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Abstract: Tree-based grids bring the advantage of using fast Cartesian discretizations, such as
finite differences, and the flexibility and accuracy of local mesh refinement. The main challenge is
how to adapt the discretization stencil near the interfaces between grid elements of different sizes,
which is usually solved by local high-order geometrical interpolations. Most methods usually avoid
this by limiting the mesh configuration (usually to graded quadtree/octree grids), reducing the
number of cases to be treated locally. In this work, we employ a moving least squares meshless
interpolation technique, allowing for more complex mesh configurations, still keeping the overall
order of accuracy. This technique was implemented in the HiG-Flow code to simulate Newtonian,
generalized Newtonian and viscoelastic fluids flows. Numerical tests and application to viscoelastic
fluid flow simulations were performed to illustrate the flexibility and robustness of this new approach.

Keywords: finite difference methods; meshless interpolation; numerical solution; polymer flows;
viscoelastic flows

1. Introduction

Many researchers are constantly working on improving numerical solution techniques
for partial differential equations that govern the flow of Newtonian and non-Newtonian
fluids. One of the major problems faced is the part that generates the geometry of the
problem to be simulated.

Cartesian hierarchical grids, or tree-based grids are the most common choices for dis-
cretizing the spatial domain. This choice allows the implementation of the finite difference
method, while avoiding working with more complicated stencils, which occurs for example
in curved meshes. Thus, it becomes easier to process the flow properties when a refinement
of the mesh is desired in a determined region of the domain, since in a Cartesian grid, the
flows are calculated in facets parallel to the Cartesian axes, favoring the implementation
of the numerical method [1]. In the literature, quadtree and octree are 2D and 3D meshes,
respectively, generated to perform these problems. One can say that a hierarchical grid is
a generalization of quadtree and octree. In this sense, the choice of hierarchical grids is
convenient to address the problem of flows in complex geometries [2–6].

Regarding the mesh refinement, one of the difficulties is to calculate the flow property
value on these interfaces. High-order interpolations are commonly used. Several improve-
ments of the interpolation techniques have been studied [7–11], in order to optimize the
number of cells used in calculations, since this influences the computational time and
storage over simulations.

In this way, the HiG-Fow system makes interpolations using the method of moving
least squares, adapting the stencil according to the interface between the fine and coarse
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grids. Sousa et al. developed this methodology and compared it with non-graded methods
by using the new system to simulate Newtonian flows [12].

Our interest is to use the HiG-Flow for the simulation of non-Newtonian flows. In this
way, a code module for simulations of non-Newtonian flows was implemented, taking into
account considerations shown in Section 3.

Depending on the temperature or mixture in liquid solvents, polymeric materials
behave similar to viscoelastic fluids [13]. In this work we show that a new computer
system is able to perform numerical simulations of viscoelastic fluid flows in two and three
dimensions in channels with complex geometries. In one of the most common applications,
polymers are used to construct electronic devices. Thus, the study of viscoelastic fluids
is important due to applications in science and technology and the use of numerical
simulators can be useful for support in important decisions in the engineering design
of any device. In general, the behavior of viscoelastic fluid can be described using an
appropriate constitutive model. So, in addition to using HiG-Flow in Newtonian flows, the
system has implemented a module to solve the constitutive equations through the kernel-
conformation technique. [14]. Different constitutive models are implemented, among
them the Oldroyd-B [15] and Phan-Thien–Tanner (PTT) [16], which we used as reference in
this work. In the last 20 years several works involving the solution of these constitutive
models have been published. In 1999, Dou and Phan-Thien [17] used the finite volume
method to solve the flow in a channel of an Oldroyd-B fluid past a circular cylinder. Then,
Alves et al. [18] showed the effect of a high-resolution scheme MINMOD [19] on an upper-
convected Maxwell fluid solution, improving accuracy and increasing the convergence rate
of the finite volume method and then they proposed a new high resolution scheme [20].
Later the article was published [21] with benchmark solutions for the flow of Oldroyd-B
and PTT fluids in planar contractions. In the year 2005 Chinyoka et al. [22] studied the
deformation of a circular drop of an Oldroyd-B fluid by applying the volume-of-fluid
method for two-dimensional interfaces. Later, Tomé et al. [23] applied the finite difference
method to simulate free surface flow of PTT fluid in three dimensional geometry. Then,
Mompean et al. [24] investigated fluid flows using the Upper-Convected Maxwell (UCM)
constitutive equation and an explicit algebraic model to develop an approximation that
could be applied to the extrudate-swell problem. In 2012, Tom é et al. [25] applied the
log-conformation technique to study three-dimensional viscoelastic flows for jet buckling
analysis and later Oishi et al. [26] and Paulo et al. [27] continued studies in this same way.

In 2019, Tomé et al. [28] presented a solution method for the Giesekus model flow
and proposed a new analytical solution for this problem. In 2019, Bezerra et al. [29] used
HiG-Flow to perform the solution of electro-osmotic flow of a viscoelastic fluid, where
they proposed an approximation for the vortices simulation in a nozzle. Shojaei et al. [30]
investigated a generalized finite difference method using the weighted moving least squares
procedure, in the same way of our proposed numerical solution. Corresponding with one
of the proposals of this work, [31] used stabilization techniques in 2D and 3D viscoelastic
fluid flows. In 2020, Guan et al. proposed a improved finite difference method and they
checked its convergence. Recently, [32] presented a implementation and computational
verification of KBKZ integral constitutive equations in hierarchical grids. More recently,
ref. [33] performed a generalized finite differences method for flows in a dam.

The finite difference method was used in the discretization of equations. The HiG-
Flow system was also implemented taking into account advances in the MAC-Marker and
Cell method [34], allowing the implementation of several solution methods for the different
terms of the equation of motion as well as the constitutive model solution. Convective terms
in equations can be solved by high-accuracy methods. Moreover, we can say that the main
novelty for the simulation of viscoelastic fluids is the kernel-conformation technique. The
technique is already known, however, the differential is the manner it was implemented
in, which allows the user to choose a numerical stabilizer easily—one just needs to enter
the desired mathematical function, the derivative of this function and its inverse function.
More details can be found in the Governing Equations section. Here, numerical stabilizers
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were used for Oldroyd-B flow solution in a 2D cavity and for a PTT fluid in a complex
3D geometry.

In Section 2, we show the finite differences method of the approximation used. Then,
the governing equations and the constitutive models are presented in Section 3, as well
as the explanation of the kernel-conformation technique. In Section 4, we present the
validation tests for a PTT fluid flow in a pipe and to an Oldroyd-B fluid flow in a 2D-lid-
driven cavity. Finally, we performed simulations of a PTT flow in a complex 3D geometry
and the results are shown in Section 5.

2. Finite Difference Approximation in Tree-Based Grids

In the HiG-Flow code, the equations are solved using finite difference approach in
hierarchical meshes. Figure 1a shows a representative type of mesh and the dependency
structure (tree data structure) is presented in Figure 1b. In this approach, cells can be
partitioned into different geometrical shapes. Such generalization leads to the difficult task
of finding an accurate approximation to the different differential and integral operators.
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Figure 1. (a) Example of hierarchical grid. (b) Tree data structure. (c) Finite difference method.

Looking at Figure 1c, a second-order approximation to ∂2Uc
∂y2 can be given by (we

assume the y axis is in the direction bottom→ top):

∂2Uc

∂y2 ≈
1
δy

(Ut − 2Uc + Ub). (1)

Note that Ub is not known and must be obtained by interpolation (the same applies to
Ur) using the following formula:

Ub =
Vb

∑
k=1

wb
k Uk, (2)

where Vb is the number of neighbor cells, which depends on the imposed accuracy of
the method.

The weights wb
k = wb

k(x) are obtained through the moving least squares (MLS)
method. In a set of n smooth interpolating functions that are linearly independent
Φi : Rd → R (d = 2, 3), we want to obtain the interpolated value u such that Ub = U(x) =
∑n

k=1 ciΦi(x) = ctΦ.
Given m points x1, x2, . . . , xm ∈ Rd with m > n and m values u1 = u(x1), u2 = u(x2), . . .,

um = u(xm), to interpolate u in x using MLS consists in minimizing the error E(c)

E(c) = ‖U − u‖2
2 =

m

∑
i=1

(U(xi)− ui)
2 1
‖x− xi‖2

. (3)

Or,
E(c) = ‖WPc−Wu‖2

2, (4)
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where W = W(x) =
{

δij

√
1

‖x−xi‖2

}
∈ Rm×m, P =

{
Φi(xj)

}
∈ Rm×n and u =

(u1, u2, . . . , um).
The solution is given by

c(x) = (WP)†Wu (5)

where (·)† is the Moore–Penrose pseudo-inverse.
Decomposing (WP) into QR we have that

WP = Q
[

R
0

]
=
[

Q‖ Q⊥
][ R

0

]
, (6)

where Q ∈ Rm×m, Q‖ ∈ Rm×n, Q⊥ ∈ Rm×m−n, and R ∈ Rn×n. This decomposition is then
used to finally compute

c(x) = R−1Qt
‖Wu . (7)

Then

U(x) = ctΦ = ut WQ‖R
−tΦ︸ ︷︷ ︸

w

=
m

∑
k=1

wkuk , (8)

that is w = w(x) = WQ‖R−tΦ.
The procedure to calculate w(x) must be performed for each approximation U(x).

This is performed only once since we are using a static mesh.

3. Governing Equations

The flow is assumed to be isothermal, laminar and the fluids incompressible. The
governing equations are those expressing conservation of mass

∇ · u = 0, (9)

and conservation of momentum

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u +∇ · S +

1
Fr2 g + F, (10)

T =
2(1− β)

Re
D + S, (11)

where u is the velocity field, t is time, p is the pressure, Re is the Reynolds number,
Fr is the Froude number, g is the gravity force and F is the surface tension force and
source force. The symbol D = 1

2

(
∇u + (∇u)T

)
is the rate of deformation tensor, T is

the elastic stress. The amount of Newtonian solvent is controlled by the dimensionless
solvent viscosity coefficient, β = µS

µ0
, where µ0 = µS + µP denotes the total shear viscosity.

Several polymeric constitutive equations are implemented in the current version of the
solver: the upper-convected Maxwell model, the Oldroyd-B model, the linear form of the
Phan-Thien/Tanner (LPTT) model [35] and the Giesekus model [36]. For an isothermal
flow, these five rheological equations of state can be written in a compact form as:

∂T
∂t

+ (u · ∇)T−
[
(∇u)T · T + T · ∇u

]
=

1
De

M(T). (12)

where M(T) is defined by the viscoelastic model

M(T) =



2(1− β)

Re
D− T Oldroyd-B,

2(1− β)

Re
D− T− α Re De

1− β
T · T Giesekus,

2(1− β)

Re
D−

(
1 +

ε Re De
1− β

tr(T)
)

T− ξ De(T ·D + D · T) LPTT,

(13)
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where De is the Deborah number. The stress coefficient function of the LPTT model
depends on the trace of T, tr(T) and introduces the dimensionless parameter ε, which
is closely related to the steady-state elongational viscosity in extensional flows. The slip
parameter, ξ, takes into account the non-affine motion between the polymer molecules and
the continuum. The polymer strands embedded in the medium may slip with respect to
the deformation of the macroscopic medium, thus each strand may transmit only a fraction
of its tension to the surrounding continuum. When ξ = 0 there is no slip and the motion
becomes affine. Parameter ξ is responsible for a non-zero second normal-stress difference
in shear, leading to secondary flows in ducts having non-circular cross-sections, which is
superimposed on the streamwise flow. In the non-linear term of the Giesekus model, α
represents a dimensionless “mobility factor”.

An alternative form to describe viscoelastic models is by using the conformation tensor,
A. This tensor is Symmetric and Positive Definite (SPD), which is an important mathemat-
ical property for the construction of matrix transformations and/or decompositions. In
general, the equation for A can be written as

∂A
∂t

+ (u · ∇)A−
[
A∇u +∇uTA

]
=

1
De
M(A), (14)

whereM(A) is a function that depends on the specific constitutive model. The relation
between stress tensor T and A is given by

T =
1− β

Re De
(A− I), (15)

that can rewritten as a relation between the tensor S and A given by

S =
1− β

Re De
(A− I− 2De D). (16)

A problem that challenges many researchers in computational rheology is solving
Equation (12) or Equation (14) for high values of the Deborah number, De = λ/tc, where
tc is a characteristic time of the flow. This problem occurs because all numerical methods
are unstable for certain critical values of De. In order to overcome such failure, Fattal and
Kupferman [37] proposed a reformulation of the differential constitutive equations into a
equation for the matrix logarithm of the conformation tensor. Extending the ideas proposed
by [37,38], ref. [14] presented a generic kernel-conformation tensor transformation that
allows us to apply different kernel functions to the matrix transformation.

The reformulation of the tensor conformation was possible by the decomposition of
the velocity gradient proposal by [37,38]

∇uT = Ω + B + NA−1, (17)

where Ω and N are anti-symmetric tensors, B is symmetric and commutes with A. Thus,
the constitutive equation based on the conformation tensor can be rewritten using the
decomposition (17) as

∂A
∂t

+ (u · ∇)A− (ΩA−AΩ)− 2BA =
1

De
M(A), (18)

whereM(A) is defined according to the viscoelastic model,

M(A) =


I−A Oldroyd-B,
I−A− α(A− I) · (A− I) Giesekus,(

1 + ε Re De
1−β tr(S)

)
(I−A)−2ξ De(B− BA) PTT.

(19)

Fattal and Kupferman showed that the matrix logarithm of the conformation tensor is
a linear transformation of A and derived a constitutive equation from the Equation (18) in
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the function of the matrix logarithm. Afonso et al. proposed a generic kernel-conformation
tensor transformation for a large class of differential constitutive models, in which the
evolution equation for k(A), can be expressed in its tensorial formulations as

Dk(A)

Dt
= Ωk(A)− k(A)Ω + 2B+

1
De

M (20)

where B and M are symmetric tensors constructed by the orthogonalization of the diagonal
tensors DB and DM, respectively. These tensors can be constructed as

B = ODBOT = OB̃ΛJOT

M = ODMOT = OM(Λ)JOT . (21)

In Equations (21), J is the gradient matrix, a diagonal matrix of the form,

J = diag
(

∂k(λ1)

∂λ1
;

∂k(λ2)

∂λ2
;

∂k(λ3)

∂λ3

)
. (22)

4. Verification Tests

In this section, we address two test problems in terms of checking the HiG-Flow code
for simulations of viscoelastic flows. One of the problems is the flow of a Phan-Thien–
Tanner model fluid in a circular cross-section channel. The other test problem concerns the
constitutive model of Oldroyd-B. The geometry used for this test was a driven cavity in
two dimensions.

4.1. Phan-Thien–Tanner Model Fluid Flow in a Pipe

We consider a flow into a circular cylinder of radius R, where there exists only the axial
velocity component u, which depends on the radial coordinate r. In addition, we consider
that the fluid obeys the PTT fluid model [16] and the flow occurs in the x direction, the
same as the cylinder axis. Here, we consider the known solutions available of the literature
to the flow properties, namely velocity u, shear stress Trx and normal stress Txx. More
detailed treatment about the analytical solution to this problem in a steady state, as well
as the results verified here, can be found in [39–41]. Essentially, to obtain the viscoelastic
component Trx, it is necessary to solve a cubic equation T3

rx + 3ATrx − 2B = 0, whose its
solution is given by

Trx =

[
B +

(
A3 + B2

)1/2
]1/3

+

[
B−

(
A3 + B2

)1/2
]1/3

, (23)

where A and B depends on the set of know parameters of flow:

A =
η2

p

6ελ2β
, (24)

B = −
η3

puN

ελ2R2β
r. (25)

In Equations (24) and (25), ηp is the polymer viscosity, ε is the PTT parameter, λ is the
relaxation time and R is the cylinder radius. The amount of solvent contribution is given
by β = ηs/η0, the reference velocity is uN and r is the radial coordinate. After obtaining
Trx, one can calculate the normal stress Txx and also integrate the equation of motion to
determine the velocity field. The corresponding expressions are given by:
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Txx =
2λ

ηp
T2

rx, (26)

u(r) =
2uN

β

[
1−

( r
R

)2
]
+ f (A, B), (27)

where f (A, B) is a function that depends on the parameters A and B given in (24) and (25),
respectively. These simulation parameters can be adjusted when the polymer viscosity is
fixed, then by varying β it is possible to control the amount of the solvent contribution. In
addition, just as β, ε and De are input viscoelastic parameters, λ is adjusted by the Deborah
number. To verify that the results are in agreement with [41], we set ε = 0.25 and De = 6.3,
which corresponds to the reference DeN = 1.0. Non-slip boundary conditions were used
for the velocity in the cylinder wall. At the channel inlet, we imposed a parabolic velocity
profile and at the outlet, the homogeneous Neummann boundary condition, that is, spatial
variations in velocity are not allowed at the outflow. For pressure, a zero gradient was
imposed on the wall and at the channel inlet while the outflow was fixed at a constant
value. The initial conditions for the bulk domain is zero velocity.

Figures 2–4 show the velocity field, shear stress and normal stress, respectively, as a
function of the amount of solvent, which is controlled by β parameter. When β ≈ 1, the
polymer concentration is approximately zero and the fluid has Newtonian behavior. On the
other hand, if β ≈ 0, the behavior of the PTT fluid resembles that of the Oldroyd-B model.
The curves represented by down triangles corresponds to β = 0.9, up triangles to β = 0.5,
circles to β = 0.2 and squares to β = 0.01. All these results are obtained by HiG-Flow simu-
lation. They are in perfect agreement with the analytical curves represented by solid lines
in Figures 2–4, which corresponds to the solutions given by Equations (23), (27) and (26)
for u, Trx and Txx, respectively.

Figure 2. Velocity field for a PTT flow in a pipe.

Figure 3. Shear stress Trx for a PTT flow in a pipe.
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Figure 4. Normal stress for a PTT flow in a pipe.

4.2. 2D-Driven Cavity with Oldroyd-B Flow

Flows in rectangular cavities have been studied since 1967 when the article [42] was
published. In the 21st century, several studies of this type for viscoelastic fluids have been
published [38,43–47]. The problem studied here has no analytical solution; however, there
are results obtained by the cited authors that can be used for comparison. The data used
for comparison in this study were provided by Palhares Junior et al. [47].

Figure 5 shows the schematic of lid-driven cavity. A parabolic profile velocity is
imposed on the top. The aspect ratio is defined as Λ ≡ H/L. Some concerned works are
listed in Table 1.

Figure 5. Illustration of lid-driven cavity. The parabolic velocity profile is imposed on the top. The
aspect ratio is defined as Λ ≡ H/L.

The use of stabilization methods within the HiG-Flow system can be considered
simple from the coder point of view because the code has been implemented in such a
way that one can make a choice directly in the main simulation file. In this sense, the
kernel conformation tensor is used to perform this operation, as previously described in
the Section 3. Generically, the user simply writes the kernel k, the kernel derivative dk/dx
for the Jacobian transformation calculation and the kernel inverse k−1 correspondents.
For the square root stabilizer used in these simulations, one can write Equations (28)–(30),
respectively, as follows:



Polymers 2021, 13, 3168 9 of 15

kij =
√

Sij, (28)

dkij

dx
=

1

2
√

Sij

, (29)

k−1
ij = S2

ij, (30)

Table 1. Previous and current numerical studies concerned with lid-driven cavity flow of constant viscosity viscoelastic fluids.

Reference Aspect Ratios Constitutive Equation De Regularization Notes

Grillet et al. [48] 0.5, 1.0, 3.0 FENE-CR, L2 = 25, 100, 400 ≤ 0.24 Leakage at corners A and B FE
Fattal and
Kupferman [38] 1.0 Oldroyd-B, β = 0.5 1.0, 2.0, 3.0, 5.0 u(x) = 16Ux2(1− x)2 FD, Log conformation

technique

Pan et al. [43] 1.0 Oldroyd-B, β = 0.5 0.5, 1.0 u(x) = 16Ux2(1− x)2 FE, Log conformation
technique

Yapici et al. [44] 1.0 Oldroyd-B, β = 0.3 ≤ 1.0 No FV, First-order upwind

Habla et al. [46] 1.0 Oldroyd-B, β = 0.5 0 to 2 u(x, z) = 128[1 + tanh 8(t− 1/2)]
x2(1− x)2z2(1− z)2

FV, 3D, Log conformation
technique, CUBISTA

Comminal et al. [49] 1.0 Oldroyd-B, β = 0.5 0.25 to 10 u(x) = 16Ux2(1− x)2 FD/FV, Log-conformation,
stream function

Martins et al. [50] 1.0 Oldroyd-B, β = 0.5 0.5, 1.0, 2.0 u(x) = 16Ux2(1− x)2 FD, Kernel-conformation
technique

Dalal et al. [51] 1.0 Oldroyd-B, β = 0.5 1.0 u(x) = 16Ux2(1− x)2 FD, Symmetric square root
Palhares Junior
et al. [47] 1.0 Oldroyd-B, β = 0.5 1.0, 2.0

u(x, t) = 8[1 + tanh(8t− 4)]x2(
1− x2

)2 FD, Symmetric square root

Current work 1.0 Oldroyd-B, β = 0.5 1.0, 2.0
u(x, t) = 8[1 + tanh(8t− 4)]x2(
1− x2

)2
FD, Kernel-conformation
technique

For the simulations, the Reynolds number was fixed as Re = 0.01. The proportion of
solvent in Oldroyd-B fluid was also fixed as β = 0.5. Simulations were performed for two
different Deborah numbers, De = 1.0 and De = 2.0. On the top lid-driven section of the
cavity, we imposed a parabolic velocity profile given by

u(x, t) = 8[1 + tanh(8t− 4)]x2
(

1− x2
)2

. (31)

The other cavity walls are stationary and the non-slip condition is imposed over all
of them. A regular mesh of 256x256 cells was used. The velocity component u and the
normal stress Txx were plotted along the vertical line x = 0.5 while the velocity component
v was obtained on the horizontal line y = 0.75. The (x, y) coordinates are scaled by the
cavity side size L = 1 unit of length. The results are shown in Figures 6–8. The curves are
represented by squares and circles corresponding to the HiG-Flow and Palhares Junior et
al. results, respectively. The graphs indicate that the results are in good agreement.

(a) (b)

Figure 6. Velocity field u obtained along the vertical line x = 0.5: (a) De = 1.0; (b) De = 2.0.
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(a) (b)

Figure 7. Velocity field v obtained along the horizontal line y = 0.75: (a) De = 1.0; (b) De = 2.0.

(a) (b)

Figure 8. Normal stress Txx obtained along the vertical line x = 0.5: (a) De = 1.0; (b) De = 2.0.

5. Simulation in Complex 3D Array of Channels

In this section, we present the results obtained with the HiG-Flow system for flows in
complex domains. We simulated an incompressible viscoelastic fluid flow in a complex
array of microchannels, introducing some level of geometric complexity in the three-
dimensional flow domain.

The geometry, as well as boundary conditions, can be seen in Figure 9. The total width,
length and height are set to be W = 0.8 mm, L = 2.4 mm and H = 0.4 mm, respectively.
The inlet is a channel of 0.1 mm × 0.1 mm, where polymer at temperature is injected with
a constant velocity of Uin = 0.1 mm/s. Scaling this geometry by ` = 0.1 mm, and using
ν ≈ 10−4 m2/s as the kinematic viscosity of polymer at room temperature, we end up with
a Reynolds number of Re = ` Uin/ν = 1.0. In this test, we used the PTT model with β = 0.5,
ε = 0.25 and ξ = 0.0 for several values of De = [0− 500] as viscoelastic parameters.

Streamlines for the flow of a Newtonian fluid can be observed in Figure 10. The result
is qualitative, but demonstrates the robustness and applicability of this newly developed
methodology. Several simulations using viscoelastic fluids for De = [0− 500] were per-
formed on the 3D complex geometry. We analyzed the complex fluid flow by observing
the profiles of the polymeric stresses along the probe line near the 3D channel exits, as
shown in Figure 11. The probe is aligned on the y direction at half channel height (along
the z direction), orthogonal to the main flow direction near the channel exits.

The increasing values of elasticity, reflected on the value of Deborah number repre-
sented in Figure 12, affects the six components of the non-dimensional extra stress tensor
along the probe line, with higher impact for the normal components, as the Tzz profiles.
Nevertheless, given that no geometrical singularity is presented along the probe line, the
maximum value for all extra stress components is not significant and slightly affected by
the increase in elasticity.
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Figure 9. Geometry for the complex 3D array of channels.

Figure 10. Streamlines for the complex 3D array of channels. The color scale varies from smallest
(blue) to largest (red) velocity magnitude.

We used a computer with a 3.1 GHz Intel Core i7 Quad-Core Processor and 16 GB
2133 MHz LPDDR3 memory. The HiG-Flow software was used with four cores for all the
calculation, and each simulation took 14 h of processing.

Figure 11. Probe views.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Tensor components: (a) Txx; (b) Txy; (c) Tyy; (d) Tyz; (e) Tzz; (f) Txz.

6. Conclusions

Tree-based grids bring the advantage of using fast Cartesian discretizations, such as
finite differences, and the flexibility and accuracy of local mesh refinement. Most methods
usually avoid this by limiting the mesh configuration (usually to graded quadtree/octree
grids), reducing the number of cases to be treated locally. In this work, we employ a
moving least squares meshless interpolation technique, allowing for more complex mesh
configurations, while still keeping the overall order of accuracy. This technique was
implemented in the HiG-Flow code to simulate Newtonian, generalized Newtonian and
viscoelastic fluids flows. The code verification and testing was performed using numerical
stabilizers for the Oldroyd-B flow solution in a 2D cavity and for a PTT fluid in a complex
3D geometry.
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