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1. Introduction

Knowledge of the composition of cosmic rays in the energy range of 0.1 to 1 EeV is the key to
identifying a possible transition from galactic to extra-galactic sources and for understanding the
nature of features in the energy spectrum, such as the “ankle” (at =~ 4 EeV) and the flux suppression
(the differential flux falls to one-half of the value of the power-law extrapolation at 4 x 109 eV [1]).

The atmospheric depth at which the energy deposited by the Extensive Air Shower (EAS)
reaches its maximum, X,x, is one of the most robust observables for studying the mass compo-
sition. Experimentally, the longitudinal profile of the shower development can be measured using
fluorescence light emitted by molecules of atmospheric nitrogen excited by EAS particles. At
the Pierre Auger Observatory, which has taken data continuously since 01.2004, such measure-
ments are performed using the fluorescence detector (FD) consisting of 24 telescopes placed at
4 locations and, since 06.2010, using the High Elevation Auger Telescopes (HEAT). The HEAT
telescopes have expanded the field of view (FoV) of the Coihueco site (CO) from 2° < 30° up to
2° +60° in elevation, which allows one to observe nearby low energy showers (E < 1074 eV). In
the following, we refer to the HEAT/CO system as HeCo.

In Fig. 1 an example of a low energy event in the enlarged FoV is shown: the track on the
camera (left) and the longitudinal profile with the Gaisser-Hillas fit (right).
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Figure 1: Example of a HeCo event with an energy of (4.740.2) x 10'7 eV. Left: the camera view with
the timing of the pixel pulses color-coded (early = blue, late = red). Right: the measured longitudinal profile
(black circles — HEAT, blue squares — Coihueco) with the Gaisser-Hillas fit (red line). The magenta star
in both panels indicates the Xy, position.

In this paper, over five years of calibrated HEAT data, from 01.06.2010 to 31.12.2015, are used
to extend the previous measurement of the Xy, distributions [2] from 10'7# eV down to 10'72 eV,
In addition, at the highest energies we have increased the available statistics by including data from
three more years in the analysis compared to [2].

In estimating the unbiased Xp,x distributions and their corresponding first two moments, we
have followed an identical procedure to that in a previous publication [2]. Most of the systematic
uncertainties estimated in [2] for the standard fluorescence detectors (Standard-FD ) are also valid



Ximax above 10172 eV, Measurements and Composition Implications Jose Bellido

for the HEAT/Coihueco (HeCo) X;,.x analysis. So for further details of the Xi,x analysis and of
most of the systematic studies we refer the reader to [2].

The determination of the primary composition is performed by comparing the measured Xpax
distributions of EAS with expectations according to high energy hadronic interaction models [3].
The first two moments of the Xy« distribution ((Xp.x) and o (Xmax)) are related to the first two
moments of the distribution of the logarithm of masses of primary particles (InA and o(InA)) [4]:

(Xmax) = <Xmax>p + fe(InA) (1.1)
02 (Xmay) = (03,) + fZ 0 (InA). (1.2)

(Xmax)p and <652h> are the mean Xy,,x for protons and the composition-averaged shower-to-shower
fluctuations, and fg is a parameter depending on details of hadronic interactions, properly parametrized
from the interaction models for energies >10'7 eV.

2. Data analysis

The analysis presented in this paper is based on two statistically independent datasets. These
are the data collected by the Standard-FD telescopes (during the period from 01.12.2004 to
31.12.2015), and the data collected with HeCo (during the period from 01.06.2010 to 31.12.2015).
The events with energies below 10'%! eV recorded by CO telescopes during periods where HEAT
telescopes were in operation are considered in the HeCo dataset (even if they do not include any
HEAT telescope). Otherwise, they are considered in the Standard-FD telescope dataset. So, the

0'7-8 eV and the HeCo dataset contains

Standard-FD dataset contains events with energies above 1
events with energies between 1072 eV and 10'8! eV,

HEAT can be operated in upward and downward modes. The downward mode is when the
telescopes are oriented such that their elevation angle extends up to 30°. The upward mode is when
they cover an elevation angle ranging from 30° to 60° (this is the HEAT standard operation mode).
The HEAT downward mode is used for systematic cross checks, because it allows one to observe
the same showers in coincidence with telescopes from the Coihueco site.

There have been some updates in the energy and Xy, scale. These changes arose from im-
provements in the reconstruction of the shower profile (mainly affecting lower energy events) and

improvements in the estimate of the vertical atmospheric optical depth [5].

2.1 Data selection

The analysis is based on hybrid events, i.e. on events with geometries reconstructed using
information on arrival times of both light in the cameras of FD telescopes and of the shower front
at ground as measured by the surface station closest to the shower axis. We selected data recorded
during stable running conditions and good atmospheric conditions [2]. In addition to these selection
criteria a set of fiducial FoV cuts are applied to reduce to a minimum the detector effects in the
sampled X« distributions (as explained in Section 2.2).
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2.2 FoV selection criteria

A shower is reconstructed accurately only if its Xp,x is within the detector FoV. Shallow or
deep events are more likely to have their Xya.x values outside the FoV and be excluded from the
analysis. In general, at lower energies where the showers are closer to the telescopes, the limited
FoV biases the sample towards lighter composition (i.e. towards deeper Xp,.x values).

For data satisfying the selection criteria explained in Section 2.1, a fiducial FoV is derived.
This fiducial range is characterized by the lower Xjo, and upper X, boundaries. These parameters
define the slant depth range where X;,,x of each event would be reconstructed with a resolution bet-
ter than 40 g cm™2. To have higher quality events, the X;,,.x value must fall inside these boundaries.
Furthermore, if the values of Xjoy and Xy, are not within certain limits (i.e. Xjow and Xy, should
enclose the bulk of the Xy« distribution), the event is also excluded. The processes to calculate the
Xiow and Xyp parameters, and the limits on them, are explained in detail in [2].

2.3 Estimating the X,,,x moments

After the application of all selection criteria, the moments of the Xp,,x distribution are estimated
as described in [2]. Small energy and Xy« reconstruction biases are estimated through simulations
and corrected for. The observed width of the distribution is corrected by subtracting the detector
resolution (Fig. 2, left) in quadrature to obtain ¢ (Xpnax). The Xpax resolution worsens at lower
energies because the average length of the observed profiles (in g/ cm?) decreases at lower energies.
The step between the HeCo and the Standard-FD resolution is because the X ,x reconstruction of
events involving HEAT and Coihueco telescopes is very sensitive to small differences in the energy
calibration of the HEAT and Coihueco telescopes. Inter-telescope calibration fluctuations with
time have widened the sampled Xp,.x distributions. We correct for this detector effect by increasing
the detector resolution for HeCo. The (Xmax) fluctuations as a function of time are evaluated to
determine how much the resolution should be increased.
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Figure 2: Left: X« resolution as a function of energy for the HeCo and the Standard-FD datasets. Right:
Systematic uncertainties in the Xpax scale as a function of energy.

The systematic uncertainty in the Xp,x scale is displayed in Fig. 2 (right). At low energies it

is dominated by uncertainties in the analysis procedure, while at high energies atmospheric uncer-
tainties also contribute.
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Figure 3: X, distributions for different energy intervals from the HeCo (top) and Standard-FD (bottom)
datasets. The number of events in each energy bin is indicated.

2.4 Results and Interpretation

We present the results of the HeCo and the Standard-FD Xp,« distributions in energy bins
of Alg(E/eV) = 0.1 extending from 10'7-2 eV to 10'3! eV for HeCo and above 10'"3 ¢V for the
Standard-FD telescopes. The Xy« distributions after applying quality and fiducial selection cuts
are shown in Fig. 3. These distributions still include effects of the detector resolution and the
detector acceptance. The total number of events that passed all cuts (quality and FoV cuts) is
16778 and 25884 for HeCo and Standard-FD respectively.

The (Xmax) difference between HeCo and the Standard-FD datasets is on average ~2.3 g/ cm?
for overlapping energy bins. This small offset is within the uncorrelated systematics of the two
analyses. Consequently, for the combination of the datasets the HeCo (Xp,x) is shifted accordingly
and the resulting (Xmax) and o(Xmax) as a function of energy are shown in Fig. 4. These Xpax
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Figure 4: The mean (left) and the standard deviation (right) of the measured Xy, distributions as a function
of energy compared to air-shower simulations for proton and iron primaries.

moments are in good agreement with those in our previous publications [6, 2] and they can be
compared directly with expectations from hadronic models. These is because we have removed all
detector effects, such as the detector resolution and the non homogeneous X, acceptance within
the tails of the X,,x distributions.

Between 1072 and 10'333 eV the observed elongation rate (rate of change of (Xpax)) is
(80+1) g/ cm?/decade (Fig. 4, left). This value, being larger than that expected for a constant mass
composition (~ 60 g/ cm?/decade), indicates that the mean primary mass is becoming lighter with

018.32:!:0.02

increasing energy. At 1 eV the elongation rate becomes significantly smaller ((26 +2)

g/ cm?/decade) indicating that the composition is becoming heavier with increasing energy. The

fluctuations of X« (Fig. 4, right) decrease above 10183

eV, also indicating a composition becom-
ing heavier with increasing energy.

The mean value of InA, (InA), and its variance, o2 (InA), determined from Egs. (1.1) and (1.2),
are shown in Fig. 5. For the parameters <Xmax)p, fE and <Gszh), the EPOS-LHC [7], QGSJetII-04 [8]
and Sibyll2.3 [9] hadronic interaction models are used. The unphysical negative values obtained
for 62(InA) result from the corresponding hadronic model predicting & (Xpayx) values (for pure
compositions) that are larger than the observed ones. An average value of 62(InA) ~ 1.2 —2.6 has
been estimated in [10] using the correlation between Xy, and Siooo (the signal recorded at 1000 m).
This range for 62(InA) is valid for the three hadronic models and for the energy range Ig(E /eV) =
18.5 —19.0. The average 6*(InA) from Fig. 5, for the same energy range, is (0.8 +0.4) for EPOS-
LHC, (—0.7£0.4) for QGSJetll-04, (0.6 +0.4) for Sibyll2.3. The QGSJetll-04 and Sibyll2.3
models failed to provide consistent interpretation, and EPOS-LHC is marginally consistent.

For the three models, similar trends with energy for (InA) and 6%(InA) are observed. The
primary mass is decreasing with energy reaching minimum values at 10'832%0-92 ¢y and then
it starts to increase again towards higher energies. The spread of the masses is almost constant

018.3

until ~ 1 eV after which it starts to decrease. Together with the behavior of (InA), this is an

indication that the relative fraction of protons becomes smaller for energies above ~10'83 eV.
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Figure 5: The mean (top) and the variance (bottom) of InA estimated from data with EPOS-LHC (left),
QGSJetll-04 (middle) and Sibyll2.3 (right) hadronic interaction models.

The expected Xpax distributions for p, He, N and Fe have been parametrized [11] using a
gaussian convolution with an exponential function according to the hadronic models (EPOS-LHC,
QGSJetll-04 and Sibyll2.3) using CONEX [12]. These parametrization have been used to fit for
the fraction of p, He, N and Fe in each energy bin. The corresponding detector resolution and
acceptance (for each energy bin) have been considered in the fits. Fig. 6 shows the fit fractions as
a function of energy for the three different models. The panel at the bottom indicates the goodness
of the fits (p-values). The trend of the He and N fractions as a function of energy has a strong
dependence on the particular hadronic model used. However, the three hadronic models agree
when estimating a null Fe abundance between 10'3 eV and 10'°4 eV.

This interpretation of the cosmic ray composition as a function of energy relies on the validity
of the hadronic interaction models. The p-values estimated in Fig. 6 provide an indication on how
well the models managed to reproduced the observed Xp,x distributions with the fractions fit. For
good fits, the p-values should be randomly distributed between 0 and 1, and should not be too small.
A large fraction of the p-values shown in Fig. 6 (bottom panel) are below the 0.1 line, but we only
expect 10% of p-values to be below this line. There is a total of 24 energy bins, so we expect in
average 2.4 p-values below the 0.1 line, but we observe 8 (for EPOS-LHC), 11 (for Sibyll2.3), and
17 (for QGSJetll-04). The large fraction of small p-values indicates that the models were not able
to find combinations of fractions to reproduce the details of the observed Xy, distribution.
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