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Abstract. In this work, we investigate the role of emission by dust at infrared wavelengths in
the absorption of gamma radiation from distant extragalactic sources, especially blazars. We
use an existing EBL model based on direct starlight emission at UV /visible and secondary
radiation due to dust (PAHs (polycyclic aromatic hydrocarbons), small and large grains) at
IR due to partial absorption of the stellar component. The relative contribution of each grain
type to the total EBL energy density was determined from a combined fit to the Markarian
501 (z ~ 0.034) SED in flare state, where both the parameters of the intrinsic source spectrum
(with or without curvature) and the dust fractions were allowed to vary. By separating the
attenuation due to each EBL component, the importance of individual grain types to the
opacity of the extragalactic medium for the TeV emission of a blazar like Markarian 501 could
be better understood. Using a nested log-likelihood ratio test, we compared null hypotheses
represented by effective 1- and 2-grain models against a 3-grain alternative scenario. When
the temperatures of the grains are fixed a priori, the 1-grain scenario with only PAHs can
be excluded at more than 50 (p = 2.9 x 10~%), irrespective of the curvature in the intrinsic
spectrum. The effective 3-grain EBL model with the tuned fractions was finally used to fit the
SEDs of a sample of extragalactic gamma-ray sources (dominated by blazars). Such a sample
is still dominated by starlight attenuation, therefore, no statistically significant improvement
in the quality of fits was observed when the tuned fractions are used to account for the EBL
attenuation and the intrinsic spectrum parameters are allowed to vary during the fit. The
potential of this kind of analysis when the next generation of IACTSs, represented by the
Cherenkov Telescope Array (CTA), starts observations is enormous. The newly discovered
AGNs at a broad range of redshifts should break many of the degeneracies currently observed.
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1 Introduction

The spectral energy distribution (SED) of gamma-ray sources is a valuable piece of infor-
mation in order to understand the details of their different non-thermal emission processes.
Given our current understanding of the quantum nature of matter and radiation, we do
expect that part of the high energy photons emitted by extragalactic sources should be ab-
sorbed due to the interaction with low energy radiation fields, such as those contributing to
the Cosmic Microwave Background (CMB) and the Extragalactic Background Light (EBL).
In the standard cosmological model, being a relic of the Big Bang, the former was created
with a blackbody spectrum. Precise measurements of the CMB temperature across the sky
have allowed us to build a consistent picture of the energy content of the universe, includ-
ing evidences of the presence of dark matter and dark energy (if one assumes that General
Relativity holds true also at cosmological scales). Far more complicated, however, are the
spectral features of the latter. The two main contributions to the EBL radiation field are
direct star light (therefore, expected to peak at UV /visible wavelengths in comoving coordi-
nates) and dust re-emission when grains are heated by part of the stellar emission, reaching,
in turn, maximal spectral intensity at IR wavelengths. Accordingly, this radiation field is
believed to have started being emitted at the end of the Dark Ages, when the first gravi-
tationally bounded and nuclear fusion powered objects are formed and have since evolved
tightly bound to the star formation rate and the cosmological expansion. It is clear, there-
fore, that understanding such a radiation is essential to have a full picture of the universe
evolution in a regime which is very different from the linear perturbations employed in the
CMB case. In addition to that, low energy radiation fields dictate the opacity level of the
extragalactic medium to high energy radiation. At TeV energies, et /e~ pair production is
expected to reduce the mean free path of gamma-rays from extragalactic sources down to
a few hundreds of Mpc [1, 2], and even though current estimates of the EBL photon num-
ber density, especially at mid-IR, are uncertain, they usually point to bolometric intensities
between 50 to 70 nW m~2 sr—! (i.e., about 5% of the CMB intensity) and non-negligible
attenuation effects. However, direct measurements of the EBL are hard to perform. They do
require instruments with absolute calibration, so the sky brightness can be measured against
a well established reference. Moreover, the careful subtraction of foregrounds like dust parti-
cle emission and other galactic components is required, as well as corrections of atmospheric
effects like the zodiacal light [3]. Constraints on the EBL intensity are also obtained from the
integrated galaxy-counts, which uses deep field data from space- and ground-based facilities.



This method has shown good agreement when compared with direct measurements of the
Cosmic Infrared Background (CIB).

The operation of arrays of air imaging Cherenkov telescopes (IACTSs), with their large
effective collection areas (especially at stereoscopic configurations) and enhanced sensitivity
across a broad energy range, has open up the possibility of disentangling intrinsic spectral
features of powerful extragalactic sources from the EBL attenuation effects in the GeV-
TeV energy range, by means of precise measurements of the SED of gamma-ray sources at
different redshifts. The Cherenkov Telescope Array (CTA) [4], in turn, represents the new
generation of [ACTs for gamma-ray astronomy and it is expected to bring both qualitative
and quantitative changes to this scenario with its factor 10 improvement in sensitivity, fine
angular and energy resolutions, allowing for more precise spectrum measurements and the
discovery a whole new population of TeV blazars at high redshifts.

Hence, many recent works are based on the extraction of information on the EBL by
combining the measured attenuated spectra provided by TACTs or on-orbit satellites with
some data-driven modeling of the EBL spectrum. A few different approaches can be found
in the literature, to know, procedures where i) direct galaxy observations in the form of
their luminosity functions are employed [5-7]; ii) information on the cosmic star formation
rate is used [8-10]. We focus on the last procedure and make use of the simplifying yet
powerful assumption that the EBL spectral energy density can be modeled as the sum of
four contributions (one stellar and three from dust), all having a Planck spectrum [11]. Here
we focus on the role of dust in the attenuation of the spectra of AGNs. In particular, the
mid-IR emission (at comoving coordinates) is usually believed to contribute significantly to
the opacity of the extragalactic medium to gamma-rays with energies up to around 10TeV.
In this paper, we do quantify more precisely this point by studying the case of Markarian 501
(Mkn 501).

The outline of paper is the following: in section 2, we briefly review the main assump-
tions behind the construction of an EBL model with blackbody spectra for both the stellar
and dust contributions; the role of dust in the attenuation of the flux of an extragalactic
source like Mkn 501 is studied in section 3; in this section, the SED of Mkn 501 during the
flare of 1997 [12] is used in order to perform a combined fit of the intrinsic spectrum, as well
as the relative contributions of different dust grains to the EBL; a nested likelihood ratio
test is also performed to assess the importance of different grain sizes; in section 4, the dust
fractions coming out of this combined fit are then used to feed an effective EBL model which,
in turn, is employed to fit the intrinsic spectra of an extended sample of extragalactic TeV-
emitters. Global properties of the fits are then analysed. Conclusions are finally presented
in section 5.

2 Modeling the EBL spectrum

Having stars and cosmic dust in the interstellar medium (ISM) as its main contributing
sources, the EBL spectrum shows nowadays a maximum intensity in the wavelength range
0.1 gm — 1000 pm. In [11], the authors have indeed modeled the EBL spectral density as the
sum of these two main components.! Each star is assumed to have a metallicity similar to
the sun and to emit as a blackbody, whose effective temperature depends on its luminosity
and radius, the evolution of which is followed through the H-R diagram using an approach

1Since we will be interested in gamma-rays with energies E < 20 TeV, the CMB attenuation can be ignored.
For a source at z = 0.034, its contribution to the optical depth is less than 6.1 x 1075,



described in [13], where suitable parameterizations are found in order to describe the main
stages of stellar evolution: the main sequence, the Hertzsprung gap and the giant branch.
The applicability of the blackbody assumption is tested by comparing the spectra of simple
stellar populations (SSPs) of stars of different ages with high resolution ones from detailed
stellar structure codes [14]. In the wavelength range of interest for EBL studies (= 0.1pm),
there is a good agreement between these two types of SSPs.

Therefore, the stellar emissivity (i.e., the luminosity per unit comoving volume in
W Mpc~?) is given by

Mmax

i (60) = mee fule) [ dme(m) [ d

Mmin

d .
dztl’ Ye(z1)N(e;m,t), (2.1)

where € = hv/m.c? is the dimensionless energy of a photon of frequency v, fesc(€) is the
function which describes the fraction of radiation that is able to escape from the environment
of the star (i.e., without being absorbed by gas or dust), {(m) is the normalized initial mass
function (IMF),? 1.(2) is the comoving star formation rate in units of M yr—! Mpc™3,
N (e;m,t) is the number of emitted photons per unit energy per unit time for a single star
and t(z,z;) its age at redshift z after birth at redshift z;. The cosmological evolution is
governed by dt/dz, which for a ACDM model in a flat universe (zero spatial curvature) is
given by

dt
dz

1
C Ho(1+2)vV (1 + 2) T+ Qn(1+ 2)3 + Qa

where Hy = 70 km™! s7! Mpc~! is the Hubble constant and Q,, Q,, and Q are the dimen-
sionless density parameters of radiation, non-relativistic matter and dark energy, respectively.
For the redshifts of interest in EBL studies, one can safely ignore the contribution from ra-
diation (€2, ~ 0). We should take also Q,, = 0.3 and Q = 0.7.

The stellar emission is dominant between UV and near-IR, but part of these photons
is absorbed by gas and dust. The function fesc(€) previously introduced allows us to get
the direct starlight absorbed fraction. In [11], it is assumed that all radiation with energy
above 13.6eV is completely absorbed by interstellar and intergalactic HI gas. Below this
cutoff, a fraction of the photons is absorbed by ISM dust, whose grains are heated up and
finally reemited at longer wavelengths (IR). Similar to the stellar contribution, a Planck
spectral distribution is also assumed for dust, but now with three different temperatures as-
sociated to different grain types: small hot grains, large warm grains and polycyclic aromatic
hydrocarbon (PAH) molecules. The dust emissivity is then given by

(2.2)
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where the sum runs over the three grain types, f, is the relative contribution of each dust
component, ©,, = kT, /mec2 is the dimensionless temperature, kp is the Boltzmann con-
stant and T}, is the temperature of the grain in K. It is worth mentioning that the term
1/ fesc(€) does not diverge since j5'¥ (¢; 2) is proportional to fesc(€) as can be seen in eq. (2.1).

The applicability of the blackbody spectrum assumption for dust is difficult to assess.
Unlike the stellar case, the physics of dust absorption and emission is hard to model. From

2The authors assume the initial mass function (IMF) obtained by Baldry and Glazebrook [15] which, for
masses m > 0.5Mg, is in good agreement with the one due to Salpeter [16].



Dust component n  f, O, [1077]
PAH 1 0.25 76
Small grains 2 0.05 12
Large grains 3 0.70 7

Table 1. Summary of the dust parameters used in the calculations of this paper.

the observational point of view, PAHs have been detected and characterized for decades by
astronomers, showing a complex emission and absorption spectra at mid-IR due to their
many vibrational and rotational normal modes [17]. With the stellar and dust emissivities
from eq. (2.1) and (2.3), it is straightforward to get the EBL energy density u at a certain
redshift z, for this function should satisfy a Boltzmann equation with a diluting term due
to the expansion of the universe and an injection term proportional to the total emissivity
(star+dust) [19]. In comoving coordinates, one can write

Zmax

euc(e; z) = / dz

€'je(€;21) | dt
(1 + Zl) le

(2.4)

where € = (1 + 21)e is the photon energy at redshift 21, j. is the emissivity of the sources in
comoving coordinates.

Five combinations of IMF and SFR were considered in [11], the details of which can
be found in [20]. The combination showing the best agreement with data of UV /optical
emissivities is chosen by the authors and was also the one we have selected in this work. In
order to get a good agreement with their EBL energy density, some changes in the values
of the fractions had to be made, by increasing in 10% the contribution of large grains with
respect to the nominal value of [11] and a corresponding decrease in the fraction of PAHs
(table 1 summarizes the values used in this paper). The final EBL comoving energy density
as a function of wavelength can be seen in figure 1, where the contribution of each component
is also shown separately. One can see the dominance of PAHs at mid-IR (~ 10 um).

3 Dust emission and the spectrum of Markarian 501

Extragalactic gamma-ray sources in the GeV-TeV energy range present in the current avail-
able catalogs have direct star light as the main source of EBL attenuation. However, IACTs
with good sensitivity around 2 1TeV have also been measuring photon fluxes from a few
sources in a redshift range where the dust component can play an important role in the atten-
uation process. We show that an example of this kind of source is Mkn 501. An exceptional
flare of this AGN was detected in 1997 by HEGRA [12] and its SED characterized in [21].
Figure 2 shows the spectrum of Mkn 501 superimposed to the attenuation factor from the
extragalactic medium, as predicted by the EBL model of Finke et al., for a source at the
location of Mkn 501 (z ~ 0.034).

One can see for this particular source that, as the contribution from direct starlight
to the opacity of the extragalactic medium decreases slowly and steadily for energies above
~ 1TeV, the dust contribution increases monotonically up to ~ 20TeV. Moreover, for
energies 10 < F < 20 TeV, the optical depth is dominated, in the Finke et al. model, by the
PAH component with the contribution from large and small grains rising fast above 10 TeV.
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Figure 1. EBL energy density in comoving coordinates as measured by an observer at redshift z = 0.
In addition to the total (black) density, individual contributions are also shown: stellar (long-dashed
red), small hot grains (dotted blue), large warm grains (dot-dashed blue) and PAHs (dashed red).
Green and yellow points corresponding to lower and upper limits, respectively, and were obtained

from [18].
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Figure 2. Mkn501 SED for the flare of in 1997. Also we plot the attenuation factor according to
Finke et al. EBL model for a source located at z = 0.034 where the contribution from stars and

individual dust components are also shown.

For the EBL model adopted in this paper, once the IMF and SFR are defined, the
stellar contribution do not have any extra free parameters. On the other hand, for the dust
component, in addition to an assumption on the escape probability (fesc) of starlight, the
relative contributions of different grain sizes (f,) and their temperatures ©,, also need to
be determined. In [11], in particular, the authors assume redshift-independent fesc, f,, and



O, choosing the last two variables so as to fit IR luminosity data at low redshifts (z = 0
and z = 0.1) from several observations [22-40]. The escape fraction is taken from [41] as
a piecewise power-law at several wavelength ranges. Here, we should keep the same escape
fraction function, as well as the temperatures of the three different grains. The relative grain
contributions, however, will be determined using a fit to the SED of Mkn 501 in flare state
in order to study the potential of this kind of observation to constrain both source intrinsic
spectrum and EBL parameters.

The solution to the radiative transfer equation for the opaque extragalactic medium
leads to the usual relationship between emitted (intrinsic) and detected (observed) fluxes
®y(F) and ¢(E):

(E) = e~ (TrartTaus) g (E) (3.1)

where Tgar(2) and 7qust (2, { frn}) are the optical depths due to starlight and dust, respectively.
The intrinsic spectrum will be modeled, generically, by a set of parameters {a;}. Here, we
adopt three kinds of intrinsic spectra, to know, a single power-law, a log-parabola and also
a power-law with an exponential cutoff. Since this last function has an energy dependent
curvature, it is more likely for a combined blazar spectrum+EBL fit to converge in this
case to a solution where part of the flux drop at the high energy part of the measured
SEDs is absorbed already at the intrinsic source spectrum, instead of being created by EBL
attenuation. We can, therefore, write explicitly

2\ T
No (E—(J) (power-law — PL)
—a—blog(E/Ey)
Oo(E) =4 N (E%) e ’ (log-parabola — LP)
-r
Ny (Eﬂ()) e~ B/ Ecut (power-law with exponential cutoff — PLC)

where Fy = 1.0 TeV is the reference energy (notice that Ey is not fitted, but rather fixed to
minimize the correlations between the free parameters), Ny is a flux normalization factor,
I" is the spectral index of the power-law, a and b are, respectively, the spectral index and
curvature for the log-parabola and FE., is the exponential energy cutoff. Imposing the nor-
malization condition for the relative grain fractions (3.°_, f, = 1), the fits will be performed
with either 4 (power-law) or 5 (log-parabola and power-law with exponential cutoff) free pa-
rameters. Assuming Gaussianity for the uncertainties in the flux measurements of Mkn 501,
we perform a y? minimization. The best fits for the SED as well as the contours in the 2D
parameter space of dust properties are shown in figure 3. In this figure, we have separated the
attenuation effects of each EBL component, so the plots show the convolution of the best-fit
intrinsic spectrum with the attenuation factors of each EBL component, as well as the total
attenuation. We have to stress, however, that there is an important systematic uncertainty
in the best-fit fractions associated to the lack of knowledge on the correct intrinsic spec-
trum. In the same figure we see, for example, that the absence of curvature in the power-law
intrinsic spectrum leads to larger contributions of PAH and small grains compared to the
other models. On the other hand, when the source spectrum has an exponential cutoff and,
therefore, an energy dependent curvature, the fit converges to a solution where the shape of
the measured SED at the high energy tail is essentially defined by the intrinsic curvature and
some extra attenuation due mainly to large grains. Notice the importance of PAH in giving
the attenuated spectrum of Mkn 501 the correct energy dependence in the region just below
10 TeV. Also, for the power-law and log-parabola cases, the different energy dependences of
the attenuation due to small and large grains lead the fit to prefer large values of small grain
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Figure 3. Combined fits of the intrinsic spectrum and relative contributions of dust grains using
Mkn 501 measured SED. Three different parameterizations are used for the intrinsic spectrum: power-
law (top), log-parabola (middle) and power-law with an exponential cutoff (bottom). Left: measured
SED superimposed to the convolution of the best-fit intrinsic spectrum with the attenuation factors
of each EBL component, as well as the total attenuation. Right: x? contours in the 2D space of dust
parameters fpau X fsg at confidence levels of 68%, 95% and 99%.



fractions in order to describe the very end of the SED and, in turn, to a somehow inverted
hierarchy of contributions between small and large dust grains coming out of the fit, when
power-law and log-parabola are used as the source spectrum. It is generally believed that
small hot grains should amount to a fraction of 10%, at most, of the so called “solid grains”
(small plus large) in the interstellar medium [17], that is, excluding what is usually called
molecular dust (PAH). Therefore, we have also performed a fit where an upper-bound is
imposed on the mentioned fraction, i.e.

~ fsg

s <0.1 (3.2)

B fsg+flg o

and the results in this case are included in tables 2 (power-law) and 3 (log-parabola). We can
see that the fit tries to get as much EBL attenuation as possible using small grains in order
to reproduce the strong suppression at the end of Mkn 501 SED. The best-fits, in both cases,
saturate the bound on ﬁg. But in the absence of curvature in the intrinsic spectrum, as in the
power-law case, the f-bounded fit is much worse than the unbounded one: x?/ndof=37.6/13
(bounded) versus 15.7/13 (unbounded).

Some (if not all) of the degeneracies currently observed in the dust fraction parameter
space are expected to be removed when a high quality multi-blazar sample is fit altogether,
due to the increase in the number of degrees of freedom in such a fit. Even if different
intrinsic spectra are used, the EBL attenuation at different redshifts should lead to stronger
constraints on the dust fractions.

In order to better understand the importance of individual grains in shaping the SED of
Mkn 501, we also performed the combined EBL-SED fit for effective 1- and 2-grain models.
Figures 4 and 5 show the fit results for the 2-grain cases. Tables 2 (power-law), 3 (log-
parabola) and 4 (power-law with exponential cutoff) show additional information on the fits.
One can see that when the intrinsic spectrum lacks curvature, the fit prefers to rely on small
grains to model the spectrum shape at high energies. In the absence of this kind of dust
(case PAH-large), the fit is the worse among all three effective 2-grain models. Caution
should be exercised again when interpreting these results, because even though the relative
contributions of the grains are varying, their temperatures are still fixed to the values of
the nominal model, and figure 1 shows that the grain temperature is a key parameter in
shaping the EBL spectrum. We also see that curvature is able to compensate a big part of
the dust attenuation, keeping the fit at reasonable quality. The contour plots show that the
absence of either small or large grains introduce a strong correlation between the fractions
of the remaining two grains. Notice that single grain models, with the temperatures given in
table 1, do not provide good fits.

Finally, we perform a hypothesis test by comparing the 1- and 2-grain scenarios (the null
hypotheses Hy) against the 3-grain one (the alternative Hi), using a nested log-likelihood
ratio. The test statistic will be —21In(Lo/L1) = Ax?. According to Wilks’ theorem [42], in
the limit of a large data sample, the asymptotic pdf of this statistic (when Hy holds true)
should be a x3 distribution with a number of degrees of freedom k equal to the difference in
dimensionally of the corresponding parameter spaces. Therefore, k =1 (Hy = “two grains”)
or k=2 (Hp = “single grain”), for the tests performed here.

Figures 6, 7 and 8 show the distributions of Ax? for the three spectra, using as null
hypotheses the 1- and 2-grain best fits of tables 2, 3 and 4. The expected asymptotic pdf
of Ax? is also superimposed and shows that for the size of Mkn 501 flare state SED, it is
already an excellent approximation to the exact pdf. The p-values of table 5 were, therefore,



power-law

EBL model x? /ndof +o foan £ 0 feto feto
3 grains 15.7/13  2.05+0.39 0.32+0.15 0.56 +0.12 0.12
3 grains (f, <0.1) 37.6/13 2.75+0.29 0124012 0.09+0.02 0.79
PAH-+small 16.1/14 1.83+£0.23 0.40£0.10 0.60 0.00
PAH+large 475/14 2.70+0.29 0.16 +£0.11 0.00 0.84
small+large 19.3/14 2.86 £+ 0.06 0.00 0.61+0.14 0.39
PAH 98.0/15 0.68 +0.04 1.00 0.00 0.00
small 25.1/15  2.76 £ 0.05 0.00 1.00 0.00
large 48.9/15 3.09+0.04 0.00 0.00 1.00
Finke et al. 41.6/15 2.44+0.04 0.25 0.05 0.70

Table 2. Summary of EBL+spectrum combined fits for a power-law intrinsic spectrum and the
observed SED of Mkn 501. Fractions without uncertainties were either kept fixed during the fit or
obtained from fitted fractions by the normalization condition.

log-parabola

EBL model X2 /ndof ato bto fran £ 0 feto feto
3 grains 15.7/12  1.96 £0.48 0.16 £0.60 0.27+0.25 0.49+0.28 0.24
3 grains (f, <0.1) 15.8/12 1444014 1.014£0.09 0.00+0.14 0.10+0.08 0.90
PAH+small 16.1/13  1.83+0.23 0.00+0.23 0.40 £ 0.10 0.60 0.00
PAH+large 16.1/13  1.21+0.33 1.18£0.21 0.00+0.16 0.00 1.00
small+large 15.8/13  1.56 £0.56 0.92 4+ 0.39 0.00 0.15£0.20 0.85
PAH 62.4/14 —0.99+0.29 1.00+0.17 1.00 0.00 0.00
small 25.1/14 276 £0.04 0.00 +0.13 0.00 1.00 0.00
large 16.2/14 1.21+0.33 1.18+0.21 0.00 0.00 1.00
Finke et al. 18.8/14  0.93+0.32 0.95+0.20 0.25 0.05 0.70

Table 3. Summary of EBL+spectrum combined fit for a log-parabola intrinsic spectrum and the
observed SED of Mkn 501. Fractions without uncertainties were either kept fixed during the fit or
obtained from fitted fractions by the normalization condition.

calculated using the asymptotic formula. We see that the single grain scenario represented by
PAHs can be excluded at more than 50 (p = 2.9 x 10~%), regardless of the intrinsic spectrum
used. It is clear from the 2-grain fits of figure 4 that a PAH-only attenuation is unable to
account for the strong flux drop of Mkn 501 SED above 10 TeV.

We would like to mention that the bolometric intensities associated to the best-fits of
tables 2, 3 and 4 are around Ip,,] = 48.0 nW m~2 sr—!, with variations in the first digit, since
the stellar component is fixed and the broad range of redshifts over which the integration is
performed dilutes the temperature dependence of I, For comparison, Finke et al. has Iy =
46.8 nW m~2 sr~!. Therefore, the best-fits found here correspond to conservative estimates
of the EBL contribution, since the bolometric intensities mentioned are very close the direct
galaxy counts lower bounds (see figure 1). It is also interesting to compare measurements of
the luminosity density with the predictions from formula (2.3) in the IR range using the best-
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Figure 4. Best fit curves superimposed to measurements for an effective 2-grain model. The convo-
lution of the intrinsic spectrum with the attenuation factors of individual grains is shown, as well as
the total attenuation.

power-law with exponential cutoff

EBL model x?/ndof I'+o E.. £ o(TeV) frau o feto feto
3 grains 15.7/12  2.00 £0.12 7.7+2.1 0.084+0.07 0.06+£0.17 0.86
PAH+small 16.1/13  1.834+0.24 (0.14£9.9) x 10" 0.40 4+ 0.10 0.60 0.00
PAH+large 15.7/13  2.00 +0.40 6.9+1.5 0.05 +0.16 0.00 0.95
small+large 15.8/13  2.10 £0.19 6.7+£1.3 0.00 0.00£0.78 1.00
PAH 50.4/14 —0.31+0.16 7.6+ 1.2 1.00 0.00 0.00
small 25.1/14  2.76 £0.05 (0.1 £5.3) x 106 0.00 1.00 0.00
large 15.8/14  2.10+0.19 6.7+1.3 0.00 0.00 1.00
Finke et al. 16.6/14  1.62 +0.18 8.3+1.9 0.25 0.05 0.70

Table 4. Summary of EBL+spectrum combined fit for a power law with an exponential cutoff
intrinsic spectrum and the observed SED of Mkn501. Fractions without uncertainties were either
kept fixed during the fit or obtained from fitted fractions by the normalization condition.
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Figure 5. Confidence level curves at 68%, 95% and 99% in a 2D parameter space with spectral index
versus grain fraction: ' x f,, (PL/PLC) or a x f,, (LP). The curves are for an effective 2-grain model.

‘ power-law ‘ log parabola ‘ power-law x cutoff

null hypothesis Ax? P(>Ax?) Ax?2 P(>Ax%) Ax?2  P(>Ax?)
PAH+small 0.4 0.53 0.4 0.53 0.4 0.53
PAH+large  31.8 1.7x107% 04 0.53 0.0 1.0
small+large 3.6 0.06 0.1 0.75 0.1 0.75

PAH 82.3 14x10718 467 72x1071 347 29x1078
small 9.4 0.01 9.4 0.01 9.4 0.01
large 332 62x107% 0.5 0.78 0.1 0.95

Table 5. Summary of the nested likelihood ratio test for 2-grain and 1-grain models with power-law,
log-parabola and power-law with an exponential cutoff intrinsic spectra. The 3-grains model was used
as alternative hypothesis.

fit fractions obtained here. In [43] and [44], for example, empirical methods were developed to
extract the EBL luminosity density as a function of redshift over a broad range of wavelengths,
all the way from the Lyman limit to the far-IR (850 pm). Figure 9 shows the redshift evolution
of the luminosity density at different wavelengths for the 3-grain scenarios obtained with
different Mkn 501 intrinsic spectrum parameterizations. For the 68% confidence level bands
presented in [43, 44], the curves agree within 1-20 with the measurements.
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Figure 10. Heat map showing the optical depth to gamma-rays according to Finke et al. model in
the E, x z parameter space. The lowest (black) and highest (red) energy bins for each observation
shown in tables 6 and 7 are superimposed to the plot. Black curves at specific values of 7 are shown.
The curve corresponding to 7 = 1 is defined as the cosmic gamma-ray horizon (CGRH).

4 Global fit properties for an extended sample of gamma-ray sources

In this section, we describe some tests performed to compare two EBL scenarios: the model
by Finke et al. with its nominal dust fractions and the same star+dust model with dust
fractions tuned using Mkn 501 measured SED presented in the last section. The procedure
adopted also had as an objective to go from a single source analysis, as presented in the
previous sections, to an extended sample of gamma-ray sources. The fits performed in this
section will only vary the parameters of the intrinsic spectra, the dust fractions being either
the Finke et al. nominal ones or those tuned to Mkn 501 in the 3-grain cases. We started
by pre-selecting a sample of extragalactic gamma-ray sources from the TeVCat catalog [45].
From this initial sample, we were able to collect in the literature 78 spectra of 41 different
sources, all of them observed by IACTSs. Tables 6 and 7 summarize important information on
the spectra used. The observations listed in this table were made at energies where current
EBL models indicate non-negligible attenuation effects. This can be better appreciated when
the lowest and highest energy bins of each observation are superimposed to the optical depth
map of Finke et al. model in the 2D-parameter space E, x z, as shown in figure 10. One
can see for a large number of observations, the highest energy bin lying above the curve
corresponding to optical depth 7 = 1, the so called cosmic gamma-ray horizon (CGRH) [46].

With this sample of 78 SEDs, we have studied the distribution of residuals obtained
when the measured spectrum (®;) at energy bin i is compared to the predicted flux at Earth
(P(F) = e "®, for different combinations of intrinsic spectrum convoluted with an EBL
attenuation factor as given by equation (3.1)), taking into account the uncertainties on the
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Name Redshift Type Survey Period of Observ.  Reference
1ES 02294200 0.14 BL Lac HESS 2005-2006 [47]
VERITAS 2010-2012 [48]
1ES 0347-121 0.188 BL Lac HESS 2006 [49]
1ES 04144009 0.287 BL Lac HESS 2005-2009 [50]
VERITAS 20082011 [51]
1ES 08064524 0.138 BL Lac MAGIC 2011 [52]
VERITAS 2006-2008 [53]
1ES 10114496 0.212 BL Lac MAGIC 2007 [54]
1ES 1101-232 0.186 BL Lac HESS 2004-2005 [55]
1ES 12154303 0.13 BL Lac MAGIC 2011 [52]
VERITAS 2011 [56]
1ES 12184304 0.182 BL Lac  VERITAS 2008-2009 [57]
VERITAS 2007 [58]
MAGIC 2005 [59]
1ES 1312-423 0.105 BL Lac HESS 2004-2010 [60]
1ES 17274502 0.055 BL Lac  VERITAS 2013 [61]
1ES 17414196 0.084 BL Lac  VERITAS 2009-2014 [62]
1ES 19594650 0.048 BL Lac  VERITAS 2007-2011 [63]
MAGIC 2006 [64]
1ES 23444514 0.044 BL Lac  VERITAS 2007-2008 [65]
2007 [65]
MAGIC 2008 [66]
MAGIC 20052006 [67]
1RXS J101015.9  0.142639  BL Lac HESS 2006-2010 [68]
3C 279 0.5362 FSRQ MAGIC 2008 [69]
3C66A 0.34 BL Lac  VERITAS 2008 [70]
4C+2135 0.432 FSRQ MAGIC 2010 [71]
AP Librae 0.049 BL Lac HESS 2010-2011 [72]
BL Lacertae 0.069 BL Lac  VERITAS 2011 [73]
Centaurus A 0.00183 FR1I HESS 2004-2008 [74]
H 1426+428 0.129 BL Lac HEGRA 1999-2000 [75]
2002 [75]
H 2356-309 0.165 BL Lac HESS 2004-2007 [76]
IC 310 0.0189 BL Lac MAGIC 2012 [77]
2009-2010 [78]
M8&7 0.0044 FR 1 HESS 2005 [79]
2004 [79]
MAGIC 2005-2007 [80]
2008 [81]
VERITAS 2007 82]
Markarian 180 0.045  BLLac  MAGIC 2006 [83]
Markarian 421 0.031 BL Lac MAGIC 2004-2005 [34]
2006 [85]
VERITAS 2008 [86]
Markarian 501 0.034 BL Lac HEGRA 1997 [21]
VERITAS 2009 [87]
NGC 1275 0.017559 FRI MAGIC 20092014 [88]
PG 1553+113 0.49 BL Lac  VERITAS 2010-2012 [89]
MAGIC 2008 [90]
2006 [91]
HESS 2013-2014 [92]
HESS 2005-2006 93]
HESS 2012 [93]

Table 6. Gamma-ray sources selected from TeVCat [45].
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Name Redshift Type Survey Period of Observ. Reference
PKS 0301-243 0.2657 BL Lac HESS 2009-2011 [94]
PKS 0447-439 0.343  BL Lac HESS 2009 [95]
PKS 1441+25 0.939 FSRQ MAGIC 2015 [96]
PKS 1510-089 0.361 FSRQ HESS 2009 [97]
MAGIC 2015-PeriodA [98]
2015-PeriodB [98]
PKS 2005-489 0.071 BL Lac HESS 2004-2007 [99]
PKS 2155-304 0.116 BL Lac HESS 2006 [100]
2005-2007 [101]
MAGIC 2006 [102]
RBS 0413 0.19 BL Lac ~ VERITAS 2009 [103]
RGB J0152+017 0.08 BL Lac HESS 2007 [104]
RGB J0710+591 0.125 BL Lac ~ VERITAS 2008-2009 [105]
RX J0648.74+1516 0.179 BL Lac  VERITAS 2010 [106]
S3 0218+35 0.954 FSRQ MAGIC 2014 [107]
VER J0521+211 0.108 BL Lac ~ VERITAS 2009-2010 [108]
Table 7. Continuation of table 6.
measured flux ®; (o;):
Flux residual; = (I)i_f(Ei), (4.1)
(2

which, defined in this way, are expected to follow a normal distribution with zero mean and
unit variance when the errors o; are Gaussian and the model ®(E) appropriately describes
the measurements ®;. Figure 11 shows the distributions of the residuals (one entry for each
energy bin of the 723 independent SED observations) for different intrinsic spectrum parame-
terizations and an EBL attenuation using Finke et al. nominal fractions. One can see a clear
improvement in the description of the measurements when log-parabola or a spectrum with a
cutoff is used due, of course, to the extra parameter present in these parameterizations which
can even absorb part of the EBL attenuation effects that could be imprinted in the SED.
The improvement can be seen even by eye in the reduction of differential flux outliers (com-
pared the power-law case) when these two spectra are used. For a more quantitative analysis,
Gaussian fits to the residual distributions were performed and the results are summarized
in table 8 (columns labeled as “nominal fractions”). The distributions of figure 11, when
fitted with a log-parabola or a spectrum with a cutoff, have reduced x? closer to unity when
compared to the PL case. Additional tests were made by fixing the intrinsic spectrum and
comparing the nominal fractions scenario with the Mkn 501-tuned one. The corresponding
distribution of residuals can be seen in figure 12 for all 3 intrinsic spectra. The Gaussian
fit results in table 8 show again that, after tuning the fractions, power-law gives the worse
reduced x? among the three spectra. However, except for the power-law case, the differences
in the reduced x? between the two sets of dust fractions analyzed are small.

In order to disentangle, at least partially, intrinsic spectrum effects from the EBL atten-
uation ones, we finally performed two additional tests. Firstly, a comparison was made based

3In order to ensure that all the fits have at least one degree of freedom, six spectra with just three energy
bins measured were excluded from the sample.
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Figure 11. Distributions of flux residuals for an EBL attenuation model based on the nominal dust
fractions of Finke et al. Each histogram correspond to a different intrinsic spectrum parameterization.
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Figure 12. Distributions of flux residuals for different combinations of EBL attenuation and intrinsic
spectrum. At each plot, two distributions of residuals are shown: one for the nominal fractions scenario
and another for the tuned fractions case. (Left) power-law; (Center) log-parabola; (Right) power-law
with exponential cutoff.

on the approach adopted in [18], where the fit residuals for the nominal and Mkn 501-tuned
fractions were calculated for each source using the intrinsic spectrum that lead to the best
fit quality (more precisely, the largest P(> x?2) for a given ndof). The same two scenarios
for the set of dust fractions are compared. The three lines of table 8 identified by the label
“best spec.” summarize the fit results in these cases, each line representing one of the three
sets of dust fractions, depending on the spectrum parameterization used during the tuning
procedure. The reduced y?s for the scenario of tuned fractions are slightly smaller than the
nominal fractions case.

In the second test, we have subdivided the blazar sample using an attenuation estimator
to produce stellar- and dust-dominated SED bins. The distribution of the estimator, taken
as the following predicted ratio of optical depths for a source at the same redshift z of the
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nominal fractions ‘ tuned fractions

7 o x2/dof I o x?/dof
PL —0.01£0.08 1.31+0.06 61.23 0.02+0.08 1.21£0.05 97.79
LP 0.04£0.056 0.7240.03 1.91 0.05+£0.05 0.72+£0.03 1.96
PLC 0.10£0.05 0.80%0.04 1.87 0.08+0.05 0.77£0.04 1.47
best spec. (PL) 0.06£0.04 0.71+0.03 225
best spec. (LP) 0.05+0.04 0.71+£0.03 2.46 0.05+0.04 0.71+0.03 2.39
best spec. (PLC) 0.05+0.04 0.71+£0.03 1.31
r > 0.8 (PL) 0.11+0.09 1.244+0.06 70.17 0.08£0.08 1.18+£0.06 44.74
r < 0.8 (PL) —0.40£0.40 1.80+0.30 2.12 —0.30£0.30 1.50+0.20 9.18

(

(
r > 0.8 (LP) 0.03+0.06 0.70+0.04 1.65 0.03£0.06 0.70£0.04 191
r < 0.8 (LP) 0.10£0.20 090+0.10 1.22 0.10+0.10 090=£0.10 1.35
r > 0.8 (PLC) 0.06 +£0.06 0.79+0.04 1.77 0.06 £0.05 0.77£0.04 1.35
r < 0.8 (PLC) 0.40£+0.20 1.00+£0.20 1.13 0.30+0.20 090£0.10 0.45

Table 8. Mean, standard deviation and reduced y? of Gaussian fits to the distributions of residuals
for SED fits performed with different dust fractions and blazar intrinsic spectra: PL (power-law), LP
(log-parabola) and PLC (power-law with cutoff).
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Figure 13. Distribution of the optical depth estimator Tgtar/Ttotal (see text) for all the SED bins
of the sample of blazar spectra shown in tables 6 and 7. The vertical line correspond to the highest
energy bin of Mkn 501.

blazar emitting photons of energy equal to the corresponding central value of the energy bin

Tstar(Ea Z)
Tstar(E; Z) + Tdust(Ea Z) ’

r(E, z) = (4.2)

is shown in figure 13 for the sample of 39 blazars.* In order to get the optical depths for

“Two of the blazars in the input sample (CenA and M87) are too close that their optical depths due to
starlight are negligible.
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equation (4.2), we used the nominal dust fractions of Finke et al. model. We also verified that
the use of the Mkn 501 tuned fractions did not change the classification of the subsamples.
The plot clearly shows that the current sample of blazars detected by IACTSs is dominated by
star attenuation. When the maximum energy of the measured SED is used, this estimator
shows that Mkn 501 is the source with the highest expected level of dust attenuation in
the sample. The corresponding residual distributions for the two subsamples (r > 0.8 and
r < 0.8) are shown in figure 14 once again for the three spectra and the two sets of dust
fractions. The numbers summarized in table 8 do not indicate a uniform systematic change
in the quality of fit when one goes from the nominal fractions to the tuned ones. The changes
in the reduced x? show positive and negative variations depending on the intrinsic spectrum
and on the range of r analyzed.

Regarding the mean (1) and standard deviation (o) of the Gaussian fits, excluding the
cases with bad fit quality (x?/ndof > 10), we see that the mean values are consistent with
zero at the 1- to 2-sigma level, whereas o can be up to 30% smaller than the ideal case of
unit variance. Such an effect could be due to an overestimation of the flux uncertainties, but
investigating this is beyond the scope of this paper, since it would require extra information
at the telescope and data processing levels.

5 Conclusions

We have addressed here the issue of the contribution of dust emission at IR wavelengths to the
opacity of the extragalactic medium. Using an existing EBL model based on the blackbody
emission of stars and dust grains of different sizes and temperatures, we have been able to
study separately the contribution of each grain type to the attenuation of TeV gamma-rays.
With a single TeV source at redshift z = 0.034, Mkn 501, we showed that its measured SED
has already some sensitivity to the relative contributions of different dust grains. The fit was
performed for three different intrinsic spectrum parameterizations while the temperatures of
the grains were kept fixed during all the fit procedure.

For this single source fit, some residual degeneracy is still present between the amount
of some grains (small and large) and the curvature of the intrinsic spectrum. More specifi-
cally, when the intrinsic spectrum lacks curvature (power-law) or has an energy independent
curvature (log-parabola), the competition between small and large grains at the very end
of Mkn 501 SED is won by the small ones due to their slightly harder attenuation factor.
However, the flux suppression due to this dust component can be mimicked by some extra
curvature of the blazar spectrum (like in the power-law with cutoff case). A nested likelihood
ratio test was able to exclude the PAH-only scenario (with the temperature of the dust grains
fixed a priori) at more than 50, for the attenuation of this dust component has an effective
energy dependence in the form of a single spectral index over a broad energy range, therefore,
being unable to account for the strong flux suppression of Mkn 501 flare state SED seen above
10 TeV, even when there is an energy cutoff in the source spectrum. On the other hand, in
the region just below 10TeV, the presence of PAH molecules is essential for the attenuated
spectrum to have an energy dependence consistent with the measured SED. Therefore, by
separating the attenuation due to each EBL component, we can clearly see the potential of
a precisely measured SED to constrain both the spectrum and EBL parameters.

The extension of this procedure from the single source level to a sample of well measured
AGNs at different redshifts has the potential to put much stronger constraints on the same
parameters, since many (if not all) of the mentioned degeneracies could be broken in that case,
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Figure 14. Distributions of flux residuals for two different populations of SED bins and differ-
ent blazar intrinsic spectra. Left: plots corresponding to the bins dominated by dust attenuation
(Tstar/Ttotal < 0.8) according to the estimator of equation (4.2). Right: bins dominated by stellar
attenuation (Tgtar/Ttotal > 0.8). At each plot, two histograms are compared: nominal fractions and
tuned fractions.

due to the increase in the number of degrees of freedom. A first step towards that goal was
given here by checking the consistency of the EBL parameters tuned to Mkn 501 in describing
the attenuated spectra of a set of 78 SEDs from 41 different blazars selected from TeVCat.
We have studied the distribution of SED fit residuals for several combinations of dust fraction
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sets and intrinsic spectra. By splitting the sample of blazar SED bins into stellar and dust
attenuation dominated subsamples, we could not identify a uniform systematic change in
the quality of Gaussian fits performed on these residual distributions when going from the
nominal fractions to the tuned ones. This result is consistent with the fact that the current
sample of blazars detected with TACTs is still dominated by starlight attenuation as shown
by an apropriate estimator.

The next generation of IACTs, represented by CTA, is expected to discover a whole
new sample of extragalactic AGNs at high redshifts due to its ~10 factor enhancement in
sensitivity. Its extended energy range, covering almost four decades from below 100 GeV to
100 TeV, will provide SEDs where the attenuation effects of all EBL components are expected
to play some role: from the stellar one at visible and UV wavelengths (affecting the tens to
hundreds of GeV region of the AGN spectrum) to the mid-IR and PAH-dominated range
(attenuating the ~ TeV region of the spectrum) to the far-IR region of small and large grains
(important for the attenuation at very high energy tail of the spectrum around tens of TeV).
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