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RESUMO
Este trabalho apresenta um modelo de programação estocástica em dois estágios para

um problema de corte e empacotamento irregular bidimensional com incerteza na demanda. O
modelo considera a demanda como uma variável aleatória discreta, aproximada por um conjunto de
cenários e busca minimizar o custo esperado dado pelo custo de comprar faixa apenas no primeiro
estágio e o valor esperado vindo da penalização por demandas não atendidas no segundo estágio.
Experimentos computacionais iniciais indicam que a proposta produz soluções coerentes com o
contexto investigado e que é vantajoso resolver o problema estocástico e considerar a aleatoriedade
no problema.

PALAVRAS CHAVE. Problema de Empacotamento Irregular em Faixa Bidimensional, In-
certeza na demanda, Programação Estocástica.

POI- PO na indústria. OC - Otimização combinatória.

ABSTRACT
This paper presents a two-stage stochastic programming model for a cutting and packing

problem with demand uncertainty. The model considers demand as a discrete random variable,
approximated by a set of scenarios and seeks to minimize the expected cost given by the cost of
buying strip only in the first stage and the expected value coming from the penalty for unsatisfied
demands in the second stage. Initial computational experiments indicate that the proposal produces
solutions consistent with the investigated context and that it is advantageous to solve the stochastic
problem and consider the randomness in the problem.

KEYWORDS. Two-dimensional Irregular Strip Packing. Demand uncertainty. Stochastic
programming.
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1. Introdução

Problemas de corte e empacotamento com itens irregulares buscam determinar como ar-
ranjar objetos menores de formato irregular dentro de objetos maiores, buscando alcançar um ob-
jetivo final. Tais problemas, na maioria das vezes, são resolvidos em suas formas determinísticas,
isto é, sem levar em consideração as incertezas que podem surgir na prática.

Um tipo de incerteza que é comum a problemas de corte e empacotamento é com relação
à demanda dos itens. Por exemplo, em problemas em que os itens irregulares bidimensionais são
alocados à uma faixa, como é o caso do corte de tecido para a fabricação de roupas na indústria
de vestuário, a incerteza na demanda dos itens impacta nas decisões de compra de faixa, principal-
mente nos casos em que a faixa para cortar os itens é adquirida antes do conhecimento do valor
exato da demanda de cada tipo de item, pois se for comprado pouco comprimento de faixa e a
demanda for alta, prejuízos ocorrerão por ter que comprar mais tecido com urgência ou a empresa
deixará de ter ganhos por não ter material suficiente para atender toda a demanda em um determi-
nado período. Da mesma forma, se muito comprimento de faixa for adquirido, a empresa pode ter
prejuízo devido a itens não vendidos (itens em estoque). Logo, quando a incerteza na demanda é
levada em consideração, o desafio passa a ser decidir como a demanda deve ser considerada (i. e.
modelada) ao resolver tais problemas a fim de diminuir prejuízos relacionados, por exemplo, à falta
de produtos para atender à demanda ou excesso de produtos por superestimar a demanda.

Um tipo de problema bastante abordado na literatura de problemas (determinísticos) de
corte e empacotamento irregular bidimensional é o Problema de Empacotamento Irregular em Faixa
Bidimensional (Irregular Strip Packing Problem, em inglês e aqui referenciado pela sigla 2ISP).
Este problema considera um conjunto de tipos de itens irregulares, em que cada tipo de item possui
uma demanda associada. O objetivo é alocar toda a demanda de itens irregulares em uma faixa
ou placa de largura fixa e comprimento ilimitado, sem sobreposição, de forma a minimizar o com-
primento utilizado. Outro exemplo de problema de corte e empacotamento com itens irregulares
abordado pela literatura, mas em menor frequência, é o Problema da Mochila Irregular Bidimen-
sional (Irregular Knapsack Problem, em inglês e aqui referenciado pela sigla 2IKP). A diferença
entre o 2IKP e o 2ISP é que o 2IKP considera que a faixa possui comprimento e largura fixos e
nem toda a demanda de itens precisa ser alocada à faixa. Assim, o objetivo do 2IKP é determinar
quantos itens de cada tipo devem ser alocados à faixa, de forma que o valor total de itens alocados
seja maximizado.

Ambos os problemas, apesar de serem NP-Difíceis [Garey e Johnson, 1979], devido à
sua natureza combinatória, contam com abordagens heurísticas presentes hoje na literatura que são
capazes de fornecer, em pouco tempo computacional, boas soluções para instâncias do problema
contendo muitos itens. Exemplos de abordagens assim podem ser encontrados nos trabalhos de
Gomes e Oliveira [2006], Egeblad et al. [2007], Bennell e Song [2010] e Mundim et al. [2017],
para o 2ISP e em Crispin et al. [2005], Alves et al. [2012], Baldacci et al. [2014], Mundim et al.
[2018] e Queiroz e Andretta [2020b], para o 2IKP. No campo das abordagens exatas, a maioria dos
trabalhos são para o 2ISP. Tais trabalhos trazem modelagens para o problema, que são resolvidas
por meio de pacotes de otimização. Contudo, tais abordagens não são capazes de resolver instâncias
grandes, contendo muitos itens. Alguns exemplos de abordagens assim para o 2ISP são o Modelo
de Pontos (ou Dotted-board model) de Toledo et al. [2013], o qual aloca os itens em uma malha de
pontos discretos, o modelo de Cherri et al. [2016] que considera os itens não convexos como a união
de suas partes convexas e os modelos de Cherri et al. [2019], que também se baseiam no Modelo de
Pontos de Toledo et al. [2013] e propõem restrições de programação por restrições para o problema.
Dentre esses trabalhos, o de Cherri et al. [2019] apresenta uma modelagem de programação por
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restrições para o 2IKP derivada da modelagem apresentada para o 2ISP. Por fim, em Scheithauer e
Terno [1993], é proposto um modelo de programação linear inteira para o 2IKP.

No entanto, esses trabalhos abordam tais problemas em suas formas determinísticas, isto
é, sem levar em consideração as incertezas que podem surgir na prática. Quando há incerteza
associada a algum dado desses problemas, soluções obtidas sem que essa incerteza seja considerada
podem levar a soluções de baixa qualidade, ou até mesmo inviáveis, quando os dados incertos são
de fato conhecidos.

O campo de pesquisa que envolve incerteza em problemas de empacotamento com itens
irregulares é relativamente novo. Um exemplo de investigação nessa linha é o trabalho de Queiroz e
Andretta [2022], o qual resolve o 2ISP com incerteza na demanda usando programação estocástica
em dois estágios. No modelo proposto por Queiroz e Andretta [2022], é decidido, no primeiro
estágio (antes do conhecimento do valor real da demanda), qual comprimento de faixa deve ser
encomendada para cortar os itens. No segundo estágio (após o conhecimento do valor real da
demanda), é decido quanto comprimento de faixa ainda deve ser adquirido para atender a demanda,
caso o comprimento adquirido não seja suficiente para cortar toda a demanda. Comprar mais faixa
após o conhecimento da demanda dos itens, no modelo de Queiroz e Andretta [2022], tem custo
mais alto do que adquirir antes (isto é, no primeiro estágio). Para auxiliar na tomada de decisão
de quanto comprimento adquirir no primeiro estágio, a demanda incerta de cada tipo de item é
considerada como uma variável aleatória discreta, aproximada por um conjunto de cenários, em que
cada cenário possui uma probabilidade de ocorrência associada. O comprimento a ser adquirido
no primeiro estágio é aquele que minimiza o custo esperado total vindo do custo de comprar tal
comprimento no primeiro estágio e o custo esperado de ter que adquirir mais comprimento no
segundo estágio, caso necessário. Uma versão inicial do modelo de Queiroz e Andretta [2022]
é apresentadado em Queiroz e Andretta [2020a]. Em Queiroz e Andretta [2020a], os itens cuja
demanda é conhecida no primeiro estágio devem ser cortados obrigatoriamente no comprimento
de faixa adquirido no primeiro estágio. Em Queiroz e Andretta [2022], tal condição não é levada
em consideração, uma vez que as demandas de todos os tipos de item são conhecidas somente no
segundo estágio.

Neste trabalho, também temos incerteza na demanda, porém supomos que um compri-
mento de faixa é adquirido no primeiro estágio e não é possível comprar mais no segundo estágio, o
que acontece em casos reais em que o preparo da faixa demanda muito tempo, como, por exemplo,
no corte de roupas com tecidos especiais, que requerem um tempo maior para a sua fabricação.
Assim, o problema pode ser tratado usando programação estocástica em dois estágios, penalizando
a demanda que não pode ser atendida no segundo estágio ao comprar uma quantidade específica de
tecido no primeiro estágio. Para tanto, é proposto um modelo de programação estocástica em dois
estágios, no qual, no primeiro estágio, é decido o comprimento de faixa que deve ser adquirido, e no
segundo estágio, quando a demanda se torna conhecida, é decidido quais itens de cada tipo podem
ser cortados na faixa e onde eles podem ser cortados. Caso seja adquirido um comprimento que não
seja suficiente para cortar a demanda de todos os tipos de itens, a demanda não atendida por falta
de material é vista como um valor que deixa de ser ganho pelo decisor e tal valor é penalizado no
problema. A demanda é vista como uma variável aleatória discreta, aproximada por um conjunto de
cenários, em que cada cenário possui uma probabilidade associada de ocorrer. O comprimento a ser
adquirido no primeiro estágio é aquele que minimiza o custo total esperado vindo do custo de com-
prar tal comprimento no primeiro estágio e o custo esperado vindo da penalização por demandas
não atendidas. Caso a demanda seja tal que todos os itens possam ser cortados e ainda sobre faixa,
o prejuízo já é levado em consideração no modelo pelo valor pago pela faixa no primeiro estágio.
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Em outras palavras, no segundo estágio, é resolvido um 2IKP para decidir quais itens devem ser
cortados no comprimento aquirido no primeiro estágio de forma a minimizar o prejuízo relacionado
aos itens não escolhidos para serem alocados no recipiente. O modelo de programação estocástica
em dois estágios que é proposto aqui é NP-Difícil [Dyer e Stougie, 2006].

O trabalho está organizado em 6 seções. Na Seção 2, é apresentada a definição do pro-
blema, bem como seus aspectos geométricos. Na Seção 3, é apresentado o modelo de programação
estocástica em dois estágios proposto para o problema. Na Seção 4, são discutidas as medidas uti-
lizadas para avaliar o modelo estocástico. Na Seção 5, são apresentados e discutidos resultados dos
experimentos numéricos preliminares realizados para avaliar o modelo proposto. Por fim, na Seção
6, são apresentadas as considerações finais e direções para pesquisas futuras.

2. Definição do problema
O problema tratado neste trabalho considera um conjunto I de tipos de itens irregulares e

uma faixa de larguraW e comprimento z a ser determinado. Considera-se que a faixa é posicionada
em um sistema de coordenadas cartesiano, no qual o eixo x está associado ao comprimento da faixa
e o eixo y à largura da faixa. O canto inferior esquerdo da faixa é posicionado em (0,0). Cada tipo
de item i possui área ai, demanda incerta d̃i e um vértice de referência vi = (vxi , v

y
i ), que é aquele

com menor coordenada y (em caso de ter mais de um vértice com a mesma menor coordenada y,
opta-se pelo vértice que possuir a menor coordenada x). A distância entre o vértice mais à esquerda
do item i e o vértice mais à direita é dada por rxi e a distância entre o vértice mais abaixo e o vértice
mais acima é dada por ryi . A Figura 1a ilustra as medidas rxi e ryi e o vértice de referência para um
item irregular, no caso, um triângulo.

A faixa é considerada discretizada. O conjunto de pontos em que cada item i pode ser
colocado sem ultrapassar as dimensões da faixa é denominado inner-fit polygon do item i ou IFPi.
A Figura 1b ilustra o IFP para o item da Figura 1a. Para garantir que os itens não se sobreponham,
é definido, para cada par de itens i e j, o NFPij . O NFPij indica o conjunto de pontos em o ponto
de referência do item j não pode ser colocado, pois, se isso for feito, ocorre sobreposição entre i e
j. A Figura 1c ilustra o NFP de dois itens (o triângulo da Figura 1a e um quadrado). Em Toledo
et al. [2013] é descrito como são calculados o IFPi e NFPij .

r
1

y

r
1

x

v
1

(a) item 1 (b) IFP
1

(c) NFP
21

NFP
21 sobreposição não sobreposição

2

1

Figura 1: Exemplo para a representação do item, IFP e NFP.

A demanda incerta d̃i é aproximada por um conjunto Ω de cenários, em que cada cenário
s tem probabilidade πs. Assim, dsi representa a demanda do item no cenário s. O custo de uma
unidade de área da faixa no primeiro estágio (momento t0) é dado por c0. A quantidade de itens
de cada tipo i que não pode ser cortada no segundo estágio na faixa que foi adquirida no primeiro
estágio em cada cenário s é denotada por ysi . Cada unidade do item i que não pode ser cortada no
segundo estágio tem um peso Ri para o decisor. Aqui, Ri é considerado como o valor de venda
do item i e é definido como um fator α definido pelo tomador de decisão multiplicado pela área ai
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do item i e pelo custo de uma unidade de área da faixa, isto é, Ri = αc0ai. Assim, o objetivo do
problema é determinar o comprimento z de faixa que deve ser adquirido no primeiro estágio e que
minimiza o custo esperado total dado pelo custo de comprar faixar no primeiro estágio (c0Wz) e o
custo esperado vindo da penalização por demandas não atendidas (

∑
s∈S

∑
i∈I πsRiy

s
i ).

3. Modelo estocástico de dois estágios
O modelo de 2 estágios para lidar com a incerteza na demanda no 2ISP é definido em

(1)-(8) e é baseado no modelo de Toledo et al. [2013] para a versão determinística do problema.

Minimizar c0Wz +Q(z, ξ) (1)

sujeita a z ≥ 0, (2)

em que

Q(z, ξ) = Minimizar
∑
s∈S

∑
i∈I

πsRiy
s
i (3)

sujeita a (p+ (rxi − vi))xsipq ≤ z, ∀s ∈ Ω, i ∈ I, (p, q) ∈ IFP i,

(4)∑
j∈I

∑
p′q′∈NFP

(p,q)
ij

xsjp′q′ ≤ (1− xsipq)M,
∀s ∈ Ω, i ∈ I,
(p, q) ∈ IFP i,

(5)∑
(p,q)∈IFP i

xsipq = dsi − ysi , ∀s ∈ Ω, i ∈ I,

(6)

0 ≤ ysi ≤ dsi , ∀s ∈ Ω, i ∈ I,
(7)

xsipq ∈ {0, 1}, s ∈ Ω, i ∈ I, (p, q) ∈ IFP i.

(8)

O modelo (1)-(8) busca encontrar um comprimento z de faixa para ser adquirido no pri-
meiro estágio que minimiza a função objetivo (1), isto é, que minimiza o custo total esperado. O
custo total esperado é dado pelo custo de comprar faixa no primeiro estágio, isto é, antes do co-
nhecimento do valor real da demanda de cada tipo de item e pelo custo esperado da penalização de
demandas não atendidas no segundo estágio (quando o valor real da demanda de cada tipo de item
se torna conhecida). Há demandas não atendidas no segundo estágio quando a área Wz adquirida
não é suficiente para cortar toda a demanda observada quando esta se torna conhecida (lembrando
que W é um parâmetro fixo).

Como mencionado, a demanda incerta é considerada como uma variável aleatória discreta
definida por um conjunto Ω de cenários, em que cada cenário s ∈ Ω possui uma probabilidade πs.

O posicionamento dos itens na faixa é realizado no segundo estágio, de forma que a va-
riável de decisão binária xsipq indica se o item do tipo i deve ser posicionado ou não no ponto (p, q)
no cenário s. Se sim, xsipq assume 1, caso contrário, xipq assume o valor 0. A variável ysi determina
a quantidade de itens do tipo i que não podem ser cortados no cenário s. O vetor ξ é definido pelos
parâmetros estocásticos xsipq e ysi . Assim, a função objetivo do segundo estágio Q(z, ξ) representa
o custo esperado por demandas não atendidas.
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As restrições (4) garantem que, em cada cenário, os itens são posicionados na faixa de
forma que terminem em uma coordenada menor ou no máximo igual à coordenada do comprimento
z adquirido no primeiro estágio. As restrições (5) garantem que os itens serão posicionados em
cada cenário de forma que não ocorra sobreposição entre itens, em que M é um número grande. As
restrições (6) impõem, para cada cenário s e tipo de item i que, caso o comprimento z adquirido
não seja suficiente para cortar toda a demanda do cenário s, a quantidade ysi da demanda do item
do tipo i no cenário s deve deixar de ser atendida. A quantidade cyanysi , por sua vez, é penalizada
na função objetivo, sendo multiplicada pelo preço de venda do item Ri, que aqui é definido como
um fator α definido pelo tomador de decisão multiplicado pela área ai do item i e pelo custo de
uma unidade de área de faixa, isto é, Ri = αc0ai. As restrições (7) e (8) definem o domínio das
variáveis de decisão do modelo do segundo estágio. Já a restrição (2) define o domínio da variável
de decisão do modelo do primeiro estágio.

4. Medidas para avaliar o modelo estocástico de dois estágios
Há na literatura algumas medidas que costumam ser utilizadas para avaliar se realmente

vale a pena resolver o modelo estocástico de dois estágios, entre elas o Valor Esperado da Informa-
ção Perfeita (EVPI - Expected Value of Perfect Information) EVPI e o Valor da Solução Estocástica
(VSS - Value of Stochastic Solution) [Alem e Morabito, 2015]. O EVPI é usado para avaliar a
solução do modelo estocástico de dois estágios (here-and-now) diante da opção de esperar o co-
nhecimento do valor real dos parâmetros incertos para só então tomar uma decisão (wait-and-see).
É tido como a diferença entre o valor esperado do problema here-and-now (i.e. o valor obtido ao
resolver o problema estocástico em dois estágios, também denominado Recourse Problem - RP) e
o valor esperado das soluções wait-and-see (WS), ou seja, EVPI = RP - WS. O valor esperado das
soluções wait-and-see (WS) é dado por WS =

∑
s∈S πsW

∗
s , em que W ∗s é o valor de uma solução

ótima para o cenário s, ou seja, a solução wait-and-see para o cenário s e πs é a probabilidade do
cenário s. No problema considerado neste trabalho, isso consiste em descobrir o custo do compri-
mento mínimo de tecido para cortar a demanda de cada cenário e com base nesses custos (que são
as soluções wait-and-see) é calculado o valor esperado das soluções wait-and-see. Por fim, se o
EVPI for muito pequeno, pode não ser tão interessante resolver o problema estocástico.

O VSS é usado para avaliar se é melhor ou não resolver um problema de valor esperado
(EV) em vez de resolver o modelo estocástico (RP). Resolver o EV consiste em resolver o problema
determinístico para um cenário de referência. Após resolver o EV, é necessário avaliar qual seria o
custo se a solução para o EV fosse adotada. Isso é o mesmo que substituir as variáveis de primeiro
estágio do modelo estocástico de dois estágios pelo valor encontrado para essas variáveis ao resolver
o EV. O valor obtido nesse processo é denominado EVV (Expectation of the Expected Value) e a
diferença entre o valor EVV e a solução do problema estocástico RP consiste no valor VSS, ou
seja, VSS = EVV - RP. Quanto maior for o VSS, maior é o ganho ao considerar a aleatoriedade no
problema por meio do modelo estocástico.

5. Experimentos computacionais
O equivalente determinístico do modelo estocástico em dois estágios (1)-(8) foi imple-

mentado em linguagem C++ e foi resolvido usando o pacote de otimização Gurobi Optimizer na
versão 9.5.1 em suas configurações padrões para a mesma instância usada em Queiroz e Andretta
[2020a] (BLAZ). Esta instância é baseada na instância blazewicz encontrada em EURO Special
Interest Group on Cutting and Packing (ESICUP)1. O computador usado nos experimentos possui
sistema operacional Linux Ubuntu 20.04.4 LTS, processador Intel Core i5-7200U de 2.5 GHz e

1https://www.euro-online.org/websites/esicup/data-sets. Acessado em 21 de maio de 2022.
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8GB de memória RAM. O objetivo com os experimentos foi avaliar o modelo estocástico e calcular
o EVPI e o VSS para constatar se vale a pena resolver ou não o problema usando o modelo de
programação estocástica em dois estágios estágios (1)-(8).

Na instância BLAZ, a discretização da faixa, dos IFPs e NFPs dos itens possui escala
unitária, isto é, um ponto a cada unidade distância. A faixa possui largura W igual a 9, com
limitante superior igual a 30. O custo da unidade de área de faixa no primeiro estágio é definido
como c0 = 1.

A instância possui 6 tipos de itens e 3 cenários de demanda. A probabilidade dos cenários
é equiprovável. A média de itens por cenário é 8. As demandas de cada cenário, bem como as
respectivas probabilidades, são mostradas na Tabela 1. Observe que a demanda dos itens nos 3
cenários é pequena, contudo, ela foi a mesma demanda utilizada por Queiroz e Andretta [2020a] e
experimentos preliminares mostraram que o aumento em poucas unidades da demanda de cada tipo
de item leva a uma dificuldade em termos de tempo computacional de alcançar a solução ótima para
instância. Além disso, a escolha da mesma instância de Queiroz e Andretta [2020a] deve-se a fins de
comparação. O problema de Queiroz e Andretta [2020a] não é o mesmo problema abordado aqui.
Mas as decisões do primeiro estágio do modelo são as mesmas, se diferenciando somente quanto as
decisões do segundo estágio. O objetivo com a comparação é o de avaliar quanto as mudanças nas
decisões de segundo estágio adotadas aqui impactam ou nas decisões de primeiro estágio, isto é, no
comprimento a ser adquirido no primeiro estágio.

Tabela 1: Demanda dos itens em cada cenário na instância BLAZ de Queiroz e Andretta [2020a].
Cenário Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Probabilidade

1 5 1 0 1 1 0 0,33
2 0 1 3 1 1 0 0,33
3 0 1 0 1 1 8 0,34

Cenário de referência 1 1 1 1 1 2

A instância BLAZ foi resolvida para 5 valores de α, sendo o valor de α o multiplicador
utilizado para penalizar os itens que não podem ser cortados na faixa no segundo estágio em função
do valor da área desses itens. Não foi definido um tempo limite, sendo o fato de encontrar a solução
ótima para o problema definido como o critério de parada. A solução ótima, para cada valor de α, é
apresentada em cada linha da Tabela 2.

Tabela 2: Solução ótima para instância BLAZ para 5 valores de α usando o modelo (1)-(8).
Estágio 1 Estágio 2 Medidas de avaliação

α z Custo
Custo esperado
(demanda não

atendida)

Custo Esperado
Total

Tempo (s) EVPI EVV VSS

1,5 8 72 69,67 141,67 62,12 5,39 145,47 3,80
2,0 14 126 28,39 154,39 96,91 7,33 157,96 3,57
2,5 16 144 17,06 161,06 43,44 14,00 170,45 9,39
3,0 17 153 10,89 163,89 37,57 16,83 182,94 19,05
3,5 17 153 12,71 165,71 41,75 18,65 195,43 29,73
Valor esperado da soluções wait-and-see (WS) = 147,06.

Na Tabela 2, são apresentados, primeiramente, o comprimento z que deve ser adquirido
no primeiro estágio, o custo c0Wz de adquirir a área da faixa, o custo esperado por demandas não
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atendidas no segundo estágio ao adquirir o comprimento z no primeiro estágio, o custo esperado
total, o qual consiste no custo do primeiro estágio somado ao custo esperado do segundo estágio, e o
tempo computacional (em segundos) gasto para encontrar a solução. Em seguida, são apresentados
os valores obtidos para as medidas de avaliação EVPI, EVV e VSS.

Quanto maior o valor de α, mais caro é deixar de cortar os itens no segundo estágio, mais
importante passa a ser ter faixa suficiente para atender a demanda no segundo estágio e isso é refle-
tido nas soluções encontradas. Como o modelo estocástico em dois estágios (1)-(8) considera o caso
em que o decisor não pode ou não deseja adquirir mais faixa no momento em que a demanda dos
itens se torna conhecida, um valor de α maior leva a soluções em que mais cenários são satisfeitos.
A Figura 2 ilustra a solução obtida para α = 3, em que apenas 1 item do tipo 4 não pode ser cortado
caso o cenário 1 ocorra (veja na Figura 2). Logo, ela é uma solução mais robusta, que protege mais
o decisor da variação dos dados, garantindo a viabilidade de mais cenários quando comparado com
as soluções obtidas para outros valores de α. Por exemplo, a solução obtida para α = 2 (z = 14)
resulta no não atendimento à demanda em dois cenários, uma vez que são necessários, no caso de-
terminístico, 19, 13 e 17 unidades de comprimento para cortar toda a demanda dos cenários 1, 2 e
3, respectivamente.

1 item do tipo 4 não pôde ser cortado.

4(a) Cenário s = 1

Todos os itens puderam ser cortados.

(b) Cenário s = 2 (c) Cenário s = 3

17 17 17

Todos os itens puderam ser cortados.

Figura 2: Solução ótima para instância gerada obtida usando o modelo estocástico em dois estágios para
α = 3.

O EVPI representa a diferença entre o valor da solução estocástica e o valor esperado
das soluções wait-and-see (WS) e, assim, avalia se vale a pena resolver o modelo estocástico de
dois estágios ou se é melhor esperar o conhecer o valor real dos parâmetros incertos e resolver um
problema determinístico. Quanto maior for o valor do EVPI, mais vantajoso é resolver o problema
estocástico. O valor das soluções wait-and-see (WS) para a instância BLAZ é 147,06. A Figura 3
ilustra as soluções wait-and-see para os cenários da instância gerada e o cálculo do valor esperado
dessas soluções (WS).

Analisando os EVPIs da Tabela 2, observa-se que o menor EVPI é obtido para o valor de
α = 1, 5 e representa uma diferença de 3,67% com relação à solução WS, enquanto que o maior
EVPI é obtido para o valor de α = 3, 5 e representa uma diferença de 12,68% com relação à solução
WS. Os valores de EVPI obtidos não foram tão grandes, mas, ainda assim, indicam que é esperado
que o decisor obtenha ganhos ao resolver o modelo estocástico e que, para este caso, quanto mais
se paga por não cortar os itens, maior é o EVPI e mais vantajoso é resolver o problema estocástico.

O EVV representa o custo esperado por comprar, no primeiro estágio, a área mínima de
faixa necessária para cortar toda a demanda do cenário de referência (última linha da Tabela 1). A
área mínima é dada pelo comprimento z mínimo para cortar os itens do cenário de referência multi-
plicado pela largura fixa da faixa. O comprimento mínimo de faixa necessária para cortar os itens do
cenário de referência é 12 e é obtido ao resolver o problema EV (isto é, a versão determinística para
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 (a) Cenário 1: WS
1
* = 171;  

Comprimento = 19

(b) Cenário 2: WS
2
* = 117;  

Comprimento = 13
(c) Cenário 3: WS

3
* = 153;  

Comprimento = 17

WS = (0,33)171 + (0,33)117 + (0,34)153 = 147,06 

Figura 3: Soluções wait-and-see para a instância gerada.

o cenário de referência). Em outras palavras, o EVV representa o valor esperado que seria gasto se
fosse adquirida uma faixa de comprimento 12 e altura fixa 9. Tal custo esperado, para cada valor
de α, é dado na coluna EVV da Tabela 2. A Figura 4 ilustra a solução obtida para o problema EV
e a soluções EVV para cada cenário s indicando quais itens podem ser cortados caso a solução do
problema EV (z = 12) fosse adotada (itens contidos na faixa) e quais itens não podem ser cortados
na faixa, para o caso em que α = 3.

(a) Solução EV: 
comprimento = 12

(b) Solução EVV para o 
cenário s = 1

(c) Solução EVV para o 
cenário s = 2

(d) Solução EVV para o 
cenário s = 3

12 12 1212
1 item dos tipos 2, 4 e 5 

não pôde ser cortado.
Cenário de referência 1 item do tipo 4 não pôde 

ser cortado.
1 item do tipo 4 e 2 itens do tipo 

6 não puderam ser cortados.

Figura 4: Soluções EV e EVV para a instância gerada para α = 3.

O VSS representa a diferença entre o EVV e o valor da solução estocástica obtida para
o modelo de dois estágios e avalia se vale a pena considerar a aleatoriedade no problema ou se é
melhor comprar a quantidade de faixa indica ao resolver um problema determinístico com os dados
do cenário de referência. Analisando os valores de VSS obtidos na Tabela 2, observa-se que o menor
VSS é obtido para α = 2 e representa uma diferença de 2,31%, enquanto que o maior VSS é obtido
para α = 3, 5 e representa uma diferença de 17,94%, seguido por uma diferença de 2,68% para
α = 1, 5. Isso indica que, para esse caso, o VSS não aumentou sempre com o valor da penalização
por demandas não atendidas, mas que para valores de α iguais a 3 e 3,5, para este caso, foi mais
vantajoso resolver o modelo estocástico do que para os demais valores.

Penalizar muito as demandas não atendidas pode levar a uma solução muito conservadora
e talvez não condizente com a realidade. Vale destacar, no entanto, que se existe demanda para o
item e ele não pode cortado por falta de faixa, tal preço de venda é penalizado, pois ele deixa de ser
ganho pelo tomador de decisão. Logo, em algumas situações, o preço de venda não pode ser muito
maior que o preço pago pela área que o item ocuparia.

A instância BLAZ também foi resolvida usando o modelo de Queiroz e Andretta [2022], o
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qual foi implementado em liguagem C++ e resolvido usando o mesmo resolvedor e no mesmo com-
putador dos experimentos anteriores. No modelo de Queiroz e Andretta [2022], o custo esperado
por quantidade de comprimento que deve ser adquirida no segundo estágio é penalizado ao invés do
custo esperado por demandas não atendidas. Isso faz com que a solução obtida ao resolver o modelo
Queiroz e Andretta [2022] seja diferente da solução obtida a resolver o modelo (1)-(8). Na solução
usando o modelo de Queiroz e Andretta [2022], são indicados os comprimentos de faixa a serem
adquiridos no primeiro e no segundo estágio e os locais em que devem ser cortados todos os itens da
demanda de cada cenário e, na solução usando o modelo (1)-(8), são indicados o comprimento de
faixa que deve ser adquirido no primeiro estágio, os itens que podem ser alocados no comprimento
adquirido e suas respectivas posições de corte para cada cenário, além da demanda que não pode
ser atendida. Diante disso, o objetivo ao resolver o modelo de Queiroz e Andretta [2022] para a
instância utilizada nos experimentos anteriores é conhecer o comprimento de faixa que tal maneira
indica para ser adquirida no primeiro estágio. Busca-se, com isso, saber quão próximo é o com-
primento obtido usando o modelo de Queiroz e Andretta [2022] dos comprimentos obtidos usando
modelo (1)-(8) (Tabela 2), além de observar o quanto é vantajoso ou não, do ponto de vista de
tempo computacional, resolver o modelo proposto aqui para ter uma opção de quanto comprimento
adquirir no primeiro estágio em detrimento de resolver o modelo de Queiroz e Andretta [2022].

Os resultados obtidos usando o modelo de Queiroz e Andretta [2022] para a instância
BLAZ são apresentados na Tabela 3 juntamente com os resultados obtidos para o modelo (1)-(8)
quando o α = 3 e o custo da unidade de área de faixa no primeiro estágio igual é a 1. O custo da
unidade de área de faixa no primeiro estágio no modelo de Queiroz e Andretta [2022] é igual a 1 e
o custo do unidade de área de faixa no segundo estágio igual a 1,5. A Tabela 3 traz o comprimento
z0 de faixa que deve ser adquirido no primeiro estágio, o custo de se fazer isso, o que acontece
no segundo estágio dada a decisão tomada no primeiro estágio, o custo total esperado, o GAP da
solução e o tempo computacional, em segundos, gasto para resolver a instância usando os dois
modelos.

Tabela 3: Comparação entre o modelo (1)-(8) e o modelo de Queiroz e Andretta [2022].
Estágio 1 Estágio 2

Proposta z0 Custo Custo total esperado GAP(%) Tempo (s)

Modelo (1)-(8) 17 153
1 item do tipo 4 não pode ser cortado no cenário 1 .

O decisor deixa de ganhar o esperado de 10,89.
163,89 0 37,57

Modelo de
Queiroz e

Andretta [2022]
17 153

2 unidades de comprimento devem ser adquiridas a
mais se o cenário 1 ocorrer. O decisor precisará

gastar a mais o esperado de 58,59.
161,91 61,09 21600,00

Observe, na Tabela 3, que o Gurobi não pôde provar que a solução encontrada usando o
modelo de Queiroz e Andretta [2022] é ótima dentro do tempo limite de 21600 segundos, resultando
em um GAP de otimalidade de 61,09%. Conhecendo as soluções determinísticas para cada cenário
da instância mostradas na Figura 3, é possível, a partir do comprimento mínimo requerido para
cada cenário, calcular o custo esperado para cada valor de comprimento z de 0 até 19, que é o
comprimento que pode ser usado para cortar todos os cenários individualmente. Ao fazer isso,
constata-se que a melhor solução dentre todas as opções com z ∈ [0, 19] para a instância, usando
a proposta de Queiroz e Andretta [2022], consiste em adquirir 17 unidades de comprimento no
primeiro estágio e 4 unidades no segundo estágio se o cenário 1 acontecer, resultando em um custo
total esperado de 161,91, assim como a solução obtida usando o pacote Gurobi para resolver o
modelo, mostrando que a solução apresentada na Tabela 3 é, de fato, uma solução ótima para a
instância usando a modelagem de Queiroz e Andretta [2022].

Ao comparar a solução obtida usando o modelo de Queiroz e Andretta [2022] com as
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soluções obtidas usando a modelagem proposta neste artigo, observa-se que o comprimento 17
obtido usando a modelagem de Queiroz e Andretta [2022] é igual ao comprimento obtido quando
α é igual a 3, o custo esperado é próximo para ambos os modelos e as consequência, no segundo
estágio, de se adquirir 17 unidades de comprimento de faixa no primeiro estágio impactam o mesmo
cenário, indicando que, se o cenário 1 ocorrer, o decisor não consegue cortar 1 unidade do tipo 4
no modelo proposto aqui ou terá que adquirir 2 unidades de comprimento a mais usando o modelo
de Queiroz e Andretta [2022]. Contudo, o GAP e o tempo computacional usando o modelo de
Queiroz e Andretta [2022] foi maior do que os obtidos usando o modelo proposto aqui. Logo, para
a instância testada, os resultados indicam que resolver o modelo proposto aqui pode indicar um
comprimento de faixa para ser adquirido no primeiro estágio coerente com o comprimento obtido
usando a modelagem de Queiroz e Andretta [2022] a um tempo computacional menor.

6. Considerações finais
Neste trabalho, foi proposto um modelo de programação estocástica em dois estágios

para o Problema de Empacotamento Irregular em Faixa Bidimensional com incerteza na demanda
dos itens. O modelo considerou a demanda como uma variável aleatória discreta aproximada por
um conjunto de cenários, buscando decidir, no primeiro estágio, o comprimento de faixa a ser
adquirido e penalizando, no segundo estágio, a demanda que não pode ser cortada no comprimento
de faixa adquirido no primeiro estágio. Tais decisões foram tomadas de forma a minimizar o custo
de adquirir faixa no primeiro estágio somado ao custo esperado pago por demandas não atendidas
no segundo estágio. O valor penalizado por cada item não cortado foi igual ao preço de venda,
sendo calculado no modelo por um multiplicador α vezes o preço pago pela área do item. Por fim,
o modelo foi resolvido para uma instância gerada considerando 3 cenários equiprováveis.

Os resultados mostraram que, para a instância avaliada, dependendo de como a demanda
que não pode ser cortada é penalizada, é vantajoso resolver o modelo estocástico proposto diante da
possibilidade de resolver um problema determinístico após a demanda dos itens se tornar conhecida.
A comparação dos resultados com a implementação do modelo de Queiroz e Andretta [2022] usando
os mesmos recursos computacionais mostrou que a abordagem proposta aqui de penalização de
demandas não atendidas pode ser uma alternativa para determinar o comprimento a ser adquirido
no segundo estágio. Contudo, mais experimentos precisam ser realizados, em trabalhos futuros,
pois apenas uma instância foi testada. Outro trabalho futuro consiste em investir em tentativas de
melhorar o tempo computacional, uma vez que o problema resolvido aqui é NP-Díficil, o que indica
que pacotes de otimização como o usado aqui encontrarão dificuldades para resolver instâncias
maiores do problema, exigindo a investigação de uma heurística ou de uma math-heurística para o
problema.
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