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Complete Asymptotic Expansion of 
N-1 

L ko:(N - k),B as N ➔ oo 

k=l 

Daniel B. Henry• 

We show, for all complex a, /3, that as N-+ oo 

N - 1 

E k0 (N - k}'3 = SN(a,/3) = SN(/3,a) ~ 
.l:=l 

where z! = f(z + 1) and ( is Riemann's zeta function. Basic properties 
of rand (, as well as the Bernoulli numbers and Euler-Maclaurin formula 
used bellow, may be found in M.Abramowitz and I. Stegun, Handbook of 
Mathematical Functions (National Bureau of Standards, 1964; J. Wiley, 1972). 

00 1 
Here we only note ((p) = E n-P if Rep> I and ((p) - p- l extends to 

l 

an entire analytic function with value "Y = -f'(l) for p = 1. 
More explicitly, if mis any positive integer and a, f3 are in C\ { integers ~ 
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-m - 2} , then as N ➔ oo 

{ 
lat "' () } Cl·rJ• a+,6+1 a _ 

SN(a,/3)- (a+ p + l)!N + ~ j (etc.) -
(2) 

= O(Nlu a-m-1 + N& P-m-1) 

and the estimate is uniform for a, /3 in any compact set of C \ { integers ::; 
-m - 2}. We exclude integers :5 -m - 2 so that if one (or both) of a,/3 is a 
negative integer and a!/1! is singular, the sum in (2) also includes a singular 
( (undefined "((1)") and the singularities cancel. Despite appearances, the 
left-side of (2) is analytic in a, /3. 

When a or /3 (or both) is a negative integer, we use the limit form of (1). 
IT a= -mis a negative integer and {J is not an integer, 

SN(-m,P)~(-1r-1(m~1)N1
+P-m (logN+ ~7-t/1(2+/3-m)) 

+ L (-~)(-l)iN-m-;((-/3-j)+ L (~)(-1);-lNP-;((m-j) 
;~o 3 ;~o 3 

(3) 

where t/l(z) = ~(~{, "log" denotes the natural logarithm and we omit the 

obvious troublemaker in the second sum (j = m-1 gives undefined ((m-j)). 
As usual, an empty sum (E~ ... ) is zero. The regular part of (1), omitting 
any term with undefined "((1 )" or "z!", when z is a negative integer, will be 
denoted by "(reg)". Thus the second line of (3) is "(reg)". 

ff a= -m and also f3 is an integer, k or -k, 

SN(-m, k) ~ (-1r-1 (m ~ 1)N1
+J:-m (logN +; + ~ J 

l+J:-m l) - L -:- + (reg) 
1 J 

when k 2'.'. m-1; 

S ( k) ( )J:-l k!(m - k - 2)! Nl+J:-m ( ) 
N -m, ~ -1 (m - l)!(k _ l)! + reg 
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when O :5 k :5 m - 2; 

( k )I ( m-1 m - - 2 . 1-k-m 1 
SN(-m,-k):= (m-l)!(k-l)!N 2logN+2-r+ ~J 

1:-1 l mH-2 l) 
+ L-; - 2 L e-; + (reg) 

1 J l J 

(6) 

when k:?: 1. 
We will see many terms Na+/3-k (k =integer~ 0) in the calculation, but 

they all disappear from the final result (1). Since the calculation is rather 
long, we first do it formally and then with remainder estimates. 

n 

H N = 2n+l, SN(a:,{3) = Lk"'(N-k}'3+k'3(N-k)°; but for N = 2n, 
k=l 

the term with k = n = N - k would be counted twice in this sum. Let 
t:N = 1 if N is odd, C:N = 0 if N is even; then 

N - EN N N - 1 h.ich . . 
where n = 

2 
= 2 or -

2
- , w ever 1s an mteger. 

The Euler-Maclaurin formula (details later) gives, if p ,ft -1, 

n 1 
"(k + -)-" ~ LJ 2 -
1=1 
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" 2n+l " l 
as n ➔ ex>. When N = 2n + 1, we use I:k' = rP L k'- L(k+ 2-)P, so 

l 1 0 
we combine the odd and even cases as: 

r( ) (N/2)1'+
1 

1 - eN (N)" .. -p + ..:........:...---'--- +-- - + p+ 1 2 2 

'°" B21r ( P ) N,-21r+1 • {1 + e (21-21r - 2)} 
L., 2k 2k - 1 N 
/,:~1 

(8) 

Formal substitution of (8) in (7) yields 

It is easy to see that Co= (1- eN)2-a-lJ, and that C_1 is analytic in a, 
/3 if neither is a negative integer. ff o > -1 and /3 > -1, 

= tP(l - t)"dt = a. . . 11 '{)' 

(a+{)+l)! 
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Thus c_l = ( a:! )' for all a,,B in C \ {-1,-2,-3, · · •}, 
a+ +1. 

Using 1(:)1 ~ ;, iJ(lzl + i) = (-ll(kzl) we see, for It!<¼, the 

double series Lt,.Qr.(a,,B) is absolutely convergent with the sum 
/r~O 

(½+t)a (½-tr +(½+t)p (½-t)a, 
an even function oft. Thus all odd coefficients vanish and all C21r-1 = 0. 

This gives , formally, the result {1) - at least when a, ,B are in C \ 
{-1, -2, -3, • • -}. Now we argue with more care, and with remainder esti­
mates. 

Let m be some fixed positive integer, and for p -:fi -1, define 

~ ~ u _ ((N/2)'P+l 1 - CN (N)'P 
ZN(p,m)= L..,r,;- +1 + 2 2 + 

k=l p 

+ t ~~k (2k ~ 1) (~r-2H1 {1 + cN(21-2/r - 2)}) 

(9) 

where n = N/2 or (N-1)/2, whichever is an integer. (WeestimatezN(p,m) 
later, for large N and possibly large IPI-) Substitution of (9) in (7) yields: 
for a, /3 in C\ {-1,-2,-3,· .. } 

S (a /3) = { a!,B! Na+/J+l 
N ' (a+/J+l)! 

+ t (;)(-IpNa-;((-[J-j) + (1)(-I)iNP-j((-a -j)} = 

(10) 

= t (~){-lY Na-i (z"N(/3 + j,m) - ({-/J- j)) + (sym) 
j=O J 
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where "+(sym)" means to add the corresponding term with a and {3 inter­
changed. Our estimate for ZN(P, m) will show (if laJ, 1.81 $ m - 1) the right­
side of (10) has modulus O(NR.e a+R• /J-2m+1 + NRs o-m-l + NRe /J-m-1) as 
N ➔ oo (or, O(Nlle o-m-l + NRe f1-m-l) as N ➔ oo, ifmin{Re a,Re ,8} $ 
m - 2) uniformly for allowed a, ,8. (The "m" used here may be different 
from that of (2) above.) 

The exact Euler-Maclaurin formula for a c2m+1 function f : [a, b] ➔ C, 
where a, b are integers with a < b, is: 

~-
+ f B2m+1(z~J<2m+1l(x)dx 

/,. (2m + 1). 

where B,.(x + 1) = B1,(x) for all z, B1, = Br.(0+), and for ltl < 2,r, 

teiz: = ~ B1,(x) 
e' _ 1 ~ k! , in 0 <:,; < 1, 

_ t _ _ ~t"Br. 
e'-1 - ~ k! . 

With J(x) = zP (p 'I -1), a= 1, b = n, we have 

'°' k" = -- + -n" + '°' - np-2t.+1 + z (p m) 
n n1'+1 1 m Bu ( p ) 

~ p + I 2 ~ 2k 2k - 1 " ' 

where 

(11) 

( ) 1 1 ~ B2r. ( p ) in - ( p ) 2 1 
z,.p,m =2-p+l-~2k 2k-1 + 1 B2m+1(z) 2m+l zP-m-dz. 

H Rep< 2m, z,.(p, m) converges as n ➔ oo: 
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• and p t--t z00(p,m) is analytic for p-:/ -1, Rep< 2m. If Rep< -1, 
z00 (p, m) = ((-p ), so equality holds for all p f. -1 with Rep < 2m. (Formula 

(11) may be used to compute ((-p).) 
If p-! -1, Rep< 2m, 

I ( 
p ) I n& p-2m 

lzn(p,m)-((-p)I$ 2m+l suplB2m+1(·) [ 2m-Rep; 

for any p with IP+ lJ ~ 1, 

lzn(p, m)j $ Cm(l + jpl)2m+l(l + n& p-2m+1) 

where the constant Cm depends only on m. (Here we use the crude estimate: 

[n x'dx $ 1 + n•+2 for any reals and n ~ 1.) 

Similarly with f(x) = (x + 1/2)P 

where 

L~(k + 1/2)" = zn(P, m) + (n+~
2r+1 + ½(n + 1/2)" 

+ ~ B21, ( p ) (n + l/2y-2H1 
{;: 2k 2k -1 

for Rep< 2m, and for Rep~ -m with Jp + lJ ~ 1, 

for a constant Cm depending only on m. 
When N is even, z°N(p,m) = ZN/2(p,m); when N is odd, ZN(p,m) = 

2-"zN(p, m) - ZJ!=l(p, m). 
2 

For Rep< 2m 

(12) 
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for & p ~ -m with IP+ 11 ~ 1, 

lzN(P, m)I ~ Cm(l + jpl)2m+l(l + (N/2)& p-
2m+1) (13) 

where Cm= 2mcm+Cm depends only on m. Also, for p EC, I Cmp+ 
1
) j /(1+ 

lpl)2"'+1 is bounded by a constant depending on m. 
Now suppose a, /3 EC\ {-1,-2,-3, .. -} and lo:I, l/31 ~ m -1. ff 

p = a+ j or {J + j for integers j ~ O, then Re p 2'.: -m + 1 for all j, 
Rep '5: 2m -1 for O '5: j '5: m, and for j ~ m + 1, IP+ lj 2'.: j + 2- m ~ 3. 
Substitution of (1) and (3) in (10) shows the right-side of (10) has modulus 
O(N& a+& P-lm+l + N& a-m-l + NRe P-m-l) as N ➔ oo, uniformly for 
allowed o:, /3. Thus the asymptotic expansion is proved even when o: or /3 (or 
both) is a negative integer. 
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