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Despite the growing interest in parallel-in-time methods as an approach to accelerate numerical 
simulations in atmospheric modeling, improving their stability and convergence remains a 
substantial challenge for their application to operational models. In this work, we study the 
temporal parallelization of the shallow water equations on the rotating sphere combined with 
time-stepping schemes commonly used in atmospheric modeling due to their stability properties, 
namely an Eulerian implicit-explicit (IMEX) method and a semi-Lagrangian semi-implicit method 
(SL-SI-SETTLS). The main goal is to investigate the performance of parallel-in-time methods, 
namely Parareal and Multigrid Reduction in Time (MGRIT) when these well-established schemes 
are used on the coarse discretization levels and provide insights on how they can be improved for 
better performance. We begin by performing an analytical stability study of Parareal and MGRIT 
applied to a linearized ordinary differential equation depending on some temporal parallelization 
parameters, including the choice of a coarse scheme. Next, we perform numerical simulations of 
two standard tests in atmospheric modeling to evaluate the stability, convergence, and speedup 
provided by the parallel-in-time methods compared to a fine reference solution computed serially. 
We also conduct a detailed investigation on the influence of artificial viscosity and hyperviscosity 
approaches, applied on the coarse discretization levels, on the performance of the temporal 
parallelization. Both the analytical stability study and the numerical simulations indicate a poorer 
stability behavior when SL-SI-SETTLS is used on the coarse levels, compared to the IMEX scheme. 
With the IMEX scheme, a better trade-off between convergence, stability, and speedup compared 
to serial simulations can be obtained under proper parameters and artificial viscosity choices, 
opening the perspective of the potential competitiveness for realistic models.

* Corresponding author.
Available online 26 October 2023
0021-9991/© 2023 Elsevier Inc. All rights reserved.

E-mail addresses: joao.steinstraesser@usp.br (J.G. Caldas Steinstraesser), ppeixoto@usp.br (P.S. Peixoto), martin.schreiber@univ-grenoble-alpes.fr (M. Schreiber).

https://doi.org/10.1016/j.jcp.2023.112591

Received 15 June 2023; Received in revised form 6 October 2023; Accepted 20 October 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:joao.steinstraesser@usp.br
mailto:ppeixoto@usp.br
mailto:martin.schreiber@univ-grenoble-alpes.fr
https://doi.org/10.1016/j.jcp.2023.112591
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.112591&domain=pdf
https://doi.org/10.1016/j.jcp.2023.112591


Journal of Computational Physics 496 (2024) 112591J.G. Caldas Steinstraesser, P.S. Peixoto and M. Schreiber

1. Introduction

The numerical simulation of atmospheric circulation models, in the context of climate modeling and numerical weather pre-

diction, is a challenge that motivates constant research efforts. Since the middle of the last century, several spatial and temporal 
discretization schemes have been proposed, seeking a balance between accuracy, numerical stability, and computational costs for 
simulations in large domains both in space and time [66]. Over the decades, advances in terms of computing technology, with in-

creasing processing and memory resources available, as well as the advent of massively parallel high-performance computing (HPC) 
systems, opened new possibilities and motivated the development of new approaches in atmospheric modeling [65].

Among the several temporal discretization approaches, parallel-in-time (PinT) methods have recently raised an increasing research 
interest. The term “PinT” refers to a large variety of numerical methods [22], of which the most popular, e.g., Parareal [41], Multigrid 
Reduction in Time (MGRIT) [19] and Parallel Full Approximation Scheme in Space and Time (PFASST) [17], are iterative algorithms 
that, by using a fine, computationally expensive and one or more coarser, less expensive discretizations of the problem, allow to 
compute several time steps simultaneously, thus replacing the classical approach of serial time-stepping.

The interest in PinT in various application domains has grown mainly in the past two decades, with these methods being seen as 
an alternative for overcoming the saturation of already well-established spatial parallelism approaches and taking more advantage 
of HPC systems. This increasing popularity is also explained by the non-intrusive character of several PinT methods, allowing the 
user to combine them with arbitrary temporal and spatial discretizations, and the availability of open-source libraries implementing 
them, e.g., Xbraid (MGRIT) [1] and LibPFASST (PFASST) [43], which makes the temporal parallelization of an operational code a 
relatively easy task. However, PinT is still making its first steps in atmospheric circulation models. Indeed, examples of efficient 
application of PinT methods, in the sense of effectively allowing to reduce the time-to-solution when compared to serial time-

stepping, mainly include problems of parabolic and diffusive nature, e.g., [64,27,3,29]. Also, temporal parallelization suffers from 
stability and convergence issues when applied to simple hyperbolic problems, e.g., the linear advection equation. This issue has been 
identified and studied by several works, e.g., [5,24,14,61], and has in some way discouraged further application and investigation of 
PinT methods to more complex advection-dominated problems, such as those arising in atmospheric modeling. Notably, it is known 
that the lack of convergence and stability arise on high wavenumbers of the solution due to the mismatch of phase representations 
on the discretization levels [50], and several approaches trying to overcome it have been proposed, e.g., [51,12,33], but most of 
them have limited application or introduce algorithmic complications that reduce the possible gains in terms of time-to-solution and 
diminish the non-intrusive character of the PinT methods, making them less attractive to complex applications such as atmospheric 
circulation problems.

However, even if most studies of PinT methods for hyperbolic problems still focus on relatively simple one-dimensional models 
in order to develop a better understanding, some recent works already propose studies towards the temporal parallelization of more 
complete atmospheric models. These works focus on the shallow water equations (SWE) on the rotating sphere, a two-dimensional 
model commonly used as a starting point in atmospheric modeling since it contains most of the numerical and implementation chal-

lenges related to the horizontal discretization found in more complete, tridimensional models [68]. [2] studies an asymptotic MGRIT 
method based on the asymptotic Parareal proposed and applied to the one-dimensional rotating SWE by [33]; [32] implemented 
the PFASST method combined with a spherical harmonics discretization of the rotating SWE; and [54] developed a parallel-in-time 
method based on a temporal discretization using rational approximation for exponential integrators. It should also be noted that 
research efforts have been made to apply PinT methods to solve more complex and operational models. For instance, in the context 
of ocean circulation and sea-ice model, Parareal has been applied to the Finite-volumE Sea ice-Ocean circulation Model (FESOM2) 
by [48], presenting slow convergence and stability issues that prevented theoretical speedups, with better convergence results, in 
the same context, being obtained by [47] with a variant of Parareal using spatial coarsening, but with still present instabilities 
in long-term simulations and lack of real wall-clock speedup due to parallel overheads. In the context of magnetically confined 
plasma simulation in tokamaks, in the Integrated Plasma Simulator (IPS) [8] and the nuclear fusion research project ITER [52], an 
event-based modification of Parareal allows for well-measured speedup, parallel efficiency, and parallel scaling results.

In this work, we also study the application of PinT methods to the SWE on the rotating sphere. Here, we focus on two- and 
multilevel temporal parallelization using Parareal and MGRIT. We combine them with popular temporal and spatial discretization 
schemes for atmospheric circulation, used operationally and/or for research purposes in weather and climate forecast models, to 
evaluate if well-established numerical methods in the atmospheric modeling community would suit temporal parallelization. Namely, 
we consider a spectral discretization in space using spherical harmonics; in time, we consider two schemes, an Eulerian implicit-

explicit (IMEX) one and the semi-Lagrangian semi-implicit SL-SI-SETTLS proposed by [34]. We highlight that there is a recent interest 
in semi-Lagrangian methods in the PinT framework, e.g., with studies on the Burgers [53] and advection [60,59] equations indicating 
stability and convergence improvements of Parareal and/or MGRIT by using semi-Lagrangian coarse discretizations; thus, we seek to 
study if this behavior is also verified in the context of a more complex problem.

This investigation is conducted following two approaches. First, we perform an analytical stability study of Parareal and MGRIT 
applied to a linearized ODE as a function of some parameters for the temporal parallelization, including the choice of a coarse time-

stepping scheme (IMEX or SL-SI-SETTLS). This analysis is based on the work developed in the Parareal framework by [57], and we 
extend it to the two-level MGRIT with arbitrary relaxation. Second, we perform numerical simulations to evaluate the PinT methods 
in terms of stability, convergence to a reference solution, and computational time compared to the reference simulation. We consider 
two test cases commonly used for studying the numerical simulation of the SWE on the rotating sphere. Moreover, we investigate the 
use of artificial viscosity and hyperviscosity on the coarse discretization levels and how they influence the stability and convergence 
2

of the temporal parallelization.
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The proposed study is conducted having in sight possible practical applications in atmospheric modeling. Indeed, the high com-

plexity of operational models makes the non-intrusive character of PinT methods such as Parareal and MGRIT a very attractive 
feature. By combining these methods with time-stepping schemes, which are effectively used in these models, and by considering 
discretization and parametric choices which are coherent with practical applications, we may provide indications of the feasibility 
of their temporal parallelization and how the PinT performance can be improved by properly parametrizing it.

This paper is organized as follows: in Section 2, we present the shallow water equations on the rotating sphere and their dis-

cretization using IMEX and SL-SI-SETTLS in time and spherical harmonics in space; in Section 3 we describe the Parareal and MGRIT 
methods; the analytical stability study is developed in Section 4; the numerical simulations for evaluating the performance of the 
methods and the influence of the artificial viscosity and hyperviscosity are presented in Section 5; finally, conclusions are presented 
in Section 6.

2. The shallow water equations on the rotating sphere

2.1. Governing equations

The SWE on the rotating sphere read

𝜕

𝜕𝑡
𝑼 =𝑳𝑮(𝑼 ) +𝑳𝑪 (𝑼 ) +𝑵𝑨(𝑼 ) +𝑵𝑹(𝑼 )

=𝑳𝑼 +𝑵(𝑼 )
(1)

where 𝑼 = (Φ, 𝜉, 𝛿)𝑇 , Φ = Φ+Φ′ = 𝑔ℎ is the geopotential field (with 𝑔 the gravitational acceleration, ℎ the fluid depth, and Φ and 
Φ′ the mean geopotential and the geopotential perturbation, respectively), 𝜉 ∶= 𝒛 ⋅ (∇ × 𝑽 ) is the vorticity (𝒛 is the unit vector in the 
vertical direction), 𝛿 ∶= ∇ ⋅ 𝑽 is the divergence, 𝑽 ∶= (𝑢, 𝑣)𝑇 is the horizontal velocity, 𝑳 ∶=𝑳𝑮 +𝑳𝑪 , 𝑵 ∶=𝑵𝑨 +𝑵𝑹 and 𝑳𝑮 , 𝑳𝑪 , 
𝑵𝑨 and 𝑵𝑹 are respectively the linear gravity, linear Coriolis, nonlinear advection and nonlinear rest terms, given respectively by

𝑳𝑮(𝑼 ) =
⎛⎜⎜⎝

−Φ𝛿

0
−∇2Φ

⎞⎟⎟⎠ , 𝑳𝑪 (𝑼 ) =
⎛⎜⎜⎝

0
−∇ ⋅ (𝑓𝑽 )
𝒛 ⋅∇× (𝑓𝑽 )

⎞⎟⎟⎠
𝑵𝑨(𝑼 ) =

⎛⎜⎜⎜⎝
−𝑽 ⋅∇Φ
−∇ ⋅ (𝜉𝑽 )

−∇2
(
𝑽 ⋅𝑽
2

)
+ 𝒛 ⋅∇× (𝜉𝑽 )

⎞⎟⎟⎟⎠ , 𝑵𝑹(𝑼 ) =
⎛⎜⎜⎝
−Φ′𝛿

0
0

⎞⎟⎟⎠
Moreover, in the numerical simulations performed in this work, we consider an artificial (hyper)viscosity approach [39]. We then 

include the linear term

𝑳𝜈(𝑼 ) = (−1)
𝑞

2 +1𝜈
⎛⎜⎜⎝
∇𝑞Φ′

∇𝑞𝜉

∇𝑞𝛿

⎞⎟⎟⎠
where 𝜈 ≥ 0 is the viscosity coefficient and 𝑞 ≥ 2 is the viscosity order, with 𝑞 even.

2.2. Spatial discretization

In this work, the SWE equations on the rotating sphere are discretized in space using a spectral approach based on spherical 
harmonics, which is briefly presented below. We refer the reader to [15] for details. We remark that spherical harmonics discretiza-

tion is used in important operational applications in atmospheric modeling, e.g., by the Integrated Forecasting System (IFS) at the 
European Centre for Medium-Range Weather Forecast (ECMWF) [16], the Global Spectral Model (GSM) at the National Centers for 
Environmental Prediction (NCEP) of the U.S. National Oceanic and Atmospheric Administration (NOAA) [44] and the Global Spectral 
Model (GSM) of the Japan Meteorological Agency (JMA) [36].

A given time-dependent smooth field 𝜓(𝜆, 𝜇, 𝑡) defined on the sphere, where 𝜇 ∶= sin(𝜃), 𝜆 is the longitude, 𝜃 is the latitude, and 𝑡
is the time, can be written as a spherical harmonics expansion

𝜓(𝜆,𝜇, 𝑡) =
∞∑

𝑚=−∞

∞∑
𝑛=|𝑚|𝜓𝑚,𝑛(𝑡)𝑌𝑚,𝑛(𝜆,𝜇) (2)

where 𝑌𝑚,𝑛 is the spherical harmonic function of zonal and total wavenumbers 𝑚 and 𝑛, respectively, and 𝜓𝑚,𝑛 is the respective 
expansion coefficient. The spherical harmonics are defined as the product of associated Legendre functions and Fourier modes, so the 
direct and inverse spherical transforms can be performed via Fast Fourier and Fast Legendre transforms, respectively, in the zonal 
and meridional directions. In the implementation considered here, we consider a triangular truncation for the expansion (2):

𝑀∑ 𝑀∑

3

𝜓(𝜆,𝜇, 𝑡) =
𝑚=−𝑀 𝑛=|𝑚|𝜓𝑚,𝑛(𝑡)𝑌𝑚,𝑛(𝜆,𝜇)
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Two main reasons motivate using spectral discretization for the SWE. First, spherical harmonics are eigenfunctions of the spherical 
Laplacian:

∇2𝑌𝑚,𝑛 =
−𝑛(𝑛+ 1)

𝑎2
𝑌𝑚,𝑛

where 𝑎 is the sphere’s radius. This property is interesting since the spherical Laplacian arises on the temporal discretization of the 
SWE. We remark that a pseudospectral approach is adopted, relying on collocated (A-grid) gridpoint variables, with the nonlinear 
terms as well as the Coriolis term being computed in the physical space (the discretization size of the physical grid being determined 
by the well-known anti-aliasing “3/2-rule” [15]). Second, the spherical harmonics expansions and their properties related to the 
spherical Laplacian allow to easily formulate semi-implicit methods, thus avoiding the so-called “pole problem” found in physical 
grid discretizations used e.g., in explicit finite difference methods: when uniform latitude-longitude meshes are used, cells near the 
poles have small longitudinal length, requiring the use of too small time step size to fulfill CFL stability constraints [30].

2.3. Temporal discretization

In this work, we consider two time-stepping schemes for discretizing (1), namely an Eulerian, Strang-splitting implicit-explicit 
(IMEX) scheme and the semi-Lagrangian semi-implicit SL-SI-SETTLS proposed by [34], which are briefly presented below. In both 
schemes, using a backward Euler method, the (hyper)viscosity term 𝑳𝜈 is solved at the end of each time step.

2.3.1. IMEX

In the implicit-explicit scheme considered here, the stiff, linear terms of the governing equations are treated implicitly, and the 
nonlinear ones are treated explicitly, allowing to overcome stability constraints imposed by the former, which makes it a popular 
time-stepping approach in fluid dynamics problems [11]. Although not as popular in operational numerical weather prediction 
models as semi-Lagrangian (SL) methods, IMEX schemes are also a relevant class of methods in atmospheric modeling, being used 
in research models such as the Model for Prediction Across Scales (MPAS) at the U.S. National Center for Atmospheric Research 
(NCAR) [56] and the Nonhydrostatic Unified Model of the Atmosphere (NUMA) at the Naval Research Laboratory (NPS/NRL) [37], 
including implicit-explicit approaches for the horizontal terms of the governing equations, as considered here, and also explicit and 
implicit treatments respectively for the horizontal and vertical terms [42].

We consider a second-order Strang-splitting IMEX scheme, with a half timestep of the implicit solver, followed by a full explicit 
timestep and a second implicit half timestep:

𝑼 𝑛+1 = 𝑭
Δ𝑡∕2
𝐼

(
𝑭Δ𝑡

𝐸

(
𝑭

Δ𝑡∕2
𝐼

(𝑼 𝑛)
))

(3)

The implicit term 𝑭Δ𝑡∕2
𝐼

consists of a Crank-Nicolson discretization:

𝑼 ∗ − Δ𝑡

4
𝑳(𝑼 ∗) =𝑼 𝑛 + Δ𝑡

4
𝑳(𝑼 𝑛) (4)

which is solved for 𝑈∗ using the “semi-implicit treatment of the Coriolis term” described by [63]. The explicit term 𝑭Δ𝑡
𝐸

consists of a 
second-order Runge-Kutta scheme:

𝑼 =Δ𝑡𝑵(𝑼 ∗)

𝑼 =Δ𝑡𝑵(𝑼 ∗ +𝑼 )

𝑼 ∗∗ = 1
2

(
𝑼 +𝑼

) (5)

2.3.2. SL-SI-SETTLS

Semi-Lagrangian semi-implicit schemes are popular numerical methods in atmospheric circulation modeling, being used by sev-

eral operational numerical weather prediction models, e.g., the IFS-ECMWF, the GSM-JMA and the Global Forecast System (GFS) 
at NCEP/NOAA, to cite only a few [42]. They use a semi-implicit (Crank-Nicolson) discretization of the linear terms and a semi-

Lagrangian (SL) treatment of the nonlinear advection term. The principle of SL schemes is to combine the Eulerian and Lagrangian 
approaches for spatiotemporal PDEs, the former relying on a fixed spatial grid (e.g., the IMEX method presented above), being con-

ceptually simpler but usually restricted by Courant-Friedrichs-Lewy (CFL) stability conditions limiting the time step size. In contrast, 
the latter follows the trajectories of the fluid particles along time instead of using a fixed grid, which allows larger time steps but is 
much more complex in implementation. SL methods avoid these issues by using a Lagrangian approach at each time step [𝑡𝑛, 𝑡𝑛+1]: 
it traces the trajectories of the particles arriving at each point of a fixed spatial grid at time 𝑡𝑛+1, performing a spatial interpolation 
at time 𝑡𝑛 to retrieve the departure values. It simplifies SL compared to purely Lagrangian schemes but still allows the use of larger 
time steps than Eulerian methods [58].

SL methods require to perform an estimation of the Lagrangian trajectories (𝑡, 𝒙(𝑡)) along each time step [𝑡𝑛, 𝑡𝑛+1], with several 
approaches being proposed in the literature. We consider here the Stable Extrapolation Two-Time-Level Scheme (SETTLS) proposed 
by [34], in which the trajectories are computed iteratively based on an estimation of the velocity field on the intermediate timestep:( ) ( )
4

𝒙𝑘+1
𝑑

= 𝒙𝑎 −
Δ𝑡

2
𝑽 𝑡𝑛 +

Δ𝑡

2
≈ 𝒙𝑎 −

Δ𝑡

2
[2𝑽 (𝑡𝑛,𝒙𝑑 ) − 𝑽 (𝑡𝑛−1,𝒙𝑑 ) + 𝑽 (𝑡𝑛,𝒙𝑎)] (6)
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where Δ𝑡 ∶= 𝑡𝑛+1 − 𝑡𝑛, 𝒙𝑎 denotes the arrival point of the trajectories (𝑡, 𝒙(𝑡)) along [𝑡𝑛, 𝑡𝑛 + 1], corresponding to the fixed spatial grid, 
and 𝒙𝑑 denotes the departure point. The SL-SI-SETTLS thus reads

𝑼 𝑛+1 −𝑼 𝑛
∗

Δ𝑡
= 1

2
(
𝑳𝑼 𝑛+1 +𝑳𝑼 𝑛

∗
)
+ 1

2
(
[2𝑵𝑅(𝑼 𝑛) −𝑵𝑅(𝑼 𝑛−1)]∗ +𝑵𝑅(𝑼 𝑛)

)
(7)

where the subscript ∗ denotes interpolation to the departure point 𝒙𝑑 . In (6) and (7), the terms in brackets are linear extrapolations 
to 𝑡𝑛+1, which are then averaged with the known values at 𝑡𝑛 to obtain an estimation at 𝑡𝑛+1∕2 ∶= 𝑡𝑛 +Δ𝑡∕2.

We notice that this two-step time-stepping scheme, with the solution at time 𝑡𝑛+1 depending on the two preview times 𝑡𝑛 and 
𝑡𝑛−1, poses additional challenges in terms of practical implementation of the parallel-in-time methods. Therefore, we use a modified 
version of the method in the PinT framework as discussed in Section 3.2.4.

3. Parallel-in-time methods

Following the classification proposed by [7], PinT methods comprise iterative schemes allowing to compute several time steps 
simultaneously, algorithms based on spatial domain decomposition methods, and direct methods parallelizing the scheme used for 
advancing each time step. Detailed reviews on PinT can be found in [22,45].

In this work, we focus on two of the most popular PinT methods, Parareal and MGRIT. Both can be interpreted as iterative, 
predictor-corrector algorithms, based on the simultaneous use of coarse (low expensive) and fine (expensive) time-stepping methods, 
the former being computed sequentially along the entire temporal domain, whereas the latter is computed in parallel, i.e., with several 
time steps being computed simultaneously. Parareal is a two-level scheme, using fine and coarse discretizations of the problem; on the 
other hand, MGRIT is a multilevel scheme, using more than two discretization levels, besides other generalizations w.r.t. Parareal, as 
explained below. The popularity of these methods can be explained by their non-intrusive character, allowing the user to implement 
their own time-stepping scheme as coarse and fine methods, and by their simple implementation and formulation, mainly in the case 
of Parareal. In this section, we briefly describe these methods and introduce some notation used in this paper. For this description, 
we consider the time-dependent system of ODEs

𝜕𝑼

𝜕𝑡
(𝑡) = 𝒇 (𝑡,𝑼 (𝑡)), 𝑼 (0) =𝑼 0, 𝑡 ∈ [0, 𝑇 ] (8)

which can be obtained e.g., via a spatial discretization of a PDE.

3.1. Parareal

First developed by [41] and presented as a predictor-corrector algorithm by [4,6], the Parareal method iteratively computes 
approximations to the solution of (8) using simultaneously two numerical schemes, 𝜙𝑓 and 𝜙𝑐 , named respectively fine and coarse

propagators. The method aims to provide these approximations with a smaller computational cost compared to the serial simulation 
of the accurate (thus expensive) fine propagator. Let 𝑇0 = 0, 𝑇1, … , 𝑇𝑁 = 𝑇 be a discretization of the temporal domain [0, 𝑇 ]. We 
denote by 𝜙𝑓 (𝑼 , 𝑇𝑛, 𝑇𝑛+1) and 𝜙𝑐(𝑼 , 𝑇𝑛, 𝑇𝑛+1) the propagation of 𝑼 from 𝑇𝑛 to 𝑇𝑛+1, using respectively 𝜙𝑓 and 𝜙𝑐 . The initial guess 
(solution at iteration 𝑘 = 0) is provided by the serial simulation of the coarse propagator along the entire temporal domain:

𝑼 0
𝑛+1 = 𝜙𝑐(𝑼 0

𝑛
, 𝑇𝑛, 𝑇𝑛+1), 𝑛 = 0,… ,𝑁 − 1

In the following iterations, Parareal computes

𝑼𝑘+1
𝑛+1 = 𝜙𝑐(𝑼𝑘+1

𝑛
, 𝑇𝑛, 𝑇𝑛+1) + 𝜙𝑓 (𝑼𝑘

𝑛
, 𝑇𝑛, 𝑇𝑛+1) −𝜙𝑐(𝑼𝑘

𝑛
, 𝑇𝑛, 𝑇𝑛+1), 𝑛 = 0,… ,𝑁 − 1, 𝑘 ≥ 0 (9)

where 𝑼𝑘
𝑛

is an approximation to the solution of (8) at time 𝑇𝑛 and iteration 𝑘. Note that the only term on the right-hand side of (9)

that needs to be computed serially at each iteration is the first one, using the coarse propagator (which is supposed to be relatively 
cheap). The remaining terms, including the expensive, fine one, can be computed in parallel (i.e., the propagations along each time 
slice [𝑇𝑛, 𝑇𝑛+1] can be distributed to different parallel processors) since they depend only on the solution of the previous iteration 𝑘, 
which has already been computed for every 𝑛 = 0, … , 𝑁 .

In general, the coarse propagator is defined with a larger timestep compared to the fine one. This, however, is not necessary. 
The fine and coarse schemes can be defined by different spatial resolutions, numerical schemes, or integration orders, for example. 
Finally, it can be easily shown that the Parareal solution converges exactly to the fine solution (i.e., the solution obtained via a serial 
simulation of the fine propagator 𝜙𝑓 ) in at most 𝑁 iterations [21]; however, a much faster convergence is required in practice.

3.2. MGRIT

The MGRIT algorithm is a multilevel, predictor-corrector iterative parallel-in-time method introduced by [19] and based on 
spatial multigrid methods [49]. In the following paragraphs, we describe the main ideas behind MGRIT and its parameters that are 
5

relevant to the study proposed in this work; we refer the reader to [18,1] for details that are omitted here.
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Fig. 1. Basic definitions for the temporal discretization adopted in MGRIT. Bullets and squares represent, respectively, F-points and C-points. The sequence of solid 
arrows represents an F-relaxation. The dashed arrow represents a C-relaxation.

3.2.1. Basic definitions

Let 𝑁levels be the number of temporal discretization levels, indexed from 0 to 𝑁levels − 1, the former being the finest one and 
the latter the coarsest one. The time-stepping scheme 𝜙𝑙 in each level is defined by a timestep Δ𝑡𝑙. As in Parareal, in general (but 
not necessarily), the coarse levels are defined such as to have a coarser temporal discretization w.r.t. the fine levels. We then define 
a coarsening factor 𝑚𝑐 ≥ 1 such that Δ𝑡𝑙+1 = 𝑚𝑐Δ𝑡𝑙, 𝑙 = 0, … , 𝑁levels − 2. For the sake of simplicity, we consider the same coarsening 
factor 𝑚𝑐 for all pairs of consecutive levels and also that the temporal discretization in each level is homogeneous.

In the following, we consider a pair of consecutive levels (𝑙, 𝑙+1), called respectively “fine” and “coarse” levels, to introduce some 
notation and vocabulary of MGRIT, which can be easily extended for any pair of levels.

The temporal domain is divided into 𝑁𝑙+1 ∶= 𝑇 ∕Δ𝑡𝑙+1 coarse time steps, defining the coarse time instances 𝑇𝑖 = 𝑖Δ𝑡𝑙+1, 𝑖 =
0, … , 𝑁𝑙+1; and 𝑁𝑙 ∶= 𝑇 ∕Δ𝑡𝑙 = 𝑚𝑐𝑁𝑙+1 fine time steps, defining the time instances 𝑡𝑗 = 𝑗Δ𝑡𝑙, 𝑗 = 0, … , 𝑁𝑙 . Note that 𝑇𝑖 = 𝑡𝑚𝑐 𝑖, 𝑖 =
0, … , 𝑁𝑙+1. The times 𝑇𝑖, 𝑖 = 0, … , 𝑁𝑙+1 of the coarse temporal discretization are named C-points and the fine time instances not 
present in the coarse discretization, i.e., 𝑡𝑗 = 1, … , 𝑁𝑙 − 1, 𝑗 ≠ 𝑚𝑐𝑖, 𝑖 = 0, … , 𝑁𝑙+1, are named F-points. These definitions are illustrated 
in Fig. 1.

The numerical approximations for the solution of (8) are defined on the fine temporal grid, such that 𝑼 (𝑙)
𝑗

and 𝑼 (𝑙)
𝑚𝑐 𝑖

denote 
approximations at the F-points and C-points, respectively, with 𝑖 = 0, … , 𝑁𝑙+1 and 𝑗 = 0, … , 𝑁𝑙, 𝑗 ≠ 𝑚𝑐𝑖.

We call F-relaxation (or F-relaxation sweep) the update of the solution at all F-points between two C-points (i.e., 𝑡𝑗 ∈ ]𝑇𝑖, 𝑇𝑖+1[), by 
using 𝜙𝑙 with the C-point value 𝑼 (𝑙)

𝑚𝑐𝑖
as an initial solution. Analogously, we call C-relaxation the update of each C-point value 𝑼 (𝑙)

𝑚𝑐𝑖

by advancing one fine time step using 𝜙𝑙 with initial solution 𝑼 (𝑙)
𝑚𝑐𝑖−1, see Fig. 1. An update of the approximations on the fine level 

can be performed using a combination of F- and C-relaxations; in general, MGRIT is set to use FCF-relaxation, i.e., an F-relaxation 
followed by a C- and a second F- one, but one can define any F(CF)𝑁relax -relaxation, 𝑁relax ≥ 0, including the simplest F-relaxation 
(which is used e.g., by Parareal, corresponding to 𝑁relax = 0). In general, we can expect a faster MGRIT convergence with a more 
complex relaxation scheme, but with a higher numerical cost.

3.2.2. Full approximation scheme

The idea of the MGRIT algorithm is to compute error corrections on the coarse grid that improve the solution obtained by 
relaxation on the fine grid. It is performed via the Full Approximation Scheme (FAS) [10], which can be briefly described in five 
steps:

1. Perform an F(CF)𝑁relax -relaxation on the fine temporal grid;

2. Restrict the solution and its residual from the fine to the coarse grid at the C-points;

3. Solve the so-called coarse grid equation;

4. Use the solution of the coarse grid equation to compute a coarse grid error approximation;

5. Correct the solution on the fine grid by injecting the computed error approximation from the coarse to the fine grid and 
performing a further F-relaxation sweep.

3.2.3. Multilevel scheme

In the two-level algorithm presented above, the third step is the only one that needs to be computed sequentially along the 
entire temporal domain. However, in the case of multilevel runs, this step is performed recursively, thus adding additional degrees 
of parallelism. In this case, the entire algorithm described above is applied for the pair of levels (𝑙 + 1, 𝑙 + 2) and so on. The order 
of recursive calls in each level is another parameter to be set in an MGRIT simulation, influencing the convergence speed and 
computational cost of the method. In this work, we consider F-cycles followed by one post-V-cycle for the order of recursive calls 
through levels, as defined in [1].

Finally, as in Parareal, an exact convergence towards the serial solution of the finest temporal discretization is obtained in a 
finite number of iterations. In a MGRIT simulation with 𝑁0 time points on the finest level, coarsening factor 𝑚𝑐 and using an 
F(CF)𝑁relax -relaxation strategy, exact convergence is obtained in at most 𝑁0∕((𝑁relax + 1)𝑚𝑐 ) iterations [18].

3.2.4. Implementation

The numerical results presented in Section 5 were obtained using the XBraid library [1], which implements MGRIT combined 
with user-defined time-stepping methods. The Parareal simulations were also performed using XBraid, by setting the parameters 
6

𝑁levels = 2 and 𝑁relax = 0.
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As a major feature, XBraid allows us to easily incorporate MGRIT into an operational code. Notably, every parallelization is made 
in a “black-box” fashion inside the library itself, with the user only needing to define what is communicated between processors, 
but not when or how. This, however, may not be convenient in the cases of two-step time-stepping schemes (such as SL-SI-SETTLS, 
described in Section 2.3.2), since two consecutive time steps [𝑡𝑛−1, 𝑡𝑛] and [𝑡𝑛, 𝑡𝑛+1], both contributing to the solution at 𝑡𝑛+1, may be 
treated by different parallel processors. In [53], a modified version of Parareal is proposed in order to deal with it. In XBraid, this 
issue can be solved on the coarsest level by including the solution at 𝑡𝑛−1 in the solution to be communicated, since the simulation 
is sequential at this level. In all other levels, however, time steps are computed in parallel, with no predefined order, making it 
impracticable to define this extra communication in a coherent way. An alternative approach would be to replace the two-step 
scheme with a one-step one, with the solution at 𝑡𝑛−1 replaced by the one at 𝑡𝑛. Preliminary studies using the Gaussian bumps test 
case introduced in Section 5 were conducted comparing the MGRIT solution under two scenarios: (i) with the alternative one-step 
scheme applied in all time steps of all levels, except for the coarsest one, in which the original two-step scheme is applied; (ii) with 
the one-step scheme being applied in all time steps of all levels, including the coarsest one. These results show that the chosen 
procedure has little influence on the convergence and stability of MGRIT. Therefore, and to avoid extra communications on the 
coarsest level, the following procedure is considered for adapting SL-SI-SETTLS to MGRIT:

• On the coarsest level, the original two-step SETTLS scheme is used in all time steps, except for the temporal boundaries between 
processors, i.e., if [𝑡𝑛−1, 𝑡𝑛] and [𝑡𝑛, 𝑡𝑛+1] are treated by different processors, in which case the one-step alternative is adopted;

• On all other levels using SL-SI-SETTLS, the one-step alternative is used in all time steps.

We remark that, except for the simulations performed for evaluating wall-clock times, all the simulations presented in Section 5

were run using a single processor in time, which implies that the original SL-SI-SETTLS scheme is applied on the entire coarsest 
level. Notably, in the two-level configurations using SL-SI-SETTLS on the coarse level and another scheme on the fine one, the 
PinT simulation is entirely conducted without modification of SL-SI-SETTLS. Finally, we notice that the analytical stability study 
presented in the next section, which indicates stability issues of Parareal and MGRIT using SL-SI-SETTLS on the coarse level (which 
are confirmed in the numerical simulations presented in Section 5), are conducted considering the original SL-SI-SETTLS.

4. Stability study

We perform in this section a stability study of Parareal and MGRIT depending on given parameters and given fine and coarse 
time-stepping methods. This study follows the procedure presented in [13]. We consider the ODE

𝑢̇ = 𝜆𝑳𝑢+𝑵(𝑢) (10)

which is obtained e.g., by solving (1) with a spectral method, in which case 𝜆𝑳 ∈ ℂ is a wavenumber mode of 𝑳 and 𝑢 is a spectral 
coefficient of 𝑼 . Problem (10) is linearized by considering 𝑵(𝑢) = 𝜆𝑵𝑢, with 𝜆𝑵 ∈ℂ. Thus,

𝑢̇ = 𝜆𝑳𝑢+ 𝜆𝑵𝑢 (11)

As pointed out by [13], a full stability study of a numerical scheme to (11) should be performed in a four-dimensional space, 
i.e., as a function of the real and imaginary parts of 𝜉𝑳 ∶= 𝜆𝑳Δ𝑡 and 𝜉𝑵 ∶= 𝜆𝑵Δ𝑡. Since the SWE equations on the rotating sphere 
are characterized by the propagation of purely imaginary wavenumber modes, we perform this study in the function of 𝑅𝑒(𝜉𝑵 )
and 𝐼𝑚(𝜉𝑵 ) for fixed values of 𝜉𝑳. Namely, we are interested in the cases 𝜉𝑳 ≈ 0 (Rossby modes) and positive and negative purely 
imaginary values of 𝜉𝑳 (inertia-gravity wave modes).

Let us first determine some physically meaningful values of 𝜉𝑳 for this stability study, which can be easily obtained via a 
simplification of the linear operator 𝑳 defined in (1). By considering the Coriolis parameter 𝑓 to be constant (which corresponds to 
the so-called 𝑓 -plane approximation), we can write

𝑳(𝑼 ) =𝑳𝑼 =
⎛⎜⎜⎝

0 0 −Φ
0 0 −𝑓

−∇2 𝑓 0

⎞⎟⎟⎠
⎛⎜⎜⎝
Φ
𝜉

𝛿

⎞⎟⎟⎠
which, in the spherical harmonics spectral space, reads

𝑼𝑚,𝑛 =
⎛⎜⎜⎜⎝

0 0 −Φ
0 0 −𝑓

−𝑛(𝑛+ 1)
𝑎2

𝑓 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
Φ𝑚,𝑛

𝜉𝑚,𝑛

𝛿𝑚,𝑛

⎞⎟⎟⎠ (12)

The three eigenvalues of  are

𝜆𝑳 = 0, 𝜆𝑳 = ±𝑖

√
𝑓 2 + 𝑛(𝑛+ 1)

𝑎2
Φ

In the numerical simulations presented in Section 5, the mean geopotential field has an order of magnitude of 105m2s−2. We then 
7

consider here Φ= 105m2s−2. The radius of the Earth is 𝑎 ≈ 6371.22 ×103m and the Coriolis parameter in a 𝑓 -plane approximation reads 
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𝑓 = 2Ω ≈ 2 × 7.292 × 10−5 s−1, where Ω is the Earth’s angular velocity. Since Φ∕𝑎2 ≫ 𝑓 2, we neglect this term in the approximation of 
𝜆𝑳 and we plot the stability regions for fixed integer multiples of 𝜉𝑳 ∶= 𝑖

√
Φ∕𝑎2 ≈ 2.5 × 10−4𝑖, where the scaling of this quantity can 

be interpreted as a consequence of the choice of wavenumber 𝑛 and/or the choice of timestep Δ𝑡.

For a given numerical scheme for (10), we compute the amplification factor 𝐴 ∶= |𝑢𝑛+1|∕|𝑢𝑛| and plot its stability region (i.e., 
where |𝐴| ≤ 1) on the 𝑅𝑒(𝜉𝑵 ) − 𝐼𝑚(𝜉𝑵 ) plane. We are mainly interested in the overlapping between the stability region and the 
imaginary axis.

We begin by presenting the stability plots for IMEX and SL-SI-SETTLS individually (i.e., in a serial framework), where we introduce 
some specific details of the stability analysis of each method. Then, we present the stability study of Parareal presented by [57] and 
we extend it to the MGRIT framework in a two-level configuration with an arbitrary relaxation strategy.

4.1. Stability of the time-stepping schemes individually

4.1.1. Stability of IMEX

Applying (3) to the linearized problem (10), the implicit step (4) with a half timestep Δ𝑡∕2 has the amplification factor

𝐴IMEX-I =
4 + 𝜉𝑳

4 − 𝜉𝑳

and, for the explicit step with a full timestep,

𝐴IMEX-E =
𝜉𝑵 + 𝜉𝑵 (1 + 𝜉𝑵 )

2
=

𝜉𝑵 (2 + 𝜉𝑵 )
2

Thus, the amplification factor of IMEX reads

𝐴IMEX = 𝐴IMEX-I𝐴IMEX-E𝐴IMEX-I =
(
4 + 𝜉𝑳

4 − 𝜉𝑳

)2
𝜉𝑵 (2 + 𝜉𝑵 )

2

4.1.2. Stability of SL-SI-SETTLS

In the stability study of semi-Lagrangian schemes, the amplification factors also depend on the spatial wavenumber (see e.g., [15]). 
Indeed, the amplification factor 𝐴 is more rigorously defined by considering a solution under the form 𝑢(𝑥, 𝑡𝑛) = 𝐴𝑛𝑒𝑖𝜅𝑥, where 𝜅 is the 
wavenumber. In the case of Eulerian schemes (e.g., IMEX), all terms are evaluated in the same spatial point and the exponential term 
vanishes, leading to 𝐴 = |𝑢𝑛+1|∕|𝑢𝑛|, which is not the case in the semi-Lagrangian framework. We define 𝑠 ∶= 𝑥𝑗 − 𝑥∗ as the distance 
between the grid point 𝑥𝑗 and the departure point 𝑥∗ (at 𝑡𝑛) of the trajectory arriving at 𝑥𝑗 at 𝑡𝑛+1. Replacing in (7), we obtain

𝐴𝑛+1𝑒𝑖𝜅𝑥𝑗 −𝐴𝑛𝑒𝑖𝜅𝑥∗ =
𝜉𝑳

2
(
𝐴𝑛+1𝑒𝑖𝜅𝑥𝑗 +𝐴𝑛𝑒𝑖𝜅𝑥∗

)
+

𝜉𝑵

2
([
2𝐴𝑛 −𝐴𝑛−1] 𝑒𝑖𝜅𝑥∗ +𝐴𝑛𝑒𝑖𝜅𝑥𝑗

)
which can be simplified and rearranged to

𝐴2
SL-SI-SETTLS

(
1 −

𝜉𝑳

2

)
−𝐴SL-SI-SETTLS

(
𝑒−𝑖𝜅𝑠

(
1 +

𝜉𝑳

2
+ 𝜉𝑵

)
+

𝜉𝑵

2

)
+

𝜉𝑵

2
𝑒−𝑖𝜅𝑠 = 0 (13)

Eq. (13) has two roots 𝐴+
SL-SI-SETTLS

and 𝐴−
SL-SI-SETTLS

, and the stability region of SL-SI-SETTLS is the intersection of their stability 
regions. Moreover, the stability region depends on the spatial wavenumber 𝜅𝑠. As shown by [34], SL-SI-SETTLS has improved stability 
properties since the intersection of the stability regions for all 𝜅𝑠 is not empty, which is not the case of previous SL-schemes used in 
IFS-EMCWF. In this work, we compute the stability region of SL-SI-SETTLS by intersecting the stability regions of 𝜅𝑠 ∈ [0, 2𝜋] with a 
step 𝜋∕10.

Fig. 2 compares the stability regions of both schemes for 𝜉𝑳 ∈ {0, 5 × 103𝜉𝑳, 104𝜉𝑳, 2.5 × 104𝜉𝑳}. For negative 𝜉𝑳, the plots are 
symmetric w.r.t. the 𝑅𝑒(𝜉𝑵 )-axis. We note that the stability regions of IMEX do not vary with 𝜉𝑳 ∈ 𝑖ℝ since, in this case, |(4 + 𝜉𝑳)∕(4 −
𝜉𝑳)| = 1, indicating that 𝐴IMEX = 𝜉𝑵 (2 + 𝜉𝑵 )∕2. On the other hand, the stability region of SL-SI-SETTLS depends on 𝜉𝑳, and for larger 
values of the linear mode, the method outperforms IMEX, notably with a larger intersection between the stability region and the 
imaginary axis.

4.2. Stability of Parareal

We briefly present the stability analysis developed by [57] for the parareal iteration

𝑢𝑘
𝑛
= 𝜙𝑐(𝑢𝑘

𝑛−1) +𝜙𝑓 (𝑢𝑘−1
𝑛−1) −𝜙𝑐(𝑢𝑘−1

𝑛−1) (14)

using the fine and coarse timestepping methods 𝜙𝑐 and 𝜙𝑓 with respective timesteps Δ𝑡𝑓 and Δ𝑡𝑐 = 𝑚𝑐Δ𝑡𝑓 . The parareal solution 𝑢𝑘
𝑛

at iteration 𝑘 is computed at time 𝑡𝑛 ∶= 𝑛Δ𝑇 , with Δ𝑡∕Δ𝑡𝑓 =∶ 𝑁𝑓 and Δ𝑡∕Δ𝑡𝑐 =∶ 𝑁𝑐 .

Let 𝐴𝑓 ∶= 𝐴𝑓 (Δ𝑡𝑓 ) and 𝐴𝑐 ∶= 𝐴𝑐(Δ𝑡𝑐) be the stability functions of 𝜙𝑓 and 𝜙𝑐 , respectively. Then, (14) can be written as
8

𝑢𝑘
𝑛
= 𝐴

𝑁𝑐
𝑐 𝑢𝑘

𝑛−1 +𝐴
𝑁𝑓

𝑓
𝑢𝑘−1
𝑛−1 −𝐴

𝑁𝑐
𝑐 𝑢𝑘−1

𝑛−1 = 𝐴
𝑁𝑐
𝑐 𝑢𝑘

𝑛−1 + (𝐴𝑁𝑓

𝑓
−𝐴

𝑁𝑐
𝑐 )𝑢𝑘−1

𝑛−1 (15)
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Fig. 2. Stability regions of IMEX and SL-SI-SETTLS applied to (10) as a function of 𝜉𝑵 for fixed values of 𝜉𝑳 . The contours for IMEX visually coincide.

Fig. 3. Illustration of the recurrence relations of: (a) the Parareal iteration 𝑢𝑘
𝑛
= 𝑅𝑢𝑘

𝑛−1 + 𝑆𝑢𝑘−1
𝑛−1 , with 𝑅 ∶= 𝐴

𝑁𝑐

𝑐 and 𝑆 ∶= 𝐴
𝑁𝑓

𝑓
− 𝐴

𝑁𝑐

𝑐 ; and (b) the two-level MGRIT 
iteration with 𝑁relax = 1, 𝑢𝑘

𝑛
= 𝑅𝑢𝑘

𝑛−1 +𝑆𝑢𝑘−1
𝑛−2 , with 𝑅 ∶= 𝐴

𝑁𝑐

𝑐 and 𝑆 ∶= 𝐴
2𝑁𝑓

𝑓
−𝐴

2𝑁𝑐

𝑐 .

Eq. (15) is a recurrence relation leading to

𝑢𝑘
𝑛
=

(
𝑘∑

𝑖=0

(
𝑛

𝑖

)(
𝐴

𝑁𝑓

𝑓
−𝐴

𝑁𝑐
𝑐

)𝑖 (
𝐴

𝑁𝑐
𝑐

)𝑛−𝑖

)
𝑢0 (16)

where 𝑢0 is the initial solution at 𝑡 = 0. The coefficients in (16) are the binomial coefficients of Pascal’s triangle, which can be easily 
identified in Fig. 3a, adapted from [57].

From (16), we define the Parareal stability function

𝐴parareal(𝑛, 𝑘,𝑁𝑓 ,𝑁𝑐,𝜙𝑓 ,𝜙𝑐) ∶=
𝑘∑

𝑖=0

(
𝑛

𝑖

)(
𝐴

𝑁𝑓

𝑓
−𝐴

𝑁𝑐
𝑐

)𝑖 (
𝐴

𝑁𝑐
𝑐

)𝑛−𝑖

, 𝑛 ≥ 𝑘 (17)

Let us study the behavior of 𝐴parareal along iterations and as a function of the coarse time-stepping method. We fix 𝑛 = 100, 𝑚𝑐 = 2, 
𝑁𝑐 = 1, and IMEX as a fine scheme and we plot the stability contours at iterations 𝑘 = 0, 1, 5, 10 in Fig. 4. In all cases (for both choices 
of coarse time-stepping method and for all chosen values of 𝜉𝑳), we observe a decrease of the stability region along iterations. Also, 
for both coarse schemes, the stability region is not larger than the ones using the schemes alone (which corresponds to 𝑘 = 0). A 
much more notable stability loss is observed in the configurations using SL-SI-SETTLS as a coarse method, whose stability contours 
no longer intersect the 𝐼𝑚(𝜉𝑁 )-axis for 𝑘 ≥ 1. Also, in the case 𝜉𝑳 = 104𝜉𝑳, in which the serial SL-SI-SETTLS outperforms IMEX, the 
stability regions vanish (or almost) in the Parareal framework after few iterations. On the other hand, the configurations using IMEX 
as a coarse method are able to preserve quite well their shape and only suffer a small reduction in size.

4.3. Stability of MGRIT

We generalize the Parareal stability analysis presented above to the MGRIT framework. We consider here the two-level case with 
F(CF)𝑁relax -relaxation and we study the influence of 𝑁relax on the stability contours using the fact that the two-level MGRIT can be 
seen as an overlapping variant of Parareal, with the parallel steps performed at each iteration being computed along 𝑁relax + 1 time 
slices [23]: ( ) ( )
9

𝑢𝑘
𝑛
= 𝜙𝑐(𝑢𝑘

𝑛−1) +𝜙
𝑁relax+1
𝑓

𝑢𝑘−1
𝑛−(𝑁relax+1)

−𝜙𝑐𝜙
𝑁relax

𝑓
𝑢𝑘−1
𝑛−(𝑁relax+1)

(18)
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Fig. 4. Stability regions of Parareal (with 𝑚𝑐 = 2, 𝑛 = 100, 𝑘 ∈ {0, 1, 5, 10}) applied to (10) as a function of the coarse timestepping method and 𝜉𝑵 for fixed values of 
𝜉𝑳 . In all configurations, the fine time-stepping method is IMEX. In the case 𝜉𝑳 = 104𝜉𝑳 , the stability region of SL-SI-SETTLS is empty for 𝑘 = 10.

Fig. 5. Stability regions of MGRIT (with 𝑘 = 5, 𝑚𝑐 = 2, 𝑛 = 100 and 𝑁relax ∈ {0, 1, 2, 3}) applied to (10) as a function of the coarse timestepping method and 𝜉𝑵 for fixed 
values of 𝜉𝑳 . In all configurations, the fine time-stepping method is IMEX. In almost all cases, the contour plots for 𝑁relax = 2 and 𝑁relax = 3 visually coincide.

In terms of the fine and coarse stability functions:

𝑢𝑘
𝑛
=
[
𝐴

𝑁𝑐
𝑐 𝑢𝑘

𝑛−1 +
(
𝐴
(𝑁relax+1)𝑁𝑓

𝑓
−𝐴

𝑁𝑐
𝑐 𝐴

𝑁relax𝑁𝑓

𝑓

)
𝑢𝑘−1
𝑛−(𝑁relax+1)

]
(19)

which can be rewritten as

𝑢𝑘
𝑛
= 𝐴MGRIT(𝑛, 𝑘,𝜙𝑓 ,𝜙𝑐 ,𝑁levels = 2,𝑁relax)𝑢0

with

𝐴MGRIT(𝑛, 𝑘,𝑁𝑓 ,𝑁𝑐,𝜙𝑓 ,𝜙𝑐 ,𝑁levels = 2,𝑁relax) ∶=⌊𝑘∕(𝑁relax+1)⌋∑
𝑖=0

(
𝑛− 𝑖𝑁relax

𝑖

)(
𝐴

𝑁𝑓 𝑁relax

𝑓

(
𝐴

𝑁𝑓

𝑓
−𝐴

𝑁𝑐
𝑐

))𝑖 (
𝐴

𝑁𝑐
𝑐

)𝑛−𝑖(𝑁relax+1)
, 𝑛 ≥

𝑘

𝑁relax + 1

(20)

being the stability function of MGRIT, where ⌊⋅⌋ is the floor function. It is easy to check that (20) reduces to (17) in the case 𝑁relax = 0
(Parareal).

The derivation of (20) is analogous to the Parareal case. The two-level MGRIT iteration (19) can be identified with a Pascal’s 
triangle, but with a “jump” of 𝑁relax rows in all “diagonal relations”. Fig. 3b illustrates it in the case 𝑁relax = 1.

In Fig. 5, we plot the stability regions for fixed MGRIT parameters (𝑘 = 5, 𝑛 = 100, 𝑚𝑐 = 2) and 𝑁relax ∈ {0, 1, 2, 3}. We observe that 
the stability regions increase when 𝑁relax increases, mainly from 𝑁relax = 0 to 𝑁relax = 1. In most cases, the stability regions of the 
serial schemes are almost or totally recovered with 𝑁relax ≥ 2; however, for large 𝜉𝑳 (𝜉𝑳 = 104𝜉𝑳), it is not enough to improve the 
stability region of MGRIT using SL-SI-SETTLS as coarse method, remaining smaller than the stability region of the serial scheme.

We highlight that the small stability regions in the configurations using SL-SI-SETTLS may be linked to the fact that the stability 
10

region is defined as the intersection between the stability regions of all wavenumbers 𝜅. In the Parareal and MGRIT framework, 
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each of these regions is reduced depending on the parametric choice; thus, their intersection is drastically reduced compared to the 
stability region of the serial scheme. It does not imply that SL schemes will necessarily suffer from this issue; if the amplification factor 
can be written in the form 𝐴(𝜉𝑳, 𝜉𝑵 , 𝑒−𝑖𝜅𝑠) = 𝑒−𝑖𝜅𝑠𝐴̃(𝜉𝑳, 𝜉𝑵 ), then the region where |𝐴| ≤ 1 will be the same for all wavenumbers, and 
its reduction in the PinT framework may be less remarkable. This is the case, for instance, of semi-Lagrangian exponential methods 
[46], which also present a better stability behavior in PinT simulations, as will be presented in future work.

5. Numerical tests

We consider here two test cases for evaluating the application of Parareal and MGRIT combined with IMEX or SL-SI-SETTLS for 
the parallel-in-time integration of the SWE on the rotating sphere. For each test, we perform a convergence study, in which we study 
the convergence speed and stability as a function of selected Parareal and MGRIT parameters (namely the number of levels 𝑁levels, 
the coarsening factor 𝑚𝑐 , the relaxation strategy 𝑁relax and the spectral resolution 𝑀coarse of the coarse levels), and we evaluate the 
computational times and speedups w.r.t. the parallelization. Moreover, in the first test case, we study the influence of the artificial 
(hyper)viscosity on the convergence and stability of the temporal parallelization, and we use the obtained conclusions for setting up 
the viscosity parameters in the second test case.

We are also interested in comparing the performance of the PinT methods using IMEX or SL-SI-SETTLS. Since the finest level is 
commonly discretized with a small time step, it provides an accurate solution to the problem and is not critical in terms of stability, 
which is not the case for the coarser levels, in which larger time steps are used. Therefore, we simplify this study by fixing the time-

stepping scheme on the finest level (𝑙 = 0), namely IMEX, and considering the same time-stepping scheme (IMEX or SL-SI-SETTLS) 
on all coarse levels (𝑙 > 0).

The choices of parameters and test cases presented in this section represent an effort towards the operational application of PinT 
methods in atmospheric modeling, even though their application to more complex and realistic problems would evidently require 
more detailed studies. As done in the analytical stability study presented in Section 4, in which the modes 𝜉𝑳 were chosen based 
on realistic physical parameters, we consider here, for instance, meaningful temporal and spatial discretization sizes and viscosity 
coefficient values. Moreover, the two test cases represent quite complex dynamics, mainly the second one, which is a standard and 
challenging benchmark in atmospheric modeling research.

We first define the errors and computational time measures used for evaluating the PinT performance:

Error definition As proposed by [32], we evaluate the PinT errors (w.r.t. a given reference solution) in the spectral space. Indeed, 
it is known that PinT methods suffer from stability and convergence issues for the higher wavenumber modes of the solution. 
Therefore, we evaluate the ability of Parareal and MGRIT to converge on different regions of the wavenumber spectrum. Let 𝜓𝑚,𝑛 be 
the spectral coefficient of a given function 𝜓 with modes (𝑚, 𝑛) ∈ [−𝑀, … , 𝑀] × [|𝑚|, … , 𝑀] (corresponding to a triangular truncation 
of a spherical harmonics transform). We define a spectral resolution 0 < 𝑅norm ≤ 𝑀 for evaluating the errors. Then, the error of a 
numerical approximation to 𝜓 , compared to a given reference solution 𝜓ref, reads

𝐸𝜓,𝑅norm
∶=

‖‖𝜓 −𝜓ref
‖‖∞,𝑅norm‖‖𝜓ref

‖‖∞,𝑅norm

, ‖𝜓‖∞,𝑅norm
∶= max

𝑚∈{0,…,𝑅norm}
𝑛∈{𝑚,…,𝑅norm}

|𝜓𝑚,𝑛| (21)

In some situations, we also evaluate the more classical 𝐿2 error computed in the physical space:

𝐸𝜓,𝐿2
∶=

‖‖𝜓 −𝜓ref
‖‖𝐿2‖‖𝜓ref

‖‖𝐿2

, ‖𝜓‖𝐿2
∶=

√√√√√ 1
𝑀 (𝑥)𝑀 (𝑦)

𝑀 (𝑥)∑
𝑖=1

𝑀 (𝑦)∑
𝑗=1

𝜓2
𝑖,𝑗

where 𝜓𝑖,𝑗 are the discrete values of 𝜓 in a homogeneous physical grid with 𝑀 (𝑥) and 𝑀 (𝑦) points respectively along latitudes and 
longitudes.

Evaluation of computational time and speedup The numerical simulations presented in the following paragraphs were executed in the 
GRICAD cluster from the University of Grenoble Alpes. The considered nodes are composed of 32 physical cores of Intel Xeon Gold 
6130 @2.10GHz distributed between two sockets. The serial-in-time reference simulations were run considering a shared memory 
spatial parallelization using 16 OpenMP threads bound to cores in the same socket. The parallel-in-time simulations were run with 
a hybrid OpenMP-MPI parallelization, respectively in space and time, with 𝑁proc∕2 nodes being allocated to define 𝑁proc MPI tasks 
(which we name hereafter processors), each one using 16 OpenMP threads bound to cores on the same socket. We remark that other 
space-time parallelization strategies could be adopted, e.g., an MPI-MPI one relying on the splitting of the MPI communicator.

The computing times of the reference and the PinT simulations, the latter using 𝑁proc processors, are denoted 𝑇ref and 𝑇PinT(𝑁proc). 
The speedup provided by the temporal parallelization is defined by

𝑇ref
11

𝑆(𝑁proc) ∶=
𝑇PinT(𝑁proc)
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Fig. 6. Gaussian bumps test case: relative 𝐿2 error (computed in the physical space) and spectral errors (for various values of 𝑅norm) between a solution obtained with 
spectral resolution 𝑀 = 512 and time step Δ𝑡 = 2 and solutions obtained with 𝑀 = 𝑀0 = 256 and various time steps. IMEX is used in all cases.

Fig. 7. Gaussian bumps test case: solution at 𝑡 = 𝑇 = 36 h computed with IMEX.

5.1. Gaussian bumps test case

In this first test case, adapted from the single Gaussian bump benchmark presented by [62], a geopotential field with mean 
value Φ= 𝑔ℎ, with ℎ = 29400m and 𝑔 = 9.80616 ms−2, is perturbed by three Gaussian bump centered at (𝜆1, 𝜃1) = (𝜋∕5, 𝜋∕3), (𝜆2, 𝜃2) =
(6𝜋∕5, 𝜋∕5) and (𝜆3, 𝜃3) = (8𝜋∕5, −𝜋∕4):

Φ(𝜆, 𝜃) = Φ+𝐴

3∑
𝑖=1

𝑒−𝑎𝑖𝑑𝑖(𝜆,𝜃)2

where 𝐴 = 6000m, 𝑎1 = 20, 𝑎2 = 80, 𝑎3 = 360 and

𝑑𝑖(𝜆, 𝜃) = arccos(sin(𝜃) sin(𝜃𝑖) + cos(𝜃) cos(𝜃𝑖) cos(𝜆− 𝜆𝑖))

The initial velocity field is identical to zero and the final time of simulation is 𝑇 = 36 h.

We begin by defining a discretization to be used on the fine level of the parallel-in-time simulations (and also as a reference 
solution for evaluating the errors). Since the solution provided by Parareal and MGRIT converges to the one obtained via a serial 
simulation on the fine level, we want the latter to be a good enough approximation to the exact solution of the problem (or a very 
refined solution); on the other hand, we do not want the fine level to be overresolved (e.g., with too fine discretizations in time and/or 
space), since it may lead to unrealistically overestimated speedups provided by the temporal parallelization [28]. We fix the spectral 
discretization to 𝑀0 = 256 and perform a serial simulation with time step sizes in [2, 960], which we compare to a solution obtained 
with spectral resolution 𝑀 = 512 and time step Δ𝑡 = 2. In all cases, no artificial viscosity is used, and the solutions are obtained with 
IMEX. Fig. 6 presents the 𝐿2 errors, computed in the physical space, as well as the spectral errors for given 𝑅norm values. Considering 
all the presented norms, no important error reduction is observed by using time steps smaller than approximately 100 s, with the 
errors being dominated by spatial discretization. We then choose (𝑀0 = 256, Δ𝑡0 = 60) to be used on the fine levels of the temporal 
parallelization. The solution at 𝑡 = 𝑇 obtained under this configuration is compared to the solution obtained with (𝑀 = 512, Δ𝑡 = 2)
in Fig. 7. We notice that for the chosen simulation length 𝑇 , the turbulence regime is not yet fully developed and the −5∕3 power 
law of the two-dimensional kinetic energy spectrum w.r.t. the wavenumber [40] is not yet verified, as illustrated in Fig. 11, which 
12

compares the kinetic energy spectrum of the fine solution with those obtained with selected PinT configurations.
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5.1.1. Convergence study

The finest level in the PinT configuration is discretized with the same time step size Δ𝑡0 = Δ𝑡ref = 60, spectral resolution 𝑀0 =
𝑀ref = 256 and artificial viscosity coefficient 𝜈0 = 𝜈ref = 0 used in the reference simulation. We perform MGRIT simulations considering 
𝑁levels ∈ {2, 3}, with a coarsening factor 𝑚𝑐 ∈ {2, 4}. The same spectral resolution is considered on all coarse levels, being set to 
𝑀coarse ∈ {51, 128}, which correspond respectively to spatial coarsening factors of 1∕5 and 1∕2 w.r.t. the finest level. The use of spatial 
coarsening on the coarse levels is motivated by stability issues observed in the PinT simulations, both when the coarse schemes are 
IMEX and SL-SI-SETTLS, if too large spectral resolutions are adopted since relatively large time step sizes are used on the coarse 
levels. We also consider several relaxation strategies, with 𝑁relax ∈ {0, 1, 5}. We recall that MGRIT with (𝑁levels, 𝑁relax) = (2, 0) is 
equivalent to Parareal. Finally, all coarse levels 𝑙 > 0 use an artificial second-order viscosity coefficient 𝜈coarse = 106m2s−1, which is 
the same value adopted in the numerical simulations presented by [54] for integrating the SWE on the rotating sphere with PFASST. 
A more detailed study on the influence of the artificial viscosity order and coefficient applied in each discretization level is presented 
in Section 5.1.2.

Fig. 8 presents the evolution, along iterations, of the relative spectral error between the parallel-in-time and fine solutions, 
evaluated at the final time of simulation when IMEX is used on the coarse levels. The errors are shown for two chosen spectral 
resolutions, namely 𝑅norm = 32 and 𝑅norm = 128. We observe that only a few simulations are stable and able to converge (and, when 
this is the case, with a relatively fast error decrease in the first iterations followed by a slower convergence in the next ones), namely 
when the spectral resolution on the coarse levels, the number of levels and/or the coarsening factor are sufficiently small; otherwise, 
the time step on the coarsest level is too large and leads to unstable behaviors. With 𝑀coarse = 51, all configurations can converge, 
more or less rapidly, at the beginning of the wavenumber spectrum (𝑅norm = 32), except for the most aggressive configuration 
((𝑁levels, 𝑚𝑐) = (3, 4)); when more modes are considered in the error analysis (𝑅norm = 128), the simulations with (𝑁levels, 𝑚𝑐) = (2, 4)
also start to develop instabilities that compromise convergence, with this unstable behavior being less remarkable when a more 
expensive relaxation strategy is adopted. On the other hand, when a finer spectral resolution is considered on the coarse levels 
(𝑀coarse = 128), almost none of the MGRIT configurations are stable, even under 𝑅norm = 32, the only exception being the less 
aggressive one ((𝑁levels, 𝑚𝑐) = (2, 2)). The configuration (𝑁levels, 𝑚𝑐) = (3, 2) initially presents a convergent behavior; still, the error 
starts to increase after five iterations, which takes place sooner at the end of the wavenumber spectrum (𝑅norm = 128), and when 
the relaxation is less expensive; under other configurations, the instabilities start to develop even sooner. Finally, in all convergent 
configurations, we notice a slight improvement when the relaxation strategy is more expensive, but the error behaviors are essentially 
the same.

The same results are presented in Fig. 9 for the simulations using SL-SI-SETTLS on the coarse levels. We notice a more important 
unstable behavior compared to the simulations using IMEX as a coarse scheme. Among all tested configurations, the only one 
presenting a relatively stable and convergent behavior is (𝑁levels, 𝑚𝑐, 𝑀coarse) = (2, 2, 51), i.e., the one with the smallest time step and 
spectral resolution on the coarsest level (however, even in this case the convergence is less clear and not monotonic as observed in 
simulations using IMEX). In all other configurations, the error increases after a few iterations, independently of the chosen norm 
for evaluating the error. Moreover, contrary to the results with IMEX, we do not observe significant differences between the errors 
computed with 𝑅norm = 32 and 𝑅norm = 128, meaning that simulations fail to converge in the large spatial scales, and only the former 
case is presented. Finally, we observe only very small improvements when using more expensive relaxation strategies, but it is not 
enough to improve the stability of the simulations and lead to convergent behavior.

To illustrate the physical solutions obtained in the PinT simulations, we present in Fig. 10 the relative difference between 
the PinT and the reference geopotential fields at iteration 𝑘 = 7 for chosen configurations, compared to the solution obtained at 
the initial iteration. With IMEX, we choose (𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse) = (3, 2, 0, 51) and (𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse) = (3, 2, 5, 128). The 
former case presents a monotonic convergence behavior, and we observe small-scale oscillations of the error. On the other hand, the 
latter case diverges after a few iterations (which takes place sooner in the largest wavenumbers, i.e., for larger 𝑅norm values): in the 
seventh iteration, the PinT already diverged under 𝑅norm = 128 but not under 𝑅norm = 32, and we indeed observe fine oscillations 
dominating the error plot. With SL-SI-SETTLS as coarse scheme, we present the results for (𝑁levels , 𝑚𝑐, 𝑁relax, 𝑀coarse) = (2, 2, 0, 51)
and (𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse) = (2, 2, 0, 128). The former presents the best convergence behavior among the simulations depicted in 
Fig. 9, but we observe an increasing magnitude of the fine-scale errors along iterations. The latter configuration starts to diverge 
after five iterations, under 𝑅norm = 32 and 𝑅norm = 128: indeed, the plot reveals small- and fine-scale errors at iteration 7.

The stability and convergence behaviors of the simulations presented in Fig. 10 are also illustrated in Fig. 11, in which we 
compare the kinetic energy (KE) spectrum at 𝑡 = 𝑇 at given iterations with those corresponding to the fine, reference solution. For a 
triangular spectral truncation, the KE spectrum is defined by [38]

𝐸(𝑛, 𝑡) = 1
4

𝑎2

𝑛(𝑛+ 1)

𝑛∑
𝑚=−𝑛

(|𝜉𝑚,𝑛(𝑡)|2 + |𝛿𝑚,𝑛(𝑡)|2)
where 𝜉𝑚,𝑛(𝑡) and 𝛿𝑚,𝑛(𝑡) are the spherical harmonics coefficients of the vorticity and divergence, respectively. In Fig. 11, we present 
the spectrum as a function of the wavelength 𝑛 ∶= 2𝜋𝑎∕𝑛. Concerning the simulations using IMEX, the unstable behavior under con-

figuration (𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse) = (3, 2, 5, 128) is clear in the spectrum, with over-amplifications of medium to large wavenumbers 
along iterations; on the other hand, the spectrum of the simulation using (𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse) = (3, 2, 0, 51) remains below the 
fine one, but slowly converging to it, indicating a more difficult convergence of large wavenumber modes. In the simulations using 
13

SL-SI-SETTLS, we observe some over-amplification in the middle region of the wavenumber spectrum in both PinT configurations.
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Fig. 8. Gaussian bumps test case: relative error 𝐸Φ,𝑅norm
between the PinT and fine solutions at 𝑡 = 𝑇 along iterations, for 𝑅norm = 32 (left) and 𝑅norm = 128 (right); and 

𝑀coarse = 51 (top) and 𝑀coarse = 128 (bottom), with IMEX used on the coarse levels. Simulations are identified by (𝑁levels, 𝑚𝑐, 𝑁relax).

Fig. 9. Gaussian bumps test case: relative error 𝐸Φ,𝑅norm
between the PinT and fine solutions at 𝑡 = 𝑇 along iterations, for 𝑅norm = 32 and 𝑀coarse = 51 (left) and 

𝑀coarse = 128 (right), with SL-SI-SETTLS used on the coarse levels. Results are identical under 𝑅norm = 128. Simulations are identified by (𝑁levels , 𝑚𝑐, 𝑁relax).

5.1.2. Influence of artificial (hyper)viscosity

We now study the influence of the artificial (hyper)viscosity coefficients applied on each coarse discretization level on the 
convergence and stability performance of the PinT methods. Since different temporal and spatial discretization sizes are used on each 
level, their respective stability constraints are not the same; therefore, different viscosity approaches should probably be applied on 
different levels. A brief overview of viscosity and hyperviscosity approaches in spectral methods and some guidelines for choosing 
the magnitude of the viscosity coefficients are presented in Appendix A. For the study proposed here, we consider the configuration 
(𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse) = (3, 2, 0, 128), both with IMEX and SL-SI-SETTLS as coarse time-stepping schemes. In the former case, this 
configuration leads to an initial convergent behavior followed by instabilities arising after the fifth iteration (Fig. 8); in the latter, 
14

the unstable behavior is observed from the initial iteration (Fig. 9). As before, no viscosity is used on the fine level (𝜈0 = 0); for the 
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Fig. 10. Gaussian bumps test case: the relative difference between the PinT and fine geopotential fields at 𝑡 = 𝑇 after 7 iterations for chosen configurations 
(𝑁levels , 𝑚𝑐 , 𝑁relax , 𝑀coarse , coarse time-stepping method). The left plot represents the solution at the initial iteration, which is visually similar for all configurations.

Fig. 11. Gaussians bumps test case: kinetic energy spectra at 𝑡 = 𝑇 of the reference (fine) and PinT solutions at iterations 0, 5 and 7 for given configurations. Left and 
right: IMEX and SL-SI-SETTLS as coarse time-stepping schemes, respectively.

two coarse levels, we consider viscosity orders 𝑞1 and 𝑞2 from {2, 4, 6}, with the viscosity coefficients respectively in {105, 106, 107}
(m2s−1), {1015, 1016, 1017} (m4s−1) and {1025, 1026, 1027} (m6s−1). These ranges of coefficients are coherent with those documented in 
the literature of atmospheric modeling and used in operational models [35]; for instance, reported values of fourth-order coefficient 
varying between orders of 1012m4s−1 and 1016m4s−1, with larger coefficients being adopted, in general, when the spectral resolution 
is smaller.

It has been observed that the convergence and stability behaviors of the simulations, both in the cases with IMEX and SL-SI-

SETTLS as a coarse scheme, are determined mainly by the viscosity order and coefficient applied on the coarsest level, i.e., 𝑞2 and 
𝜈2, with only little influence of the values applied on the intermediate level. This observation indicates that it is critical to damp 
amplifications produced by the coarsest discretization, whose stability constraints are the most critical ones. Therefore, in order to 
avoid the presentation of a too large number of simulations (with both (𝑞1 , 𝜈1) and (𝑞2, 𝜈2) varying), we fix 𝜈1 = 0 (i.e., no viscosity on 
the intermediate level) and present the results for each pair (𝑞2, 𝜈2). Moreover, similar results were obtained in the cases 𝑅norm = 32
and 𝑅norm = 128, and we only present the former.

In the simulations using IMEX as a coarse scheme (Fig. 12a), we observe that large second-, fourth- or six-order viscosities are 
required to ensure stability: indeed, zero or too small viscosities lead to strong unstable behaviors from the initial iteration, and with 
15

intermediate values the simulations initially converge but instabilities are triggered after few iterations. The results also reveal that a 



Journal of Computational Physics 496 (2024) 112591J.G. Caldas Steinstraesser, P.S. Peixoto and M. Schreiber

Fig. 12. Gaussian bumps test case: relative error 𝐸Φ,𝑅norm
between the Pint and fine solutions at 𝑡 = 𝑇 along iterations for 𝑅norm = 32, with IMEX (left) or SL-SI-

SETTLS (right) being used as a coarse time-stepping scheme, as a function of the viscosity coefficients applied on the coarsest level. All simulations use configuration 
(𝑁levels , 𝑚𝑐 , 𝑁relax , 𝑀coarse) = (3, 2, 0, 128). No viscosity is applied on the finest and intermediate levels. Viscosity coefficients expressed in m𝑞s−1 .

Fig. 13. Gaussians bumps test case: kinetic energy spectra at 𝑡 = 𝑇 of the reference (fine) and PinT solutions at iterations 0, 5 and 10 for chosen viscosity order and 
coefficient (𝑞2 , 𝜈2) applied on the coarsest level. All simulations use configuration (𝑁levels , 𝑚𝑐, 𝑁relax , 𝑀coarse) = (3, 2, 0, 128), with no viscosity applied on the finest and 
intermediate levels. Left and right: IMEX and SL-SI-SETTLS as coarse time-stepping schemes, respectively.

compromise between stability and accuracy needs to be fulfilled when choosing the viscosity order: among the stable simulations, a 
faster convergence is obtained when the viscosity order is higher, indicating that only the largest wavenumbers need to be damped. 
Notably, with a large second-order viscosity, which damps a large region of the wavenumber spectrum, the error is much larger 
compared to higher orders already in the initial iteration. On the other hand, in the case where SL-SI-SETTLS is used as a coarse 
scheme (Fig. 12b), a much more critical dependence of the stability on the viscosity approach is observed. Only the simulation using 
a large second-order viscosity presents a convergent behavior, indicating that a large region of the wavenumber spectrum needs to be 
damped. Finally, the results for both coarse schemes reveal that, compared to reported values in serial simulations, larger viscosity 
coefficients (by between one and three orders of magnitude) are required to ensure stability in the PinT context.

We illustrate in Fig. 13 the evolution of the kinetic energy spectrum for two chosen viscosity configurations, namely (𝑞1, 𝜈1, 𝑞2, 𝜈2) =
(−, 0, 2, 107) and (𝑞1, 𝜈1, 𝑞2, 𝜈2) = (−, 0, 6, 1027) (i.e., with no viscosity applied on the intermediate level and high second- or sixth-

order viscosity on the coarsest none), for both time-stepping schemes on the coarse level. As shown in Fig. 12a, both viscosity 
configurations provide convergence in the simulations using IMEX, mainly the sixth-order one. We indeed observe that the second-

order viscosity strongly damps the initial PinT solution almost in the entire wavenumber spectrum, and the sixth-order one provides 
a better approximation to the reference spectrum. On the other hand, in the simulations using SL-SI-SETTLS on the coarse levels, 
the large damping due to the second-order viscosity is required for keeping the simulation stable along iterations; a higher-order 
approach, even with a very large coefficient, damps only the largest wavenumbers, and we observe an overamplification of medium 
wavenumbers already at iteration 𝑘 = 0, which propagates to the entire spectrum after a few iterations.

5.1.3. Evaluation of computing times and speedups

We now evaluate the computing times and respective speedups of some chosen PinT configurations presenting relatively stable 
and convergent behavior. A larger number of configurations using IMEX on the coarse levels is chosen since it provides better 
behavior in general, which allows studying the speedups as a function of various MGRIT parameters, such as the number of levels, 
the relaxation strategy, the spectral resolution on the coarse levels and the artificial viscosity approach. In the case of SL-SI-SETTLS, 
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a smaller set of configurations is chosen.
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Fig. 14. Gaussian bumps test case: wall times for completing 𝑘 iterations of PinT simulations for the configuration (𝑁levels , 𝑚𝑐, 𝑁relax , 𝑀coarse , 𝑞1 , 𝜈1) = (2, 2, 0, 51, 2, 106)
using IMEX (left) or SL-SI-SETTLS (right) on the coarse level as a function of the number of parallel processors in time. The horizontal, dashed line indicates the 
computing time of the reference solution, computed using Δ𝑡ref =Δ𝑡0 = 60 s.

We are mainly interested in the relation between the speedups and the errors provided by each PinT simulation. However, we 
first present some strong scaling results in Fig. 14 for the configuration (𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse, 𝑞1, 𝜈1) = (2, 2, 0, 51, 2, 106) using IMEX 
or SL-SI-SETTLS as coarse time-stepping schemes. The wall times for reaching given iterations are compared to the reference one 
(𝑇ref ≈ 137 s) for simulations using 𝑁proc ∈ [1, 64]. In the initial iteration, we observe a good scaling in the entire range of 𝑁proc; in 
the following ones, we begin to notice a saturation of the speedup for 𝑁proc ≥ 32, but there seems to still exist some room for further 
improvements if more processors are used. In all results presented hereafter, we consider 𝑁proc = 64. We notice that the number 
of processors considered here is smaller than the theoretical maximum value of 𝑁proc, which would still provide speedups, which 
depends on the number of fine time steps, the coarsening factor and the relaxation strategy, as described in Section 3.2; for instance, 
in the simulation depicted in Fig. 14, up to 𝑁proc = 1080 could be used. This limit is smaller in other configurations considered in 
this work but remains larger than 𝑁proc = 64 when 𝑁relax = 0 is used. As a last remark, we notice in Fig. 14 that, under the same 
PinT configurations, the simulations using SL-SI-SETTLS as a coarse scheme are more expensive than those using IMEX, which may 
be due to additional costs linked to the semi-Lagrangian approach (trajectory estimations and interpolations to departure points).

We now study the speedups w.r.t. the relative error in the geopotential field for simulations using IMEX in Fig. 15a. The presented 
configurations are chosen to compare the influence of the PinT parameters individually. First, we observe that the use of a less refined 
resolution 𝑀coarse = 51 reduces the cost of the time integration on the coarse level, leading to a speedup of approximately 5.5 for 
reducing the error by a factor close to 5; however, the convergence rapidly stagnates, with increasing computational times not leading 
to significant error reductions; if one wants to obtain smaller errors, it is necessary to use a larger coarse spectral resolution, which 
increases the computational cost of the temporal parallelization but leads to speedups still larger than one if enough processors are 
used. Concerning the relaxation strategy, it has been seen in Fig. 8 that only slight improvements in convergence are obtained by 
increasing 𝑁relax. A more expensive relaxation, however, strongly increases the computational cost of the MGRIT simulation since 
a larger number of time steps needs to be computed per iteration; therefore, increasing 𝑁relax negatively impacts the speedup for 
obtaining approximately the same errors, and 𝑁relax = 0 provides the better compromise. Finally, we compare the influence of the 
viscosity orders and coefficients applied on the coarse levels: the worst compromise between speedup and convergence is obtained 
by using a too-large second-order viscosity, which overdamps the entire wavenumber spectrum and leads to larger errors despite the 
convergent behavior. Better results are obtained using a large higher-order viscosity, mainly in the beginning of the wavenumber 
spectrum, with a speedup of approximately 2.6 to obtain relative errors close to 10−4 under 𝑅norm = 32. Still, the overall trade-off 
between convergence and computational cost is similar to moderate second-order viscosity configurations.

Fig. 15b presents the speedups as a function of the errors of some of the few relatively stable simulations using SL-SI-SETTLS on 
the coarse levels, both with the default moderate second-order viscosity or other viscosity configurations. In the former case, only the 
less aggressive configuration (𝑁levels, 𝑚𝑐) = (2, 2) remains stable and can improve the convergence with speedups larger than the unity. 
Still, after two iterations, the convergence deteriorates at the end of the wavenumber spectrum. In the other simulations, a better 
convergence behavior is obtained due to the larger second-order viscosity on the coarsest level; however, due to this same reason, 
mainly when a large second-order viscosity is also used on the intermediate level, the initial errors are larger than with 𝜈1 = 106m2s−1

and even after ten iterations, they do not provide smaller errors than this case; moreover, the speedups are considerably smaller due 
to the larger spectral resolution on the coarse levels and go below the unity after two iterations.

5.2. Unstable jet test case

We now consider the test case presented by [20]. In this test, a stationary zonal jet is perturbed by a Gaussian bump in the 
geopotential field, leading to the formation of vortices and a rapid energy transfer from low to high wavenumbers, which may be 
especially challenging in the context of PinT methods. This test case was used by [32] for studying the temporal parallelization 
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of the SWE on the rotating sphere using PFASST, and we consider the same simulation length in time, namely 𝑇 = 144 h. As in 
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Fig. 15. Gaussian bumps test case: speedup as a function of the relative geopotential error in the spectral space for chosen configurations using IMEX (left) or SL-

SI-SETTLS (right) as coarse time-stepping scheme. Simulations are identified by (𝑁levels, 𝑚𝑐 , 𝑁relax , 𝑀coarse , 𝜈1 , 𝜈2) and each data point corresponds to an iteration. The 
horizontal, dashed-dotted line indicates a unitary speedup. All simulations use 𝑁proc = 64 parallel processors in time.

Fig. 16. Unstable jet test case: relative 𝐿2 error (computed in the physical space) and spectral errors (for various values of 𝑅norm) between a solution obtained with 
spectral resolution 𝑀 = 512 and time step Δ𝑡 = 2 and solutions obtained with 𝑀 = 𝑀0 = 256 and various time steps. IMEX is used in all cases.

Fig. 17. Unstable jet test case: solution at 𝑡 = 𝑇 = 144 h computed with IMEX. Zoom on the north hemisphere, the vorticity field being negligible in the south one.

the Gaussian bumps test case, we begin by choosing a temporal discretization size to be used as a reference and fine solution for 
the study performed here. We perform simulations using a spectral resolution 𝑀0 = 256, timestep Δ𝑡0 ∈ [2, 960](s) and no artificial 
viscosity (𝜈0 = 0) and evaluate the errors of the geopotential field both in physical and spectral spaces w.r.t. a solution computed 
using 𝑀 = 512 and Δ𝑡 = 2, also computed without viscosity. In all cases, the integration is performed using IMEX. Fig. 16 shows that 
the errors for Δ𝑡0 ≤ 120 s are mainly due to the spatial discretization, with no visible dependence of the spectral errors on Δ𝑡0, for 
all 𝑅norm values, and a slight increase of the physical error between Δ𝑡0 = 60 s and Δ𝑡0 = 120 s. For all tested values Δ𝑡0 > 120 s, 
instabilities develop and the simulations are not able to reach 𝑡 = 𝑇 . Thus, we choose Δ𝑡0 = 60 s, allowing, in the context of Parareal 
and MGRIT, a stable simulation on the finest level and the use of not-too-large time steps on the coarse ones. Fig. 17 presents the 
final vorticity field produced by the chosen fine discretization and by the simulation using 𝑀 = 512 and Δ𝑡 = 2.

5.2.1. Convergence study

For the study of convergence and stability of Parareal and MGRIT, we consider the same set of parameters as in the Gaussian 
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bumps test case, namely with 𝑁levels ∈ {2, 3}, 𝑚𝑐 ∈ {2, 4}, 𝑁relax ∈ {0, 1, 5} and 𝑀coarse ∈ {51, 128}. However, instead of using a fixed 
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Table 1

Unstable jet test case: viscosity coefficients (in 
m𝑞s−1) applied on the coarse levels of the PinT 
simulations as a function of the time step and 
coarse time-stepping scheme.

Coarse scheme IMEX SL-SI-SETTLS

Viscosity order 𝑞 4 2

Δ𝑡 = 2Δ𝑡0 1016 107

Δ𝑡 = 4Δ𝑡0 1017 107

Δ𝑡 = 16Δ𝑡0 1017 107

Fig. 18. Unstable jet test case: relative error 𝐸Φ,𝑅norm=32 between the PinT and fine solutions at 𝑡 = 𝑇 along iterations for 𝑀coarse = 51 (left) and 𝑀coarse = 128 (right), with 
IMEX used on the coarse levels. Results are identical under 𝑅norm = 128. Simulations are identified by (𝑁levels , 𝑚𝑐, 𝜈1 , 𝜈2). The curves corresponding to the second-order 
viscosity visually coincide, as well as the curves (𝑁levels, 𝑚𝑐 ) = (2, 4) and (𝑁levels , 𝑚𝑐 ) = (3, 4) in the fourth-order viscosity case.

second-order artificial viscosity approach, with the same coefficient applied on all coarse levels, we use the results obtained in 
Section 5.1.2 in order to improve the performance of the temporal parallelization. In the simulations using IMEX on the coarse 
levels, we consider a higher-order viscosity; however, due to the higher complexity of the unstable jet test case compared to the 
Gaussian bumps one, with a larger temporal domain and possibly more challenging stability, we choose here to use fourth instead of 
sixth-order viscosity; moreover, the viscosity coefficients are chosen as a function of the time step size used on each level, such that 
larger coefficients are applied when stability constraints are more restrictive. In the case of SL-SI-SETTLS, we apply large second-

order viscosity coefficients on all coarse levels, independently of their discretizations, due to more critical stability behavior. Table 1

summarizes the adopted viscosity coefficients.

Fig. 18 presents the evolution of the PinT errors along iterations when IMEX is used on the coarse levels. As in the Gaussian 
bumps test case, only slight improvements are observed by using more expensive relaxation strategies; therefore, we only present 
the results for 𝑁relax = 0. Moreover, the observed stability and convergence behaviors are the same in all spatial scales, with the 
large ones dominating the error magnitudes, such that the convergence curves are identical under 𝑅norm = 32 and 𝑅norm = 128; we, 
therefore, present only the former case (these same remarks being valid for the results using SL-SI-SETTLS). Finally, in order to 
evaluate the proposed viscosity approach, we also present the results using the same viscosity order and coefficients initially adopted 
in the previous test case (𝑞 = 2 and 𝜈 = 106m2s−1 on all coarse levels).

Under the second-order viscosity approach, convergence, and stability is effectively obtained, except for the most aggressive 
configuration ((𝑁levels, 𝑚𝑐) = (3, 4)), which stops after three and one iteration, respectively in the cases 𝑀coarse = 51 and 𝑀coarse = 128, 
due to instabilities; however, all other simulations present an almost identical convergence behavior: it probably indicates that the 
second-order viscosity causes too large damping on the coarse levels and only a few contributions to the fine solution come from 
them. Indeed, proper choices of fourth-order viscosity coefficients provide better results: a much faster convergence is obtained in 
the configuration (𝑁levels, 𝑚𝑐, 𝑀coarse) = (2, 2, 128), in which a moderate viscosity coefficient (𝜈1 = 1016m4s−1) is applied on the coarse 
level; a slower one (but still faster compared to the second-order viscosity) is obtained under (𝑁levels, 𝑚𝑐) = (3, 2), in which a large 
viscosity (𝜈2 = 1017m4s−1) is applied only on the coarsest level; however, all simulations using this large viscosity on all coarse levels 
((𝑁levels, 𝑚𝑐) = (2, 4) and (𝑁levels, 𝑚𝑐) = (3, 4)) converge almost identically and slower than the second-order viscosity case, indicating an 
excessive damping. An unexpected result concerns the less aggressive configuration ((𝑁levels, 𝑚𝑐, 𝑀coarse) = (2, 2, 51)), which diverges 
after a very fast convergence in the first two iterations, probably indicating the triggering of numerical instabilities.

The importance of the choice of the viscosity approach is even clearer in the simulations using SL-SI-SETTLS (Fig. 19). The 
second-order viscosity with a moderate coefficient (𝜈coarse = 106m2s−1) is not able to ensure convergence and stability in any of the 
PinT configurations. For that, it is necessary to increase the viscosity coefficient to 𝜈coarse = 107m2s−1. However, it leads to excessive 
damping on the coarse levels, and all configurations present the same convergence behavior, which stagnates around errors one 
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to two orders of magnitude larger than those obtained using IMEX as a coarse scheme. Therefore, the viscosity setting does allow 
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Fig. 19. Unstable jet test case: relative error 𝐸Φ,𝑅norm=32 between the PinT and fine solutions at 𝑡 = 𝑇 along iterations, for 𝑀coarse = 51 (left) and 𝑀coarse = 128 (right), 
with SL-SI-SETTLS used on the coarse levels. Results are identical under 𝑅norm = 128. Simulations are identified by (𝑁levels , 𝑚𝑐, 𝜈1 , 𝜈2). The curves corresponding to 
𝜈1 = 107m2s−1 and 𝜈2 = 107m2s−1 visually coincide.

Fig. 20. Unstable jet test case: kinetic energy spectra at 𝑡 = 𝑇 of the reference (fine) and MGRIT solutions at given iterations 𝑘 for the configurations illustrated in 
Fig. 21. Left and right: IMEX and SL-SI-SETTLS as coarse time-stepping schemes.

improving the PinT simulations using SL-SI-SETTLS, but it seems quite challenging to find a sweet spot between accuracy on the 
coarse levels and convergence.

Fig. 21 presents the absolute difference between the PinT and reference vorticity fields at iterations 𝑘 = 0 and 𝑘 = 5 or 𝑘 = 10
for chosen configurations, namely (𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse) ∈ {(2, 2, 0, 51), (2, 2, 0, 128), (3, 2, 0, 51)} and (𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse) =
(2, 2, 0, 51), respectively with IMEX and SL-SI-SETTLS as coarse scheme, all of them using the viscosity configurations depicted 
in Table 1. The evolution of the respective kinetic energy spectra is illustrated in Fig. 20. Concerning the configurations 
(𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse) = (2, 2, 0, 51) and (𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse) = (2, 2, 0, 128) using IMEX, which use a moderate viscosity co-

efficient on the coarse level, the kinetic energy spectrum is relatively close to the reference one already in the initial iteration; after 
five iterations, a slight amplification of medium wavenumbers is observed in the case 𝑀coarse = 51, which translates to small-scale 
oscillations in the physical plot, despite a global reduction of the error magnitudes, whereas a much more important error decrease, 
without amplification of the spectrum, is obtained with 𝑀coarse = 128. In the configuration (𝑁levels, 𝑚𝑐, 𝑁relax, 𝑀coarse) = (3, 2, 0, 51)
using IMEX, the larger fourth-order viscosity coefficient applied on the coarsest level leads to a larger damping of the spectrum at 
iteration 𝑘 = 0, including small wavenumbers. It is clearly seen as large-scale oscillations in the respective physical plot. After five 
iterations, only smaller-scale errors are observed, but the spectrum is still outperformed by the initial one of the simulations using 
a smaller viscosity coefficient. Finally, in the simulation using SL-SI-SETTLS, in which a very aggressive second-order viscosity is 
applied, drastic damping is observed along the entire spectrum in the initial iteration, leading to very large-scale physical errors. The 
spectrum converges slowly: after ten iterations, it remains highly damped, and large-scale errors are still observed in the physical 
plot.

5.2.2. Evaluation of computing times and speedups

We now proceed to the evaluation of the computing times and speedups provided by the PinT simulations in the unstable jet test 
case, whose reference solution takes a computing time 𝑇ref ≈ 546 s. As in the Gaussian bumps test case, we consider 𝑁proc = 64 in all 
20

simulations.
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Fig. 21. Unstable jet test case: the absolute difference between the PinT and the fine vorticity fields at 𝑡 = 𝑇 under chosen configurations identified by 
(𝑁levels , 𝑚𝑐 , 𝑀coarse , coarse time-stepping scheme) at iterations 0 (left) and 5 or 10 (right). All simulations use 𝑁relax = 0 and the viscosity configurations depicted 
in Table 1.

Fig. 22 presents the speedups as a function of the relative error on the geopotential field for some chosen configurations using 
IMEX or SL-SI-SETTLS on the coarse levels. In the former case, we consider two pairs of configurations, namely (𝑁levels, 𝑚𝑐, 𝑀coarse) =
(2, 2, 128) and (𝑁levels, 𝑚𝑐, 𝑀coarse) = (3, 2, 51); in each pair, one configuration uses a second-order viscosity and the other a fourth-

order one. Contrary to the Gaussian bumps simulations, we now observe, in this more complex test case, characterized by more 
important interactions between wavenumber modes, clearer differences between the viscosity approaches in terms of compromise 
between convergence and numerical acceleration. We easily see that the simulations using the second-order approach provide less 
interesting results in terms of speedup since almost no convergence is observed in the first three iterations. Better results are obtained 
using the fourth-order viscosity, mainly the configuration (𝑁levels, 𝑚𝑐, 𝑀coarse) = (2, 2, 128), despite its larger spectral resolution on the 
coarse levels. Indeed, two iterations provide nearly the same error as ten iterations of the configuration (𝑁levels, 𝑚𝑐, 𝑀coarse) = (3, 2, 51)
using fourth-order viscosity, with approximate speedup factors of 2.7 and 1.9, respectively. Finally, for these two configurations, the 
solutions whose error plots are depicted in Fig. 21, corresponding to the iteration 𝑘 = 5, are obtained with respective speedups of 1.1 
and 3.7.

In the case where SL-SI-SETTLS is used as a coarse time-stepping scheme, we recall that all stable simulations present approxi-

mately the same convergence behavior, due to the overdamping induced by the large second-order viscosity approach. Therefore, the 
comparison of the speedups allows us to study the influence of the choice of Parareal and MGRIT parameters on the computational 
cost. In Fig. 22b, we only present simulations using the coarse spectral resolution 𝑀coarse = 51 and the errors under 𝑅norm = 32. 
The largest and smallest speedups are provided respectively by (𝑁levels, 𝑚𝑐) = (3, 4) and (𝑁levels, 𝑚𝑐) = (2, 2), whose coarsest levels, on 
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which the time integration is serial, use the largest and smallest time step sizes, with speedups of approximately 3.5 and 1.1 before 
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Fig. 22. Unstable jet test case: speedup with respect to the relative geopotential error in spectral space for chosen configurations using IMEX or SL-SI-SETTLS as coarse 
time-stepping scheme. Simulations are identified by (𝑁levels , 𝑚𝑐, 𝑁relax , 𝑀coarse , 𝜈1 , 𝜈2) and each data point corresponds to an iteration. The horizontal, dashed-dotted 
line indicates a unitary speedup. All simulations use 𝑁proc = 64 parallel processors in time.

the stagnation of the convergence. The simulations (𝑁levels, 𝑚𝑐) = (3, 2) and (𝑁levels, 𝑚𝑐) = (2, 4), whose coarsest levels use the same 
time step size, present intermediate and very similar speedup results.

5.3. Discussion

The study presented in this section aimed to evaluate the performance, in terms of stability, convergence and computational cost, 
of Parareal and MGRIT applied to the numerical integration of the SWE on the rotating sphere. More specifically, the main goal was 
to study the influence of the choice of time stepping scheme used on the coarse levels, which is known to be a crucial factor for the 
PinT performance, and how the results can be improved by proper parametric and discretization choices. The obtained results provide 
indeed indications on which characteristics a coarse scheme should have in order to lead to a successful temporal parallelization, i.e., 
with stable and relatively accurate solutions being provided within smaller computational times than serial integrations.

From the numerical simulations, and also from the analytical stability study developed in Section 4, it is clear that it is necessary 
but not sufficient for the coarse scheme to be stable: poor results are obtained when the temporal parallelization uses SL-SI-SETTLS 
on the coarse levels, despite the stability and popularity of this scheme for the serial integration of atmospheric models and recent 
works indicating that the use of semi-Lagrangian approaches on the coarse levels improves the performance of PinT methods applied 
to simpler problems.

Moreover, the coarse discretization should be able to accurately represent large spatial scales and ensure stability on the fine ones. 
Indeed, the best results using IMEX as a coarse scheme are obtained with large higher-order viscosity coefficients on the coarse levels, 
damping the largest wavenumbers but preserving the intermediate and smallest ones. In the configurations using SL-SI-SETTLS on 
the coarse levels, the very restrictive stability constraints require the use of large second-order viscosities, which damps a large range 
of the spectrum, providing stability at the expense of a great accuracy loss.

The detailed and level-dependent study conducted on the influence of the adopted viscosity approach provides other insightful 
conclusions. The tests were performed considering viscosity values around typical values adopted on atmospheric modeling, and it 
was found that relatively large values are required for ensuring stability in the PinT framework. However, it was verified that the 
artificial viscosity is required only on the coarsest levels, on which the stability constraints are more severe due to the large time step 
sizes adopted. It implies that the fine dynamics do not need to be damped on the fine discretization levels, and more accurate and 
faster converging PinT solutions can be expected.

Finally, these conclusions imply that a compromise between accuracy and stability of the coarse discretization has to be found in 
order to achieve speedup using PinT methods. Our results indicate that, if the conditions of the coarse discretization described above 
are met, and by using enough parallel resources, Parareal and MGRIT using IMEX are able to provide relatively accurate solutions 
within shorter computational times compared to fine reference simulations.

6. Conclusion and perspectives

In this work, we have studied the temporal parallelization of the shallow water equations on the rotating sphere using Parareal 
and MGRIT. The development and application of PinT methods to hyperbolic problems still advance relatively slowly due to the 
well-known stability and convergence issues when applied to simple problems such as the advection equation, with the choice of 
coarse temporal discretization being a crucial aspect in this context. Therefore, the focus here was to investigate if popular and 
well-established time-stepping schemes in the atmospheric modeling community can provide good performance results when used 
on the coarse levels of the PinT methods. The two considered schemes, IMEX and SL-SI-SETTLS, allow the use of relatively large time 
steps in serial integrations since they avoid stability issues linked to the stiff terms of the governing equations.

Two approaches were considered in this study. First, we conducted an analytical stability investigation of the PinT methods 
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applied to a linearized ODE. A notable result is that Parareal and MGRIT using SL-SI-SETTLS as a coarse scheme present very poor 
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stability properties compared to IMEX. Second, we performed numerical simulations of two test cases with increasing complexity. 
This confirmed the poor stability using SL-SI-SETTLS, with only very restrictive PinT configurations presenting a stable behavior. 
Better results were obtained with IMEX, but still relatively limited in terms of choice of several levels and coarsening factors in time. 
A further investigation indicated that better choices of artificial viscosity parameters only on the coarse levels allow for improved 
stability and convergence by using second- and higher-order viscosities for SL-SI-SETTLS and IMEX. In the former case, however, the 
stability is obtained at the cost of a strong damping of the entire wavenumber spectrum, which reduces the accuracy provided by 
the temporal parallelization. To the best of our knowledge, this is the first time that a level-selective viscosity has been investigated 
in PinT methods. Finally, studies on parallel performance indicated that the best compromises between accuracy and computational 
cost, with speedups larger than one, are obtained using IMEX as a coarse scheme, mainly due to its better stability and convergence 
properties in the PinT framework.

In summary, the study presented in this work indicates that inferior results are obtained when the temporal parallelization 
uses SL-SI-SETTLS on the coarse levels, despite the stability and popularity of this scheme for the serial integration of atmospheric 
model and recent works indicating that the use of semi-Lagrangian approaches on the coarse levels improves the performance of 
PinT methods. Better results are obtained using IMEX, but depending on the discretization applied on each level and, consequently, 
on appropriate choices of viscosity and hyperviscosity parameters, whose influence is especially remarkable in the more complex 
unstable jet test case. Under these conditions, and by using enough parallel resources, Parareal and MGRIT using IMEX can provide 
relatively accurate solutions within shorter computational times compared to fine reference simulations.

An important and open challenge concerns the gap to be filled between the results obtained in this work and the application of 
parallel-in-time methods for real weather and climate problems. Through parametrization and discretization choices coherent with 
practical applications, we tried, to the extent possible, to provide insights in this direction, e.g., with the parameters considered in 
the analytical stability study, the spectral resolutions adopted, the ranges of tested viscosity and hyperviscosity coefficients and the 
simulation of quite challenging test cases, mainly the unstable jet one, which is a standard test in atmospheric modeling due to its 
complex dynamics. However, more refined investigations would need to be conducted to reach practical applications in operational 
models.

A natural future work consists of investigating if modifications of SL-SI-SETTLS and the use of other time-stepping schemes, 
eventually not still used operationally in atmospheric models or even similar schemes but with higher discretization orders, could 
provide better stability and convergence properties for Parareal and MGRIT. For instance, exponential integration methods, which 
can integrate precisely the linear terms of the governing equations, have aroused a growing interest in the context of atmospheric 
modeling, e.g., in [26,54,25]. It includes a semi-Lagrangian variant of this family of method, which have been proposed and used 
for solving the SWE on the plane by [46], and to the SWE on the rotating sphere with a cubed sphere spatial discretization by [55]. 
Ongoing studies indicate that the use of exponential schemes and their semi-Lagrangian versions on the coarse discretization levels 
indeed provides better stability and convergence properties for Parareal and MGRIT, which will be presented in the following article.

Finally, the results presented in this work illustrate different behaviors of the wavenumber spectra of the solution along the PinT 
iterations, with the adopted artificial viscosity approach being crucial for ensuring stability and convergence, and notably being 
required only on the coarse discretization levels. Since the SWEs are a nonlinear model, with nonlinear interactions between modes 
transferring energy to the highest wavenumbers, future works should focus on understanding how each time-stepping scheme treats 
these interactions and how they influence the performance of the temporal parallelization.
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Fig. 23. (a): viscosity coefficient of orders 𝑞 ∈ {2, 4, 6} as a function of the damping time for chosen spectral resolutions 𝑀 . Computed using (A.2). (b): discrete 
damping factor 𝑏̂Δ𝑡,𝑛 as a function of the spectral mode for viscosity orders 2, 4 and 6 and chosen viscosity coefficients (in m𝑞s−1). Computed considering Δ𝑡 = 120 s.

Undertaking (JU) under grant agreement No 955701, Time-X. The JU receives support from the European Union’s Horizon 2020 
research and innovation programme and Belgium, France, Germany, Switzerland.

Most of the computations presented in this paper were performed using the GRICAD infrastructure (https://gricad .univ -grenoble -
alpes .fr), which is supported by Grenoble research communities.

Appendix A. Viscosity and hyperviscosity in spectral methods

We make a brief overview of the theory of viscosity approaches in spectral methods and some considerations about the orders 
of magnitude to be chosen for the viscosity coefficients, following the presentation in [35], to which we refer the reader for further 
details.

As mentioned in Section 2, the viscosity approach with even order 𝑞 ≥ 2 applied to a field 𝜓 consists in

𝜕𝜓

𝜕𝑡
= (−1)

𝑞

2 +1𝜈∇𝑞𝜓 (A.1)

where the (−1)
𝑞

2 +1 allows to define 𝜈 ≥ 0. In the spectral space of spherical harmonics, (A.1) reads

𝜕𝜓𝑚,𝑛

𝜕𝑡
= (−1)

𝑞

2 +1𝜈

(
−𝑛(𝑛+ 1)

𝑎2

) 𝑞

2
𝜓𝑚,𝑛 = −𝜈

(
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) 𝑞

2
𝜓𝑚,𝑛

whose exact solution is

𝜓𝑚,𝑛(𝑡) = 𝜓𝑚,𝑛(0) exp

(
−𝜈

(
𝑛(𝑛+ 1)

𝑎2

) 𝑞

2
𝑡

)
The viscosity coefficient can be determined by setting a time 𝜏 in which a given wavenumber 𝑛0 is damped to a fraction 𝑏𝜏,𝑛0

of 
𝜓𝑚,𝑛(0). Typically, 𝜈 is set such that the largest wavenumber 𝑛0 = 𝑀 damps to a fraction 𝑏𝜏,𝑛0

= 1∕𝑒, i.e.,

𝜈 = 1
𝜏

(
𝑀(𝑀 + 1)

𝑎2

)− 𝑞

2
(A.2)

With this viscosity parameter being applied to the entire spectrum, a given mode 𝜓𝑚,𝑛 is damped after a time step Δ𝑡 by a factor

𝑏Δ𝑡,𝑛 ∶= exp

(
−𝜈

(
𝑛(𝑛+ 1)

𝑎2

) 𝑞

2
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= exp
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2
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(
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2
]−1

=∶ 𝑏̂Δ𝑡,𝑛

where 𝑏̂Δ𝑡,𝑛 corresponds to a backward Euler discretization of (A.1), as considered in this work.

Fig. 23a illustrates the orders of magnitude of the viscosity coefficient values for viscosity orders 𝑞 ∈ {2, 4, 6} as a function of the 
damping time 𝜏 and for the two spectral resolutions considered on the coarse discretization levels of the PinT numerical simulations 
performed here, namely 𝑀 ∈ {51, 128}. Damping timescales reported and suggested in the literature for spectral models usually 
range around units or tenths of hours, depending on the spectral resolution (see e.g., [9,31,67]). In Fig. 23b we plot the discrete 
damping factor 𝑏̂Δ𝑡,𝑛 w.r.t. the wavenumber modes 𝑛 for some viscosity coefficients around the approximate average values depicted 
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in Fig. 23a and time step Δ𝑡 = 120 s. We observe that smaller-order viscosities lead to a faster decay of smaller wavenumbers and 
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a larger sensitivity on the coefficient value (compare the spacing between the curves corresponding to the same viscosity order). 
It indicates that a higher-order viscosity produces a more refined stability filter, damping only the largest wavenumbers and better 
preserving the large-scale spatial features of the solution.
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