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A REMARK ON THE AREA OF A SURFACE

C. BIASI, L.A.C. LADEIRA AND S.M.S. GODOY

ABSTRACT. In this paper we present a formula for the computation of the area of
a surface, which is a kind of curvilinear Fubini’s formula (Theorem 2). Such a for-
mula relates the area of a surface with the integral of the period map of an ordinary
differential equation on that surface. Some applications are given. We use technics
of differential equations but this result can also be proved by using the coarea theorem.

RESUMO. Neste trabalho apresentamos uma férmula para o calculo da drea de uma
superficie, a qual é uma espécie de férmula de Fubini curvilinea (Teorema 2). Tal
férmula relaciona a area da superficie com a integral de uma ”aplicagdo periodo”
de uma equacdo diferencial ordindria sobre a superficie. Algumas aplicagoes sao
dadas.Usamos técnicas de equacoes diferenciais, mas este resultado pode também ser
provado usando-se o teorema da coarea.

Key words and phrases. differential equation, manifold, period, area, coarea formula.

1. AREA OF A SURFACE AND PERIOD MAP

Let M be an oriented 2-dimensional Riemannian manifold of class C'. Let f: M —
R be a C! function whose derivative at a point z is denoted by f'(z): Tz M — R, where
T,M is the tangent space of M at z. There exists a unique vector g(z) € Tz M such
that f'(z) - v = (g(z),v), for all v € T,M, where (, ) denotes the inner product in

T.M.

Let u(z) be the vector field obtained by rotating g(z) by an angle of 7 radians.
Observe that the vectors u(x) are tangent to the level curves of f, so the vectors g(z)
are orthogonal to the level curves of f. Denote this rotation by ®; then u(z ) = ®(g(x))
and ®: T,M — T, M is a linear operator such that: (i) ®* = —I (ii) (v, v) = 0,
(iii) |®(v)|| = ||v]l, (iv) {v,®(v)} is a positive basis, if v 7# 0.

Consider the differential equation

(1) & = u(z}-
For every regular value y € f(M) the set f~ (y) is invariant by Eq. (1), that is, each

solution of Eq. (1) with initial condition in f~ I(y) is contained in M and describes a
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piece of the level curve f~'(y). We also observe that we have uniqueness of solutions
for the initial value problem

(2) z(0) = zo .

In fact, a local solution of (2) is contained in the level curve f(z) = ¢, (c = f(zo))
such that V f(zo) # 0. Suppose z, y are two solutions of (2). Since £(0) = u(zo) = ¥(0),
the maps z(¢) and y(t) are local parameterizations of the level curve f ~1(c) through
the point zo. Thus there is a change of variable of class C', s = h(¢), h(0) = ¢,
such that z(t) = y(s). By the chain rule, (t) = h(t) y(h(t)), and therefore u(z(t)) =
h(t) u(y(h(t))) = h(t) u(z(t)), which implies h(t) = 1, and hence h(t) = t, for all ¢.
This shows the uniqueness of solutions of (2).

Definition: We define the period map p: R — [0,00) U {+00} of (1) in the following
way: for each regular value y € f(M), there exists a finite or countable union of
disjoint intervals J, = UxJy C R and a solution z: J, — M of (1) (since the set J,
may be disconnected, we mean solution in an extended sense: the orbit is a union of
orbits in the usual sense) such that z is 1 — 1 and z(J,) = f~Y(y). Then we define
p(y) = Y, 1(Jy), where [(Jy) is the length of Jj.

For each y € f(M) that is not a regular value of f, we put p(y) = +oo; and if
f~(y) = 0, we define p(y) = 0.

We remark that the period function at a point z corresponds to the time elapsed
by the solution to traverse the orbit f~Y(z). When this orbit is periodic, p(z) is the
minimal period of the orbit.

We recall that an extended real valued function ¢ is said to be lower semi continuous
at a point 2z such that g(zp) < oo if, for any € > 0, there exists 6 > 0 such that
q(z0) — € < q(z), whenever |z — 2| < d. It is lower semi continuous at a Zo such that
q(z) = oo if, for any L, there is a 6 > 0 such that q(z) > L, whenever |z — z| < 4.

Theorem 1. The period function p is lower semi continuous.

Proof: We shall only present the proof for the case p(z) < co. Since p(z0) < o0, the
series 3, 1(Jy) is convergent. Given ¢ > 0, there exists n such that Y o . I(J;) <
¢. Using the theorem on local form of submersions (see [7]) and the continuity of
solutions of differential equations with respect to initial conditions we can conclude the
existence of a finite family of closed intervals {Qo, @1, -, Qn}, Qi C J; Vi, satisfying
1(J;) = 1(Q;) < £/n, and exists § > 0 such that is |zg — To| < 0, the solution z(t, Zo) is
defined at least on @;. Hence

PZo = Zl(Qi) > Z[Z(J}-) —¢] > [p(2) — €] — & = p(z0) — 2e.

i=1
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Remark 1: Let p: R — [0,00)U{+0c0} be a given lower semi continuous function and
M = {(t,z) € R%0 < t < p(2)}. Since M is open, then M is a Riemannian manifold
with the induced metric of R2. If f: M — R is given by f(¢,z) = z, the correspondent
period map for this function f is p.

Remark 2: The period map is Lebesgue measurable, but may not be Riemann inte-
grable, even if f(M) and p are bounded. Let A C (0,1) be a closed set with positive
measure and empty interior. Consider the open set M = ((0,1) — A) x (=2,2) U (4 X
(—1,1)) and the map p(z) defined by p(z) =2 if z € A and p(z) =4ifz ¢ A. The
function p is discontinuous in A and since the measure of A is not zero, then p is not

Riemann integrable.

In the proof of Lemma 2 below we need the following equality, related to Schwarz
inequality, whose proof is immediate.

Lemma 1. Let u, v vectors in a 2-dimensional Hilbert space, and let @ be a vector that
is orthogonal to u such that ||G|| = ||ul|. Then

ulPllvll? = (u, v)? + (% v)*

Lemma 2. Let M be a 2-dimensional oriented Riemannian manifold with boundary,
and let f: M — R be a C' map such that:

(a) f and flon have no critical points;
(b) For any z € f(M), there ezists an interval [r,s], 7 < z < s, such that
f=Yr, s] is compact in M ;
(c) For any z € f(M), the set D(z) = {z € M : f(z) < 2z} has finite area A(z).
For each z € M, let A(z) = A(f(z)) and p(z) = p(f(z)). Then:
(i) A'(z) = p(z), Vze f(M)

(i) A'(z) = p(z) f'(z), Vz € M.

Proof: Since we can work in each connected component of

F~1(z), we shall assume that f~'(2) is connected, for all z. Let z € J, then f~'(2)
is an orbit which we will parameterize by z.
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For any xg let 29 = f(x¢) and consider the initial value problem

9(p(2))

() = eI
@(Zo) = Xyp.

Since we work in each chart of M we can assume that there exists a zo such that the
orbit of the corresponding solution ¢(z) intercepts every level curve of f, that is, the
function (z) is defined for all z € J. Then we have

(9(0(2)),¢'(2)) = 1.

Integrating both sides, we get f(¢(z)) =2z +c.

Since f(p(z0)) = f(zo) = 20, we have zy = f(zo) = f(¢(20)) = 20 + ¢, which implies
c = 0. Therefore f(p(z)) =2, Vz € J.

Now consider the solutions z(t, z) of the differential equation & = wu(z) such that
2(0,z) = @(z); then clearly f(z(¢,2)) = z,Vz. The map z(t,z) parameterizes M; If
W = {(t,2) : 0<t<p(z),z€J}thenz: W — M is a diffeomorphism.We clalm

that if

E= &2 G=|%*F = (%,9%) then EG— F? =1, forall t, 2.

In fact, from f(p(z)) = 2, Vz € J, is follows that f(z(t,2)) = 2, Vz € J, for
z(0,2) = p(x) and (¢, 2) is a level curve of f. Note that since P? = —J, & = — ooz
implies —@(g—z) = g. Hence

1=(g(z),5)={-®(%), 5

and it follows from Lemma 1 that

1= (o), 2y = (0(20), By = | PN - (G 5

= EG — F2

From the Differential Geometry we have

z1
Area (M) :/ \/EG—F'Zdtdz:/ dtdz:/ p(z) dz.
% w

Z0
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Therefore A(z) = A(z) + fzzo p(%)dz, and then A'(z) = p(z). This shows (). The
proof of (i7) follows from (7) and the chain rule.

Lemma 3. Let M be a compact oriented Riemannian manifold with boundary, and f
be a C' map with no critical points. Then

Aren (M) = / oz dz

Proof: Denote by CV the set of critical values of f|gp. Since M is compact, C'V is a
closed set. Since f has no critical points, Sard’s Theorem implies m(C'V) = 0.

Then R\ CV is a countable union (possibly finite) of open intervals, that is, R\CV =
UI,,, where I, is an open interval for all n. Since the result holds in each I,, Lemma 2
implies

Aren (F UL = /1 o) .

Then, since the area of f~1(CV) is zero (because f has no critical points), we have

/Rp(z)dz :/R\Cvp(z)dz:zn:/lnp(z)dz

= ZArea(f—l(In)) = Area (M).

Theorem 2. Let M be an oriented Riemannian manifold without boundary, and let f
be a C' map without critical points. Then

Area (M) = /p(z) dz.

Proof: We can write M = UM, a countable union, in which M, CMpn4+1 and each
M, is a compact manifold. Let the p, be the period map in Mp. By Lemma 3, we
have

Area (M,) = /pn(z) dz.

Note that p(z) = lim, e Pn(2), the sequence (p,(z)) is bounded by p(z) and ppt1(z) >
pa(z). By Lebesgue Dominated Convergence Theorem, we have
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Area (M) = lim Area (M,) = le pn(2)dz = /p(z) dz.

n—oo

Remark 3: Since each p, is continuous and p is not Riemann integrable, the conver-
gence cannot be uniform.

If the set of critical points of f has positive measure, we have the following result,
whose proof is immediate.

Corollary 1. Let M be an oriented Riemannian manifold without boundary, and let
f be a C' map. Then

Area (M) = /p(z) dz + Area (Cy),

where C; 1is the set of critical points of f.

Remark 4: If the differential equation (1) is

& = AM2)u(z), Az) # 0, then, A'(z fp(z) Mz(t, 2))dt, where p(z) is the period
function for the map A(z)u ( ). In fact we have
1= (o), Z) = (~0ue)), 551 = 5502 (5) 320
Since
]| (% H = | H and ®(2 ) is orthogonal to %, we have:
H =) H 7= (% (), 8= (5 &)+ @)

Then, EG — F?=)?(z); hence

A(z) - = [Z dz [T ))dt. Therefore, A'(z) = [P M(a(t, 2))dt.

2. EXAMPLES

1) Consider the cone M = {(z,y,2) € R3 : 22 = 3?4 2%} and the function f: M — R
defined by f(z,y,z2) =

Consider the zero level curve of f given by ¢(z,y,z) = z° — y? — 22 = 0 and
let P = (z,y,z) be a point of M. The tangent plane of M at P is TpM = {v =

(v1,v2,03) (Vé(z,y,2), v ) = 2zv; — 2Yvp — 2zv3 = 0}.
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For v € TpM we have f'(P).v = (Vf(P),v) = ((1,0,0), (v1,v2,v3)) = v1. A vector
g(P) € TpM so that (g(P),v) = f'(P)v=mwv Iis

g(P)=( y? + 2* yx zZT )
22 +y?+22 22 +y? + 22 a2yt 422

The vector u(P) is orthogonal to both V@(P) and g(P), and |u(P)| = |g(P)|. Then
U(P) ( \/72+y +22] \/$2+y2+22)

The differential equation is

P =u(P
) P(0) = (ioyyo,zo) eM.

The solution of (3) is (z(t), y(t), z(t)) = (2o, To cos( ft) 2o sin( - 1\/515))

Therefore, the period function is p(z) = 2v/2rz and hence the area of M is
h
A= 2\/5/ rxdz = V2rh?,
0

which coincides with the known formula for the area of the cone.

2) As another example, consider the nonlinear second order scalar differential equa-
tion

(4) 74 22° = 0.

It can be written as a 2-dimensional differential equation

(5) T = ul{z),

where 2 = (21, @2), u(zy, 22) = (z2,—223). The orbits of (5) in the (z1, z2)—
plane are the level curves of the total energy function f(z,y) = (z2 + z})/2. For each
h > 0, the level curve

(6) gt Lol =20,

is a periodic orbit of (5) in the phase plane (z), To) that intersects the z;—axis at the
points (—a,0) and (a,0), where a* = 2h. Due to the symmetry of (6), this orbit is
symmetric with respect to both z;— and z,— axes. Each corresponding solution has
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maximum amplitude a. By solving Eq. (6) for zo = %L and then integrating from 0 to
o

a over a quarter of orbit we get the period p(h) of this orbit as p(h) = BRI where
C = 4f01 \/ffM = @{3%4) ~ 1.31103. Note that p(h) — oo as h — 0T, and p(h) = 0
as h — co. Then Theorem 2 implies that the area A of the annulus between the orbits

corresponding to the energy levels h and k, 0 < k < h, is given by

4C

h h
A:/ p(/\) d/\:C’/ /\_1/4d)\: ?(h3/4_k3/4).
k k

In particular, the area enclosed by the orbit corresponding to the energy level h = a?/2
is

A= fl—QhS/4 = —42(13.
3 3v/2

Similar computations yield analogous conclusions for the more general equation

T L .’172n+1 - 0

3. AN APPLICATION

We now present a type of Cavalieri’s principle. Let f; : M, = R and fy: My, — R,
be maps without critical points and py, p» the respective “period functions”.

Suppose that pi(z) = pa(2) almost everywhere. Then, given 29,21 € R, we have
Area (f; (20, 21)) =Area (f5 (20, 21))-

In particular, Area (M) = Area (My).

4. A CoAREA FORMULA

As another application, we give a proof of a particular case of the famous coarea
theorem (see, [5]). We remark that, conversely, Theorem 2 can be proved from the
coarea formula, by doing convenient identifications, but we do not intend to do it here.

Theorem 3. Let M be an open subset of R? and f : M — R a C' function with-

out critical points. Then / J(f(z))dz = /ul(f"l(z))dz, where py(f~1(2)) is 1-
Jm

dimensional Hausdorff measure of f~'(z) and J(f(z))is the norm of the gradient of f.

Remark 5: Note that in this case p1(f!(2)) is the length of f7*(z).

The proof of Theorem 3 is a consequence of the lemmas below.
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Lemma 4. Suppose Jf(z) =c. Then | J(f(z)) dxz/ul(f”l(z)) dz.
M

Proof: We have ¢ Area (M) = c/ dz :/ cdz :/ Jf(z)dz.
M M M

But we also know by Theorem 2, that

chrea(M) =¢ [ pla)dz = [ep(@)dz = [ 1@ de= [ mls @),
and the conclusion follows.
Lemma 5. Suppose that Jf(z) satisfies c —e < J(f(z)) < c+¢€, where 0 <e <c.

Then,

2¢
c—¢€

(7) [ @)z - / (@) del < 2 [ (@) de

Proof: We have
/ (c—€)dz S/ Jf(z)dz < / (c+e€)dz.
M M M

Hence,
(c—€) Area (M) < [ Jf(z)dz < (c+¢€) Area (M).
M

We also have
p(z)
ul(f“(Z))=/0 |#]| dt<(c+€e)p(z) and m(f71(2)) = (c — €)p(2)

and these inequalities imply

(c—e)/p(z)dz = Z;Z/(c%—e) p(z)dz > Z;Z/M(f_l(z))dz.
and
e+ [pra = 2 o= ptey e < 55 [ @)

Therefore,
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coc / m(F D) dz < | J(f(@)) do < SX / m(f7(2)) dz.

C € M =€

and from these inequalities we get (7).

Lemma 6. Let M be a bounded open subset of R? and f a C* function on M. Suppose
that there is ¢ > 0 such that Jf(z) > ¢, Vo € M. Then,

[ Ty = [mtr @

Proof: Suppose € > 0 is given. Since J(f(x)) is continuous, there exist open sets
M, , M,,..., M, suchthat, M—J_, M; hasmeasurezeroand c;—e < J(f(2)) <
ci+e YreM;,i=1,...,n, where ¢; = J(f(=;)) for some z; € M;.

Then, denoting I; = f(M;), i =1,...,n, we have

n

[ @) ds = | a@nd= J(f (@) dz
M UM; I M
=3 / Nz 4D ([ I d / wm(f~4(2)) d2)

= [ enas+ 3 @yde = [ w7 e

i=1

From Lemma 2 we have:

2

Z\/ I do= [ e SZ 2 [ @)

. / m(F1(2)) d=.

C—E€

Since the integral [ p1f~'(z)dz is finite and € > 0 is arbitrary, we get:

Jf () dz = / m(f1(2)) de.

M

5. AN INEQUALITY FOR THE AREA OF A SURFACE

In the application bellow we get some estimates for the area of the surface using
a result due to Lasota and Yorke [8] (see also [1]). The Riemmanian manifold that
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we consider is a Riemannian sub manifold in a Hilbert space. We recall the following
result:

Lemma 7. Let z(t) be a nontrivial p-periodic solution of the equation z'(t) = pu(z(t)).
Assume that p is Lipschitzian with Lipschitz constant L on the orbit of z. Then Lp >
2.

Assume f: M — Ris C! and has precisely n critical values a4, ..., a, in (a, b) = f(M).
For any z € I; = (aj,a541), J =0,1,...,n, where ap = a,a, = b, let n; be the number
of corresponding periodic orbits (we recall that for any z, f~'(z) consists of finitely
many periodic orbits).

Then,

L Area (M) =1L /p(z) dz = Z/ Lp(z)dz > 27r2 n;l(I;).
i=1 Vi i=1

Therefore,
Ao, (M) 3 2E i nil(L)
i L - 1 1/

Thus we have proved:

Theorem 4. Suppose f : M — R is a C' map such that f' is Lipschitzian with
Lipschitz constant L. If f has precisely n critical values, then (using the above notation),

Py
Area (.A/[) > z‘ mzl nzl(Iz)
In particular, if f has no critical values then,

2T

Area (M) > f(b —a).

Acknowledgements: Special thanks to Professor A. N. Carvalho for calling our at-
tention to an important reference.
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