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1 Introduction

Despite the continued experimental success [1] of the standard model (SM), several fun-

damental questions remain unanswered in particle physics. Among these are the origin of

electroweak symmetry breaking and fermions masses. In the SM, the Higgs sector is com-

posed of a scalar doublet, which results in gauge bosons and fermion masses as it acquires

a vacuum expectation value (VEV). This symmetry breaking sector of the SM leaves a

remnant state, the Higgs boson, which may have been recently observed at the LHC [2, 3].

More importantly, even if the Higgs boson is observed it remains unclear what keeps the

weak scale –in the SM determined by the scale at which the Higgs VEV develops– from

running away to the cutoff of the theory, presumably a much higher ultra-violet (UV) scale

such as the Planck mass, MP . The problem of keeping the weak scale separated from the

UV cutoff in a theory with an elementary Higgs boson is what we call the hierarchy problem.

It is possible to protect the Higgs mass from the quadratic divergences that would drive

it and the weak scale to the UV cutoff by making use of symmetries. Such is the case with

weak-scale supersymmetric models [4]. However, the origin of the supersymmetry breaking

scale leading to the now stable weak scale, becomes the new unknown. In addition, the

generation of fermion masses posses a problem typically leading to large flavor violation

and CP asymmetries. Alternatively, it is possible to naturally generate a large weak-

scale/UV-scale hierarchy by assuming a new assimptotically-free interaction getting strong

at the TeV scale, such as in Technicolor theories [5]. These scenarios also have a problem

with large flavor violation since in order to accommodate fermion masses the interaction

has to be embedded in extended gauge sectors. Furthermore, the need to add new chiral

fermions has an unavoidable impact in electroweak precision constraints, particularly the

S parameter.
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More recently, a way of solving the hierarchy problem by using a curved extra dimen-

sion in an anti-de Sitter (AdS) background has been formulated [6–10]. The underlying

assumption in AdS5 theories is that they are in some way dual to 4D strongly coupled sec-

tors near conformality, such as walking technicolor (WTC) [5]. Much like in 4D strongly

coupled theories, these models tend to have a large S parameter, which can however be con-

trolled by moderately increasing the Kaluza-Klein (KK) mass scale. Initially, it appeared

that the fermion mass hierarchy could be naturally explained by the localization of the

fermion zero-modes in the extra dimension, controlled by parameters of order one [7–10],

all while not incurring in too large tree-level flavor violation. However, the flavor-violating

contributions of KK gluons to kaon observables pushes (in the most generic scenario) the

KK mass scale up to a few tens of TeV, resulting in considerable fine-tuning [11]. Thus,

these 5D constructions expected to be dual to 4D strongly coupled sectors, present prob-

lems similar to the ones plaguing the original TC-ETC models.

In this paper we present a set of theories that are designed to generate a large hierar-

chy between the weak scale and a large UV scale. These purely four-dimensional models

consist of gauge groups joined by sigma models, the so-called quiver theories, and they are

cousins of AdS5 theories in that they are related to them by the procedure called decon-

struction [12, 13]. They are characterized by highly ordered vacuum expectation values

(VEVs) of the sigma models, starting just below the desired UV scale and going all the

way to the weak scale. The limit of large number of gauge groups and large value of the

UV VEV, corresponds to recovering AdS5 theories and we will call it the continuum limit.

However, the four-dimensional quiver theories can be quite different from AdS5, partic-

ularly when we consider the opposite limit, which we can call coarse discretization, and

that corresponds to using only a few gauge groups. Thus, we are interested in working

far from the continuum limit to build our models, so that these quiver theories cannot

have an interpretation as a low-energy AdS5 model that can be obtained by truncating

the Kaluza-Klein towers [14]. As we will show below, the result of a coarse discretization

is very different from this procedure since, for instance, it gives very different couplings of

the excited states to zero-mode fermions, resulting in a distinct phenomenology. We will

show that quiver theories with few gauge groups or “sites” can generate a large hierarchy

of scales, as well as the fermion mass hierarchy just as AdS5 models, while not generating

too large flavor violation. This particular advantage, together with the fact that these

theories are fundamentally different from the warped extra dimension models, makes a full

exploration of full-hierarchy quiver theories an interesting proposition.

At a more fundamental level, we see that AdS5 theories are only a small fraction of

a much larger set of theories capable of generating large hierarchies. Formulating these

vast set of theories, what we call Full-hierarchy Quiver Theories (FHQT), with AdS5 as a

limiting case for large number of groups, allows us to generalize the good features of AdS5

theories to their coarse FHQT cousins. Since these are quantitatively different from AdS5

we expect important phenomenological distinctions between them and FHQT models with

a sufficiently small number of sites. In order to start studying these differences, we will

build coarse quiver theories very similar to bulk AdS5 models and explicitly show that they

can have potentially much less flavor violation than them. Here we will consider models
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that in the continuum limit would result in an infrared (IR) localized Higgs. However, it is

possible to obtain a dynamical Higgs in FHQT very much in the same way that composite

Higgs models emerge in AdS5. We leave this to a separate companion publication [15]. In

general, it is possible to reproduce any model in the AdS5 limit of FHQT, so we could study

it in the coarse limit. Thus, besides the issue of flavor violation with a localized Higgs, or

reproducing Gauge-Higgs unification in a coarse theory, we can consider various other issues

in this general framework. For instance, issues from how the conformal behavior of the

AdS5 theories manifests itself in the quiver theories, to the existence of a strongly coupled

“dual” which the four-dimensional quiver theories correspond to, should be addressed in

the future. For now, we will concentrate on the phenomenological aspects related to model

building the mechanism for electroweak symmetry breaking (EWSB) and fermion masses.

But more theoretical ramifications may and should be addressed concerning the use of

FHQT and their behavior as quantum field theories.

The models will have a stabilized gauge hierarchy and a natural origin for the fermion

hierarchy. Just as in warped extra dimensions, the origin of the fermion mass hierarchy

is a priori independent of the stabilization of the Higgs sector. The gauge hierarchy

problem is solved as long as the Higgs is IR-localized. IR localization of the Higgs can be

achieved through specific mechanisms. For the purpose of this paper we assume it will be

fully localized in the so called IR site, which in the continuum limit would correspond to

localizing the Higgs in the IR brane. Dynamical Higgs localization is left for a separate

work [15], and can be achieved in a way very similar to composite models [16, 17] in the

continuum limit. In this setup, we will consider flavor by introducing fermion localization

in theory space, and will study the resulting flavor violation phenomenology in coarse

FHQT. We will show that in these cases it is possible to have very little flavor violation,

unlike in the continuum limit. We will also consider the electroweak bounds on coarse

FHQT. In the AdS5 case, these impose an extension in the electroweak gauge sector due

to the presence of large isospin violation. We will show that in general FHQT do not need

custodial protection to have sufficiently small contributions to the T parameter.

There are several papers in the literature making use of deconstruction techniques to

obtain models of electroweak symmetry breaking and/or flavor. For instance, in ref. [18]

a 3-site Higgsless model is proposed, and its flavor structure studied in [19]. In ref. [20]

the flavor physics of composite Higgs models like those of [16, 17] is explored using a

2-site setup with flavor symmetries. In ref. [21] the Higgs sector of this setup is considered,

whereas 2 and 3-site models with custodial protection are considered in ref. [22]. A more

general approach to a 4D pNGB Higgs is presented in ref. [23], although it is still tied to the

coset SO(5)/SO(4) presented in [16, 17]. In our work we considered a larger number of sites

in order to explore the feasibility of the non-hierarchical primordial Yukawa couplings. In

doing so, we will see that our results, if viewed from a 2-site model perspective, encode the

resulting effective flavor symmetries of the fully-deconstructed AdS5 theory. In addition,

we will see that it is not necessary to consider custodial protection in the gauge sector of

the model in order to avoid too large a tree-level contribution to the T parameter. As

a result, the minimal composite Higgs model will have a smaller symmetry that in the

papers above. Then the FHQT constructions bring a new perspective to both the flavor

and electroweak sectors.
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Figure 1. Quiver diagram for the theory described by (2.1).

The rest of the paper is organized as follows: in section 2 we present the FHQT

and their relation to a coarse deconstruction of AdS5 models. In section 3 we show how

fermions are included and how the fermion mass hierarchy can be obtained naturally. We

study flavor violation in section 4, where we show that it is possible to obtain small enough

violation to accommodate all experimental bounds, while keeping the new physics mass

scale close to the TeV. The electroweak precision bounds are considered in 5. We finally

conclude in section 6.

2 Full-hierarchy quiver theories

In this section we describe the basics of FHQT. As an example let us consider the product

gauge group G0×G1×· · ·Gj ×Gj+1 · · ·GN . In addition, we have a set of scalar link fields

Φj , with j = 1 to N , transforming as bi-fundamentals under Gj−1 × Gj . The action for

the theory is

S =

∫
d4x

{
−

N∑
j=0

1

2g2
j

Tr
[
F (j)
µν F

µν(j)
]

+
N∑
j=1

Tr
[
(DµΦj)

†DµΦj

]
− V (Φj) + . . .

}
(2.1)

where the traces are over the groups’ generators, and the dots at the end correspond to

terms involving fermions and will be discussed in the next section. We assume that the

potentials for the link fields give them a vacuum expectation value (VEV) which breaks

Gj−1 ×Gj down to the diagonal group, and result in non-linear sigma models for the Φ’s

Φj =
vj√

2
ei
√

2πa
j t̂

a/vj , (2.2)

where the t̂a’s are the broken generators, the πaj the Nambu-Goldstone Bosons (NGB); and

vj are the VEVs of the link fields. We will consider here the situation where the VEVs are

ordered in such a way that v1 · · · > vj · · · > vN . We parametrize the ordering by defining

the VEVs as

vj ≡ vqj , (2.3)

where 0 < q < 1 is a dimensionless constant, and v is a UV mass scale that can be regarded

as the UV cutoff. We will also assume that the all the gauge groups are identical and that

their gauge couplings satisfy

g0(v) = g1(v1) = · · · = gj(vj) = gj+1(vj+1) = · · · ≡ g . (2.4)

The model can be illustrated by the quiver diagram of figure 1.

This purely 4D theory can be obtained from deconstructing an extra-dimensional the-

ory in an AdS5 background [24–27]. Discretizing a 5D gauge theory in an AdS5 background
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by a discrete interval 1/gv in N intervals results in the action (2.1), with the appropriate

identification of the 5D gauge coupling, plus the matching

q ↔ e−k/gv . (2.5)

However, in order for the 4D theory defined by (2.1) to remain a good description of the

continuum 5D theory, the AdS5 curvature should satisfy k < v, or q close to 1. When

this is satisfied, getting closer to the continuum limit by increasing the number of sites N

guarantees an increasing similarity with the 5D theory [27]. For instance, generating the

hierarchy between the Planck and the weak scales while satisfying k < v requires typically

that N > 35, which results in a low energy theory very close to the continuum one. Under

these conditions, 4D theories with k < v are just discrete descriptions of the AdS5 theory.

On the other hand, if we consider (2.1) as just a 4D theory, we are free to make use

of values of q far from what would constitute the continuum 5D limit, i.e. q � 1. In these

theories it will be possible to obtain a large hierarchy of scales with smaller values of N ,

as low as just a few. For instance, if v ∼< MP and vN ' O(1) TeV, then we can write

q = 10−16/N . (2.6)

For instance, for N = 4 we have q = 10−4, very far from the continuum limit. The theories

resulting in these region of the parameters of the action in (2.1) will have a very different

behavior than a mere discretization of AdS5. Their spectrum and its properties, such as

couplings to SM matter, differ significantly and therefore they merit a detailed study.

There are several aspects of FHQT worth exploring. Regarding their use to build

models of EWSB, the most urgent appears to be the modeling of the Higgs sector leading

to EWSB, and the generation of fermion masses. We consider the dynamical origin of

the Higgs sector in a separate publication [15], where the Higgs is a remnant pseudo-NGB

(pNGB). For this paper, we concentrate on the issue of fermion masses and assume a very

simple Higgs sector, one that captures the essential features of the Yukawa interactions in

these models. Our aim is to explore the consequences of naturally generating the fermion

mass hierarchy in FHQT. Specifically, we want to know if is possible to build models with

acceptable levels of flavor violation. This is important in light of the great difficulties

encountered in AdS5 models regarding this issue [11]. It is also generally of great interest

to explore new models of the fermion hierarchy and their flavor-violating effects.

3 Fermion localization in quiver space

In this section we incorporate fermions to the FHQT. The main goal is to model fermion

masses in the context of Higgs sector models that solve the hierarchy problem within the

framework of FHQT.

We consider vector-like fermions ψj transforming in the fundamental representation of

the groups Gj . The action of (2.1) is then enlarged by the fermion action given by

Sf =

∫
d4x

N∑
j=0

{
ψ̄jLi 6Djψ

j
L + ψ̄jRi 6Djψ

j
R − (µjψ̄

j
Lψ

j
R + λjψ̄

j−1
R Φjψ

j
L + h.c.) ,

}
(3.1)
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Figure 2. Quiver diagram for the theory described by (3.1), for a spectrum with a left-handed

zero mode.

which is represented by the quiver diagram of figure 2. The vector-like masses µj preserve

the gauge symmetries. The Yukawa term is invariant since the links transform as Φj →
gj−1Φjg

†
j . The Yukawa couplings are allowed to be site-dependent, which is the most

general situation in the 4D theory. If one wanted to match to the continuum limit of the

AdS5 theory we should take them to be universal, as shown in ref. [28]. In the unitary gauge

we make the replacement Φj → vj/
√

2, which leads to a non-diagonal mass matrix for the

fermions. We diagonalize to the mass eigenstate basis through the unitary transformations

ψjL,R =

N∑
n=0

hj,nL,R χ
(n)
L,R , (3.2)

where the χ
(n)
L,R are the mass eigenstates. Imposing the equations of motion, results in the

elements of the rotation matrices satisfying the equations [28](
µ2
j +

λ2
jv

2
j

2
−m2

n

)
hj,nL −

λjvj√
2
µj−1 h

j−1,n
L − λj+1vj+1√

2
µjh

j+1,n
L = 0 (3.3)(

µ2
j +

λ2
j+1v

2
j+1

2
−m2

n

)
hj,nR −

λjvj√
2
µj h

j−1,n
R − λj+1vj+1√

2
µj+1 h

j+1,n
R = 0 (3.4)

where mn is the mass of the mass eigenstate χ
(n)
L,R. The solutions of these equations

can be obtained [27] and in the continuum limit would match to the solutions for the

wave-functions of the Kaluza-Klein fermions in the AdS5 [28]. But here we stay far from

the continuum.

We are interested in studying the fermion zero-modes. These satisfy the simple equa-

tions of motion

µjh
j,0
L +

λj+1√
2
vj+1h

j+1,0
L = 0 , (3.5)

for the left-handed zero mode, and

µj h
j,0
R +

λj√
2
vjh

j−1,0
R = 0 , (3.6)

– 6 –
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for the right-handed zero mode. We can define the localization parameter νL for the left-

handed zero mode by √
2

µj
v λj+1

≡ −qj+1+νL , (3.7)

and then consistently identify the localization parameter νR for a right-handed zero mode by

√
2
µj
v λj

= −qj+1+νR , (3.8)

Then, we can see that

hj+1,0
L

hj,0L
= qνL ,

hj,0R
hj−1,0
R

= q−(1+νR) . (3.9)

Thus, we have traded the ratio of vector masses to Yukawa couplings for a parameter (νL
or νR) that will determine how much of each fermion in the quiver diagram the zero-mode

fermion contains. We can then write

hj,0L,R = zjL,R h
0,0
L,R , (3.10)

where we have defined

zL ≡ qνL , zR ≡ q−(1+νR) . (3.11)

On the other hand, the normalization conditions require that

N∑
j=0

|hj,0L,R|
2 = 1 , (3.12)

which we use to obtain

h0,0
L,R =

√√√√ 1− z2
L,R

1− z2(N+1)
L,R

, (3.13)

We can use these results to compute the couplings of the fermion zero mode to various

states. Here we will consider first the Yukawa couplings to the Higgs. As it is shown in

ref. [15], in order to solve the hierarchy problem, the Higgs must be coupled mostly to

the gauge groups that survive at lower energies, particularly GN . This is the analog of

having a Higgs localized close to the IR brane in AdS5 models in 5D. For simplicity we will

assume that the Higgs only transforms under GN (“localized” at the end of the quiver).

In ref. [15] we show dynamical mechanisms to do just that. Here we are interested in

the Yukawa couplings and their general behavior. With such a “N-Localized” Higgs, the

Yukawa coupling of a given zero-mode fermion is defined by

L = −Yψ̄NLHψNR + h.c. = −Yh∗N,0L hN,0R χ̄
(0)
L Hχ

(0)
R + h.c. , (3.14)

where the primordial Yukawa Y is assumed to be an O(1) number. The resulting effective

Yukawa coupling of the fermion zero-mode is

Y = Y zNL zNR h0,0
L h0,0

R . (3.15)

– 7 –



J
H
E
P
0
1
(
2
0
1
3
)
0
9
4

Thus, we see that zero-mode fermions with large components of their eigenstate wave-

functions coming from ψiL,R with i close or equal to N , will have unsuppressed Yukawa

couplings with the “N-localized” Higgs. On the other hand, zero-mode fermions with

wave-functions built mostly of ψiL,R with i closer to 0 will have largely suppressed Yukawa

couplings in (3.15). We can then build theories of flavor by choosing the quiver-diagram

localization of the zero-mode fermion, much in the same way it is done in AdS5 theories.

Fermion-mass hierarchies can be built by appropriately choosing the localization param-

eters for the fermions in the quiver theory, νL and νR for each generation. This can be

achieved with quiver theories with a small number of sites, such as 4 or 5, very far from

the continuum limit.

One potential worry is the presence of flavor changing neutral currents (FCNCs) at

tree level, induced by the non-universal couplings of massive gauge bosons to the zero-mode

fermions that necessarily appear as a consequence of the different localization in the quiver

diagram. In fact, these FCNCs are a very important problem in AdS5 theories and result

in the most stringent of bounds [11]. In the next section, we address this issue in FHQT

and show that in them it is possible to build the SM fermion mass hierarchy without large

FCNCs at tree level. In particular, we show that is possible to find solutions where FCNCs

are nearly absent in the down-type quark sector, which is typically the most binding.

4 Mass hierarchies and flavor violation

In order to study flavor violation in FHQT, we first need to compute the couplings of

massive gauge bosons to zero-mode fermions. We first notice that the wave-function of a

zero-mode fermion can be written as

χ
(0)
L,R =

N∑
j=0

h∗j,0L,R ψ
j
L,R , (4.1)

in terms of the quiver fermions. Likewise, and assuming a generic gauge group in the sites

of the quiver diagram, the mass-eigenstates of the gauge bosons can be written in terms of

the quiver gauge bosons as

A(n)
µ =

N∑
j=0

f∗j,nA
j
µ , (4.2)

with fj,n the coefficient linking the gauge boson in site j with the mass-eigenstate n in the

rotation to mass eigenstates. We are interested in obtaining the coupling of the n = 1 to

the zero-mode fermions since this state gives the largest FCNCs effect. We can compute

this coupling

g01
L,R χ̄

(0)
L,Rγ

µA(1)
µ χ

(0)
L,R , (4.3)

where we assumed that group generators are absorbed in the definition of the gauge fields,

and we obtain

g01
L,R =

N∑
j=0

gj

∣∣∣hj,0L,R∣∣∣2 fj,1 , (4.4)

– 8 –



J
H
E
P
0
1
(
2
0
1
3
)
0
9
4

where gj are the gauge couplings associated to the group Gj in the quiver. As mentioned

above, we will assume gj = g for all j. To be more precise, we actually mean to say that

gj = g(vj), with g(µ) the same running coupling for all gauge groups in the quiver.

For fixed values of N the coefficients fj,1 can be obtained by diagonalizing the gauge

boson mass matrix [27, 28]. Then, we can obtain the coupling of zero-mode fermions to

the first excited state of the gauge bosons, normalized by the gauge coupling g. These

couplings are of great interest for various reasons. For instance, the s-channel production

of the first-excited states of the gauge bosons is determined by them, so they would play a

central role in the collider searches for these theories. But they could also lead to tree-level

flavor violation since their couplings to the SM fermions are generally not universal. The

couplings in (4.4) depend on the localization parameters νL and νR, which are to be chosen

appropriately to get the correct zero-mode masses as well as mixings, as mentioned in the

previous section.

4.1 Localization and flavor violation

Here we consider the coupling of the zero-mode fermions to the first excited state of a

gluon. In figure 3 we show the coupling of a left-handed zero-mode fermion as a func-

tion of the localization parameter redefined as cL ≡ νL + 1/2, and for various values of

the number of sites in the quiver, N. We can see that as N increases from small values,

corresponding to coarse discretization, to large values nearing the continuum limit, the

coupling goes to its continuum limit, as it can be verified by comparing the N = 90 case

with the results in ref. [10]. We can see then that these couplings of great phenomenologi-

cal importance are quite different far from the continuum. The same can be done for the

right-handed couplings.

As an example, we study these couplings for the N = 4 case, i.e five sites. We

compute the coupling of zero-mode fermions to the first gauge excitation as a function of

the localization parameter for the zero-mode fermion, νL,R. The case of a left-handed zero

mode fermion is shown in the solid line in figure 4. We observe that there are two plateaus:

one above cL > 1/2, the other for cL < 0.25. The transition region is rather small. Thus,

a given solution for the cL’s (i.e. for the zero-mode fermion masses and mixings) such that

they are on either plateau, will have effectively very small or negligible tree-level flavor

violation. We can do the same for the right-handed down and up zero-mode fermions. The

corresponding couplings to the first-excited gauge boson state are plotted in the solid lines

of figures 5 and 6.

Thus, we want to find solutions for the localization parameters ciL,R’s, where the i =

1, 2, 3 denotes generation, which lay mostly on the plateaus in order to minimize flavor

violation. We will show two such examples. In the first case, case A, we minimize the

amount of flavor violation necessary to obtain the correct masses and mixings in the quark

sector. This is achieved by localizing the right-handed sector as close to the UV plateau

as possible, while the left-handed quark sector is localized towards the IR plateau. In the

second case, case B, the right-handed down sector remains in the UV plateau, whereas

the left-handed sector and most of the right-handed up sector is also there, but with small

amounts of flavor violation.

– 9 –



J
H
E
P
0
1
(
2
0
1
3
)
0
9
4

N ! 4
N ! 15
N ! 30
N ! 90

N ! 2

!5. !4. !3. !2. !1. 1. 2. 3. 4. 5.
cL

!0.5

1.

2.5

4.

5.5

7.

g01L

g

Figure 3. Couplings of a left-handed zero-mode fermion to the first excited state of a gauge boson,

normalized to the zero-mode gauge boson coupling, as a function of the localization parameter cL.

For the left side of the plot and starting from the bottom: N = 2, N = 4, N = 15, N = 30 and

N = 90.

-1.5 -1.0 -0.5 0.5 1.0 1.5
cL

-0.5

0.5

1.0

1.5

2.0

g01
L

g

Figure 4. Couplings of the left-handed zero-mode quarks to the first excited state of the gauge

boson, in units of the zero-mode gauge coupling, vs. the localization parameter cL defined in the

text (solid line). The dots correspond to the localization of the solution called case A.

Case A. In figure 4, we plot the coupling of the first excited state of a gauge boson

(normalized to its zero-mode coupling) as a function of the localization parameters in the

quiver diagram. The dots show a solution for the quark sector, that results in the correct

masses and mixings. In this case, the left-handed quarks are localized in the IR plateau.
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-1.5 -1.0 -0.5 0.5 1.0 1.5
cR

-0.5

0.5

1.0

1.5

2.0

g01
dR

g

Figure 5. Couplings of the right-handed zero-mode down quarks to the first excited state of the

gauge boson, in units of the zero-mode gauge coupling, vs. the localization parameter cR defined

in the text (solid line). The dots correspond to the localization of the solution called case A.

-1.5 -1.0 -0.5 0.5 1.0 1.5
cR

-0.5

0.5

1.0

1.5

2.0

g01
uR

g

Figure 6. Couplings of the right-handed zero mode up quarks to the first excited state of the

gauge boson, in units of the zero-mode gauge coupling, vs. the localization parameter cR defined

in the text (solid line). The dots correspond to the localization of the solution called case A.

Although their localizations in the quiver imply different Yukawa couplings, the will have

nearly universal couplings to the first excited state of the gauge bosons, resulting in very

little or no tree-level flavor violation. The solution for the localization coefficients ciL,R
are color coded. We see in figure 4 that the couplings of the left-handed doublet zero

mode quark to the first gauge excitation are universal, so they will not result in tree-level

flavor violation. The same can be concluded by observing the couplings of the down-type

right handed zero-mode quarks, figure 5. Thus, we see that this solution of the N = 4

example does not result in tree-level flavor violation in the down-quark sector. This should
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g

Figure 7. Couplings of the left-handed zero-mode quarks to the first excited state of the gauge

boson, in units of the zero-mode gauge coupling, vs. the localization parameter cL defined in the

text (solid line). The dots correspond to the localization of the solution called case B.

be compared with the situation in RS models in an AdS5 background, where flavor violation

at tree level is unavoidable in the down sector, leading to very stringent bounds on the

scale of the gauge excitations [11]. Finally, the right-handed up-sector couplings to the

first gauge boson excitation are shown in figure 6. We see that it is not possible to have

universal couplings as in the right-handed down sector. This is due to the need for the

right-handed top to be closer to the IR in order to obtain the correct top quark mass. This

will lead to the leading source of tree-level flavor violation in this case, which will be in the

up sector in observables such as D0D̄0 mixing. In the next subsection we show that this

effect is very small and quite compatible with experiment.

As we increase N , the curves in figures 4, 5 and 6 will tend to their analogous in the

continuum AdS5 limit [10]. Thus, we see that, although FHQT share some of the features

of AdS5 models, they behave in a different way when it comes to the amount of flavor

violation induced. This difference is one of the key points that make FHQT more viable

phenomenologically than models based on warped extra dimensions.

Case B. This case is a small variation of the previous one: the difference is that now

the left-handed quarks are localized towards the UV of the quiver. The right-handed down

sector would remain also in the UV, with the right-handed up sector in the UV with one

exception due to the need for a large top quark mass. This new solution is shown in

figures 7, 8 and 9. We see that the right-handed down sector remains universally coupled

to the gauge excitations, whereas now not only there is flavor violation in the right-handed

up sector but also in the left-handed sector, as shown in figure 7. This results in slightly

larger flavor violation in the down sector, but still not as large as the effect in the continuum

limit. In what follows we evaluate the amount of flavor violation incurred in each case.

We will see that in both cases flavor violation bounds can be satisfied. On the other hand,
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g

Figure 8. Couplings of the right-handed zero-mode down quarks to the first excited state of the

gauge boson, in units of the zero-mode gauge coupling, vs. the localization parameter cR defined

in the text (solid line). The dots correspond to the localization of the solution called case B.

-1.5 -1.0 -0.5 0.5 1.0 1.5
cR

-0.5

0.5

1.0

1.5

2.0

g01
uR

g

Figure 9. Couplings of the right-handed zero-mode up quarks to the first excited state of the

gauge boson, in units of the zero-mode gauge coupling, vs. the localization parameter cR defined

in the text (solid line). The dots correspond to the localization of the solution called case B.

the difference between cases A and B will be more relevant when computing electroweak

precision constraints. This will be done in the next section.

4.2 Flavor violation bounds

In order to study the effects of flavor violation we need to obtain the tree-level couplings

of fermions to the first-excited gauge boson. Here we concentrate in quark couplings since

they are the most constraining. In both examples, cases A and B, figures 4–9 give the

couplings of quarks to the first gauge excitation in the interaction (diagonal) basis. To
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obtain the flavor-violating interaction, we must rotate to the mass basis. For instance,

if we define the couplings of the left-handed up-type quarks in the mass eigen-basis as

given by

GUL ≡ U−1
L

 guL 0 0

0 gcL 0

0 0 gtL

UL ,

where UL is a unitary matrix that rotates to the mass eigenstates, the couplings guL , gcL
and gtL are the one given by the dots in figures 4 and 7 for cases A and B, respectively.

The non-diagonal coupling matrix GUL contains the flavor violating couplings. There will

be an analogous definition for the right-handed up sector in terms of UR, as well as for

the down sector, both left- and right-handed. The tree-level flavor violation induced by

the non-diagonal entries in the G’s will result in bounds on the mass of the first excitation

of the gauge bosons in FHQT. In order to be conservative, we will consider the effects of

the first excitation of the gluon, that is we assume that SU(3)c propagates in the quiver

diagram. Although this is not necessary in these theories, it will provide the most stringent

bound and will allow us to compare with the analogous flavor-violation bounds in AdS5,

the continuum limit.

The effective Hamiltonian for ∆F = 2 transitions will receive the following contribu-

tions when the excited gluon is integrated out

Heff. =
1

M2
G

[
1

6
GijLG

ij
L (q̄iαL γ

µqjLα)(q̄iβL γ
µqjLβ) + (L↔ R)

−GijLG
ij
R

(
(q̄iαR q

j
Lα)(q̄iβL q

j
Rβ)− 1

3
(q̄iαR q

j
Lβ)(q̄iαL q

j
Rβ)

)]
(4.5)

This can be matched with the low energy ∆F = 2 Hamiltonian, resulting in contributions

to some of its Wilson coefficients. Following ref. [29], the contributions from (4.5) result in

C1
M (MG) =

1

6

(GijL )2

M2
G

, C4
M (MG) =

GijLG
ij
R

M2
G

C5
M (MG) =

GijLG
ij
R

3M2
G

(4.6)

where M = K,D,Bd, Bs refers to the particular meson. The Wilson coefficients are then

bound by the fits to flavor data by the UTFit collaboration [29], which provides the most

comprehensive treatment of flavor data to bound new physics. The bounds on these co-

efficients from their latest fit of ∆F = 2 observables is shown in the second column of

table 3. The bounds from kaon physics were updated in ref. [30]. The third column gives

the bounds on the scale of new physics implied by assuming that the Wilson coefficients

at Λ are unity. In our case, the Wilson coefficients given in (4.6) have a large suppression

and therefore allow for a much lower energy scale MG. Finally, given that the bounds are

obtained at larger scales Λ, in some cases where this scale is considerably larger than MG,

we must correct for the renormalization group evolution that is implied in the bounds.

We first study the bounds on case A, presented in the previous subsection and defined

in figures 4 to 6. This case is clearly designed to minimize tree-level flavor violation effects.

The choice of localization for quarks in the quiver, defined by the values of the various
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L R L R

|Gu,c| 1.1× 10−5 2.2× 10−8 |Gd,s| 5.7× 10−5 1.6× 10−9

|Gu,t| 2.0× 10−4 2.3× 10−6 |Gd,b| 1.9× 10−4 2.1× 10−8

|Gc,t| 5.5× 10−6 6.8× 10−4 |Gs,b| 5.9× 10−5 2.5× 10−6

Table 1. Case A: non-diagonal values of the quark couplings to the first excitation of the gluon.

L R L R

|Gu,c| 2.8× 10−3 2.9× 10−4 |Gd,s| 5.7× 10−4 6.5× 10−6

|Gu,t| 4.2× 10−3 2.9× 10−3 |Gd,b| 5.9× 10−3 5.0× 10−5

|Gc,t| 3.3× 10−2 1.8× 10−1 |Gs,b| 6.7× 10−3 1.2× 10−4

Table 2. Case B : non-diagonal values of the quark couplings to the first excitation of the gluon.

ciL,R coefficients and consistent wit the physical masses and with the observed VCKM, also

fixes the non-diagonal couplings of the mass-basis quarks to the first gauge excitation of

the gluon. In table 1 we show the values of the non-diagonal entries for GUL , GDL , GUR and

GDR . When comparing (4.6) with the third column of table 3, we see that for case A there

are virtually no meaningful bounds coming from flavor physics on the mass scale of the

first excitations of gauge bosons, even if these are color-octect states. However, as we will

see in the next section, the fermion localization in the quiver chosen for case A, will result

in larger contributions to the S and T parameters.

On the other hand, zero-mode fermion localization in case B is chosen so as to minimize

effects on electroweak precision observables (see next section). This results in larger flavor-

violation effects. The non-diagonal entries of the matrices GUL , GDL , GUR and GDR in case

B, which lead to tree-level flavor violation, are given in table 2. Comparing these entries

with those of table 1, we see that larger flavor-violating effects are to be expected. These

translate into bounds on the mass of the gauge excitation. The bounds from ∆F = 2

operators are shown in the last column of table 3. The most constraining bound comes

from the chirally-enhanced operator O4 [30]. The bound on ImC4
K results in

MG > 3 TeV . (4.7)

Another bound from ∆S = 2 physics that is close to this comes from ImC1
K , which results

in MG > 2.6 TeV. But a limit quite similar to that of (4.7) comes from charm physics. As

can be seen in table 3, the bound on |C4
D| requires MG > 2.9 TeV. This is due to the fact

that the right-handed up sector must be more localized towards the N site in order to get

the correct top quark mass. In any case, the bound in (4.7) is just an example of a typical

value that would pass all flavor limits in the particular solution shown in figures 7, 8 and 9.

It is not necessarily the smallest possible value for MG for all solutions. However, it is a

good illustration of the fact that in FHQT it is possible to get the fermion mass hierarchy

without large flavor violation. This must be be contrasted with the typical flavor violation

obtained in AdS5 models, which results in much tighter bounds [11].
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Parameter 95% allowed range Lower limit on Λ (TeV) Bound on Color-octect

(GeV−2) for arbitrary NP Mass in FHQT (TeV)

ReC1
K [−9.6, 9.6] · 10−13 1.0 · 103 0.2

ReC4
K [−3.6, 3.6] · 10−15 17 · 103 0.1

ReC5
K [−1.0, 1.0] · 10−14 10 · 103 0.1

ImC1
K [−2.6, 2.8] · 10−15 1.9 · 104 2.6

ImC4
K [−4.1, 3.6] · 10−18 49 · 104 3.0

ImC5
K [−1.2, 1.1] · 10−17 29 · 104 1.0

|C1
D| < 7.2 · 10−13 1.2 · 103 1.0

|C4
D| < 4.8 · 10−14 4.6 · 103 2.9

|C5
D| < 4.8 · 10−13 1.4 · 103 0.5

|C1
Bd
| < 2.3 · 10−11 0.21 · 103 0.3

|C4
Bd
| < 2.1 · 10−13 2.2 · 103 0.3

|C5
Bd
| < 6.0 · 10−13 1.3 · 103 0.1

|C1
Bs
| < 1.1 · 10−9 30 0.1

|C4
Bs
| < 1.6 · 10−11 250 0.1

|C5
Bs
| < 4.5 · 10−11 150 0.03

Table 3. 95% probability range for C(Λ) and the corresponding lower bounds on the NP scale Λ

for arbitrary NP flavor structure, from refs. [29, 30]. The last column corresponds to the bound on

the gluon excitation in FHQT in case B as described in the text.

In general, there will be a similar situation for other values of N as long as these are

small enough to be away from the continuum limit. Also, here we are studying FHQT with

a very large cutoff, of the order of the Planck scale. However, it is worth studying flavor

models and their bounds with smaller UV cutoffs. We leave these studies for future work.

5 Electroweak precision constraints

Another important set of bounds comes from precision electroweak measurements. Partic-

ularly binding are the S and T parameters defined as

S = 16π
(
Π′33(0)−Π′3Q(0)

)
(5.1)

and

αT =
4

v2
EW

(Π11(0)−Π33(0)) (5.2)

In order to compute S and T , we first need to choose an electroweak sector to propagate

in the quiver. The minimal choice is to take Gj = SU(2)L × U(1)Y for all values of j. In

AdS5 this would be equivalent to have the SM gauge fields propagate in the bulk. This

is an unacceptable choice in AdS5 models since it results in too large isospin violation
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Figure 10. Diagrams contributing to S and T through the exchange of the excited states of the

SU(2)L×U(1)L gauge bosons. The circled crosses denote the mixing with the zero modes.

Figure 11. Universal tree-level renormalization of the SU(2)L×U(1)Y gauge couplings to fermions.

The circled crosses denote the mixing of the excited state with the zero-mode gauge bosons.

and contributions to the T parameter. As we will se below, this is not the case for the

coarse FHQT we study here, N = 4. So we will study the electroweak sector of the SM

propagating in the quiver.

Although in most extensions of the SM contributions to S and T start arising at loop

level, in FHQT -just as in AdS5 models- there are effects arising already at tree level. These

are driven by the mixing of the low-lying gauge bosons W± and Z with their excited stated

through the Higgs VEV. The mixing effect leads to contributions to oblique parameters

through the exchange of excited states, as shown in figure 10. However, these are not

the largest contributions to S and T . There are additional contributions arising from the

universal shifts in the gauge couplings of light fermions which result from the mixing, as

illustrated in figure 11. The contributions to the S parameter arising from diagrams like

the ones in figure 10 are suppressed by a factor of v4/M4
1 and will not be the leading source

of S, which receives much larger contributions from the universal shift of gauge couplings

that result from the diagrams of figure 11. On the other hand, the contributions of the

exchange diagrams of figure 10 to T cannot be neglected.

As mentioned in the previous section, the choice of fermion localization we called case

A, which has negligible flavor violation, will result in larger contributions to S and T . This

increase, with respect to case B, comes from the fact that the universal shifts in gauge

couplings induced by the diagrams of figure 11 are enhanced when the light left-handed

fermions are localized close to the N site. We will then concentrate in the result for case B,

where light fermions are localized closer to the UV site. For this localization the exchange

diagrams of figure 11 result in

Te ' 0.05×
(

3 TeV

M1

)2

, (5.3)

where M1 is the mass of the first excited gauge boson state. The universal part of the vertex
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corrections illustrated in figure 11 can be absorbed to a redefinition of the electroweak

gauge fields, which result in additional contributions to S and T , analogously to the AdS5

case [32]. The universal vertex corrections resulting from the mixing of electroweak gauge

bosons with their excited states can be absorbed by the field redefinitions

W± → W±(1− g2δ)

W 3 → W 3(1− g2δ) +B g g′ δ (5.4)

B → B(1− g′2δ) +W 3 g g′ δ ,

with

δ = −g01 g

4

(
v

M1

)2

fN,0 fN,1 . (5.5)

In (5.5) g01 is the coupling of the first excited state of the gauge bosons to the zero-mode

fermions, given by (4.3). These shifts restore the gauge couplings to their SM values at

tree level, but result in new contributions to oblique parameters:

Sv = 32πδ

Tv =
8π

cos2 θW
δ . (5.6)

(For comparison, the case A localization results in vertex contributions to S and T that

are roughly a factor of four larger than the ones in (5.6).) Adding the exchange and vertex

contributions we obtain, for the case B localization

S ' 0.17×
(

3 TeV

M1

)2

T ' 0.16×
(

3 TeV

M1

)2

. (5.7)

The experimental fit to oblique parameters with mt = 173 GeV and mh = 126 GeV as

reference values, results in [33] Sexp. = 0.03 ± 0.10 and T exp. = 0.05 ± 0.12. Thus, we see

that a mass scale of M1 = 3 TeV is well within the 95% C.L. bounds. Then, this is the

bound on the excited gauge boson masses that passes all flavor and electroweak tests.

Additional contributions to S and T come from loops, particularly of excited fermion

states. We will study them elsewhere. There will also be contributions from the link field

sector [22]. These are sub-leading compared to the ones shown above.

6 Conclusions and outlook

We have presented a class of theories in four dimensions, FHQT, which have interesting

properties for model building at the TeV scale. Although these theories can be obtained

from the deconstruction of AdS5 models, they have distinct properties and phenomenology.

They can accommodate large hierarchies, both between the IR and UV scales, as well as

in the fermion spectrum, just as AdS5 models. However, as shown in section 4, they have

less flavor violation at tree level when compared with typical AdS5 models, even when

fermion masses are entirely obtained from localization in the quiver and governed by order

one parameters. As a result, flavor bounds allow the IR mass scale to be lower than in 5D
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models, typically as low as 3 TeV, without the introduction of ad-hoc flavor symmetries. We

also showed in section 5 that the same localization models that have this flavor bound, called

case B in section 4, pass electroweak precision constraints for the same value of the excited

state mass scale, even without the extension of the electroweak gauge sector to provide

custodial protection. This is quite different from the AdS5, where the bulk electroweak

gauge sector must be extended beyond the SM in order to avoid large contributions to the

T parameter [32]. Thus, despite being related to AdS5 models by having them as their

continuum limit, FHQT for small values of N have distinct phenomenological features. In

particular, it is possible to build models of EWSB and fermion masses with them that pass

electroweak precision and flavor bounds while still having their IR scale naturally close to

the TeV scale.

There are several avenues to explore further. First, the Higgs sector must be introduced

dynamically so as to naturally result in a light Higgs when compared with the IR scale of

a few TeV. A way to achieve this “little hierarchy” is for the Higgs to be a pNGB. This is

very similar to the composite Higgs models that are built in AdS5 [16, 17, 23], and can be

essentially regarded as their (coarse) deconstruction [22]. Specific realizations of this idea

in the context of FHQT will be presented elsewhere [15].

The phenomenology of models of EWSB built using FHQT should be explored at the

LHC, since it is quantitatively different from that of AdS5 models. For the case when

color propagates in the quiver, which was used as a way to obtain the strongest bounds

from flavor physics, production and decay of the first color-octect resonance at the LHC is

qualitatively similar to those of the KK gluon in AdS5. However, its couplings to zero-mode

fermions are quite different, as illustrated in figures 4 to 9. For a fixed value of the UV

cutoff, these couplings depend on the number of sites N. It will be necessary to do a detailed

study of this dependence in order to search for the resonances in specific FHQT. On the

other hand, in general it is not necessary for color to propagate in the quiver. The minimal

models using FHQT will only contain the electroweak sector. Thus the phenomenology of

these weakly-coupled massive gauge bosons should be considered separately. Finally, the

lepton sector of FQHT must be studied to complete models of fermion masses, as well as

to study the complementary phenomenology with leptons in the final state at the LHC.

As the LHC increases its reach in the search for physics beyond the SM, building

models of the TeV scale with FHQT for EWSB and the Higgs sector, fermion masses and

other questions typical of this energy scale, will provide a rich phenomenology beyond that

of AdS5 models. In particular, FHQT for small number of sites N will give a more complete

picture of these class of theories which includes AdS5 as a limit. Ultimately, and just as

is the case for AdS5 models, the hope is that FHQT are a description of the TeV scale

that will guide us through its phenomenology to a deeper understanding of the underlying

dynamics of that scale.
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