Journal of Automated Reasoning
https://doi.org/10.1007/510817-020-09558-9

®

Check for
updates

Probably Partially True: Satisfiability for tukasiewicz
Infinitely-Valued Probabilistic Logic and Related Topics

Marcelo Finger'® - Sandro Preto'

Received: 20 April 2020 / Accepted: 24 April 2020
© Springer Nature B.V. 2020

Abstract

We study probabilistic-logic reasoning in a context that allows for “partial truths”, focusing
on computational and algorithmic properties of non-classical Lukasiewicz Infinitely-valued
Probabilistic Logic. In particular, we study the satisfiability of joint probabilistic assignments,
which we call EIPSAT. Although the search space is initially infinite, we provide linear
algebraic methods that guarantee polynomial size witnesses, placing LIPSAT complexity in
the NP-complete class. An exact satisfiability decision algorithm is presented which employs,
as a subroutine, the decision problem for Lukasiewicz Infinitely-valued (non probabilistic)
logic, that is also an NP-complete problem. We investigate efficient representation of rational
McNaughton functions in Lukasiewicz Infinitely-valued Logic modulo satisfiability.

Keywords Fuzzy logics - Probabilistic fuzzy logics - Multivalued logics - Probabilistic
multivalued logics - Lukasiewicz Infinitely-valued Logic

1 Introduction

This paper deals with the problem of determining the consistency of probabilistic assertions
allowing for “partial truths”! considerations. This means that we depart from the classical
probabilistic setting and instead employ a many-valued underlying logic. In this way we
enlarge our capacity to model situations in which a gradation of truth may be closer to
the perceptions of agents involved. We employ Lukasiewicz Infinitely-valued logic as it
is one of the best studied many-valued logics, having interesting properties which lead to
amenable computational treatment. Notably, it has been shown that foundational properties

1 By the term “partial truth” we refer to the concept usually referred in the literature as “degree of truth”, not
to be confused with partial valuations or models.

This study was financed in part by the Coordenagao de Aperfeicoamento de Pessoal de Nivel
Superior—Brasil (CAPES)— Finance Code 001; M. Finger—Partially supported by Fapesp Projects
2015/21880-4 and 2014/12236-1 and CNPq Grant PQ 303609/2018-4.

B Marcelo Finger
mfinger @ime.usp.br

1 Department of Computer Science, University of Sao Paulo, Sao Paulo, Brazil

Published online: 06 June 2020 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-020-09558-9&domain=pdf
http://orcid.org/0000-0002-1391-1175
http://orcid.org/0000-0003-4448-5364

M. Finger, S. Preto

of probabilistic theory such as de Finetti coherence criteria also applies to Lukasiewicz
Infinitely-valued probabilistic theories [25].

We provide theoretical presentation leading to algorithms that decide the satisfiability of
probabilistic assertions in which the underlying logic is Lukasiewicz logic with infinite truth
values in the interval [0, 1]. For that, we employ techniques from linear programming and
many-valued logics. In the latter case we need to solve several instances of the satisfiability
problem in Fukasiewicz Infinitely-valued logic.> We show that the evaluation of formulas
modulo satisfiability as used in the algorithm presented increases the expressivity of £,
allowing it to represent rational McNaughton functions.

To understand the kind of situation in which our techniques can be applicable consider
the following example.

Example 1 Three friends have the habit of going to a bar to watch their soccer team’s matches.
Staff at the bar claims that at every such match at least two of the friends come to the premises,
but if you ask them, they will say that each of them comes to watch at most 60% of the games.

In classical terms, the claims of the staff and of the three friends are in contradiction. In
fact, if there are always two of the three friends present at matches, someone must attend to
least two-thirds of the team’s matches.

However, one may allow someone to arrive for the second half of the match, and consider
his attendance only “partially true”, say, a truth value of 0.5 in that case. Then it may well
be the case that staff and customers are both telling the truth, that is, their claims are jointly
satisfiable. O

It turns out that the example above is unsatisfiable in classical probabilistic logic, but it is
satisfiable in Lukasiewicz Infinitely-valued Probabilistic logic. In this work we are going to
formalize such problems and present techniques and algorithms to solve them.

1.1 Classical and Non-classical Probabilistic Logic

Classical probabilistic logic combines classical propositional inference with classical (dis-
crete) probability theory. The original formulation of such a mix of logic and probability is
due to George Boole who, in his seminal work introducing what is now known as Boolean
Algebras, already discussed the problem [4]. Among the foundational works on classical
probabilistic theory we highlight that provided by de Finetti’s notion of coherent probabili-
ties [9,10].

The decision problem over classical probabilistic logic is called Probabilistic Satisfiability
(PSAT). PSAT has been extensively discussed in the literature [16,20,27], and has recently
received a lot of attention due to the improvements in SAT solving and linear programming
techniques, having generated a variety of algorithms, for which the empirical phenomenon
of phase-transition is by now established [13,14].

Lukasiewicz Infinitely-valued Logic is widely used in the literature to model situations
that require the notion of “partial truth”, seen as a many-valued logic and algebra [7]. A
probability theory over such a many-valued context, including a notion of coherent probabil-
ities in line with de Finetti’s original work, was developed as a sound basis for non-classical
probability theory [25]. The problem of deciding whether a set of probabilistic assignments
over Lukasiewicz Infinitely-valued Logic is coherent was shown to be NP-complete by [6].

2 Satisfiability problem in Lukasiewicz Infinitely-valued logic has been shown to be NP-complete [23] and
there are some implementations discussed in the literature [3], but there are many implementation options
with considerable efficiency differences which are analyzed in [15].

@ Springer

Probably Partially True: Satisfiability for tukasiewicz...

It is the goal of this paper to explore equivalent formulations and algorithmic ways to solve
this problem and also to explore some representational implications that follow from those
techniques.’

The rest of this paper is organized as follows. In Sect. 2 we describe the notions pertaining
Lukasiewicz Infinitely-valued Logic and Lukasiewicz Infinitely-valued Probabilistic Logic
and the notion of coherent probability over such logic. In Sect. 3 we study the theoretical
relationship between linear algebraic methods and the solution of the LIPSAT problem.
In Sect. 4 we develop a column generation algorithm for LIPSAT solving and show its
correctness. Finally, in Sect. 5 we study how the expressivity of £, can be increased by
setting a semantics modulo satisfiability (MODSAT) based on the evaluation used in the
column generation algorithm.

Source code of the solvers developed are publicly available under license GPLv3 at http://
lipsat.sourceforge.net.

2 Preliminaries

Lukasiewicz Infinitely-valued Logic (£) is arguably one of the best studied many-valued
logics [7]. It has several interesting properties, such as a truth-functional semantics that
is continuous, having classical logic as a limit case and possessing well developed proof-
theoretical and algebraic presentations. The semantics of £.-formulas represent all piecewise
linear functions with integer coefficients—i.e. the McNaughton functions—and only those
[22,24].

The basic £..-language is built from a countable set of propositional symbols P, and
disjunction () and negation (—) operators. For the semantics, define a £.o,-valuation v :
P — [0, 1], which maps propositional symbols to a value in the rational interval [0, 1]. Then
v is extended to all £.oo-formulas as follows

v(p ® ¥) = min(1, v(p) + v(¥))
v(—p) =1 —v(p)

From those operations one usually derives the following:

Conjunction: ¢ © ¥ =gef ~(—¢ & ~¥) v(p © ¥) = max(0, v(p) + v(¥) — 1)

Implication: ¢ — ¥ =gef ~@ ® ¥ v(p —) =min(l, 1 —v(p) +v(¥))
Maximum: ¢ V ¢ =def ~(—9 @ V) & ¥ v(p vV ¥) =max(v(g), v(¥))
Minimum: ¢ A =gef =(—¢ V =) v(p A) = min(v(e), v(¥))

Bi-implication: ¢ < ¥ =def (¢ = V) A = @) v(p <) =1—|v(p) — v

A formula ¢ is £.o-valid if v(¢) = 1 for every valuation v. A formula ¢ is £.-satisfiable
if there exists a v such that v(¢) = 1; otherwise it is £oo-unsatisfiable. A set of formulas @
is satisfiable if there exists a v such that v(¢) = 1 for all ¢ € @. Note that v(p —) = 1
iff v(p) < v(¥); similarly, v(p < ¥) = 1 iff v(p) = v(¥).

L. also serves as a basis for a well-founded non-classical probability theory [26]. Define
a convex combination over a finite set of valuations vy, ..., v, as a function on formulas into
[0, 1] such that

3 An earlier version of this paper has appeared in [15]. In this work we present proofs of lemmas and theorems
that were omitted. Section 5 on representation of rational McNaughton functions is totally new; on the other
hand, due to space limitations, implementational and experimental issues have been omitted.

@ Springer

http://lipsat.sourceforge.net
http://lipsat.sourceforge.net

M. Finger, S. Preto

C(p) = 2vi(@) + - + v (@) ()
where A; > 0 and > 1" | 4; = 1. So a £.o-probability distribution A = [Aq,..., Ayl is a

i=1
set of coefficients that form the convex combination of £,-valuations. To distinguish £-
probabilities from classical ones, we use the notation C(-), following [26]; it is important to
note that C is defined over any finite set of valuations.* Note that classical discrete probabil-
ities are also convex combinations of {0, 1}-valuations.

This notion of probability associates non-zero values only to a finite number of £.-
valuations; thus the notion of £,-probability is intrinsically discrete. As there are infinitely
many possible £..,-valuations, the remaining ones are assumed to be zero. In this work we
are interested in deciding the existence of convex combinations of the form (1) given a set
of constraints. So, in theory, the search space is infinite.

It follows immediately from this definition that C («) = 1 if there is a convex combination
over vy, ..., v, where vi(x) = 1,1 <i < m.

Lemmal C(a — B) = Liff C(a) < C(B). O

Lemma 1 is a direct consequence from the fact that v(¢ —) = 1 iff v(p) < v(¥).
We define a Lukasiewicz Infinitely-valued Probabilistic (LIP) assignment as an expression
of the form

s={c@) =algeon1=i<k}|

As a foundational view of probabilities, it is possible to define a coherence criterion over
LIP-assignments, in analogy to the de Finetti classical notion of coherent assignment of
probabilities [8,10]. Thus, define the £,-coherence of a LIP-assignment {C(«;) =¢; | 1 <
i < k} in terms of a bet between two players, Alice the bookmaker and Bob the bettor. The
outcome on which the players bet is a £,-valuation describing an actual “possible world”.
For each formula «;, Alice states her betting odd C(¢;) = ¢g; € [0, 1] and Bob chooses a
“stake” 0; € Q; Bob pays Alice Zf: 1 0i - C(a;) with the promise that Alice will pay back
Zf: 1 0i - v(«;) if the outcome is the possible world (or valuation) v. As in the classical case,
the chosen stake o; is allowed to be negative, in which case Alice pays Bob |o;| - C(;) and
gets back |o;]| - v(«;) if the world turns out to be v. Alice’s total balance in the bet is

k
Y oi(Cler) — v(er)).
i=1
We say that there is a £IP-Dutch Book against Alice’s LIP-assignment if there is a choice
of stakes o; such that, for every possible outcome v, Alice’s total balance is always negative,
indicating a bad choice of betting odds made by Alice.

Definition 1 Given a probability assignment to propositional formulas {C(¢;) = ¢; | 1 <
i <k}, the LIP-assignment is coherent if there are no Dutch Books against it.

While the coherence of an assignment provides a foundational view to deal with
L.oo-probabilities, a more computational view is possible, based on the satisfiability of assign-
ments. Such a view will allow a more operational way of dealing with £..-probabilistic
assignments.

4 Thus C is more restrictive than the full class of states of an MV-algebra, in the sense of [26], which will not
be discussed here.

@ Springer

Probably Partially True: Satisfiability for tukasiewicz...

Definition 2 A LIP-assignment is satisfiable if there exists a convex combination C and a
set of valuations that jointly verifies all restrictions in it.

Example 2 Consider again Example 1, let x1, xo, x3 be variables representing the presence
at the bar of each of the three friends. An £,-valuation assigns to each variable a value in
[0, 1]. The probabilistic constraint expressing that each friend comes at most 60% of the
games can be expressed as

C(x1) = C(x2) = C(x3) = 0.6, ()
and the fact that at least two of them are present is expressed by the constraints
Cx1®x)=Cx1®x3) =Cx2Dx3) =1 ()

which means that no two of them are simultaneously absent. There are infinitely many ways of
obtaining a convex combination of £,-valuations that satisfy all six conditions, the simplest
of which is achieved with a single £..,-valuation v, v(x1) = v(x2) = v(x3) = 0.6; in fact,
v(x1 D x2) = v(x] D x3) = v(x2 ®x3) = min(l, 0.6 + 0.6) = 1, so we can attribute 100%
of probability mass to v.

A similar result can be obtained with three “classical” valuations v; (x;) = 0, v; (x;) =
v; (xx) = 1, for pair-wise distinct i, j, k € {1, 2, 3} and a fourth valuation v4(x1) = v4(x2) =
v4(x3) = 0.5. Note all four valuations satisfy the formulas in (*x). The convex valuation
assigns probability 0.2 to vy, va, v3 and 0.4 to v4, satisfying all constraints () and (x*). O

The following result is the characterization of coherence for Lukasiewicz Infinitely-valued
Probabilistic Logic.

Proposition 1 (Mundici [25]) Given a £IP-assignment ¥ = {C(«;) = q; | 1 < i <k}, the
Sfollowing are equivalent:

(a) X is a coherent LIP-assignment.
(b) X is a satisfiable LIP-assignment.

[}

Proposition 1 asserts that deciding LIP coherence is the same as determining LIP-
assignment satisfiability, which we call £IPSAT. This result is the £, analogous to de
Finetti’s characterization of coherence of classical probabilistic assignment as equivalent
to the probabilistic satisfiability (PSAT) of the assignment, which was shown to be an NP-
complete problem that can be solved using linear algebraic methods [16,27]. It has also been
shown by Bova and Flaminio [6] that deciding the coherence of a LIP-assignment is also an
NP-complete problem.

Our goal here is to explore efficient ways to decide the coherence of LIP-assignments.
In analogy to the algorithms used for deciding PSAT [13,14], we explore a linear algebraic
formulation of the problem.

3 Algebraic Formulation of LIPSAT

We consider an extended version of LIP-assignments of the form

T ={Ce) e aila e 0.1 i€ (= =, 2 1 =i <k] @

@ Springer

M. Finger, S. Preto

Extended LIP-assignments may have both inequalities and equalities. Such an assignment
is satisfiable if there is a £-probability distribution A that verify all inequalities and equalities
in it.

Given an extended LIP-assignment ¥ = {C(;) > ¢;}, let ¢ = (q1, ..., qxr)" be the
vector of probabilities in ¥, b« the “vector” of (in)equality symbols. Suppose we are given

L.oo-valuations vy, ..., v, andlet A = (Aq, ..., Ay) be a vector of convex weights. Consider
the k x m matrix A = [a;;] where a;; = v;(a;). Then an extended LIP-assignment of the
form (2) is satisfiable if there are vy, . . ., v, and A such that the set of algebraic constrains (3)

has a solution:

A-Apag

doa=1 3)

A>0

The condition) X; = 1 can be incorporated as an all-1 row k + 1 in matrix A, ¢ =
(q1,---,qk, 1) and <y is “=". Note that the number m of columns in A is in principle
unbounded, but the following consequence of Carathéodory’s Theorem [11] yields that if (3)
has a solution, then it has a “small” solution.

Proposition 2 (Carathéodory’s Theorem for LIP) If a set of restrictions of the form (3) has a
solution, then it has a solution in which at most k + 1 elements of) are non-zero. O

Given the algebraic formulation in (3), NP-completeness of LIP satisfiability, originally
shown by Bova and Flaminio [6], can be seen as a direct corollary of Proposition 2. In fact,
that LIPSAT is NP-hard comes from the fact that when all ¢; = 1, the problem becomes
L.oo-satisfiability, which is NP-complete [23]; and Proposition 2 asserts the existence of
a polynomial size witness for LIPSAT, hence is in NP; so LIPSAT is NP-complete. See
Corollary 1.

However, to apply linear algebraic methods to efficiently solve LIPSAT, first we need to
provide a normal form for it.

3.1 A Normal Form for LIP-Assignments

An extended assignment may seem more expressive than regular LIP-assignments, but we
show that no expressivity is gained by this extension. In fact, we define a normal form LIP
assignment as a pair (I", @), where I" is a set of £.o.-formulas and @ is a set of LIP restrictions
over propositional symbols of the form

o={cr=gilaclolpeP =ikl “)

The formulas y € I represent LIP-assignments of the form C(y) = 1, thatis, a set of
hard constrains in the form of £.,-formulas which must be satisfied by all valuations in the
convex combination that compose a £,-probability distribution.

A normal form assignment (I”, ®) is satisfiable if there are £.,-valuations vy, ..., vy,
such that v;(y) = 1 for every y € I" and there is a £,-probability distribution Ay, ..., A,
such that for each assignment C(p;) = ¢; € O, Z’}’:l Aj-vi(pi) =qi.

The satisfiability of extended LIP-assignments reduces to that of normal form ones, as
follows.

@ Springer

Probably Partially True: Satisfiability for tukasiewicz...

Theorem 1 (Atomic Normal Form) For every extended LIP-assignment X there exists a
normal form LIP-assignment (I", ®) such that X is satisfiable iff (I", @) is; the normal form
assignment can be built from X' in polynomial time.

Proof Start with I' = ® = (. Given X, first transform it into X’ in which all assignments are
of the form C(«) < p; for that, if X' contains a constraint of the form C(«) < 1,0< € {=, >}
(resp. C(a) = 0, C(«) < 0) we insert « (resp. —«) in I" and do not insert the constraint in
X' If C(a) = q € ¥ weinsert C(a) < g and C(a) > ¢ in X’. Then all assignments of the
latter form are transformed into C (—«) < 1 — ¢. Also, insert constraints already in the form
C(a) < g € X into X'. All transformation steps preserve satisfiability and can be made in
linear time, so I" U X’ is satisfiable iff X is.

For every C(o;) < g; € ¥/,0 < g; < 1, consider a new symbol y;; insert o; — y; in I”
and C(y;) = g; in ©. Clearly (I", ®) is in normal form and is obtained in linear time. The
fact that X is satisfiable iff (1", @) is follows from Lemma 1.]

Example 3 Note that the formalization presented in Example 2 is already in normal form,
witnessing that this format is quite a natural one to formulate LIP-assignments. O

3.2 Algebraic Methods for Normal Form LIP-Assignments

For the rest of this paper we assume that LIP-assignments are in normal form. Here we
explore their algebraic structure as it allows for the interaction between a LIP problem ©
and a £,-SAT instance I, such that solutions satisfying the normal form assignment can be
seen as probabilistic solutions to ® constrained by the SAT instance I".

Furthermore, to construct a convex combination of the form (1) we will only consider I"-
satisfiable valuations. Given a LIP-assignment (I, ® = {C(p;) = ¢,}), a partial assignment
v over p;, ..., pk is I"-satisfiable if it can be extended to a full assignment that satisfies all
formulas in I". Let ¢ be a k + 1 dimensional vector (¢1, ..., gk, 1)’. The following is a direct
consequence of Theorem 1.

Lemma 2 A normal form instance (I", ®) is satisfiable iff there is a (k + 1) x (k 4 1)-matrix
Ap, such that all of its columns are I -satisfiable, Ag last row is all 1’s, and Ag) = q has
a solution A > 0.

Proof Let m be the number of formulas in I" and let / = m + k. Suppose first that (I", @)
is satisfiable, thus the assignment admit a solution AA = g, according to (3); the condition
>~ Aj = lisincorporated as the final row of A containing only 1’s. Each column A in the
(I+1) % 2+m) matrix A corresponds to a £.-valuation v;; and A is a convex combination
over A’s columns. Clearly, ; > 0 implies that v; satisfies I". Let the (k 4+ 1) x [matrix A’
be obtained from A by deleting each line corresponding to a formula S € I', and deleting
each column A/ such that A j = 0. Moreover, let A’ be obtained from A by deleting each entry
4 ; = 0. Note that, by construction, A’A" = ¢, A" > 0, and the columns in A” are I"-satisfiable.
Then, by Carathéodory’s Theorem (Proposition 2) there exists a (k + 1) x (k + 1) matrix
A", built from A’ columns, and a k + 1 dimensional vector A such that A” - A = ¢ has a
solution A > 0.

Conversely, suppose that the desired matrix Ag exists, thus Ag - A = ¢ for some A > 0.
Each column of A, being I"-satisfiable, can be transformed into a column of A by extending
it with m 1’s, corresponding to the formulas in I". It follows easily that restrictions (3) have
a solution, and thus (I, ®) is satisfiable. O

@ Springer

M. Finger, S. Preto

Lemma 2 leads to a linear algebraic PSAT solving method as follows. Let V' be the set of
partial valuations over the symbols in @; consider a |V |-dimensional vector ¢ such that
0, v; € Vis I'-satisfiable
€= { 1, otherwise)

The vector ¢ is a boolean “cost” associated to each partial valuation v; € V, such that the
costis 1 iff v; is I"-unsatisfiable. Consider a matrix A whose columns are the valuations in
V. Now consider linear program (6) which aims at minimizing that cost, weighted by the
corresponding probability value A ;.

min A

subjectto A- X =gq
Yoa=1 (6)
A>0

A’s columns are partial valuations in V

Theorem 2 A normal form instance (I', @ = {C(p;) = q; | | < i < k}) is satisfiable iff lin-
ear program (6) reaches a minimal solution ¢’ - . = 0. Furthermore, if there is a solution,
then there is a solution in which at most k + 1 values of A are not null.

Proof Iflinear program (6) reaches 0, we obtain vy, . . ., v, by selecting only the I"-satisfiable
columns A; for which A; > 0, obtaining a convex combination satisfying &. So (I", ®) is
satisfiable. Conversely, if (I", @) is satisfiable, by Lemma 2 there exists a matrix Ag such
that all of its columns are I -satisfiable partial valuations and Ag - A = g; clearly Ag is
a submatrix of A; make 2; = 0 when A; is a Ag column and thus ¢ - A = 0. Again by
Lemma 2, Ap has at most £ + 1 columns so at most k + 1 values of A are not null. O

The following consequence of Theorem 2 was originally proven by Bova and Flaminio [6]
as the decision of LIP-assignment coherence, which is equivalent to LIP satisfiability
by Proposition 1.

Corollary 1 (LIPSAT Complexity) The problem of deciding the satisfiability of a LIP-
assignment is NP-complete.

Proof Suppose we have a LIP-assignment of the form {C(«;) = 1|1 < i < k}, then the
problem is equivalent to deciding if the set {«q, ..., ax} is £oo-satisfiable, which is NP-
complete [23]. So LIPSAT is NP-hard.

Now suppose we have a LIP-assignment, which can be placed in normal form in poly-
nomial time by Theorem 1. Then Theorem 2 shows that if the problem is satisfiable, it can
be verified in polynomial time by guessing suitable valuations and “small distribution” X,
constructing matrix Ag and verifying in polynomial time that Ag - A = ¢g. So LIPSAT is in
NP. O

Despite the fact that solvable linear programs of the form (6) always have polynomial
size solutions, with respect to the size of the corresponding normal form LIP-assignment,
the elements of linear program itself (6) may be exponentially large, rendering the explicit
representation of matrix A impractical. In the following, we present an algorithmic technique
that avoids that exponential explosion.

@ Springer

Probably Partially True: Satisfiability for tukasiewicz...

4 A LIPSAT-Solving Algorithm

Based on the results of the previous section we are going to present an algorithm employing
a linear programming technique called column generation [19,21], to obtain a decision pro-
cedure for Lukasiewicz Infinitely-valued Probabilistic Logic, which we call ZIPSAT solving.
This algorithm solves the potentially large linear program (6) without explicitly represent-
ing all columns and making use of an extended solver for £,-satisfiability as an auxiliary
procedure to generate columns.

To avoid the exponential blow of the size of matrix in (6), the algorithm basic idea is to
employ the simplex algorithm [2,28] over a normal form £IP-assignment (I", @), coupled
with a strategy that generates cost decreasing columns without explicitly representing the
full matrix A. In this process, we start with a feasible solution, which may contain several
L.o I'-unsatisfiable columns. We minimize the cost function consisting of the sum of the
probabilities associated to I"-unsatisfiable columns, such that when it reaches zero, we know
that the problem is satisfiable; if no column can be generated and the minimum achieved is
bigger than zero, a negative decision is reached.

The general strategy employed here is similar to that employed to PSAT solving [13,14],
but the column generation algorithm is considerably distinct and requires an extension of £,
decision procedure.

From the input (I", ®), we implicitly obtain an unbounded matrix A and explicit obtain the
vector of probabilities ¢ mentioned in (6). The basic idea of the simplex algorithm is to move
from one feasible solution to another one with a decreasing cost. The feasible solution consists
of asquare matrix B, called the basis, whose columns are extracted from the unbounded matrix
A. The pair (B, 1) consisting of the basis B and a LIP probability distribution A is a feasible
solution if B - A = g and A > 0. We assume that gx4+1 = 1 such that the last line of B we
will force ZG Aj = 1, where G is the set of B columns that are I -satisfiable. Each step
of the algorithm replaces one column of the feasible solution (B¢~D A6=Dy at step s — 1
obtaining a new feasible solution (B®), A)). The cost vector c¢*) is a {0, 1} vector such that
c;s) = 1 iff B; is I'-unsatisfiable. The column generation and substitution is designed such

that the total cost is never increasing, that is ¢’ - () < c6=D7.) s=D),

Algorithm 4.1 presents the top level LIPSAT decision procedure. Lines 1-3 present the
initialization of the algorithm. We assume the vector ¢ is in ascending order. Let the Dy
be a k + 1 square matrix in which the elements on the diagonal and below are 1 and all
the others are 0. At the initial step we make BO = Dy 1, this forces)»50) =q >0,
g
B is ["-satisfiable; otherwise ¢ j = 1. Thus the initial state s = 0 is a feasible solution.

Algorithm 4.1 main loop covers lines 5—12 which contains the column generation strategy
described above. Column generation occurs at beginning of the loop (line 5) which we are
going to detail bellow. If column generation fails the process ends with failure in line 7.
Otherwise a column is removed and the generated column is inserted in a process we called
merge at line 9. The loop ends successfully when the objective function (total cost) ¢ . A()
reaches zero and the algorithm outputs a probability distribution A and the set of I"-satisfiable
columns in B, at line 13.

The procedure merge is part of the simplex method which guarantees that given a k + 1
column y and a feasible solution (B, A) there always exists a column j in B such that
if B[j:=y] is obtained from B by replacing column j with y, then there is A’ such that
(B[j:=y],) is a feasible solution.

L =qj+1—¢q; =0,1 <j <k;and ¢© = [c] - ck41], where ¢, = 0 if column j in

@ Springer

M. Finger, S. Preto

Algorithm 4.1 LIPSAT-CG: a LIPSAT solver via Column Generation

Input: A normal form LIPSAT instance (I", ®@). Output: No, if (I", @) is unsatisfiable. Or a solution (B, A)
that minimizes (6).
1: g:=[{gi | C(p;) =¢q; € ©,1 <i <k}U{1}]in ascending order;

2: BO:=Dyy s

3: 5:=0,A9) = B~ . gand ¢® =[¢] -+~ cpp11;

4: while ¢’ . %®) £ 0do

5: y(s> = GenerateColumn(B(“), r, c(s));

6: if y(f) column generation failed then

7: return No; {LIPSAT instance is unsatisfiable}
8: else

9: BG+D — merge(B(s), b(x));

10: s++, recompute 2.0) and ¢®);

11: endif

12: end while
13: return (B®), A(s)); {EIPSAT instance is satisfiable}

Lemma 3 Let (B, A) be a feasible solution of (6), such that B is non-singular, and let y be
a column. Then there always exists a column j such that (B[j:=y], ') is a non-singular
feasible solution.

Proof As (B,)) is a feasible solution,

k+1

ZB,’)\I' =dq. (7)
i=1

Suppose we replace column B} by y. Dueto the fact that B is not singular, there are coefficients
B1, B2, - .., Bry1 such that Zl_l BiB; =y, and thus:

B = y_ P 1_..._£B._1_’3/“3”1_..._'8"“3,(“.)
/31 /31 lgj :3j /3]
Substituting (8) for B; in (7) yields:
k+1
+Z(x, b g, Bi= 4 ©)

i=1
Note that the coefficient of B; in the sum is 0. We have now a new vector of coefficients
2/ such that B[j:=y] - " = q. Properly choosing j guarantees 1" > 0. As the elements of
columns B; and y are all non negative valuations, the set B0 = {f; | B; > 0} is not empty.
Taking a j from the set {j | B; € B-oand Vi, B;A; < BjA;} implies A; — %AJ > 0, for
alli # j,and A;/B8; > 0, so A’ > 0. Finally, as Bj > 0 and all columns in B are linearly
independent, B[j:=y] is non-singular. O

Lemma 3 guarantees the existence of a column which may not be unique and further
selection heuristic is necessary; in our implementation we give priority to remove columns
which are associated to probability zero on a left-to-right order.

We now describe the column generation method, which takes as input the current basis B,
the current cost ¢, and the £, restrictions I”; the output is a column Yy, if it exists, otherwise
it signals No. The basic idea for column generation is the property of the simplex algorithm
called the reduced cost of inserting a column y with cost ¢y in the basis. The reduced cost is
given by equation

@ Springer

Probably Partially True: Satisfiability for tukasiewicz...

ry =cy — By (10)

and the simplex method guarantees that the objective function is non increasing if r, < 0.
Furthermore the generation method is such that the column y is I"-satisfiable so that ¢, = 0.
We thus obtain

/B~ ly>0 (11)

which is an inequality on the elements of y. To force X to be a probability distribution, we
make yr4+1 = 1, the remaining elements y; are valuations of the variables in &, so that we are
searching for solution to (11) such that 0 < y; < 1,1 <i < k. To finally obtain column y
we must extend a £.,-solver that generates valuations satisfying I” so that it also respects the
linear restriction (11). In fact this is not an expressive extension of £, as the McNaughton
property guarantees that (11) is equivalent to some £.«.-formula on variables yi, ..., yx [7].
In practice, we tested two ways of obtaining a joint solver for I" and (11):

— Employ an SMT (SAT modulo theories) solver that can handle linear algebraic equations
such as (11) and the linear inequalities generated by the £..,-semantics. £.o-solvers based
on SMT can be found in the literature, see [3];

— Use a MIP (mixed integer programming) solver that encodes £,-semantics. Equa-
tion (11) is simply a new linear restriction to be dealt by the MIP solver. £,-solvers
based on MIP solvers have been proposed by [18].

In both cases, the restrictions posed by I'-formulas and (11) are jointly handled by the
semantics of the underlying solver. Note that both MIP solving and SMT (linear algebra) are
NP-complete problems. We have thus the following result.

Lemma4 There are algorithmic solutions to the problem of jointly satisfying £.~-formulas
and inequalities with common variables. O

We now deal with the problem of termination. Column generation as above guarantees
that the cost is never increasing. The simplex method ensures that a solvable problem always
terminates if the costs always decrease, we are left with the problem of guaranteeing that the
objective function does not become stationary. This is guaranteed in the implementation by a
column selection strategy that respects Bland’s Rule and also by plateau escaping strategies
such as Tabu search [2,28].

Lemma 5 There are column selection strategies that guarantee that the Algorithm 4.1 always
terminates. O

We know that there are no column selection heuristics that guarantee that the simplex
method terminates in a polynomial number of steps. However, the simplex method performs
very well in most practical cases and its average complexity is known to be polynomial [5].

By placing all the results above together we can state the correction of Algorithm 4.1.

Theorem 3 Consider the output of Algorithm 4.1 with normal form input (I", ®). If the
algorithm succeeds with solution (B, \), then the input problem is satisfiable with distribution
A over the valuations which are columns of B. If the program outputs no, then the input
problem is unsatisfiable. Furthermore, there are column selection strategies that guarantee
termination.

Proof Lemma 3 guarantees that all steps (B A(s)) is a feasible solution to the problem.
If Algorithm 4.1 terminates with success, than cost zero has been reached, so by Theorem

@ Springer

M. Finger, S. Preto

2 the input problem is satisfiable. On the other hand, if column generation fails, this fails
with a positive cost, this means there are no I"-satisfiable columns that can reduce the cost.
So, the problem in unsatisfiable. Finally, a suitable column selection strategy by Lemma 5
guarantees termination. O

Example 4 We show the steps for the solution of Example 2. Initially, we have

0.6 10 0 0 0.6 0

_ 00 po_ |1 1L OO0} 0o_ poy-1.,_| 0] 0_|0
1=loe "B |1 1 1 ot TED e T =y
1 1111 0.4 1

¢ expresses that the first two columns of B(Y) are I'-satisfiable. The total cost cost® =
@710 = 0.4. At this point, column y‘! is generated substituting B®’s column 3 in the
merge procedure:

1 1 010 [0.6] 0

m_ |0 po_ (b L OO0 oy | O w_1|0
YVEIPE T oM T o [T
1 1111 0.4 1

cost) = 0.4. Again, column generation provides y® in place of column 1:

1 1 0 7 07 (0.3 0

o 1] o (11 0 0] o |03 o |0
e I el I N T A B Rl IV S Kl)
1 111 1 0.1 1

cost® = 0.1. Finally, column generation provides y® in place of column 4:

0.57] (1 0 1 05 0.2 0
3 _ |05 @ _|1 1 0 05 3 _ |02 3 _ |0
YWelos BTS00 1 0s |t T o2 T o
1| |7 1 1 1 0.4 0
cost® = 0, so that the problem is satisfiable with solution (B(3), A(3)). O

5 t..-MODSAT Expressivity Over Rational McNaughton

Column Generation technique used in Algorithm 4.1 computes a valuation satisfying restric-
tion (11) modulo the satisfiability of the set of formulas I". In this section we show that this
technique of valuating a formula ¢ modulo the 1-satisfiability of a set of formulas ¥, that is,
evaluate the truth value v(¢) under the restriction {v(y) = 1 | ¢ € ¥}, actually increases the
expressivity of the logic £, the resulting system is called £.,-MODSAT, which employs
pairs (@, ¥).

McNaughton’s result guarantees that £..,-formulas corresponds to, and only to, McNaugh-
ton functions, that is, piecewise linear functions with integer coefficients. Several proposals
in the literature tried to expand that expressivity to so called rational McNaughton functions,
that is, piecewise linear functions with rational coefficients.

The work of Esteva, Godo and Montagna proposes logic £.IT % which extends £, logic
with a product operator, its residuum, and a constant expressing the truth value %, not directly

@ Springer

Probably Partially True: Satisfiability for tukasiewicz...

expressible in £+, [12]. Thatlogic not only allows for the expressivity of rational McNaughton
functions but also expresses piecewise polynomials; as a consequence satisfiability over
1) % requires finding roots of polynomials of n-degree rendering its complexity extremely
high. Aguzzoli and Mundici proposes logic 3t which also expresses rational McNaughton
functions and has complexity Eé’ for the satisfiability problem [1]. Logic 3L extends £, by
providing restricted form of propositional quantification whose semantic counterpart is the
maximization of a set of £,-valuations of a formula.

Gerla introduces Rational Lukasiewicz Logic by extending £.,-language with unary oper-
ators &, for n € N*, whose semantics is given by v(8,¢) = ”(n"’) , for ¢ a £.oo-formula and
v a £oo-valuation [17]. Rational Lukasiewicz Logic expresses rational McNaughton func-
tions and its associated tautology problem is coNP-complete, which is a very reasonable
complexity for this task.

In this section we want to show that the expressivity of rational McNaughton functions
can be obtained using £.,-MODSAT; in the end we compare our results with the ones
about Rational Lukasiewicz Logic. Let the set of propositional symbols be given by P =
{x1, x2, ...} and Var(¥) be the set of variables appearing in the formulas € ¥; we write
Var(yr) instead of Var({y/}). We call a ¥-sat valuation any f..-valuation v that makes
v(¥) =1forally e ¥.

According to McNaughton [22], given any £o-formula ¢ € £ with Var(¢) C
{x1, ..., xs}, we inductively associate to ¢ a function f, : [0, 1]" — [0, 1] by:5

1) fy (..o, x0) =x,fori=1,...,n
(11) f_‘(p(-xls"'axn)=l_f(p(xlv"'ax}’l);
(i) fo@0, (X1, ..., X)) =min(l, fo, (x1, ..., x0) + fo, (X1, ..., X0)).

Note that the definition of f, depends on n; note also that given a £-formula ¢, with
Var(¢) = {x1, ..., x,}, and a L£-valuation v, f,(v(x1), ..., v(x,)) = v(@).

We extend this notion, given a pair (¢, ¥), where ¢ is a £.-formula and ¥ is a set of
L.oo-formulas, where Var(¢) U Var(¥) C {x1, ..., x,}, as follows. First, let function domain
be

Digwy = {1, o) € 10,117 | f (i) = 1, forall y e).

And thus we are able to inductively define the function fiy y) : D, w) — [0, 1] by clauses

in total analogy to (i)—(iii) above. The definitions of D,) and f(, w) also depend on n.
We say that a rational McNaughton function f : [0, 1]" — [0, 1] is representable in

Loo-MODSAT if there is a pair (¢, &), with Var(p) U Var(¥) = {x1,...,xn}, m > n, and

m — n functions z; : [0, 1]* — [0, 1],i =1, ..., m — n, such that:

— Forany (r1,...,rm) € Dipw), ruyi = 2i(r1, ..., /)i =1,...,m —n;

= [x0) = flowy (X1, o X, 20 (X o X))y T (XL s X)),
The pair (@, ¥) is the representation of f in L.oo-MODSAT. We will write X = (x1, ..., X,)
and z = (X;41, -, Xm)-

In order to establish our main result, that all rational McNaughton functions may be
represented in £,,-MODSAT, we first show the possibility of defining constants in a £...-
formula ¢ in the pair (¢, ¥) within the £,,-MODSAT system. It is already possible to define
1 and 0 in £, by x| @ —x; and its negation, respectively. For n a nonnegative integer and x
a propositional variable, we define Ox = 0 and nx = x & (n — 1)x.

5 We abuse the notation by using the same symbols for the propositional variables and for the metavariables
in the functions description.

@ Springer

M. Finger, S. Preto

Lemma 6 Given a rational number ¢ € (0, 1), there is a set ¥ of Loo-formulas, with z. €
Var(¥), such that, for any ¥ -sat valuation v, we have v(z:) = c.

Proof Letd = h withb € Z% and Yy = z4 < —(b— D)zg € V. Any Y -sat valuation v,
i.e. any valuation v for Wthh v(¥g) = 1, makes v(zg) = d. Letc = b, with a, b € Z and
0 <a < b,and ¥, = z, <> azg € ¥. Any ¥-sat valuation v makes v(z.) = c. Note that,
by the definition above, letting ¢ = z. and ¥ = {¥4, ¥}, the pair (¢, ¥) represents the
constant ¢ in £,,-MODSAT. O

Our next step is to show that linear functions may be represented in £,,-MODSAT. Let g
be a function, we write g = min(max(g, 0), 1).

Lemma?7 Let g : [0, 1]" — R be a linear function with rational coefficients,

an
g(x) = —xl +--+ —xy +c,
by

where a; € 7, b; € Zj_, and ¢ € Q. Then, g is representable in £,-MODSAT.
Proof We proceed by induction on a = |ai| + --- + |a,|. If a = 0, the result follows by

Lemma 6. For a > 0, assume the lemma holds for @ — 1 and, with no loss of generality, that
lai| = max(lai], ..., lan]).

Let us consider ﬁrst the case where a; > 0. Let h = g — 7%, such that
ho =2 Bt
X) = X1+ + —x, +c.
by by

By induction hypothesis, there are (¢p, ¥,,) and (@41, Yh+1) such that h* = fion,w,) and
(h + 1)# = f((ﬂh+1,‘1’h+1)' We define

U= U Uz o == Dzr, bizex, -z,
1 1 1

and claim that (@, ¥), with ¢ =gef (pn D 21) © @n+1, represents g*. Note that, with the

three new £o-formulas added to ¥, the pair (z 1 L Y) defines bi and the pair (z1, ¥) defines
by

dependlng on the value of xi. So, the new variables z 1 and z; added to Var(¥) are

assomated to the part z of (X, z) € Dy, y) and may only assume values that can be computed
as a function of the values of x. When x is such that 2 (x) € [0, 1],

X1\#
g'x) = (h(X) + 171) = flgnen.9)(X, 2) = figemolw) (X 2) = flpw) (X, 2).
When x is such that A(x) € [—1, 0],
#ixy — Xy x 1) =
gf(x) = (h(x)—i— bl) — max (o h(x) +) = max (0, py THOO+ 1) -

= flzi00111,9) (X, 2) = flo.w) (X, 2).

The cases of x where h(x) > 1 and h(x) < —1 are trivial.
For the case where a; < 0, it is sufficient to apply the same reasoning to 1 — g. As
1 — (1 —g)" = g", the lemma follows. O

Finally, we show our version of McNaughton’s Theorem for the £.,-MODSAT setting.
First, a version for rational McNaughton functions with one variable.

@ Springer

Probably Partially True: Satisfiability for tukasiewicz...

Theorem4 Let f : [0, 1] — [0, 1] be a one variable rational McNaughton function. Then,
f is representable in £.oo-MODSAT.

Proof The domain [0, 1] of f may be partitioned into [&;, «j+1],i = 0, ..., n — 1, such that
each part f : [o;, @iy1] — [0, 1] is a linear function; let 8; = f(«;).
We define the hat functions® H; : [0, 1] — [0,1],i =0, ..., n, by:

— 'Hp has as graph the segments from («, o) to (@1, 0) and from («q, 0) to (¢, 0);

— 'H; has as graph the segments from («g, 0) to («;—1, 0), from (¢;—1, 0) to (¢4, Bi), from
(i, Bi) to (i1, 0), and from (¢ 41, 0) to (@, 0),i =1,...,n—1;

— 'H, has as graph the segments from («o, 0) to (@,—1, 0), from (cot,—1, 0) to (&, Br)-

By Lemma 7, hat functions Ho and H,, are easily representable in £.,-MODSAT using a
function g#, where g is linear. The other hat functions H;,i = 1, ..., n—1, may be represented
in £50-MODSAT by the pair (g1 A @2, ¥1 U ¥s), where (p1, ¥1) and (g2, ¥>) represent gf
and gg , respectively, where g; and g, are linear. Note that the variables z; associated to
the variable xi, with intention to have value Z—: as in Lemma 7, must be different for each
representation (@1, ¥1) and (¢, ¥2).

Let (@3, ¥3,) be the representation of H; in £,,-MODSAT. Then, f is representable
in £,,-MODSAT by the pair (p3, ® - ® ¢, ¥x, U --- U Wy,). The same note about
variables z; in the former paragraph also apply here. O

The proof of Theorem 4 above highlights how hat functions empowers the MODSAT
technique to increase the expressivity of £,. In the following we prove the main result of
this section which generalizes Theorem 4 to the multivariate case; its proof uses constructions
from the literature which subsume the use of hat functions above.

Theorem5 Let f : [0, 11" — [0, 1] be a (multivariable) rational McNaughton function.
Then, f is representable in £oo-MODSAT.

Proof According to [7], the domain of f may be decomposed as follows. Let p1, ..., px be
the linear constituents of f, each pair p; and p; of these constituents defines two closed half-
spaces H™ and H~ such that p;(x) < pj(x) forx € HT and pj(x) < pi(x)forx € H™.
Thus, for any permutation p of the set {1, ..., k}, we define

P, = [X e[0, 11" | ppy(x) < --- < Pp(k)(X)],

which is a closed convex polyhedron, since it is an intersection of [0, 1]" and a finite set of
closed half-spaces. As the p;’s have rational coefficients, the vertices of P, have rational
coordinates. Let WV be the set of simplices (also with rational coordinates) arising from
some triangulation of n-dimensional polyhedra P,; the union of W is the cube [0, 1]”, the
intersection of a pair of elements in WV is either a common face between them or empty, and,
for each § € W, there is an index us € {1, ..., k} such that, restricted to S, f = pys.

For each vertex v of some simplex in W, we define the hat function Hy : [0, 1]" — [0, 1]
so that:

- Hy(v) = f(v);
— Hy(u) = 0 for each vertex u of a simplex in W different from v;
— Hy is linear over each simplex in W.

6 These functions are only different from the Schauder hats in [24] on the values 8; € Q.

@ Springer

M. Finger, S. Preto

As in the one variable case, the hat functions may be represented in £.,,-MODSAT by a pair
(@, ¥) where @ represents a (\/ /\)-combination (as in [7]) of the hat function linear pieces
given by Lemma 7. Thus, f may be represented in £,,-MODSAT by (P, ¢,. Uy ¥x,)-O

The representation theorems above are inspired by the results for representing McNaughton
functions into £, in [7,24]; these representations are said to be in disjunctive normal forms
since they are disjunctions (6) of hat functions.

Another possible path to obtain results in Theorems 4 and 5 would be the proof strategy of
Gerla’s McNaughton-like theorem, which states the 1—1 correspondence between equivalence
classes modulo equi-provability of formulas of Rational Lukasiewicz Logic and rational
McNaughton functions [17]. According to that result, a rational McNaughton function f :
[0, 1]" — [0, 1]isrepresented by a class of (equi-provable) formulas of Rational Lukasiewicz
Logic which has among them the formula in special format

s—1
¢ =P (12)
i=0

where s is some integer for which the linear pieces of s - f have integer coefficients and ¢;
are representations in £, for the McNaughton functions f; : [0, 1] — [0, 1] given, for
x € [0, 11", by

fi(x) = max(min(s - f(x) —1i, 1),0).

We can adapt the arguments in Lemmas 6 and 7 and state the following result; in a sense
it says that operators §, may be represented in £.,,-MODSAT.

Theorem 6 Let ¢ be a E.oo-formula, with Var(¢) C {x1, ..., x,}, and s € N*. Then, function
% “fo:x€e[0,1]" — @ is representable in £.oo,-MODSAT.

Proof With new variables w and w1, we define
¥ = {wl < = —-Dwi, sw< g, w—>wll

and claim that (w, ¥) represents % - fo- Indeed, (w1, ¥) defines % and (w, ¥) defines
fgo(x) ’

~— depending on the values x = (x1, ..., x,). So, for (x,z) € Dy y), the variables in
z = (w1, w) may only assume values that can be computed as functions of x and
1 Jo(X)
~fo® = = = fue k2.
s s
]

By Theorem 6 and special format (12), we may say that any class of equi-provable formulas
of Rational Lukasiewicz Logic is representable’ in £,,-MODSAT: let ¢ be the formula in
such class as in (12), then the representation is given by the pair (i, ¥), where

s—1
Y= @ w;
i=0

T of course, since such classes are identified with rational McNaughton functions, that was already a conse-
quence of Theorem 5.

@ Springer

Probably Partially True: Satisfiability for tukasiewicz...

and

s—1

Q/:[wle—-(s—l)wl] U U{swi<—>(ﬂi, w,-—>wl].
N l:() s

6 Conclusion and the Future

We

provided the theoretical basis for the development and implementation of probabilistic

reasoning over “partial truth” that respects Lukasiewicz Infinitely-valued Logic restrictions.
The algorithm studied for the LIPSAT problem led to the formulation of a framework where
rational McNaughton functions may be represented. For the future we hope to develop better
solvers for the logics employed having the analysis of the phase transition as a qualitative
guideline as well as develop solvers for the £,,-MODSAT system. We want to develop
efficient algorithms that, given an n-dimensional piecewise linear function with rational
coefficients, generates the pair (¢, ¥) that represents it in £,,-MODSAT. We also hope to
employ the mechanisms developed here to linearly approximate generic functions.

References

Aguzzoli, S., Mundici, D.: Weierstrass Approximation Theorem and Lukasiewicz Formulas with One
Quantified Variable, pp. 315-335. Physica-Verlag HD, Heidelberg (2003)

Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific Series in Optimization
and Neural Computation. Athena Scientific, Belmont (1997)

. Bofill, M., Manya, F,, Vidal, A., Villaret, M.: Finding hard instances of satisfiability in Lukasiewicz logics.

In: ISMVL. IEEE, pp. 30-35 (2015)

Boole, G.: An Investigation on the Laws of Thought. Macmillan, London (1854). http://www.gutenberg.
org/etext/15114

Borgward, K.H.: The Simplex Method: A Probabilistic Analysis. Algorithms and Combinatorics, vol. 1.
Springer, Berlin (1986)

Bova, S., Flaminio, T.: The coherence of Lukasiewicz assessments is NP-complete. Int. J. Approx. Reason.
51(3), 294-304 (2010). https://doi.org/10.1016/j.ijar.2009.10.002

Cignoli, R., d’Ottaviano, 1., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in
Logic. Springer, Berlin (2000)

de Finetti, B.: La prévision: Ses lois logiques, ses sources subjectives (1937)

de Finetti, B.: Sul significato soggettivo della probabilita. Fundam. Math. 17(1), 298-329 (1931)

. de Finetti, B.: Theory of Probability: A Critical Introductory Treatment. Translated by Antonio Machi{

and Adrian Smith. Wiley, Hoboken (2017)

. Eckhoft, J.: Helly, Radon, and Caratheodory type theorems. In: Gruber, P.M., Wills, J.M. (eds.) Handbook

of Convex Geometry, pp. 389-448. Elsevier Science Publishers (1993)

. Esteva, F., Godo, L., Montagna, F.: The LIT and LIT % logics: two complete fuzzy systems joining

Lukasiewicz and product logics. Arch. Math. Logic 40(1), 39-67 (2001)

. Finger, M., Bona, G.D.: Probabilistic satisfiability: logic-based algorithms and phase transition. In: Walsh,

T. (ed.) IJCAL IJCAI/AAAL pp. 528-533 (2011)

. Finger, M., De Bona, G.: Probabilistic satisfiability: algorithms with the presence and absence of a phase

transition. AMAI 75(3), 351-379 (2015). https://doi.org/10.1007/s10472-015-9466-6

. Finger, M., Preto, S.: Probably half true: probabilistic satisfiability over Lukasiewicz infinitely-valued

logic. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) Automated Reasoning, pp. 194-210. Springer,
Cham (2018)

. Georgakopoulos, G., Kavvadias, D., Papadimitriou, C.H.: Probabilistic satisfiability. J. Complex. 4(1),

1-11 (1988). https://doi.org/10.1016/0885-064X(88)90006-4

. Gerla, B.: Rational Lukasiewicz logic and DM V-algebras. Neural Netw. World 11(6), 579-594 (2001)

@ Springer

http://www.gutenberg.org/etext/15114
http://www.gutenberg.org/etext/15114
https://doi.org/10.1016/j.ijar.2009.10.002
https://doi.org/10.1007/s10472-015-9466-6
https://doi.org/10.1016/0885-064X(88)90006-4

M. Finger, S. Preto

20.
21.

22.
23.

24.
25.
26.

27.
. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, New

Hihnle, R.: Towards an efficient tableau proof procedure for multiple-valued logics. In: Borger, E.,
Kleine Biining, H., Richter, M.M., Schonfeld, W. (eds.) Computer Science Logic, pp. 248-260. Springer,
Heidelberg (1991)

Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Computing 44, 279-303
(1990). https://doi.org/10.1007/BF02241270

Hansen, P., Jaumard, B.: Probabilistic satisfiability. In: Handbook of Defeasible Reasoning and Uncer-
tainty Management Systems, vol. 5, p. 321. Springer (2000)

Kavvadias, D., Papadimitriou, C.H.: A linear programming approach to reasoning about probabilities.
AMALI 1, 189-205 (1990). https://doi.org/10.1007/BF01531078

McNaughton, R.: A theorem about infinite-valued sentential logic. J. Symb. Logic 16, 1-13 (1951)
Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theor. Comput. Sci. 52(1-2),
145-153 (1987)

Mundici, D.: A constructive proof of McNaughton’s theorem in infinite-valued logics. J. Symb. Logic
59(2), 596-602 (1994)

Mundici, D.: Bookmaking over infinite-valued events. Int. J. Approx. Reason. 43(3), 223-240 (2006).
https://doi.org/10.1016/].ijar.2006.04.004

Mundici, D.: Advanced Lukasiewicz Calculus and MV-Algebras. Trends in Logic. Springer, Dordrecht
(2011)

Nilsson, N.: Probabilistic logic. Artif. Intell. 28(1), 71-87 (1986)

York (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1007/BF02241270
https://doi.org/10.1007/BF01531078
https://doi.org/10.1016/j.ijar.2006.04.004

	Probably Partially True: Satisfiability for Łukasiewicz Infinitely-Valued Probabilistic Logic and Related Topics
	Abstract
	1 Introduction
	1.1 Classical and Non-classical Probabilistic Logic

	2 Preliminaries
	3 Algebraic Formulation of ŁIPSAT
	3.1 A Normal Form for 128IP-Assignments
	3.2 Algebraic Methods for Normal Form 128IP-Assignments

	4 A ŁIPSAT-Solving Algorithm
	5 Łinfty-MODSAT Expressivity Over Rational McNaughton
	6 Conclusion and the Future
	References

