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Abstract. Currently, one of the biggest challenges of Machine Learn-
ing (ML) is to develop fairer models that do not propagate prejudices,
stereotypes, social inequalities, and other types of discrimination in their
decisions. Before ML faced the problem of unfair decision-making, the
field of educational testing developed several mathematical tools to de-
crease bias in selections made by tests. Thus, the Item Response Theory
is one of these main tools, and its great power of evaluation helps make
fairer selections. Therefore, in this paper, we use the concepts of Item
Response Theory to propose a novel sample reweighting method named
IRT-SR. The IRT-SR method aims to assign weights to the most impor-
tant instances to minimize discriminatory effects in binary classification
tasks. According to our results, IRT-SR guides classification algorithms
to fit fairer models, improving the main group fairness notions such as
demographic parity, equal opportunity, and equalized odds without sig-
nificant performance loss.

Keywords: Data Bias · Fairness · IRT · Machine Learning · Preprocess-
ing Algorithm.

1 Introduction

Machine Learning (ML) algorithms significantly influence consequential deci-
sions in various domains, including credit transactions, advertising targeting,
credit assessment, translation, and content recommendation [26]. As these al-
gorithms possess the power to shape people’s lives, it becomes imperative to
acknowledge the accompanying responsibilities. It is crucial to exercise caution
and ensure that these models do not perpetuate societal biases and discrimina-
tion that already exist within our society [23, 24].

One notable example of discrimination arising from learning models is exem-
plified by the utilization of the COMPAS (Correctional Offender Management
Profiling for Alternative Sanctions) system to predict recidivism risk and aid
judges in determining sentences within the criminal justice system of the United
States. This case gained attention due to the identification of potential biases
and adverse impacts on certain racial and socioeconomic groups, particularly
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against black defendants [2]. These biases resulted in a troubling outcome where
low-risk black defendants were twice as likely to be misclassified as high-risk
compared to their white counterparts, consequently depriving them of parole
rights.

In this context, one of the biggest challenges in the field of ML is to develop
fairer decision-making models, especially when these decisions involve people’s
futures [22]. An inherent challenge in this pursuit arises from the nature of data
itself, as they often serve as a reflection of societal realities [3]. Thus, prejudices,
stereotypes, and inequalities present in society are often contained in the data.
As models are data-driven, training them on biased datasets unintentionally
reproduces undesirable behaviors.

One way to minimize the biases contained in the data is through the prepro-
cessing algorithms, which, when developed for this purpose, aim to transform the
data set used in training, thereby incorporating some fairness notions or elimi-
nating explicit discriminatory biases [25]. One of these preprocessing strategies
is the sample reweighting method, the focus of this paper, which aims to as-
sign weights to the instances used in model training. This helps to determine
which instances are more important to be classified correctly to minimize the
discriminatory effects of these models. Consequently, these weights support the
classification algorithms’ search for fairer solutions.

Before ML faced the problem of unfair decision-making, the educational test-
ing field developed solutions to decrease bias in the applicant selection process.
One of these solutions is the Item Response Theory (IRT), which has a great
power of evaluation and is a fairer tool for evaluating tests than the Classical
Test Theory [19]. IRT is used as an assessment model in some of the world’s
leading exams, such as the SAT1, TOEFL2, and ENEM3. Therefore, given its
success in educational testing, IRT can be a promising path to developing fairer
models [16].

In this scenario, we propose a novel sample reweighting method named IRT-
SR based on Item Response Theory concepts to be applied in binary classifica-
tion tasks. Our experimental results show that IRT-SR can improve key group
fairness metrics, making classifiers fairer without significant performance loss.
Complementarily, we highlight two main contributions of this paper. Firstly, it
introduces Item Response Theory concepts into solutions to minimize discrim-
inatory effects in machine learning models. Secondly, it introduces our IRT-SR
sample reweighting method to guide classification algorithms to fit fairer models.

The remaining of this paper is divide as follows: Section 2 provides an
overview of the background and related work about the topic. Section 3 presents
our proposed methods and approaches. In Section 4, we detail the experimental
settings and methodology employed to evaluate our proposed methods. Section

1 The SAT is an educational exam given to high school students in the United States,
which serves as a criterion for admission to American universities.

2 TOEFL is the acronym for Test of English as a Foreign Language.
3 ENEM is the exam that evaluates high school students in Brazil. The students use

their ENEM scores to try to enter public and private universities in the country.
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5 outlines the results obtained from our experiments and analyzes their implica-
tions. Finally, in Section 6, we conclude the paper by summarizing our findings
and discussing their significance.

2 Background

This section presents the key terms and fundamental concepts of group fairness
analysis and item response theory necessary to understand our proposal.

2.1 Group fairness analysis

Protected attributes are characteristics that hold sensitive information, like gen-
der, race, nationality, religion, and sexual orientation. These attributes should
receive equal treatment, regardless of their value. A group is a collection of in-
dividuals who share the same protected attributes, such as males and females
in the case of gender. Moreover, a privileged group refers to a group or set of
groups historically receiving better treatment than unprivileged groups.

One form of discrimination is to use protected attributes in decision-making.
This practice is called adverse treatment and is typically forbidden by law in
democratic countries. However, adverse impact occurs when certain groups are
either advantaged or disadvantaged by outcomes, irrespective of whether adverse
treatment is present or not [3]. In machine learning, adverse treatment arises
when protected attributes are incorporated into model training, while adverse
impact pertains to uneven results (e.g., F1-score) across various groups.

Group fairness analysis aims to identify any potential unfair outcomes be-
tween different groups, with a particular focus on identifying adverse impacts.
Three group fairness notions are discussed when we want to ensure that the ad-
verse impact does not occur: demographic parity, equal opportunity, and equal-
ized odds. Demographic parity means that every group has an equal chance of
receiving a positive label [13]. Equal opportunity ensures that each group has an
equal true positive rate [15]. Finally, equalized odds ensure all groups share the
same true and false positive rates [15].

Therefore, group fairness analysis is determined by comparing group out-
comes. This implies that any performance metric can be analyzed as group fair-
ness. However, achieving equal rates is sometimes infeasible. Thus, we typically
calculate the score ratio between privileged and unprivileged groups to determine
any disparities in results based on these group fairness notions.

2.2 Item response theory

Item Response Theory (IRT) is a collection of mathematical models that are uti-
lized in test evaluation, primarily in educational and psychometric applications.
These models depict the relationship between the responses to test items and
the abilities of the examinees, which enhances the assessment’s effectiveness [10].
The IRT models stand out for their evaluation power and can be considered a
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fairer form of evaluation since they are able to detect unwanted behaviors of an
examinee, such as correct answers by guessing.

Dichotomous item response models are characterized by evaluating tests in
which the correctness of the test questions is in the right and wrong format,
regardless of the number of answer options. This form of evaluation resembles
the evaluations of binary classifiers, where to calculate the metrics derived from
the confusion matrix, the correct and incorrect classifications of the classifier are
used. For this reason, we use dichotomous item response models in this work,
specifically the two-parameter logistic model. Table 1 shows an example of the
modeling of dichotomous items, where the data structure U represents a test
with k items (columns) and n examinees (rows), where Uij = 1 indicates that
examinee i correctly answered question j, and Uij = 0 indicates an incorrect
answer.

Table 1: Data structure for modeling dichotomous items.
Individual Item 1 Item 2 Item 3 · · · Item k
Examinee 1 1 1 0 · · · 1
Examinee 2 0 0 0 · · · 1
Examinee 3 0 1 1 · · · 0

...
...

...
...

...
...

Examinee n 1 1 0 · · · 1

The two-parameter logistic model (2PL) is formulated by Equation 1. If we
have a data structure U that contains k items and n examinees, then P (Uij =
1 | θi) represents the probability of examinee i answering item j correctly, which
depends on their ability θi. The parameters aj and bj define the logistic curve
associated with item j, known as the Item Characteristic Curve (ICC).

P (Uij = 1 | θi) =
1

1 + e−aj(θi−bj)
(1)

Fig. 1 shows examples of ICCs, where the y-axis represents the probability of
correctly answering the item and the x-axis represents the ability θ. Fig. 1a shows
the influence of parameter a, and it can be seen that parameter a acts directly
on the ICC slope. Therefore, the parameter a is proportional to the derivative of
the logistic curve at its inflection point. In contrast, Fig. 1b shows an example
with three items, each with a different b-value. The b-value indicates the location
of the ICCs on the ability scale, at which the probability of providing a correct
answer is 50%. As the value of b increases, θ’s ability to answer the item correctly
increases. In general, ability values are commonly assumed to follow a normal
distribution with an average of 0 and a standard deviation of 1. Therefore, the
θ values typically fall within the range of −4 to +4, and b values fall between
−2 and +2 [14].

In the context of ML, IRT has already been applied in classification tasks.
In [20, 21], the authors find a strong correlation between the abilities (θ value)
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(a) parameter a values (with b = 0)
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Fig. 1: Example of Item Characteristic Curves

of the classifiers and their accuracy; with this result, they suggest some applica-
tions for IRT in ML, such as model selection and classifier evaluation. Another
application is [9], in which the authors proposed a new weighted voting in an
ensemble of classifiers. Thus, the voting weight of a classifier is given by its θ
values. These works use the same item modeling, with classifiers modeled as
examinees and instances as items. However, this work inverts this modeling,
modeling classifiers as items and instances as examinees, to make it possible to
assign one θ value to each instance and thus formulate our sample reweighting
method.

3 Proposal

This section presents our sample reweighting method, IRT Sample Reweighting
(IRT-SR), based on Item Response Theory concepts. In order to transpose them
to the domain of ML, we model a set of base classifiers as items and the sample
as examinees. Then, we can define the weight of each instance by calibrating
IRT parameters. The underlying idea of this method is that as the IRT is a
fairer evaluation method, the weights defined using this mathematical model
can contribute to developing fairer classifiers. Our proposed method comprises
four stages, which we discuss in detail in the subsequent sections.

3.1 Stage 1: Base classifiers predictions

In the first stage of our method, we train a set of k base classifiers using the
training sample. Next, we perform predictions on that same sample with the
same k classifiers. This step is necessary as it allows us to model this set of
predictions as a dichotomous test problem for using Item Response Theory, as
described in Section 2.2.

As we model the set of classifiers as items in the next stage, the number k
of base classifiers must satisfy the following condition k > 2 [10]. Thus, we need
more than two items to estimate the parameters a and b of the ICCs. We selected
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the following four classifiers from the k-Nearest Neighbors (kNN) classification
algorithm: 1NN, 3NN, 5NN, and 7NN, which use 1, 3, 5, and 7 as the value of
the hyperparameter of nearest neighbors, respectively. We opted for kNN in this
stage due to its simplicity, performance, and ease of interpreting its decisions.
Upon the completion of this stage, given a sample Dm with m instances, we
have the following set of predictions [Ŷ1NN , Ŷ3NN , Ŷ5NN , Ŷ7NN ].

3.2 Stage 2: Item modeling

Since we want to include a weight for each instance of the training sample,
we model in this stage the training sample as examinees and the set of base
classifiers as items. Thus, we are able to associate one θ value for each in-
stance, which can be used to determine the weight of the instance. Therefore,
to transform the classifier predictions [Ŷ1NN , Ŷ3NN , Ŷ5NN , Ŷ7NN ] into items
[I1NN , I3NN , I5NN , I7NN ], we have the modeling of items U , where Uij = 1
indicates a correct prediction of classifier i in instance j and 0 otherwise.

Table 2 illustrates the functioning of the item modeling matrix U. Each entry
Uij indicates if a specific instance i is correctly classified by the classifier j. A
value of 1 in the table indicates a correct classification, while a value of 0 indicates
the opposite. For example, the item I7NN shows that the 7NN correctly classified
instances 1, 2, and 5 and misclassified instances 3 and 4.

Table 2: The classifier’s predictions are modeled as a right or wrong test. The
value of cell ij indicates correct (equal to 1) or incorrect (equal to 0) prediction
of instance i by the classifier in column j.

Instances I1NN I3NN I5NN I7NN

Instance 1 1 1 0 1
Instance 2 0 0 0 1
Instance 3 0 1 1 0
Instance 4 0 1 0 0
Instance 5 1 1 0 1

3.3 Stage 3: IRT parameters calibration

In the third stage, we employ the 2PL model in the item modeling matrix U
to estimate the θ values of the instances and the ICCs associated with the
trained base classifiers. To calibrate these parameters, we utilize the expectation-
maximization (EM) algorithm [5].

To better understand the behavior of an ICC, Fig. 2 presents an illustrative
example with parameters a = 2 and b = 0 within the classification context.
Notably, the classifier has a high probability of misclassifying instances with θ
values lower than the value of its parameter b, as exemplified by the red vertical
line. Conversely, instances with θ values greater than parameter b (indicated by
the green vertical line) are more likely to be correctly classified by the classifier.
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Moreover, instances with θ values equal to parameter b are characterized by the
vertical gray line, signifying a 50% probability of being classified correctly.
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Fig. 2: Example of the Item Characteristic Curve, with a = 2 and b = 0, asso-
ciated with a classifier. Note that instance 3 (green line) has a high probability
of being correctly predicted by the classifier, while instance 1 (red line) has a
high probability of being incorrectly predicted by the classifier. Finally, instance
2 (gray line) has a 50% probability of being predicted correctly.

3.4 Stage 4: Sample reweighting

Lastly, we can assign the sample weight with the estimated θ values for each
instance. However, as seen in Fig. 2, the smaller the θ value of an instance,
the more difficult it is to predict it correctly. Thus, these instances should have
greater weight in the sample reweighting. Therefore, we rescaled the θ values to
a range between 1 and 5. We use this new scale to maintain the tradeoff between
improvement in group fairness measures without significant performance losses.
Finally, the sample weight of IRT-SR is given by Equation 2, where θrescaled is
the θ value translated to the new value scale.

SampleWeight =
1

θrescaled
(2)

4 Experimental settings

This experiment evaluates IRT-SR’s capacity to aid the selected classification
algorithms to fit fairer classifiers. The first step of the experiment is to separate
the dataset into a training set (80%) and a test set (20%). We employ 5-fold
cross-validation on the training set. This configuration was chosen because some
selected datasets have few instances, as shown in Table 3. Moreover, we apply the
selected sample reweighting methods for each training fold and use the sample
weight generated in the selected classification algorithms. We also apply the
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classification algorithms without using sample reweighting methods to have a
benchmark for comparison.

At the end of the validation step, based on the demographic parity, equal
opportunity, and equalized odds fairness measures, we select the best configura-
tion for each type of classification algorithm of each sample reweighting method
tested. Then we reapply the sample reweighting methods and retrain the clas-
sifiers with the entire training set and its best settings. Thus, in the end, we
can compare the sample reweighting methods on the test set, verifying which
method best guides the classification algorithms to develop fairer classifiers. An
overview of the experiment we performed can be seen in Fig. 3.

AdaBoost

SVM

CART

RF

Datasets

Evaluation

XGB

Without

IRT-SR

Reweighing

Classification
algorithms

Sample reweighting
methods

5-fold
cross-validation

Model training

Final evaluation

Training

Test

Holdout

Model selection

Fig. 3: Overview of the performed analysis. Initially, we split the dataset into
training and testing sets. In sequence, we use 5-fold cross-validation and apply
sample reweighting methods to each training fold to assess fairness metrics using
five classification algorithms to identify the best hyperparameters for each clas-
sifier. Thus, we then trained the classifiers with the entire training set using the
obtained hyperparameters. Finally, we assess the discriminatory effects of each
classifier on the test set.

The source code and benchmark datasets utilized in the evaluation process
are available in a public code repository4. The experiments were conducted using
Python and R programming languages, with the help of the following libraries:
scikit-learn (classification algorithms) [6], xgboost [8], aif360 (fairness metrics
and Reweighing method) [4], and mirt (IRT calibration) [7]. In the remainder
of this section, we detail the datasets, algorithms, and the evaluation approach
used in the experiments.

4 https://github.com/diegominatel/irt-sample-reweighting-method
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4.1 Datasets

For this work, we selected the relevant binary classification benchmark datasets
used in the Fairness in Machine Learning research community. Table 3 sum-
marizes the datasets, showing their amount of instances (#I), number m of
attributes (#A), which protected attributes are analyzed, the privileged group
of each task related to the dataset, and reference.

Table 3: Dataset information. Here #I denotes amount of instances and #A
represents the number of attributes

Dataset #I #A Protected Attributes Privileged Group Ref.
Arrhythmia67 452 278 sex male [12]
Bank Marketing 45,211 42 age over 25 years old [12]
Census Income 48,842 76 race and sex white-male [12]
Contraceptive68 1,473 10 religion non-islam [12]
Crack9 1,885 11 race non-white [12]
German Credit 1,000 36 sex male [12]
Heart6 303 13 age middle-aged [12]
Heroin9 1,885 11 race non-white [12]
Recidivism10 Female 1,395 176 race white [18]
Recidivism Male10 5,819 375 race white [18]
Student 480 46 sex male [1]
Titanic 1309 6 sex female11 [27]

4.2 Algorithms

We used the following classification algorithms that allow the application of
sample reweighting for the experiment: AdaBoost (ADA), Classification Trees
(CART), Random Forest (RF), Support Vector Machines (SVM), and XGBoost
(XGB). We tested fifteen parameterization settings for each of them. Table 4
shows each classification algorithm and the numerical variation range for their
hyperparameters used in this experiment.

In addition to comparing the results without using sample reweighting, we
used the well-known Reweighing [17] method in our experiment. This method
6 Age and gender are protected attributes that can play a crucial role in predicting

health datasets, which is why they are included in class prediction. Nevertheless,
does not preclude the analysis of adverse impact.

7 We binarize the output between the absence and presence of cardiac arrhythmia,
ignoring the different arrhythmia groups.

8 We binarize the output to predict whether or not a woman uses contraception.
9 It is the Drug Consumption dataset just changing the target class.

10 We split this dataset into two: Recidivism Female (female examples) and Recidivism
Male (male examples).

11 There was selection bias in the rescue operation during the Titanic disaster, as
women and children were given priority. As a result, the protected attribute is utilized
in making predictions using the Titanic dataset.
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Table 4: Algorithms and ranges of numeric variation defined for their hyperpa-
rameters.

Algorithm Hyperparameter Variation Range
(initial : final : step)

ADA Number of trees 100 : 500 : 25
CART Minimum number of samples to be a leaf node 2 : 30 : 2
RF Number of trees 100 : 500 : 25
SVM Gamma 0.0025 : 1.075 : 0.075
XGB Number of trees 100 : 500 : 25

aims to enhance fairness in classification tasks by assigning appropriate sample
weights W . Specifically, Reweighing computes:

W (A = i, Y = j) =
P (A = i)P (Y = j)

P (A = i, Y = j)
, (3)

where P (A = i) is the probability of occurrence of group i and P (Y = j)
is the probability of occurrence of class j. Additionally, P (A = i, Y = j) is the
probability of occurrence of group i with class j in dataset D. The underlying
idea of this method is to assign greater weight to instances with less frequent
(group, class) pairs.

4.3 Evaluation

As previously mentioned, we use the fairness measures of demographic parity,
equal opportunity, and equalized odds to select the best hyperparameters of
each classification algorithm. Also, we use these measures in the final evaluation
to compare the effectiveness of the reweighting methods. Furthermore, due to
the class imbalance of some datasets, we use the macro F1-score to analyze the
performance of the selected classifiers.

To simplify the categorization process of fairness metrics, we use the highest
score as the denominator for calculating the ratio between privileged and un-
privileged groups of a specific fairness metric, as described in Section 2.1. As a
result, the ratio of group fairness metrics, such as the demographic parity ratio,
will always be in the interval [0, 1], with the ideal outcome being a score of 1.

5 Results

In this section, we present the results obtained in our experiments, as explained
in Section 4. We provide a summary of fairness metrics results on the test set
for selected models with or without applying reweighting method. Additionally,
we discuss the macro F1-score results.

Table 5 shows the average result of the demographic parity ratio on the test
set applying demographic parity as a criterion for model selection. The "With-
out" column indicates the results without using the sample reweighting method.
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Bold values indicate the best score by datasets, and the value in parentheses indi-
cates the standard deviation. IRT-SR performed best in 7 of the 12 datasets and
also had the best average demographic parity ratio, being more than 5% ahead
of the second-best average. Reweighing performed better in 4 of the 12 datasets,
while not using sample reweighting had better results in only one dataset.

Table 5: Average demographic parity ratio results on the test set.
Dataset Without IRT-SR Reweighing
Arrhythmia 70.75% (19.80%) 82.31% (12.91%) 75.97% (15.09%)
Bank Marketing 50.57% (8.89%) 56.31% (16.51%) 61.81% (5.73%)
Census Income 31.83% (2.02%) 36.48% (4.01%) 36.53% (3.45%)
Contraceptive 94.73% (4.61%) 94.83% (3.94%) 92.01% (4.35%)
Crack 52.49% (39.93%) 59.21% (34.13%) 23.40% (21.47%)
German Credit 83.61% (9.46%) 83.41% (10.33%) 82.78% (10.78%)
Heart 53.40% (13.82%) 52.21% (5.28%) 63.15% (16.83%)
Heroin 56.55% (19.08%) 77.04% (15.03%) 46.23% (14.66%)
Recidivism Female 82.44% (22.03%) 85.64% (5.31%) 80.71% (17.37%)
Recidivism Male 72.36% (5.89%) 83.59% (11.03%) 76.39% (6.43%)
Student 86.82% (6.46%) 88.01% (4.88%) 86.82% (6.46%)
Titanic 19.59% (4.55%) 28.58% (12.15%) 36.92% (19.69%)
Average 62.93% (26.73%) 68.97% (24.44%) 63.56% (25.04%)

Table 6 shows the average equal opportunity ratio on the test set applying
equal opportunity as a criterion for model selection. Reweighing performed best
on 7 out of 12 datasets in this assessment criteria. However, IRT-SR had a better
average performance and the best performance on 4 datasets. It is important to
note that in the Crack dataset, not using sample reweighting methods obtained
a result almost three times better than the selected methods.

Table 6: Average equal opportunity ratio results on the test set.
Dataset Without IRT-SR Reweighing
Arrhythmia 81.17% (10.29%) 85.61% (6.42%) 87.77% (3.48%)
Bank Marketing 88.34% (11.40%) 93.92% (6.42%) 82.36% (9.08%)
Census Income 86.19% (1.89%) 90.25% (4.34%) 91.08% (2.97)
Contraceptive 93.35% (5.99%) 91.45% (5.39%) 95.69% (5.02%)
Crack 59.80% (42.80%) 21.08% (29.54%) 16.72% (37.40%)
German Credit 90.33% (5.83%) 90.86% (6.10%) 91.91% (6.94%)
Heart 78.72% (9.33%) 77.59% (3.12%) 85.16% (5.76%)
Heroin 9.80% (15.10%) 50.65% (33.72%) 26.14% (21.02%)
Recidivism Female 83.69% (22.09%) 96.15% (3.19%) 82.08% (23.17%)
Recidivism Male 78.62% (3.77%) 88.56% (8.20%) 80.89% (3.58%)
Student 98.32% (1.62%) 98.52% (1.72%) 98.76% (0.94%)
Titanic 51.52% (3.60%) 57.31% (19.88%) 71.02% (21.85%)
Average 74.99% (27.57%) 78.50% (26.35%) 75.80% (29.41%)

The last group fairness metric evaluated is equalized odds, shown in Table 7.
Once again, IRT-SR had the best average performance, in addition to having
the best performance in 7 of the 12 datasets. Reweighing obtained the best
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performance of the five datasets. In contrast, not using reweighting method did
not perform better in any of the datasets. We highlight that the IRT-SR obtained
better average results for equalized odds in all datasets when compared to not
using the reweighting method.

Table 7: Average equalized odds ratio results on the test set.
Dataset Without IRT-SR Reweighing
Arrhythmia 67.67% (16.05%) 78.35% (9.29%) 74.87% (16.33%)
Bank Marketing 65.53% (4.13%) 72.68% (6.09%) 79.11% (10.77%)
Census Income 54.02% (2.78%) 60.41% (4.34%) 61.10% (4.64%)
Contraceptive 88.09% (0.35%) 91.37% (13.89%) 88.61% (3.63%)
Crack 38.85% (40.02%) 44.18% (29.54%) 23.68% (23.82%)
German Credit 76.64% (14.87%) 80.29% (11.99%) 81.89% (10.65%)
Heart 53.00% (5.83%) 56.67% (6.10%) 55.31% (11.67%)
Heroin 51.19% (26.37%) 60.12% (29.06%) 42.72% (17.57%)
Recidivism Female 81.71% (16.18%) 81.86% (9.74%) 78.39% (20.61%)
Recidivism Male 77.66% (6.84%) 85.90% (7.92%) 82.67% (7.04%)
Student 91.38% (10.64%) 92.93% (6.52%) 93.13% (8.43%)
Titanic 33.38% (2.92%) 43.90% (13.53%) 58.14% (25.75%)
Average 64.93% (23.58%) 70.72% (21.31%) 68.30% (24.10%)

We apply a Nemenyi posthoc test [11] to verify if there is a statistically
significant difference in the results of demographic parity, equal opportunity,
and equalized odds. For the Nemenyi posthoc test, we consider all classifiers
selected with better hyperparameters per classification algorithm. Fig. 4 shows
the results of the Nemenyi posthoc test. The top of the diagram indicates the
critical difference (CD), and the horizontal axes indicate the average ranks of the
group fairness metric, with the best-ranked algorithms to the left. A black line
connects the algorithms when it is not detected a significant difference between
them. For this experiment, with a significance level of 5% (p-value < 0.05), the
critical difference is 0.4278.

The IRT-SR method ranked first in the three evaluated group fairness met-
rics, as illustrated in Fig. 4. Reweighing was ranked second in all group fairness
metrics. Figs. 4a and 4c show that IRT-SR and Reweighing with statistically
significant differences compared to using no sample reweighting method on de-
mographic parity and equalized odds metrics. Finally, the non-use of the sample
reweighting method was ranked last in all fairness metrics tested.

Table 8 shows the macro F1-score averages for each group fairness metrics
used in model selection. As expected, not using the sample reweighting method
has the best macro F1-score averages. In contrast, the models developed with
IRT-SR had the worst performance in the macro F1-score. IRT-SR had only
a maximum mean difference of 1.50% for the best means. However, this small
performance loss is compensated by improving fairness metrics.

The results demonstrate that using the IRT-SR can be a great option to im-
prove demographic parity, equal opportunity, and equalized odds. This is without
a significant performance loss, as shown in Table 8. We note that both for av-
erage results (Tables 5, 6, and 7) and for methods ranking (Fig. 4) of the three
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1 2 3
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Reweighing

Without

CD
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1 2 3

IRT-SR
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(b) Equal Opportunity

1 2 3

IRT-SR
Reweighing

Without

CD

(c) Equalized Odds

Fig. 4: Nemenyi posthoc test applied to the results of demographic parity, equal
opportunity, and equalized odds.

Table 8: Macro F1-score averages on the test set for each criterion used in model
selection.

Group fairness metric Without IRT-SR Reweighing
Demographic parity 69.53% (11.98%) 68.09% (11.64%) 68.42% (11.74%)
Equal opportunity 69.36% (11.85%) 68.23% (11.68%) 68.69% (12.09%)
Equalized odds 69.83% (11.76%) 68.23% (11.26%) 68.86% (11.92%)

group fairness metrics, IRT-SR stood out as the best option among the options
tested in this experiment. Finally, experimental results indicate that our IRT-
SR sample reweighting method can guide classification algorithms to fit fairer
models.

6 Conclusion

This paper introduced a novel sample reweighting method named IRT-SR that
uses concepts from the Item Response Theory. We aimed to model the sample
reweighting problem as a test to benefit from the IRT’s evaluative power and
use it to improve the group fairness notions through sample reweighting. The
experimental results indicate that our method is more effective in maximizing
demographic parity, equal opportunity, and equalized odds metrics than not
using sample reweighting and the Reweighing method. In conclusion, the findings
of this study highlight that IRT-SR effectively guides the classification algorithms
to fit fairer classifiers.

In future work, we intend to optimize the hyperparameters of the base clas-
sifiers set and also test other classification algorithms in this set, which enables
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the merging of classifiers from different paradigms. With this, we aim to improve
further the group fairness notions presented in this work.
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