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Abstract
We study probabilistic-logic reasoning in a context that allows for “partial truths”, focusing
on computational and algorithmic properties of non-classical Łukasiewicz Infinitely-valued
Probabilistic Logic. In particular, we study the satisfiability of joint probabilistic assignments,
which we call ŁIPSAT. Although the search space is initially infinite, we provide linear
algebraic methods that guarantee polynomial size witnesses, placing ŁIPSAT complexity in
theNP-complete class. An exact satisfiability decision algorithm is presentedwhich employs,
as a subroutine, the decision problem for Łukasiewicz Infinitely-valued (non probabilistic)
logic, that is also an NP-complete problem.We investigate efficient representation of rational
McNaughton functions in Łukasiewicz Infinitely-valued Logic modulo satisfiability.

Keywords Fuzzy logics · Probabilistic fuzzy logics · Multivalued logics · Probabilistic
multivalued logics · Łukasiewicz Infinitely-valued Logic

1 Introduction

This paper deals with the problem of determining the consistency of probabilistic assertions
allowing for “partial truths”1 considerations. This means that we depart from the classical
probabilistic setting and instead employ a many-valued underlying logic. In this way we
enlarge our capacity to model situations in which a gradation of truth may be closer to
the perceptions of agents involved. We employ Łukasiewicz Infinitely-valued logic as it
is one of the best studied many-valued logics, having interesting properties which lead to
amenable computational treatment. Notably, it has been shown that foundational properties

1 By the term “partial truth” we refer to the concept usually referred in the literature as “degree of truth”, not
to be confused with partial valuations or models.
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of probabilistic theory such as de Finetti coherence criteria also applies to Łukasiewicz
Infinitely-valued probabilistic theories [25].

We provide theoretical presentation leading to algorithms that decide the satisfiability of
probabilistic assertions in which the underlying logic is Łukasiewicz logic with infinite truth
values in the interval [0, 1]. For that, we employ techniques from linear programming and
many-valued logics. In the latter case we need to solve several instances of the satisfiability
problem in Łukasiewicz Infinitely-valued logic.2 We show that the evaluation of formulas
modulo satisfiability as used in the algorithm presented increases the expressivity of Ł∞,
allowing it to represent rational McNaughton functions.

To understand the kind of situation in which our techniques can be applicable consider
the following example.

Example 1 Three friends have the habit of going to a bar towatch their soccer team’smatches.
Staff at the bar claims that at every suchmatch at least two of the friends come to the premises,
but if you ask them, they will say that each of them comes to watch at most 60% of the games.

In classical terms, the claims of the staff and of the three friends are in contradiction. In
fact, if there are always two of the three friends present at matches, someone must attend to
least two-thirds of the team’s matches.

However, one may allow someone to arrive for the second half of the match, and consider
his attendance only “partially true”, say, a truth value of 0.5 in that case. Then it may well
be the case that staff and customers are both telling the truth, that is, their claims are jointly
satisfiable. ��

It turns out that the example above is unsatisfiable in classical probabilistic logic, but it is
satisfiable in Łukasiewicz Infinitely-valued Probabilistic logic. In this work we are going to
formalize such problems and present techniques and algorithms to solve them.

1.1 Classical and Non-classical Probabilistic Logic

Classical probabilistic logic combines classical propositional inference with classical (dis-
crete) probability theory. The original formulation of such a mix of logic and probability is
due to George Boole who, in his seminal work introducing what is now known as Boolean
Algebras, already discussed the problem [4]. Among the foundational works on classical
probabilistic theory we highlight that provided by de Finetti’s notion of coherent probabili-
ties [9,10].

The decision problem over classical probabilistic logic is called Probabilistic Satisfiability
(PSAT). PSAT has been extensively discussed in the literature [16,20,27], and has recently
received a lot of attention due to the improvements in SAT solving and linear programming
techniques, having generated a variety of algorithms, for which the empirical phenomenon
of phase-transition is by now established [13,14].

Łukasiewicz Infinitely-valued Logic is widely used in the literature to model situations
that require the notion of “partial truth”, seen as a many-valued logic and algebra [7]. A
probability theory over such a many-valued context, including a notion of coherent probabil-
ities in line with de Finetti’s original work, was developed as a sound basis for non-classical
probability theory [25]. The problem of deciding whether a set of probabilistic assignments
over Łukasiewicz Infinitely-valued Logic is coherent was shown to be NP-complete by [6].

2 Satisfiability problem in Łukasiewicz Infinitely-valued logic has been shown to be NP-complete [23] and
there are some implementations discussed in the literature [3], but there are many implementation options
with considerable efficiency differences which are analyzed in [15].
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It is the goal of this paper to explore equivalent formulations and algorithmic ways to solve
this problem and also to explore some representational implications that follow from those
techniques.3

The rest of this paper is organized as follows. In Sect. 2 we describe the notions pertaining
Łukasiewicz Infinitely-valued Logic and Łukasiewicz Infinitely-valued Probabilistic Logic
and the notion of coherent probability over such logic. In Sect. 3 we study the theoretical
relationship between linear algebraic methods and the solution of the ŁIPSAT problem.
In Sect. 4 we develop a column generation algorithm for ŁIPSAT solving and show its
correctness. Finally, in Sect. 5 we study how the expressivity of Ł∞ can be increased by
setting a semantics modulo satisfiability (MODSAT) based on the evaluation used in the
column generation algorithm.

Source code of the solvers developed are publicly available under license GPLv3 at http://
lipsat.sourceforge.net.

2 Preliminaries

Łukasiewicz Infinitely-valued Logic (Ł∞) is arguably one of the best studied many-valued
logics [7]. It has several interesting properties, such as a truth-functional semantics that
is continuous, having classical logic as a limit case and possessing well developed proof-
theoretical and algebraic presentations. The semantics ofŁ∞-formulas represent all piecewise
linear functions with integer coefficients—i.e. the McNaughton functions—and only those
[22,24].

The basic Ł∞-language is built from a countable set of propositional symbols P, and
disjunction (⊕) and negation (¬) operators. For the semantics, define a Ł∞-valuation v :
P → [0, 1], which maps propositional symbols to a value in the rational interval [0, 1]. Then
v is extended to all Ł∞-formulas as follows

v(ϕ ⊕ ψ) = min(1, v(ϕ) + v(ψ))

v(¬ϕ) = 1 − v(ϕ)

From those operations one usually derives the following:

Conjunction: ϕ � ψ =def ¬(¬ϕ ⊕ ¬ψ) v(ϕ � ψ) = max(0, v(ϕ) + v(ψ) − 1)

Implication: ϕ → ψ =def ¬ϕ ⊕ ψ v(ϕ → ψ) = min(1, 1 − v(ϕ) + v(ψ))

Maximum: ϕ ∨ ψ =def ¬(¬ϕ ⊕ ψ) ⊕ ψ v(ϕ ∨ ψ) = max(v(ϕ), v(ψ))

Minimum: ϕ ∧ ψ =def ¬(¬ϕ ∨ ¬ψ) v(ϕ ∧ ψ) = min(v(ϕ), v(ψ))

Bi-implication: ϕ ↔ ψ =def (ϕ → ψ) ∧ (ψ → ϕ) v(ϕ ↔ ψ) = 1 − |v(ϕ) − v(ψ)|
A formula ϕ is Ł∞-valid if v(ϕ) = 1 for every valuation v. A formula ϕ is Ł∞-satisfiable

if there exists a v such that v(ϕ) = 1; otherwise it is Ł∞-unsatisfiable. A set of formulas Φ

is satisfiable if there exists a v such that v(ϕ) = 1 for all ϕ ∈ Φ. Note that v(ϕ → ψ) = 1
iff v(ϕ) ≤ v(ψ); similarly, v(ϕ ↔ ψ) = 1 iff v(ϕ) = v(ψ).

Ł∞ also serves as a basis for a well-founded non-classical probability theory [26]. Define
a convex combination over a finite set of valuations v1, . . . , vm as a function on formulas into
[0, 1] such that
3 An earlier version of this paper has appeared in [15]. In this work we present proofs of lemmas and theorems
that were omitted. Section 5 on representation of rational McNaughton functions is totally new; on the other
hand, due to space limitations, implementational and experimental issues have been omitted.
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C(ϕ) = λ1v1(ϕ) + · · · + λmvm(ϕ) (1)

where λi ≥ 0 and
∑m

i=1 λi = 1. So a Ł∞-probability distribution λ = [λ1, . . . , λm] is a
set of coefficients that form the convex combination of Ł∞-valuations. To distinguish Ł∞-
probabilities from classical ones, we use the notation C(·), following [26]; it is important to
note that C is defined over any finite set of valuations.4 Note that classical discrete probabil-
ities are also convex combinations of {0, 1}-valuations.

This notion of probability associates non-zero values only to a finite number of Ł∞-
valuations; thus the notion of Ł∞-probability is intrinsically discrete. As there are infinitely
many possible Ł∞-valuations, the remaining ones are assumed to be zero. In this work we
are interested in deciding the existence of convex combinations of the form (1) given a set
of constraints. So, in theory, the search space is infinite.

It follows immediately from this definition that C(α) = 1 if there is a convex combination
over v1, . . . , vm where vi (α) = 1, 1 ≤ i ≤ m.

Lemma 1 C(α → β) = 1 iff C(α) ≤ C(β). ��
Lemma 1 is a direct consequence from the fact that v(ϕ → ψ) = 1 iff v(ϕ) ≤ v(ψ).

We define a Łukasiewicz Infinitely-valued Probabilistic (ŁIP) assignment as an expression
of the form

Σ =
{

C(αi ) = qi | qi ∈ [0, 1], 1 ≤ i ≤ k
}

.

As a foundational view of probabilities, it is possible to define a coherence criterion over
ŁIP-assignments, in analogy to the de Finetti classical notion of coherent assignment of
probabilities [8,10]. Thus, define the Ł∞-coherence of a ŁIP-assignment {C(αi ) = qi | 1 ≤
i ≤ k} in terms of a bet between two players, Alice the bookmaker and Bob the bettor. The
outcome on which the players bet is a Ł∞-valuation describing an actual “possible world”.
For each formula αi , Alice states her betting odd C(αi ) = qi ∈ [0, 1] and Bob chooses a
“stake” σi ∈ Q; Bob pays Alice

∑k
i=1 σi · C(αi ) with the promise that Alice will pay back

∑k
i=1 σi · v(αi ) if the outcome is the possible world (or valuation) v. As in the classical case,

the chosen stake σi is allowed to be negative, in which case Alice pays Bob |σi | · C(αi ) and
gets back |σi | · v(αi ) if the world turns out to be v. Alice’s total balance in the bet is

k∑

i=1

σi (C(αi ) − v(αi )).

We say that there is a ŁIP-Dutch Book against Alice’s ŁIP-assignment if there is a choice
of stakes σi such that, for every possible outcome v, Alice’s total balance is always negative,
indicating a bad choice of betting odds made by Alice.

Definition 1 Given a probability assignment to propositional formulas {C(αi ) = qi | 1 ≤
i ≤ k}, the ŁIP-assignment is coherent if there are no Dutch Books against it.

While the coherence of an assignment provides a foundational view to deal with
Ł∞-probabilities, a more computational view is possible, based on the satisfiability of assign-
ments. Such a view will allow a more operational way of dealing with Ł∞-probabilistic
assignments.

4 Thus C is more restrictive than the full class of states of an MV-algebra, in the sense of [26], which will not
be discussed here.

123



Probably Partially True: Satisfiability for Łukasiewicz…

Definition 2 A ŁIP-assignment is satisfiable if there exists a convex combination C and a
set of valuations that jointly verifies all restrictions in it.

Example 2 Consider again Example 1, let x1, x2, x3 be variables representing the presence
at the bar of each of the three friends. An Ł∞-valuation assigns to each variable a value in
[0, 1]. The probabilistic constraint expressing that each friend comes at most 60% of the
games can be expressed as

C(x1) = C(x2) = C(x3) ≤ 0.6, (∗)
and the fact that at least two of them are present is expressed by the constraints

C(x1 ⊕ x2) = C(x1 ⊕ x3) = C(x2 ⊕ x3) = 1 (∗∗)
whichmeans that no two of them are simultaneously absent. There are infinitelymanyways of
obtaining a convex combination of Ł∞-valuations that satisfy all six conditions, the simplest
of which is achieved with a single Ł∞-valuation v, v(x1) = v(x2) = v(x3) = 0.6; in fact,
v(x1 ⊕ x2) = v(x1 ⊕ x3) = v(x2 ⊕ x3) = min(1, 0.6 + 0.6) = 1, so we can attribute 100%
of probability mass to v.

A similar result can be obtained with three “classical” valuations vi (xi ) = 0, vi (x j ) =
vi (xk) = 1, for pair-wise distinct i, j, k ∈ {1, 2, 3} and a fourth valuation v4(x1) = v4(x2) =
v4(x3) = 0.5. Note all four valuations satisfy the formulas in (∗∗). The convex valuation
assigns probability 0.2 to v1, v2, v3 and 0.4 to v4, satisfying all constraints (∗) and (∗∗). ��

The following result is the characterization of coherence for Łukasiewicz Infinitely-valued
Probabilistic Logic.

Proposition 1 (Mundici [25]) Given a ŁIP-assignment Σ = {C(αi ) = qi | 1 ≤ i ≤ k}, the
following are equivalent:

(a) Σ is a coherent ŁIP-assignment.
(b) Σ is a satisfiable ŁIP-assignment.

��
Proposition 1 asserts that deciding ŁIP coherence is the same as determining ŁIP-

assignment satisfiability, which we call ŁIPSAT. This result is the Ł∞ analogous to de
Finetti’s characterization of coherence of classical probabilistic assignment as equivalent
to the probabilistic satisfiability (PSAT) of the assignment, which was shown to be an NP-
complete problem that can be solved using linear algebraic methods [16,27]. It has also been
shown by Bova and Flaminio [6] that deciding the coherence of a ŁIP-assignment is also an
NP-complete problem.

Our goal here is to explore efficient ways to decide the coherence of ŁIP-assignments.
In analogy to the algorithms used for deciding PSAT [13,14], we explore a linear algebraic
formulation of the problem.

3 Algebraic Formulation of ŁIPSAT

We consider an extended version of ŁIP-assignments of the form

Σ =
{

C(αi ) ��i qi | qi ∈ [0, 1], ��i∈ {=,≤,≥}, 1 ≤ i ≤ k
}

. (2)
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Extended ŁIP-assignments may have both inequalities and equalities. Such an assignment
is satisfiable if there is aŁ∞-probability distributionλ that verify all inequalities and equalities
in it.

Given an extended ŁIP-assignment Σ = {C(αi ) ��i qi }, let q = (q1, . . . , qk)
′ be the

vector of probabilities in Σ , �� the “vector” of (in)equality symbols. Suppose we are given
Ł∞-valuations v1, . . . , vm and let λ = (λ1, . . . , λm)′ be a vector of convex weights. Consider
the k × m matrix A = [ai j ] where ai j = v j (αi ). Then an extended ŁIP-assignment of the
form (2) is satisfiable if there are v1, . . . , vm and λ such that the set of algebraic constrains (3)
has a solution:

A · λ �� q
∑

λ j = 1

λ ≥ 0

(3)

The condition
∑

λ j = 1 can be incorporated as an all-1 row k + 1 in matrix A, q =
(q1, . . . , qk, 1)′ and ��k+1 is “=”. Note that the number m of columns in A is in principle
unbounded, but the following consequence of Carathéodory’s Theorem [11] yields that if (3)
has a solution, then it has a “small” solution.

Proposition 2 (Carathéodory’s Theorem for ŁIP) If a set of restrictions of the form (3) has a
solution, then it has a solution in which at most k + 1 elements of λ are non-zero. ��

Given the algebraic formulation in (3), NP-completeness of ŁIP satisfiability, originally
shown by Bova and Flaminio [6], can be seen as a direct corollary of Proposition 2. In fact,
that ŁIPSAT is NP-hard comes from the fact that when all qi = 1, the problem becomes
Ł∞-satisfiability, which is NP-complete [23]; and Proposition 2 asserts the existence of
a polynomial size witness for ŁIPSAT, hence is in NP; so ŁIPSAT is NP-complete. See
Corollary 1.

However, to apply linear algebraic methods to efficiently solve ŁIPSAT, first we need to
provide a normal form for it.

3.1 A Normal Form for ŁIP-Assignments

An extended assignment may seem more expressive than regular ŁIP-assignments, but we
show that no expressivity is gained by this extension. In fact, we define a normal form ŁIP
assignment as a pair 〈Γ ,Θ〉, whereΓ is a set ofŁ∞-formulas andΘ is a set of ŁIP restrictions
over propositional symbols of the form

Θ =
{

C(pi ) = qi | qi ∈ [0, 1], pi ∈ P, 1 ≤ i ≤ k
}

. (4)

The formulas γ ∈ Γ represent ŁIP-assignments of the form C(γ ) = 1, that is, a set of
hard constrains in the form of Ł∞-formulas which must be satisfied by all valuations in the
convex combination that compose a Ł∞-probability distribution.

A normal form assignment 〈Γ ,Θ〉 is satisfiable if there are Ł∞-valuations v1, . . . , vm

such that vi (γ ) = 1 for every γ ∈ Γ and there is a Ł∞-probability distribution λ1, . . . , λm ,
such that for each assignment C(pi ) = qi ∈ Θ ,

∑m
j=1 λ j · v j (pi ) = qi .

The satisfiability of extended ŁIP-assignments reduces to that of normal form ones, as
follows.
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Theorem 1 (Atomic Normal Form) For every extended ŁIP-assignment Σ there exists a
normal form ŁIP-assignment 〈Γ ,Θ〉 such that Σ is satisfiable iff 〈Γ ,Θ〉 is; the normal form
assignment can be built from Σ in polynomial time.

Proof Start withΓ = Θ = ∅. GivenΣ , first transform it intoΣ ′ in which all assignments are
of the form C(α) ≤ p; for that, ifΣ contains a constraint of the form C(α) �� 1, �� ∈ {=,≥}
(resp. C(α) = 0, C(α) ≤ 0) we insert α (resp. ¬α) in Γ and do not insert the constraint in
Σ ′. If C(α) = q ∈ Σ we insert C(α) ≤ q and C(α) ≥ q in Σ ′. Then all assignments of the
latter form are transformed into C(¬α) ≤ 1− q . Also, insert constraints already in the form
C(α) ≤ q ∈ Σ into Σ ′. All transformation steps preserve satisfiability and can be made in
linear time, so Γ ∪ Σ ′ is satisfiable iff Σ is.

For every C(αi ) ≤ qi ∈ Σ ′, 0 < qi < 1, consider a new symbol yi ; insert αi → yi in Γ

and C(yi ) = qi in Θ . Clearly 〈Γ ,Θ〉 is in normal form and is obtained in linear time. The
fact that Σ is satisfiable iff 〈Γ ,Θ〉 is follows from Lemma 1. ��
Example 3 Note that the formalization presented in Example 2 is already in normal form,
witnessing that this format is quite a natural one to formulate ŁIP-assignments. ��

3.2 Algebraic Methods for Normal Form ŁIP-Assignments

For the rest of this paper we assume that ŁIP-assignments are in normal form. Here we
explore their algebraic structure as it allows for the interaction between a ŁIP problem Θ

and a Ł∞-SAT instance Γ , such that solutions satisfying the normal form assignment can be
seen as probabilistic solutions to Θ constrained by the SAT instance Γ .

Furthermore, to construct a convex combination of the form (1) we will only consider Γ -
satisfiable valuations. Given a ŁIP-assignment 〈Γ ,Θ = {C(pi ) = qi }〉, a partial assignment
v over pi , . . . , pk is Γ -satisfiable if it can be extended to a full assignment that satisfies all
formulas in Γ . Let q be a k +1 dimensional vector (q1, . . . , qk, 1)′. The following is a direct
consequence of Theorem 1.

Lemma 2 A normal form instance 〈Γ ,Θ〉 is satisfiable iff there is a (k +1)× (k +1)-matrix
AΘ , such that all of its columns are Γ -satisfiable, AΘ last row is all 1’s, and AΘλ = q has
a solution λ ≥ 0.

Proof Let m be the number of formulas in Γ and let l = m + k. Suppose first that 〈Γ ,Θ〉
is satisfiable, thus the assignment admit a solution Aλ = q , according to (3); the condition∑

λ j = 1 is incorporated as the final row of A containing only 1’s. Each column A j in the
(l + 1) × 2(k+n) matrix A corresponds to a Ł∞-valuation v j ; and λ is a convex combination
over A’s columns. Clearly, λ j > 0 implies that v j satisfies Γ . Let the (k + 1) × l matrix A′
be obtained from A by deleting each line corresponding to a formula S ∈ Γ , and deleting
each column A j such that λ j = 0. Moreover, let λ′ be obtained from λ by deleting each entry
λ j = 0. Note that, by construction, A′λ′ = q , λ′ ≥ 0, and the columns in A′ areΓ -satisfiable.
Then, by Carathéodory’s Theorem (Proposition 2) there exists a (k + 1) × (k + 1) matrix
A′′, built from A′ columns, and a k + 1 dimensional vector λ such that A′′ · λ = q has a
solution λ ≥ 0.

Conversely, suppose that the desired matrix AΘ exists, thus AΘ · λ = q for some λ ≥ 0.
Each column of AΘ , beingΓ -satisfiable, can be transformed into a column of A by extending
it with m 1’s, corresponding to the formulas in Γ . It follows easily that restrictions (3) have
a solution, and thus 〈Γ ,Θ〉 is satisfiable. ��
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Lemma 2 leads to a linear algebraic PSAT solving method as follows. Let V be the set of
partial valuations over the symbols in Θ; consider a |V |-dimensional vector c such that

c j =
{
0, v j ∈ V is Γ -satisfiable
1, otherwise

(5)

The vector c is a boolean “cost” associated to each partial valuation v j ∈ V , such that the
cost is 1 iff v j is Γ -unsatisfiable. Consider a matrix A whose columns are the valuations in
V . Now consider linear program (6) which aims at minimizing that cost, weighted by the
corresponding probability value λ j .

min c′ · λ

subject to A · λ = q∑
λi = 1

λ ≥ 0
A′s columns are partial valuations in V

(6)

Theorem 2 A normal form instance 〈Γ ,Θ = {C(pi ) = qi | 1 ≤ i ≤ k}〉 is satisfiable iff lin-
ear program (6) reaches a minimal solution c′ · λ = 0. Furthermore, if there is a solution,
then there is a solution in which at most k + 1 values of λ are not null.

Proof If linear program (6) reaches 0,weobtainv1, . . . , vm by selecting only theΓ -satisfiable
columns A j for which λ j > 0, obtaining a convex combination satisfying Θ . So 〈Γ ,Θ〉 is
satisfiable. Conversely, if 〈Γ ,Θ〉 is satisfiable, by Lemma 2 there exists a matrix AΘ such
that all of its columns are Γ -satisfiable partial valuations and AΘ · λ = q; clearly AΘ is
a submatrix of A; make λ j = 0 when A j is a AΘ column and thus c′ · λ = 0. Again by
Lemma 2, AΘ has at most k + 1 columns so at most k + 1 values of λ are not null. ��

The following consequence of Theorem 2was originally proven by Bova and Flaminio [6]
as the decision of ŁIP-assignment coherence, which is equivalent to ŁIP satisfiability
by Proposition 1.

Corollary 1 (ŁIPSAT Complexity) The problem of deciding the satisfiability of a ŁIP-
assignment is NP-complete.

Proof Suppose we have a ŁIP-assignment of the form {C(αi ) = 1 | 1 ≤ i ≤ k}, then the
problem is equivalent to deciding if the set {α1, . . . , αk} is Ł∞-satisfiable, which is NP-
complete [23]. So ŁIPSAT is NP-hard.

Now suppose we have a ŁIP-assignment, which can be placed in normal form in poly-
nomial time by Theorem 1. Then Theorem 2 shows that if the problem is satisfiable, it can
be verified in polynomial time by guessing suitable valuations and “small distribution” λ,
constructing matrix AΘ and verifying in polynomial time that AΘ · λ = q . So ŁIPSAT is in
NP. ��

Despite the fact that solvable linear programs of the form (6) always have polynomial
size solutions, with respect to the size of the corresponding normal form ŁIP-assignment,
the elements of linear program itself (6) may be exponentially large, rendering the explicit
representation of matrix A impractical. In the following, we present an algorithmic technique
that avoids that exponential explosion.
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4 A ŁIPSAT-Solving Algorithm

Based on the results of the previous section we are going to present an algorithm employing
a linear programming technique called column generation [19,21], to obtain a decision pro-
cedure for Łukasiewicz Infinitely-valued Probabilistic Logic, which we call ŁIPSAT solving.
This algorithm solves the potentially large linear program (6) without explicitly represent-
ing all columns and making use of an extended solver for Ł∞-satisfiability as an auxiliary
procedure to generate columns.

To avoid the exponential blow of the size of matrix in (6), the algorithm basic idea is to
employ the simplex algorithm [2,28] over a normal form ŁIP-assignment 〈Γ ,Θ〉, coupled
with a strategy that generates cost decreasing columns without explicitly representing the
full matrix A. In this process, we start with a feasible solution, which may contain several
Ł∞ Γ -unsatisfiable columns. We minimize the cost function consisting of the sum of the
probabilities associated to Γ -unsatisfiable columns, such that when it reaches zero, we know
that the problem is satisfiable; if no column can be generated and the minimum achieved is
bigger than zero, a negative decision is reached.

The general strategy employed here is similar to that employed to PSAT solving [13,14],
but the column generation algorithm is considerably distinct and requires an extension of Ł∞
decision procedure.

From the input 〈Γ ,Θ〉, we implicitly obtain an unboundedmatrix A and explicit obtain the
vector of probabilities q mentioned in (6). The basic idea of the simplex algorithm is to move
fromone feasible solution to another onewith a decreasing cost. The feasible solution consists
of a squarematrix B, called the basis,whose columns are extracted from theunboundedmatrix
A. The pair 〈B, λ〉 consisting of the basis B and a ŁIP probability distribution λ is a feasible
solution if B · λ = q and λ ≥ 0. We assume that qk+1 = 1 such that the last line of B we
will force

∑
G λ j = 1, where G is the set of B columns that are Γ -satisfiable. Each step

of the algorithm replaces one column of the feasible solution 〈B(s−1), λ(s−1)〉 at step s − 1
obtaining a new feasible solution 〈B(s), λ(s)〉. The cost vector c(s) is a {0, 1} vector such that
c(s)

j = 1 iff B j is Γ -unsatisfiable. The column generation and substitution is designed such

that the total cost is never increasing, that is c(s)′ · λ(s) ≤ c(s−1)′ · λ(s−1).
Algorithm 4.1 presents the top level ŁIPSAT decision procedure. Lines 1–3 present the

initialization of the algorithm. We assume the vector q is in ascending order. Let the Dk+1

be a k + 1 square matrix in which the elements on the diagonal and below are 1 and all
the others are 0. At the initial step we make B(0) = Dk+1, this forces λ

(0)
1 = q1 ≥ 0,

λ
(0)
j+1 = q j+1 − q j ≥ 0, 1 ≤ j ≤ k; and c(0) = [c1 · · · ck+1]′, where ck = 0 if column j in

B(0) is Γ -satisfiable; otherwise c j = 1. Thus the initial state s = 0 is a feasible solution.
Algorithm 4.1 main loop covers lines 5–12 which contains the column generation strategy

described above. Column generation occurs at beginning of the loop (line 5) which we are
going to detail bellow. If column generation fails the process ends with failure in line 7.
Otherwise a column is removed and the generated column is inserted in a process we called
merge at line 9. The loop ends successfully when the objective function (total cost) c(s)′ ·λ(s)

reaches zero and the algorithm outputs a probability distribution λ and the set ofΓ -satisfiable
columns in B, at line 13.

The procedure merge is part of the simplex method which guarantees that given a k + 1
column y and a feasible solution 〈B, λ〉 there always exists a column j in B such that
if B[ j :=y] is obtained from B by replacing column j with y, then there is λ′ such that
〈B[ j :=y], λ′〉 is a feasible solution.
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Algorithm 4.1 ŁIPSAT-CG: a ŁIPSAT solver via Column Generation
Input: A normal form ŁIPSAT instance 〈Γ , Θ〉. Output: No, if 〈Γ , Θ〉 is unsatisfiable. Or a solution 〈B, λ〉
that minimizes (6).
1: q:=[{qi | C(pi ) = qi ∈ Θ, 1 ≤ i ≤ k} ∪ {1}] in ascending order;
2: B(0):=Dk+1;
3: s:=0, λ(s) = (B(0))−1 · q and c(s) = [c1 · · · ck+1]′;
4: while c(s)′ · λ(s) �= 0 do
5: y(s) = GenerateColumn(B(s), Γ , c(s));
6: if y(s) column generation failed then
7: return No; {ŁIPSAT instance is unsatisfiable}
8: else
9: B(s+1) = merge(B(s), b(s));
10: s++, recompute λ(s) and c(s);
11: end if
12: end while
13: return 〈B(s), λ(s)〉; {ŁIPSAT instance is satisfiable}

Lemma 3 Let 〈B, λ〉 be a feasible solution of (6), such that B is non-singular, and let y be
a column. Then there always exists a column j such that 〈B[ j :=y], λ′〉 is a non-singular
feasible solution.

Proof As 〈B, λ〉 is a feasible solution,
k+1∑

i=1

Biλi = q. (7)

Supposewe replace column B j by y.Due to the fact that B is not singular, there are coefficients
β1, β2, . . . , βk+1 such that

∑k+1
i=1 βi Bi = y, and thus:

B j = y

β j
− β1

β j
B1 − · · · − β j−1

β j
B j−1 − β j+1

β j
B j+1 − · · · − βk+1

β j
Bk+1. (8)

Substituting (8) for B j in (7) yields:

λ j

β j
y +

k+1∑

i=1

(λi − βi

β j
λ j )Bi = q. (9)

Note that the coefficient of B j in the sum is 0. We have now a new vector of coefficients
λ′ such that B[ j :=y] · λ′ = q . Properly choosing j guarantees λ′ ≥ 0. As the elements of
columns Bi and y are all non negative valuations, the set β>0 = {βi | βi > 0} is not empty.
Taking a j from the set { j | β j ∈ β>0 and ∀i, βiλ j ≤ β jλi } implies λi − βi

β j
λ j ≥ 0, for

all i �= j , and λ j/β j ≥ 0, so λ′ ≥ 0. Finally, as β j > 0 and all columns in B are linearly
independent, B[ j :=y] is non-singular. ��

Lemma 3 guarantees the existence of a column which may not be unique and further
selection heuristic is necessary; in our implementation we give priority to remove columns
which are associated to probability zero on a left-to-right order.

We now describe the column generation method, which takes as input the current basis B,
the current cost c, and the Ł∞ restrictions Γ ; the output is a column y, if it exists, otherwise
it signals No. The basic idea for column generation is the property of the simplex algorithm
called the reduced cost of inserting a column y with cost cy in the basis. The reduced cost is
given by equation
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ry = cy − c′ B−1y (10)

and the simplex method guarantees that the objective function is non increasing if ry ≤ 0.
Furthermore the generation method is such that the column y is Γ -satisfiable so that cy = 0.
We thus obtain

c′ B−1y ≥ 0 (11)

which is an inequality on the elements of y. To force λ to be a probability distribution, we
make yk+1 = 1, the remaining elements yi are valuations of the variables inΘ , so that we are
searching for solution to (11) such that 0 ≤ yi ≤ 1, 1 ≤ i ≤ k. To finally obtain column y
we must extend a Ł∞-solver that generates valuations satisfying Γ so that it also respects the
linear restriction (11). In fact this is not an expressive extension of Ł∞ as the McNaughton
property guarantees that (11) is equivalent to some Ł∞-formula on variables y1, . . . , yk [7].
In practice, we tested two ways of obtaining a joint solver for Γ and (11):

– Employ an SMT (SATmodulo theories) solver that can handle linear algebraic equations
such as (11) and the linear inequalities generated by the Ł∞-semantics. Ł∞-solvers based
on SMT can be found in the literature, see [3];

– Use a MIP (mixed integer programming) solver that encodes Ł∞-semantics. Equa-
tion (11) is simply a new linear restriction to be dealt by the MIP solver. Ł∞-solvers
based on MIP solvers have been proposed by [18].

In both cases, the restrictions posed by Γ -formulas and (11) are jointly handled by the
semantics of the underlying solver. Note that both MIP solving and SMT (linear algebra) are
NP-complete problems. We have thus the following result.

Lemma 4 There are algorithmic solutions to the problem of jointly satisfying Ł∞-formulas
and inequalities with common variables. ��

We now deal with the problem of termination. Column generation as above guarantees
that the cost is never increasing. The simplex method ensures that a solvable problem always
terminates if the costs always decrease, we are left with the problem of guaranteeing that the
objective function does not become stationary. This is guaranteed in the implementation by a
column selection strategy that respects Bland’s Rule and also by plateau escaping strategies
such as Tabu search [2,28].

Lemma 5 There are column selection strategies that guarantee that the Algorithm 4.1 always
terminates. ��

We know that there are no column selection heuristics that guarantee that the simplex
method terminates in a polynomial number of steps. However, the simplex method performs
very well in most practical cases and its average complexity is known to be polynomial [5].

By placing all the results above together we can state the correction of Algorithm 4.1.

Theorem 3 Consider the output of Algorithm 4.1 with normal form input 〈Γ ,Θ〉. If the
algorithm succeeds with solution 〈B, λ〉, then the input problem is satisfiable with distribution
λ over the valuations which are columns of B. If the program outputs no, then the input
problem is unsatisfiable. Furthermore, there are column selection strategies that guarantee
termination.

Proof Lemma 3 guarantees that all steps 〈B(s), λ(s)〉 is a feasible solution to the problem.
If Algorithm 4.1 terminates with success, than cost zero has been reached, so by Theorem
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2 the input problem is satisfiable. On the other hand, if column generation fails, this fails
with a positive cost, this means there are no Γ -satisfiable columns that can reduce the cost.
So, the problem in unsatisfiable. Finally, a suitable column selection strategy by Lemma 5
guarantees termination. ��
Example 4 We show the steps for the solution of Example 2. Initially, we have

q =

⎡

⎢
⎢
⎣

0.6
0.6
0.6
1

⎤

⎥
⎥
⎦ , B(0) =

⎡

⎢
⎢
⎣

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎤

⎥
⎥
⎦ , λ(0) = (B(0))−1 · q =

⎡

⎢
⎢
⎣

0.6
0
0
0.4

⎤

⎥
⎥
⎦ , c(0) =

⎡

⎢
⎢
⎣

0
0
1
1

⎤

⎥
⎥
⎦ .

c(0) expresses that the first two columns of B(0) are Γ -satisfiable. The total cost cost(0) =
c(0)′ · λ(0) = 0.4. At this point, column y(1) is generated substituting B(0)’s column 3 in the
merge procedure:

y(1) =

⎡

⎢
⎢
⎣

1
0
1
1

⎤

⎥
⎥
⎦ , B(1) =

⎡

⎢
⎢
⎣

1 0 1 0
1 1 0 0
1 1 1 0
1 1 1 1

⎤

⎥
⎥
⎦ , λ(1) =

⎡

⎢
⎢
⎣

0.6
0
0
0.4

⎤

⎥
⎥
⎦ , c(1) =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ .

cost(1) = 0.4. Again, column generation provides y(2) in place of column 1:

y(2) =

⎡

⎢
⎢
⎣

1
1
0
1

⎤

⎥
⎥
⎦ , B(2) =

⎡

⎢
⎢
⎣

1 0 1 0
1 1 0 0
0 1 1 0
1 1 1 1

⎤

⎥
⎥
⎦ , λ(2) =

⎡

⎢
⎢
⎣

0.3
0.3
0.3
0.1

⎤

⎥
⎥
⎦ , c(2) =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ .

cost(2) = 0.1. Finally, column generation provides y(3) in place of column 4:

y(3) =

⎡

⎢
⎢
⎣

0.5
0.5
0.5
1

⎤

⎥
⎥
⎦ , B(3) =

⎡

⎢
⎢
⎣

1 0 1 0.5
1 1 0 0.5
0 1 1 0.5
1 1 1 1

⎤

⎥
⎥
⎦ , λ(3) =

⎡

⎢
⎢
⎣

0.2
0.2
0.2
0.4

⎤

⎥
⎥
⎦ , c(3) =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦ .

cost(3) = 0, so that the problem is satisfiable with solution 〈B(3), λ(3)〉. ��

5 Ł∞-MODSAT Expressivity Over Rational McNaughton

Column Generation technique used in Algorithm 4.1 computes a valuation satisfying restric-
tion (11) modulo the satisfiability of the set of formulas Γ . In this section we show that this
technique of valuating a formula ϕ modulo the 1-satisfiability of a set of formulas Ψ , that is,
evaluate the truth value v(ϕ) under the restriction {v(ψ) = 1 | ψ ∈ Ψ }, actually increases the
expressivity of the logic Ł∞, the resulting system is called Ł∞-MODSAT, which employs
pairs 〈ϕ,Ψ 〉.

McNaughton’s result guarantees thatŁ∞-formulas corresponds to, and only to,McNaugh-
ton functions, that is, piecewise linear functions with integer coefficients. Several proposals
in the literature tried to expand that expressivity to so called rational McNaughton functions,
that is, piecewise linear functions with rational coefficients.

The work of Esteva, Godo and Montagna proposes logic ŁΠ 1
2 which extends Ł∞ logic

with a product operator, its residuum, and a constant expressing the truth value 1
2 , not directly
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expressible inŁ∞ [12]. That logic not only allows for the expressivity of rationalMcNaughton
functions but also expresses piecewise polynomials; as a consequence satisfiability over
ŁΠ 1

2 requires finding roots of polynomials of n-degree rendering its complexity extremely
high. Aguzzoli and Mundici proposes logic ∃Ł which also expresses rational McNaughton
functions and has complexity Σ

p
2 for the satisfiability problem [1]. Logic ∃Ł extends Ł∞ by

providing restricted form of propositional quantification whose semantic counterpart is the
maximization of a set of Ł∞-valuations of a formula.

Gerla introduces Rational Łukasiewicz Logic by extending Ł∞-languagewith unary oper-
ators δn , for n ∈ N

∗, whose semantics is given by v(δnϕ) = v(ϕ)
n , for ϕ a Ł∞-formula and

v a Ł∞-valuation [17]. Rational Łukasiewicz Logic expresses rational McNaughton func-
tions and its associated tautology problem is coNP-complete, which is a very reasonable
complexity for this task.

In this section we want to show that the expressivity of rational McNaughton functions
can be obtained using Ł∞-MODSAT; in the end we compare our results with the ones
about Rational Łukasiewicz Logic. Let the set of propositional symbols be given by P =
{x1, x2, . . .} and Var(Ψ ) be the set of variables appearing in the formulas ψ ∈ Ψ ; we write
Var(ψ) instead of Var({ψ}). We call a Ψ -sat valuation any Ł∞-valuation v that makes
v(ψ) = 1 for all ψ ∈ Ψ .

According to McNaughton [22], given any Ł∞-formula ϕ ∈ L with Var(ϕ) ⊂
{x1, . . . , xn}, we inductively associate to ϕ a function fϕ : [0, 1]n → [0, 1] by:5
(i) fxi (x1, . . . , xn) = xi , for i = 1, . . . , n;
(ii) f¬ϕ(x1, . . . , xn) = 1 − fϕ(x1, . . . , xn);
(iii) fϕ1⊕ϕ2(x1, . . . , xn) = min(1, fϕ1(x1, . . . , xn) + fϕ2(x1, . . . , xn)).

Note that the definition of fϕ depends on n; note also that given a Ł∞-formula ϕ, with
Var(ϕ) = {x1, . . . , xn}, and a Ł∞-valuation v, fϕ(v(x1), . . . , v(xn)) = v(ϕ).

We extend this notion, given a pair 〈ϕ,Ψ 〉, where ϕ is a Ł∞-formula and Ψ is a set of
Ł∞-formulas, where Var(ϕ) ∪Var(Ψ ) ⊂ {x1, . . . , xn}, as follows. First, let function domain
be

D〈ϕ,Ψ 〉 =
{
〈r1, . . . , rn〉 ∈ [0, 1]n | fψ(r1, . . . , rn) = 1, for all ψ ∈ Ψ

}
.

And thus we are able to inductively define the function f〈ϕ,Ψ 〉 : D〈ϕ,Ψ 〉 → [0, 1] by clauses
in total analogy to (i)–(iii) above. The definitions of D〈ϕ,Ψ 〉 and f〈ϕ,Ψ 〉 also depend on n.

We say that a rational McNaughton function f : [0, 1]n → [0, 1] is representable in
Ł∞-MODSAT if there is a pair 〈ϕ,Ψ 〉, with Var(ϕ) ∪ Var(Ψ ) = {x1, . . . , xm}, m ≥ n, and
m − n functions zi : [0, 1]n → [0, 1], i = 1, . . . , m − n, such that:

– For any 〈r1, . . . , rm〉 ∈ D〈ϕ,Ψ 〉, rn+i = zi (r1, . . . , rn), i = 1, . . . , m − n;
– f (x1, . . . , xn) = f〈ϕ,Ψ 〉(x1, . . . , xn, z1(x1, . . . , xn), . . . , zm−n(x1, . . . , xn)).

The pair 〈ϕ,Ψ 〉 is the representation of f in Ł∞-MODSAT. We will write x = 〈x1, . . . , xn〉
and z = 〈xn+1, . . . , xm〉.

In order to establish our main result, that all rational McNaughton functions may be
represented in Ł∞-MODSAT, we first show the possibility of defining constants in a Ł∞-
formula ϕ in the pair 〈ϕ,Ψ 〉within the Ł∞-MODSAT system. It is already possible to define
1 and 0 in Ł∞ by x1 ⊕ ¬x1 and its negation, respectively. For n a nonnegative integer and x
a propositional variable, we define 0x = 0 and nx = x ⊕ (n − 1)x .

5 We abuse the notation by using the same symbols for the propositional variables and for the metavariables
in the functions description.
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Lemma 6 Given a rational number c ∈ (0, 1), there is a set Ψ of Ł∞-formulas, with zc ∈
Var(Ψ ), such that, for any Ψ -sat valuation v, we have v(zc) = c.

Proof Let d = 1
b with b ∈ Z

∗+ and ψd = zd ↔ ¬(b − 1)zd ∈ Ψ . Any Ψ -sat valuation v,
i.e. any valuation v for which v(ψd) = 1, makes v(zd) = d . Let c = a

b , with a, b ∈ Z and
0 < a < b, and ψc = zc ↔ azd ∈ Ψ . Any Ψ -sat valuation v makes v(zc) = c. Note that,
by the definition above, letting ϕ = zc and Ψ = {ψd , ψc}, the pair 〈ϕ,Ψ 〉 represents the
constant c in Ł∞-MODSAT. ��

Our next step is to show that linear functions may be represented in Ł∞-MODSAT. Let g
be a function, we write g# = min(max(g, 0), 1).

Lemma 7 Let g : [0, 1]n → R be a linear function with rational coefficients,

g(x) = a1
b1

x1 + · · · + an

bn
xn + c,

where ai ∈ Z, bi ∈ Z
∗+, and c ∈ Q. Then, g# is representable in Ł∞-MODSAT.

Proof We proceed by induction on a = |a1| + · · · + |an |. If a = 0, the result follows by
Lemma 6. For a > 0, assume the lemma holds for a − 1 and, with no loss of generality, that
|a1| = max(|a1|, . . . , |an |).

Let us consider first the case where a1 > 0. Let h = g − x1
b1
, such that

h(x) = a1 − 1

b1
x1 + · · · + an

bn
xn + c.

By induction hypothesis, there are 〈ϕh, Ψh〉 and 〈ϕh+1, Ψh+1〉 such that h# = f〈ϕh ,Ψh〉 and
(h + 1)# = f〈ϕh+1,Ψh+1〉. We define

Ψ = Ψh ∪ Ψh+1 ∪
{

z 1
b1

↔ ¬(b − 1)z 1
b1

, b1z1 ↔ x1, z1 → z 1
b1

}
,

and claim that 〈ϕ,Ψ 〉, with ϕ =def (ϕh ⊕ z1) � ϕh+1, represents g#. Note that, with the
three new Ł∞-formulas added to Ψ , the pair 〈z 1

b1
, Ψ 〉 defines 1

b1
and the pair 〈z1, Ψ 〉 defines

x1
b1
, depending on the value of x1. So, the new variables z 1

b1
and z1 added to Var(Ψ ) are

associated to the part z of 〈x, z〉 ∈ D〈ϕ,Ψ 〉 and may only assume values that can be computed
as a function of the values of x. When x is such that h(x) ∈ [0, 1],

g#(x) =
(

h(x) + x1
b1

)# = f〈ϕh⊕z1,Ψ 〉(x, z) = f〈(ϕh⊕z1)�1,Ψ 〉(x, z) = f〈ϕ,Ψ 〉(x, z).

When x is such that h(x) ∈ [−1, 0],

g#(x) =
(

h(x) + x1
b1

)# = max
(
0, h(x) + x1

b1

)
= max

(
0,

x1
b1

+ h(x) + 1 − 1
)

=
= f〈z1�ϕh+1,Ψ 〉(x, z) = f〈ϕ,Ψ 〉(x, z).

The cases of x where h(x) > 1 and h(x) < −1 are trivial.
For the case where a1 < 0, it is sufficient to apply the same reasoning to 1 − g. As

1 − (1 − g)# = g#, the lemma follows. ��
Finally, we show our version of McNaughton’s Theorem for the Ł∞-MODSAT setting.

First, a version for rational McNaughton functions with one variable.
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Theorem 4 Let f : [0, 1] → [0, 1] be a one variable rational McNaughton function. Then,
f is representable in Ł∞-MODSAT.

Proof The domain [0, 1] of f may be partitioned into [αi , αi+1], i = 0, . . . , n − 1, such that
each part f : [αi , αi+1] → [0, 1] is a linear function; let βi = f (αi ).

We define the hat functions6 Hi : [0, 1] → [0, 1], i = 0, . . . , n, by:

– H0 has as graph the segments from (α0, β0) to (α1, 0) and from (α1, 0) to (αn, 0);
– Hi has as graph the segments from (α0, 0) to (αi−1, 0), from (αi−1, 0) to (αi , βi ), from

(αi , βi ) to (αi+1, 0), and from (αi+1, 0) to (αn, 0), i = 1, . . . , n − 1;
– Hn has as graph the segments from (α0, 0) to (αn−1, 0), from (αn−1, 0) to (αn, βn).

By Lemma 7, hat functions H0 and Hn are easily representable in Ł∞-MODSAT using a
function g#,where g is linear. Theother hat functionsHi , i = 1, . . . , n−1,maybe represented
in Ł∞-MODSAT by the pair 〈ϕ1 ∧ ϕ2, Ψ1 ∪ Ψ2〉, where 〈ϕ1, Ψ1〉 and 〈ϕ2, Ψ2〉 represent g#

1
and g#

2 , respectively, where g1 and g2 are linear. Note that the variables z1 associated to
the variable x1, with intention to have value x1

b1
as in Lemma 7, must be different for each

representation 〈ϕ1, Ψ1〉 and 〈ϕ2, Ψ2〉.
Let 〈ϕHi , ΨHi 〉 be the representation of Hi in Ł∞-MODSAT. Then, f is representable

in Ł∞-MODSAT by the pair 〈ϕH1 ⊕ · · · ⊕ ϕHn , ΨH1 ∪ · · · ∪ ΨHn 〉. The same note about
variables z1 in the former paragraph also apply here. ��

The proof of Theorem 4 above highlights how hat functions empowers the MODSAT
technique to increase the expressivity of Ł∞. In the following we prove the main result of
this sectionwhich generalizes Theorem 4 to themultivariate case; its proof uses constructions
from the literature which subsume the use of hat functions above.

Theorem 5 Let f : [0, 1]n → [0, 1] be a (multivariable) rational McNaughton function.
Then, f is representable in Ł∞-MODSAT.

Proof According to [7], the domain of f may be decomposed as follows. Let p1, . . . , pk be
the linear constituents of f , each pair pi and p j of these constituents defines two closed half-
spaces H+ and H− such that pi (x) ≤ p j (x) for x ∈ H+ and p j (x) ≤ pi (x) for x ∈ H−.
Thus, for any permutation ρ of the set {1, . . . , k}, we define

Pρ =
{
x ∈ [0, 1]n | pρ(1)(x) ≤ · · · ≤ pρ(k)(x)

}
,

which is a closed convex polyhedron, since it is an intersection of [0, 1]n and a finite set of
closed half-spaces. As the pi ’s have rational coefficients, the vertices of Pρ have rational
coordinates. Let W be the set of simplices (also with rational coordinates) arising from
some triangulation of n-dimensional polyhedra Pρ ; the union of W is the cube [0, 1]n , the
intersection of a pair of elements inW is either a common face between them or empty, and,
for each S ∈ W , there is an index uS ∈ {1, . . . , k} such that, restricted to S, f = puS .

For each vertex v of some simplex inW , we define the hat functionHv : [0, 1]n → [0, 1]
so that:

– Hv(v) = f (v);
– Hv(u) = 0 for each vertex u of a simplex in W different from v;
– Hv is linear over each simplex in W .

6 These functions are only different from the Schauder hats in [24] on the values βi ∈ Q.
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As in the one variable case, the hat functions may be represented in Ł∞-MODSAT by a pair
〈ϕ,Ψ 〉 where ϕ represents a (

∨ ∧
)-combination (as in [7]) of the hat function linear pieces

given by Lemma 7. Thus, f may be represented in Ł∞-MODSAT by 〈⊕v ϕHv ,
⋃

v ΨHv 〉. ��
The representation theorems above are inspired by the results for representing McNaughton
functions into Ł∞ in [7,24]; these representations are said to be in disjunctive normal forms
since they are disjunctions (⊕) of hat functions.

Another possible path to obtain results in Theorems 4 and 5 would be the proof strategy of
Gerla’sMcNaughton-like theorem,which states the 1–1 correspondence between equivalence
classes modulo equi-provability of formulas of Rational Łukasiewicz Logic and rational
McNaughton functions [17]. According to that result, a rational McNaughton function f :
[0, 1]n → [0, 1] is represented by a class of (equi-provable) formulas ofRationalŁukasiewicz
Logic which has among them the formula in special format

ϕ =
s−1⊕

i=0

δsϕi , (12)

where s is some integer for which the linear pieces of s · f have integer coefficients and ϕi

are representations in Ł∞ for the McNaughton functions fi : [0, 1]n → [0, 1] given, for
x ∈ [0, 1]n , by

fi (x) = max(min(s · f (x) − i, 1), 0).

We can adapt the arguments in Lemmas 6 and 7 and state the following result; in a sense
it says that operators δn may be represented in Ł∞-MODSAT.

Theorem 6 Let ϕ be a Ł∞-formula, with Var(ϕ) ⊂ {x1, . . . , xn}, and s ∈ N
∗. Then, function

1
s · fϕ : x ∈ [0, 1]n �→ fϕ(x)

s is representable in Ł∞-MODSAT.

Proof With new variables w and w 1
s
, we define

Ψ =
{
w 1

s
↔ ¬(b − 1)w 1

s
, sw ↔ ϕ, w → w 1

s

}

and claim that 〈w,Ψ 〉 represents 1
s · fϕ . Indeed, 〈w 1

s
, Ψ 〉 defines 1

s , and 〈w,Ψ 〉 defines
fϕ(x)

s , depending on the values x = 〈x1, . . . , xn〉. So, for 〈x, z〉 ∈ D〈w,Ψ 〉, the variables in
z = 〈w 1

s
, w〉 may only assume values that can be computed as functions of x and

1

s
· fϕ(x) = fϕ(x)

s
= f〈w,Ψ 〉(x, z).

��
By Theorem 6 and special format (12), we may say that any class of equi-provable formulas
of Rational Łukasiewicz Logic is representable7 in Ł∞-MODSAT: let ϕ be the formula in
such class as in (12), then the representation is given by the pair 〈ψ,Ψ 〉, where

ψ =
s−1⊕

i=0

wi

7 Of course, since such classes are identified with rational McNaughton functions, that was already a conse-
quence of Theorem 5.
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and

Ψ =
{
w 1

s
↔ ¬(s − 1)w 1

s

}
∪

s−1⋃

i=0

{
swi ↔ ϕi , wi → w 1

s

}
.

6 Conclusion and the Future

We provided the theoretical basis for the development and implementation of probabilistic
reasoning over “partial truth” that respects Łukasiewicz Infinitely-valued Logic restrictions.
The algorithm studied for the ŁIPSAT problem led to the formulation of a framework where
rational McNaughton functions may be represented. For the future we hope to develop better
solvers for the logics employed having the analysis of the phase transition as a qualitative
guideline as well as develop solvers for the Ł∞-MODSAT system. We want to develop
efficient algorithms that, given an n-dimensional piecewise linear function with rational
coefficients, generates the pair 〈ϕ,Ψ 〉 that represents it in Ł∞-MODSAT. We also hope to
employ the mechanisms developed here to linearly approximate generic functions.
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