ou Witk T Uik 94
A A (24)

l+5,J,k

All the other terms of (20) are discretized at the time level n, ie, the discretization
is considered to be explicit. Thus, in the following equations, the index n is omitted

to simplify the notation.

The pressure gradient is discretized by central differences resulting in

1 Q]_) 1 Pk — Pijk S (25)
p ax pH- Az

i+3.5.k 5.0k

Notice that it is necessary to evaluate p at the face of the cell (o, 1 k), and we
compute an approximation by averaging the known neighboring values

Pit1,jk + Pijk
pz+2,]k Hl 2 =L ’ (26)

where p;y1;% and p; ;1 are located at the center of the cells sharing the face (7 +

: 3,3, k). Thus

13p

2 (Pit1,jk — Pijik)
ik = Pi, 27
» Ba, (27)

Lk T Az (pisrk + Pigk)

The viscous term V;(u) then becomes

Vi), Hivdgk  [Yi-lik — 2Uird gk + Yird gk
iti 3 gk pi+%,j,kRe Aw2
L Yithi-1k = 2150+ Uil i1k
Ay?
+ Uiyl jk—1— 2u’i+%,j,k + Uit d jk+1 (28)
Az? ’

where p;, Lik is approximated by (26). To compute the viscosity, we use the har-

monic mean

2( 2 )4 (29)
1 g = ;
Hitgak Bit1gk  Migk

this is more accurate than simple averaging [29]. Thus, using (29), (28) becomes

Vi(u)]

i+l gk = .
’ Re (Mc+1 sk ) Pi+1,5k + pi,j,k)
Uik~ Hirtakt “’+z»J» Uith-rk = Pirdik + Uitk
Az2 ' Ay?

10



Uiyl jk-1— 2Ui+%,j,k + Uit ljk+1

A2

(30)

To discretize the viscous term V,(u), consider the derivatives at the point (z + 3,7, k)
of the cell:

op _ Hitlik — Bigk op _ Hirdgrde ~ Hirdi-k
0z, 1 Lik Az ’ dy i1k Ay ’
Oy _ Pardiketd T Parlik-d Ou _ Yitljk — Yigk

9z i+%.j,lc_- Az © Oz i+%,j,k— Az ’

Ou _ Yirdirgk T Yitgi-gk Ou I s R &
9y i+1 5k Ay L 0z i+1,.k Az ’
?ﬂ _ Uit15k — Vigk 3_111 Witk — Wik

Or i1k - Az ’ oz i+%,j‘k,— Az '

The unknown velocities in these expressions are calculated by averages of the neigh-
boring known velocities. The values of viscosity on the edges of the cell are com-
puted by an analogous operation to (29), as follows

4 1 " 1 N 1
Hiylitvle =
272 Bijk  Mitljk  Hij+Lk ltz+1,a+1k

' 1 1 1
Myl 1 =4 + +
202 Wik  Mit1jk  Hij—1k Mz+1,; 1,k

1 1 1
Hirljhs = 4 + +

Hijk  Hitljk  Higk+l ﬂz+1,y k+1

4 ( 1 + 1 n 1
u. 1,01 =
Hadkos Hijk  Mi+ljk  Higjk-1 Mz+1,1,k 1

Finally, the discretization of Va(u) becomes

V (u)l _ 1 (l"'i-f-l,j,k"Il‘i,j,k)(ui+%'j_k_ui_%,j’k)+
2\BJlit 1,5k ™ Re(piryjktpiik) Az?
4 ( 1 1 1 1 ) _ ( 1 1 1
Ay Hi,j.k Hit+1,5,k Hi,j+1,k Hit 1,541,k Pi 5.k Hit1,5,k Hi,5—1,k
1 )—1 Vir1, 4k kT li41,5- 3k V54 kY- 3k + Yird ek ik -1,k 4
Bit1,5—1,k 20z 2Ay

4 ( 1 1 1 1 ) 1_( 1 1 I
Az Mi 5.k Hit1,5,k Hi,j,k+1 Hit1,5,k4+1 i 5,k Hit1,5,k Mi 5, k—1

1 )—1 Witk TYir1,k-% Yok Vi k-4 n Yird k1 %k L5 k-1
l—"i+1,j,k—1 20z 2Az :
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(a) (b) (c)

Fig. 2. Multi-fluid cell flagging example: (a) Classification for fluids 1 and 2; (b) Classi-
fication only for fluid 1; (¢) Classification only for fluid 2.

The discretization of the momentum equations in the y and z directions is ob-
tained in a similar manner. The nonlinear terms in the momentum equation are
discretized using the high order upwind scheme VONOS, omitted here for brevity.
Full details may be found in Ferreira et al. [9]. This scheme is accurate and stable
for simulations where the Reynolds number is high.

Using the tracking particles, the free surface and interfaces are approximated by a
piecewise linear surface and computationally represented by the “half-edge” data
structure [14].

The flow properties are evaluated in a three-dimensional uniform grid, in which
every cell, at each time step, is classified according to its position relative to the
fluids and the rigid boundaries. Cells with more than half of their volume in a
container are classified as BOUNDARY (B) cells; the same criteria is used for the
INFLOW (I) cells. Any cell completely inside the fluid is classified as a FULL (F)
cell, those completely outside the fluid are EMPTY (E) cells and those on the
free surface are SURFACE (S) cells. This criteria is applied to each fluid in the
simulation, and the interface cells are identified as the cells that are SURFACE
(S) for more than one fluid at the same time. Figure 2 shows an example of cell
flagging in a two-dimensional case, with a classification for each fluid.

In order to apply the free surface boundary conditions (17) in each S cell, approxi-
mations for the surface normals were needed. These have been obtained [28] accord-
ing to the classification of the neighboring cells. For example: nc = (£1,0,0), nc =
(0,41, 0) or nc = (0,0, +1) if only one neighbor is an E cell; nc = (:b%—ﬁ, :i:—‘éé, 0),

12
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f i— 5.0k | fi+%,j,k :

Fig. 3. Interface cell between fluids 1 and 2, with full cells in the opposite faces.

ne = (:i:-‘g,(), :!:%) or ng = (0,:&:%—5, :i:—‘é—"_’) if there are two neighboring E cells,
and; ne = (:t~‘é—§, :l:lg, :i:?) if there are three neighboring E cells in the z, ¥ and
z directions. Note the notation n. here means the normal at the center of the S
cell being considered. In order to implement the surface tension effects it is also
necessary to estimate the surface curvature at the center of each surface cell, and
to take into account sub-cell surface tension effects. In the following sections the
methodology employed in the implementation of the surface tension effects is de-
scribed. This methodology results in a better estimate of the surface normal which
is then used in the computation of the capillary pressure.

3.1 Interfacial tension effects

To implement the interfacial tension effects into the momentum equation, it is
necessary to determine the resulting forces that need to be applied in the discretized

domain.

If the mesh is chosen to be sufficiently fine, then the interface can be approximated
by the cells containing the front. This approach results in an interface that is at
least one cell thick (in most points on the surface the interface will be only one
cell thick). So, we have to determine the interfacial tension forces in those cells by
a discretized form of

(o £
VH
oWe 7’

where H is a Heaviside function that is 1 1inside the particular fluid under consid-

f=—

eration and 0 outside.

It is convenient to define one Heaviside function H) for each fluid X in the dis-
cretized domain taking into account the region defined by the interfacial cells.

13



Thus,

(
1, if (z,y,z2) is inside a FULL cell or is

H\(z,9,2) ={  inside an INTERFACE cell of the fluid A, (31)

\ 0, otherwise.

such that, the force to be applied in each cell is given by

f= -1 Ly kaVH (32)

- pWe n & A Ar
where n is the number of fluids involved. Each fluid supplies a different curvature
and Heaviside function. For each fluid A the force is applied at each face of the

interfacial cell, which is in contact with an empty cell.

For example, to calculate the force contribution in a single face (i — 1,7, %), as
shown in figure 3, we have two Heaviside functions to be discretized, H; and Hs.

OH, _ Hy(iAz, jAy, kAz) — Hi((i — 1)Ax, jAy, kAz) 0
o |, 1., Az -
2 2‘]7
OH, _ Hy(iAz, jAy, kAz) — Hy((i — 1)Az, jAy, kAz) 1
o |, 1., Az - Az’
1 2’]!
and then, the resulting force to be applied to face (z — %, 7, k) is given by
f —0y 1 " 8H1 K 8}:IZ
L] L, == ————— N —_
img0k Pi1xWe2 ' oz -1k ? oz i-Lik
—O01K2

- 208zp;_y ; We

The other cases are obtained following this procedure. The gradient of the Heav-
iside functions gives the correct direction of action of the applied forces in any
configuration.

4 Curvature calculation

Surface and interfacial tension effects are incorporated using an approach very
similar to the one described in [4] for the two-dimensional case. The computation

14



of the surface and interfacial tension is performed at two levels: first at the sub-
grid level, where small undulations in the fronts (free surface and interfaces) are
eliminated, and second at cell level, where the curvature at each surface or interface
cell is approximated. This approximation will be used in the implementation of
the pressure boundary condition at the free surface and in the calculation of the
interfacial forces described above.

The curvature is approximated by the surface that best fits the points in that cell
and its neighbors. The results presented in [22] suggest the use of an approximation
by the paraboloid ’

m(zx,y) = ax® + bzy + cy® +dz + ey + f. (33)

In this approximation, we first need to determine the normal vector at the cell
center. We can summarize the method of curvature approximation by the following
steps:

(1) Given a surface or interface cell, consider all points that lie inside a sphere S;
with its center at the cell center with a given radius 4. ‘

(2) Fit a plane to these points, and compute its normal vector;

(3) Take a new coordinate system normal to the surface, using the previous com-
puted normal vector;

(4) Consider a new sphere centered at the cell center, S, with a chosen radius ¢,
and then map the points in this sphere to the new coordinate system,;

(5) Fit the surface given by (33) to the mapped points, using the new coordinate
system;

(6) Compute the total curvature of the fitted surface using

8% 8%x

K= % 7+ i T (34)
@] &)

where 7 is the fitted surface satisfying (33), and (£, 7, () are the coordinates

of the new coordinate system. Note the (-axis is parallel to the normal vector.

In this method, the quality of the approximations is directly related to the chosen
radii 0 and €. Typically d is chosen to be of the order of the cell size and € 1.5
times larger. For more detailed discussion of the influence of these constants see
[22], where the optimum choice for these numbers is discussed.

15



How the normal vector and the curvature approximations are made will be de-
scribed in detail in the next sub-sections.

4.1 Normal vector approximation

The region S5 associated with each cell S will include a number of points. Let us call
that number m; so m = m(é). Let x; = (4,9, %), ¢ = 1,...,ms be the number
of points inside S5 and thus the number of points in cell S and its surrounding
neighbors. The equation of the plane will be either of z = f(z,9), vy = f(z,2)
~or z = f(y,z), according to the maximum absolute value of cell normal vector
components. For example, if |(ng, (0,0,1))] > |{(ng, (1,0, 0))| and |(nc, (0,0, 1))] >
|{ng, (0,1, 0))|, where {, ) denotes the inner product, the equation of the plane is
given by z = f(z,y) = ax + by + ¢, and we need to determine the coefficients a,
b and c, such that the plane z = az + by + c approximates the given points. The
least squares approximation can be obtained by solving the normal equations

(a,a) (a,b) (a,c) a (z,a)
(b,a) (b,b) (b,c) | | b | =] (z,b) (35)
(c,a) {c,b) (c,c) c (z,c)

where a = (z1,...,Zn) ., b= (W1, .. »¥m) T, c=(1,...,1)T and z = (2, . ..,

2m)T, where by m we mean m;. In this case, the normal vector to the plane z =
az + by + c is given by ( )
a,b,—1

% = a.b, DI 9

For the other cases, this process is analogous. This procedure determines ng, but the

sign may be incorrect. The correct sign can be determined by comparing ngs with

the normal at the cell center n., previously obtained (see section 3). If (n¢, ng) > 0

the sign is correct; otherwise the sign must be reversed.

4.2 Quadratic fitting

Now let x; = (4, %, 2), ¢ = 0,...,m, be the points lying in S.. With the normal
vector ng given by the plane fitting technique of section 4.1, we choose another
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two tangent vectors at the surface such that they, together with the normal vector,
form an orthonormal basis. First, we choose two of the three canonical vectors
e; = (1,0,0), e; = (0,1,0) and e3 = (0,0,1) such that their projections on the
direction of ng vector are the smallest. Secondly, we apply the Gramm Schmidt
method to obtain the orthonormal basis. Thus, we have a new coordinate system
and the points x; can be written using this new coordinate system as §; = (&, 7, G)-
Then, we can fit a paraboloid given by #(£,7) = a2 +bén+cn? +dé+en+ f. The
parameters a, b, ¢, d, e, and f are obtained by solving

[(a2) (ab) (a,c) @ d) @e) @D )| [a) [(ma))
(b,a) (b,b) (b,c) (b,d) (b,e) (b,f) b (z, b)
(c,a) {c,b) (c,c) (c,d) (c,e) (c,f) c _ (z,c) (37)
(2 (@ b) (d,c) (d,d) (de) (@) ||| |(ma)
(e,2) (eb) (,0) (e,d) (ee) e,B) | | e | | (ae)
L) € €0 € e €0)\F) @D

Where a= (6%7 .- ’6127;)117 b - (51771, e aémnm)T c= (771, < nm)T (&1) ey §m)T7
e=(n,..,7m)%, £ =(1,...,1)T, and z = ((y,...,(m)T, where by m we mean

Me.

The total curvature is then given by

w2 ((1 +ad2)% * (1 +ce2)%> ’ (38)

5 Undulations removal

In many applications, in particular when the Reynolds number is high (larger than
50), small undulations may appear at the free surface and at the interfaces. This
is due to variations in the velocity field from cell to cell and may be amplified in
regions where the surface area is shrinking. These undulations are frequently much
smaller than a cell size and usually they are not present in real flows. They are
physically removed by a combination of surface or interfacial tension and viscous
effects. A numerical implementation that acts at cell level, like the method pre-
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Fig. 4. A typical vertex and its star projected into the plane «.

sented above, cannot take into account these sub-cell undulations and correctly

suppress them.

There are several approaches that can be used to suppress these unphysical undu-
lations such as applying a Gaussian filter. However, in fluid flow simulations it is
important that the technique applied does not alter the mass of the flow (or the
volume in the case of an incompressible fluid).

We developed a filter called TSUR-3D (TSUR: Trapezoidal Sub-grid Undulations
Removal) which is based on the TSUR filter presented in [4] for the two-dimensional
case. The TSUR-3D is applied to the unstructured grid, represented by a “half-
edge” data structure [14]. Figure 4 shows a typical vertex v, and its corresponding
star, formed by the set of vertices x; which are connected to it with typical edges
(v,x;) and (x;,X;41), and the typical faces (x;,v,X;41), ¢ =0,1,...,n, where X,
is to be interpreted as xq.

Since we are interested in local changes in volume, we define a local volume as the
volume bounded by the faces (x;, v, x;1+1) and (X;, P, Xi+1), ¢ =0,1,...,n, where p
is an arbitrary point, as shown in figure 5,

The balance procedure first determines a plane 7 defined by the normal computed
from the average of the normals of the vertices x;,7 =0, 1,...,n. The vertex v and
the vertices x;, 2 = 0,1,...,n, are projected onto that plane and v is centered in
that plane, and the correct height of the new vertex in the direction of the normal
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AN AT

Fig. 5. A vertex with its star, before and after the vertex balance procedure has been
applied.

of the plane is chosen so that the local volume is preserved (see figure 4).

This procedure smoothes small undulations and keeps the volume of the fluid
unchanged. The steps of the method are explained in the following sections.

5.1 Normal vector calculation

Both vertex balance and undulation removal procedures require a normal direc-
tion, which is obtained using information from the neighboring vertices x;, i =
0,1,...,n. Let v be a vertex of the interface, and let S(v) be the star of v. Let p
be the average of the vertices in S(v), given by

1 n
P==2 % (39)
nizo
where x¢,Xi,...,X, € S(v). Thus, we can compute the normal vector by the
average of the normal vectors at the faces (x;, p,Xi+1) (¢ =0,1,...,n), given by

. Yo (ki — p) X (X1 —P) + (Xn — P) X (X0 — P)

TP X G P F e B X (o

where x denotes the vector product. Note this is a weighted average: normals of
faces with greater area will be given greater weight. This equation gives a robust
normal direction for this method. ‘
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5.2 Vertex balance procedure

The vertex balance procedure is applied at each vertex of the fluid in order to move
it to a new position on a line passing through p, given by (39) with the direction
n given by (40), such that the local volume is preserved. Let m be a plane that
contains p, with normal vector n. If p is inside the projection of S(v) onto 7, we
compute the new position of v by

View = P + An | (41)

where h is determined such that the local volume is preserved. This is guaranteed
if
|%4

V=hV] or h=—‘-/I (42)

where V' is the volume of the polyhedron (v, xg,X3,...,Xn, p) and V; is the volume
of the unitary polyhedron (p + n,Xq,X,...,X,, p). This is because the volume
of the polyedron (p + hn,xg, Xy, ..., Xn, P) is equal to h times the volume of the
unitary polyedron (p + n,Xg,X,.-.,Xn, P)-

The volume of a tetrahedron (x;, Xs, X3, X4) is given by
Tg —T) T3 — T3 T4 — L1

1
Vzg-det Yo— Y1 Y3~ Y1 Ya— W |- (43)

29 —R] 23— 2] 24— 21

Since the volume of any polyhedron may be considered to be the sum of the volumes
of several tetrahedra, this can be straightforwardly calculated.

As we can see in figure 5 this procedure does not remove any undulations, but just
moves the vertex to a new position, that is better centered in its star, improving
the quality of the surface mesh, while preserving local volume. This improves the
robustness of the undulation removal procedure presented below.

5.8 Undulation removal procedure

The vertex balance procedure is designed to produce a more homogeneous unstruc-
tured grid that represents the free surface or interface. However, it cannot remove
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X1,i+1

Fig. 6. Undulation removal procedure, showing an edge and its star.

the sub-grid undulations, and a smoothing procedure is required for the effective
removal of these undulations.

Let e be an edge of the surface, and vy, vy its vertices, as shown in figure 6. The
smoothing procedure changes the position of v; and v, simultaneously, such that
the local volume is preserved. Let n; and ny be the normal vectors computed by
(40) at the vertices vy and v, respectively. We consider a normal vector at the
edge e, given by the average of n; and nj,

n; +n;
n= 1o 44
o + ] (44)
Let, )
m = §(V1 + v3) (45)

be the average of the vertices of the edge e. We determine the heights h; and h,

in the direction of this normal vector by
hy =(vi—m,n) and hy=(vy—m, n)\ (46)

where (, ) denotes the inner product. Next, we compute the points p; and p; by

pPir=Vvi—hmn and p;=vy— hyn. (47)
Thus, we have two polyhedra, (v, X0, - . -, X1n, P1) With volume V; and (v, Xg, . - .,
X2m, P2) With volume V5, where xjo, ..., X1n € S(vy) and Xgp, . . ., Xom € S(v2) (see

figure 6). We have to determine a new height A in the direction of n, such that the

local volume is preserved.

We can exploit linearity between the volumes of the polyhedra and the heights and
write

Vi + Vo = Vi(h/h1) + Va(h/hs) (48)
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or

Vi+V,

h= . 49
Vi/hi + Va/h, (49)

The new positions of the vertices v; and v, are given by
vi=pi1+hn and vy =py+hn. (50)

" This undulation removal procedure is applied periodically to all the edges of the
surface mesh with a period that has to be chosen such that the surface is sufficiently
smooth, and the large scale undulations are not strongly affected. The frequency of
applications is dependent on the problem, the grid resolution, and the time step.

6 Validation and numerical results

A number of tests was performed to validate the code and to assess its robustness
and precision. First, we present some numerical results to validate the surface and
interfacial tension computation, and to show the improvement of the TSUR-3D
 filter on the free surfaces or interfaces.

In the following subsections multi-fluid flow calculations are compared with their
analytic solutions. In particular we shall consider an oscillatory bubble, a bubble
rising in a continous phase and bubble coalescence. Finally the splashing drop prob-
lem (with two phases) will be simulated to illustrate the capability and emphasize
the robustness of the code.

6.1 Capillary pressure of spherical bubbles

To validate the computation of the interfacial tension and the capillary pressure,
the problem of a spherical fluid (or bubble) of one phase is immersed into a fluid
of another phase. This is then simulated using different grids. The densities of the
fluids are pg = 1 g/cm? for the bubble and p; = 0.5 g/em® for the continuous
phase. The interface tension coefficient is ¢ = 23.61 dyn/cm, and the radius of
the bubble is R = 2 c¢m. Figure 7 shows the pressure jump at the interface, at
the plane y = 3 ¢m. In the absence of viscous, gravitational, or external forces,
surface or interface tension causes a static liquid bubble to become spherical. The
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Fig. 7. Capillary pressure of a spherical bubble in a 60 x 60 x 60 grid, at y = 3 ecm.

Young-Laplace [3] equation for the capillary pressure is given by

1 1
Ap—an—a(E—F—R;;)

where R; and R, are the radii of the two perpendicular maximum circles of the
sphere. In this case, the analytical value of the pressure jump at the interface is
Ap = 23.61 dyn/cm?, deducible directly from the Young-laplace equation.

Numerical simulations were performed for five different uniform grids, with 20,
30, 40, 50 and 60 cells in each direction. Figure 8 displays the numerical capillary
pressure converging to the analytic value given by the Young-Laplace equation (a),
and the error as the grid is refined (b).

These numerical results are accurate with an error in the Euclidean norm smaller
than 1.2% for the coarsest grid, reduced to about 0.2% when the grid is refined.
The convergence of the method for interface tension calculation is quadratic, or
order 2, as can be seen in figure 8 (b).
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Fig. 8. Numerical capillary pressure displaying convergence to the analytical capillary
pressure (a) and a log scale graph showing the second order convergence (b).
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6.2 Sessile drop

A simulation of a single phase sessile drop was performed to validate the surface
tension and curvature calculations. The steady state numerical solutions were ob- .
tained from the asymptotic steady state solutions of the transient solution, starting
from a spherical drop initially at rest on a plane. Highly accurate solutions were
obtained by the numerical integration of the equations for the equilibrium position
of an axisymmetric free surface liquid drop. These are, in non-dimensional form,
given by

de cosf dr . dz
E—Bo(p—z)—— — Eg———smﬁ and E-—cosﬂ, (51)

where 6 is the angle between the surface outward normal and the r axis, s is the
coordinate along the surface, Bo = pgL?/c is the Bond number, and p = p/pgL
is a non-dimensional reference pressure, where here p is the dimensional reference

pressure.

A fourth-order Runge-Kutta method has been used to integrate (51), using an
integration step As = 107%. Hence the solutions can be regarded as being very
accurate, aside from a region in the vicinity of the axis r = 0, where the singularity
sin 0/r may degrade the accuracy. To avoid integrating close to the singularity,
we start the integration from the point of maximum r and integrate up to the
meniscus, and then down to the contact point. The loss of accuracy of this ”exact”
solution is therefore restricted to a very small region in the vicinity of the axis,
and is therefore, for our purposes, of no concern. A quantitative comparison of the
results can be seen in figure 9. Figure 9 (a) shows good agreement between the
"exact” and numerical computations of this paper. We would like to emphasize
that the above results were obtained using 28 x 28 x 28 computational cells.

The largest departure from the "exact” solution is observed at the top of the drop in
figure 9 (a), where the numerical solution shows some short wavelength (sub-grid)
undulations. The occurrence of undulations has been observed to become more
pronounced as the Reynolds number is increased, thus requiring the application of
a sub-grid filter when simulating flows with higher Reynolds number (above 50).
The application of a sub-grid filter improves the results of the method, as can be
seen in figure 9 (b).
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Fig. 9. Comparison between "exact” and numerical solution: without applying the
TSUR-3D filter (a), and with the TSUR-3D filter (b).
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6.3 Oscillation of a bubble

To verify that the transfer between the surface energy and kinetic energy is correctly
accounted for, which is important when the flow is dominated by surface tension
effects, we validated the method on an ellipsoidal oscillating bubble, for which an
analytical solution for the oscillation frequency exists.

This problem consists of simulating an ellipsoidal bubble immersed in a continuous
phase without a gravity field. The bubble has a small initial perturbation with
respect to its equilibrium spherical form and, driven by the interfacial forces, it
tends to oscillate. The non-dimensional parameters chosen for the simulation were
o = 10, pg = 100 and pg = 0.35 for the bubble and py = 1 and py =:0.001 for the
surrounding fluid. The bubble’s initial diameter was 1 and the initial amplitude of
the perturbation corresponds to 2.5% of its radius. The calculations were made in
a domain of size 4R X 4R x 4R, discretized by a 40 x 40 x 40 grid. The results
obtained were compared with analytic solutions [7,8,32], as can be seen in figure
10. The analytic expression for the frequency oscillation of a bubble in an infinite

domain is given by
2 240

w* = .
(3pa + 2p5)R2
Assuming the viscous effects to be small, the amplitude will decay as

a(t) = age™¥"
if the effect of the surrounding fluid is neglected, where 7 = R/5v and ag and v
are the initial amplitude and kinematic viscosity, respectively.

Figure 10 shows a comparison between the numerical result and the analytical
curve, given by
y(t) = yo + age™ /" cos(wt)

where yo and ag are the initial oscillating axis position and the amplitude.

It can be seen that the numerical results are in good agreement with the analytical
expression for the bubble diameter. Using the extreme points to estimate the period
of oscillation, we found the discrepancy between the numerical and the analytical
value for the period is about 12%. This discrepancy can, in part, be attributed
to the finite domain used in the numerical simulation, in comparison with the
analytical solution which is valid over an infinite domain.
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Fig. 10. Oscillation of the bubble diameter as a function of non-dimensional time. It was
found that the period was in error by 12%.

6.4 Bubble rising in a continuous phase

Rising bubbles are classical examples that may be used to validate multi-fluid flow
simulations. Bubbles with lower density than the surrounding fluid tend to rise,
due to the buoyancy effects resulting from the pressure gradient caused by gravity.

In this paper, two numerical results of rising bubbles with low and moderate
Reynolds numbers are presented. The results are compared with results published
by Esmaeeli & Tryggvason [7,8].

6.4.1 Low Reynolds numbers

The nondimensional parameters, extracted from Esmaeeli & Tryggvason (1998) [7],
are given by
Eo=1.0; N=10"% ~=005 X=0.05

where Eo = pogD?/0q is the Eoétvos number, N = p2D3g/u2 is the Galileo or
Archimedes number, - is the density ratio between the bubble and the fluid (py/py)
and A is the viscosity ratio between the bubble and the fluid (us/py). These pa-
rameters can be obtained by using a 1.9 mm diameter bubble immersed in engine
oil, with a7 = 0.03 N/m, p; = 880 kg/m® and ps = 0.21 Ns/m?. The lengths were
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nondimensionalized by the diameter D = 1.9 mm and the velocities by U = \/gD.

To compare the results with [7], it is necessary to compute the rising velocity and
the centroid position of the bubble at each time step. As the bubble surface is
explicitly marked by moving particles, it is more convenient to change the volume
integrals into surface integrals using the divergence theorem. Thus; if the bubble
volume is given by

. ,
V,,=/ dV=§fx-nds,
Y Sy
then the centroid position is
1 1
X, = -‘7;/ dv = m}{(x-x)nd&
3 Sh

and, using the continuity equation, the rising velocity is given by

szi/dezlf(zu)-ndS.
Ve Vo
v 3,

Figure 11 shows the results obtained on grids with 16 x 16 x 32 and 32 x 32 x 64
cells. In this figure small oscillations in the rising velocity can be observed. These
were eliminated when the grid was refined. The rising velocity oscillates due the
pressure gradient in the coarse grid when the bubble moves from cell to cell. At the
terminal velocity of the bubble, the Reynolds number obtained (see figure 11 (a) )
is quite close to 1.4. This is the same value obtained by Esmaeeli and Tryggvason

[7]-

6.4.2 Moderate Reynolds numbers

For this simulation, the nondimensional parameters extracted from Esmaeeli and
Tryggvason [8], are

Eo=2;, N=8944, v=01; A=0.1.

These can be obtained from D = 2.6 mm diameter bubble, with 1y = 0.0125 Ns/m?,
ps = 880 kg/m? for the continuous phase (fluid) and interfacial tension coefficient

given by o; = 0.03 N/m. The lengths were nondimensionalized by the diameter D
and the velocities by U = /gD.
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Fig. 11. Rising Reynolds number (a) and the bubble centroid position (b) plotted against
nondimensional time on 16 x 16 x 32 and 32 x 32 x 64 grid cells (low Reynolds number

case).
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Fig. 12. Rising Reynolds number (a) and the bubble centroid position (b) plotted against
nondimensional time on 16 x 16 x 32 and 32 x 32 x 64 grid cells (moderate Reynolds

number case).
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(a) 0s (b) 0.01 s (c) 0.02 s (d) 0.03 s (e) 0.04 s

(f) 0.05 s (g) 0.06 s (h) 0.07 s (1) 0.08 s (3) 0.09 s

Fig. 13. Two bubbles rising with different densities and viscosities.

As in the low Reynolds number case, the numerical results were compared with
those obtained by Esmaeeli and Tryggvason (8], by calculating the rising velocity
and centroid position of the bubble. The graphs of these quantities can be seen in
figure 12. As in the previous simulation, the results show small oscillations in the

rising velocity that vanish when the grid is refined.

The results obtained by Esmaeeli and Tryggvason [8] show that the fully developed
Reynolds number is about 20.5, while the result obtained here is Re ~ 25. This
discrepancy is due to some differences in the boundary conditions between the two
models. However, the results obtained are qualitatively similar.

6.5 Rising of two different bubbles

This example shows the simulation of the three-fluid flow of two bubbles with
different densities, viscosities and diameters, rising in a third phase with a greater
density.
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Fig. 14. Rising of two different bubbles: (a) coordinate z and (b) coordinate z of the
bubbles centroid position plotted against nondimensional time.
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Fig. 15. Transient solution of the bubble coalescence in a continuous phase, with in-line
bubbles, for t =0.0s,t =003 s,¢t=0.06s,t=0.09s,t=0.12s and t =0.15 s.

Fig. 16. Transient solution of the bubble coalescence in a continuous phase, the bubbles
are not in-line, fort =0.0s5,t=0.03 5,1 =0.065,t=0.09 s5,¢=0.12 s and t = 0.15 s.

As in the previous example, the bubbles rise due to buoyancy forces. The nondimen-
sional parameters are: Re = 55.75, F'r = 1, We = 4.6. For the continuous phase,
ps = 880 kg/m® and puy = 0.0125 Ns/m?. For the larger bubble, D, = 4 mm,
p1 = 88 kg/m? and u; = 0.00125 Ns/m?, with Eo; = 4.6. Finally, for the smaller
bubble, Dy = 2 mm, p; = 176 kg/m3 and pg = 0.0025 Ns/m?, with Eo, = 1.15.
The surface tension coefficient for all interfaces is oy = 0.03 N/m. The lengths and
velocities were nondimensionalized using D, = 4 mm and U = /gDy, respectively.
The grid used in this example was 32 x 32 x 64 cells.

Figure 13 shows the time evolution of the flow. It can be seen that the larger bubble
undergoes a larger deformation than the smaller bubble, due to its larger E6tvos
number. Figure 14 shows a small deflection in the trajectory of the smaller bubble
due to the interaction with the larger bubble as it passes by.
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6.6 Bubble coalescence

Another classical example of multi-fluid flows is the coalescence of two bubbles
in a continuous phase. The two bubbles are positioned in-line at a distance of
0.4 mm apart. The diameter of both bubbles is D = 2.6 mm, the velocities of each
bubble are nondimensionalized using U = /gD = 0.15 m/s, the interfacial tension
coefficient is o7 = 5.8 X 10™* N/m, and the nondimensional constants Re = 30 and .
Eo = 100 are the Reynolds and Eo6tvos numbers, respectively. For the continuous
phase, p; = 880 kg/m®, u; = 0.0125Ns/m?, and for the bubbles, pg = 440 kg/m?,
pg = 0.00625Ns/m?. Figure 15 shows the transient solution of the: interface, with
the coalescence of both bubbles, starting from the bubbles initially in-line.:

The same flow parameters were used to simulate the rise of two bubbles that
are initially not aligned. Figure 16 shows the three-dimensional rendering of the
transient solution, in which the bottom bubble chases the top bubble until the
coalescence occurs. This is due to the lower pressure close to the bottom of the top
bubble. These results are in good agreement when compared with the numerical
results obtained by Li Chen & Yuguo Li (1998) [6] and the experlmental results
obtained by Narayanan et. al. (1974) [16].

6.7 Two-fluid splashing drop

Splashing drops are good examples to illustrate the robustness of the free sur-
face flow codes. In this particular case, a two-fluid splashing drop was simulated,
whereby a drop falls into a container of a quiescent fluid of a different phase re-
sulting in a splash.

The drop phase was taken to be less viscous and lighter than the continuous phase.
The nondimensional parameters were given by: Re = 30, F'r = 1 and We = 50. For
the drop phase, we set p, = 440 kg/m? and py = 0.00625 N's/m?; for the continuous
phase, we used py = 880 kg/m® and py = 0.0125 Ns/m?. The interfacial tension
coefficient was oy = 0.001167 N/m, and the free surfaces are driven by surface
tension forces, with the same coefficient. Again, we used the drop diameter D and
the reference velocity U = /gD to nondimensionalize the lengths and velocities.
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(8)t=0s (b) t=0.03 s (c) t =0.04 s

(d) t=10.05s () t=0.06s (f)t=0.07s

(g) t=0.09 s (h)t=0.12s (i)t=025s

Fig. 17. Transient solution of the splashing drop falling over a free surface of a heavier
and more viscous fluid.
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(a) (b) ()

Fig. 18. Three-dimensional color scale rendering of the solution at time t = 0.06 s; (a)
direction velocity; (b) y direction velocity; (c) pressure.

Figure 17 shows the transient solution of the flow in a 40 x 40 x 40 grid. In this
figure we are able to observe the surface tension effects acting over the free surfaces.
Figure 18 shows the rendering of the solution using pseudo-color to.indicate velocity
components and pressure over the free surfaces. Figure 18 displays the z-direction
velocity, the y-direction velocity and the pressure at time ¢ = 0.06 s. We can see
that the velocity field remains symmetric after the drop impact.

This simulation is an important indicator of the robustness of the code, where
we can see the interaction between the free surfaces and the interface. The code
has the capability to decide when fronts should be treated as free surfaces or as

interfaces, using the information stored in its internal celular representation.

7 Conclusions

In this work, a method for simulating incompressible multi-fluid flows with sur-
face tension was described. This method was based on the GENSMAC-3D front-
tracking method [28], using finite difference schemes to discretize the governing
equations, as in [19]. Surface and interfacial tensions were considered, and the
required curvature on the interface was computed by a technique of geometrical -

surface approximation (4,13,22,24].

A number of numerical simulations was used to validate the method presented
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in this paper. The simulation of static bubbles showed good agreement with the
analytic solution, with errors less than 1.2% indicating that the curvature calcula-
tion procedure is accurate. A numerical convergence test was performed indicating

quadratic convergence of the curvature calculation.

A sessile drop simulation was also carried out to verify the accuracy of the surface -
tension approximation method. The results were compared with the analytic so-
lution for the steady state axisymmetric case showing good agreement. Two types
of simulations were performed. The first one shows small undulations over the free
surface that are unphysical and due to the discretization of the domain. Since the
surface tension method acts on the scale of a cell it cannot eliminate these undula-
tions in scales smaller than a cell. Thus a geometric filter was developed. The filter,
called TSUR-3D ([23,24], smoothes the free surface and interfaces, while conserving
the mass of the fluid. The second type of simulation was made with the TSUR-3D
filter and shows that the filter has eliminated the undulations and so improving

the accuracy of the solution.

In order to show the correct transfer between the surface energy and kinetic energy,
a transient two-fluid oscillating bubble was simulated. The result was compared
with the analytical expression for the frequency and the amplitude decay. This also

showed reasonable agreement.

Rising bubbles immersed in a continous phase are classical examples to corroborate
any fluids code. Bubbles rising with low and moderate Reynolds numbers were
simulated with good results, when compared with results in the literature [7,8].
The results showed small oscillations in the rising Reynolds number of the bubbles,
occurring in coarse grids, and vanishing when the grid was subsequently refined.
This effect is due to the fact that the bubble diameter is very small for the grid
used, causing larger errors in the interfacial tension distribution and was essentially
eliminated when the grid was refined. A three-fluid rising bubble simulation was
also made to show the interaction between the fluids and the influence of the
bouyancy forces on the flow. Bubble coalescences were simulated, with bubbles
initially in-line and not in-line and the results were compared with numerical 6]

and experimental [16] results of similar problems.

Finally, a two-fluid splashing drop was simulated to illustrate the robustness and
applicability of the code to compute the interactions between free surfaces and
interfaces. All these results together demonstrate that the new method can be used
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to simulate a number of problems and to investigate many physical phenomena
involving incompressible multi-fluid flows, including free surfaces.
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