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— O(NRI a-m-1 + NRe B—m-l)
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and the estimate is uniform for e, 3 in any compact set of C\ {integers <
—m —2}. We exclude integers < —m — 2 so that if one (or both) of ,8 is a
negative integer and o!f3! is singular, the sum in (2) also includes a singular
¢ (undefined “((1)”) and the singularities cancel. Despite appearances, the
left-side of (2) is analytic in a, .
When a or 3 (or both) is a negative integer, we use the limit form of (1).
If @ = —m is a negative integer and 3 is not an integer,
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where ¥(z) = I(z)’
obvious troublemaker in the second sum (j = m—1 gives undefined ¢(m—j)).
As usual, an empty sum (379...) is zero. The regular part of (1), omitting
any term with undefined “((1)” or “2!”, when z is a negative integer, will be
denoted by “(reg)”. Thus the second line of (3) is “(reg)”.
If « = —m and also 3 is an integer, k or —k,
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“log” denotes the natural logarithm and we omit the

Sn(—m, k) = (~1)™! (m k )NH'"'"‘ (logN +9+ "‘El =
14k-m (4)
= Z ) + (reg)
when k > m - 1;
) (4)**%1\/1#-“ i) 5)
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when0 <k <m-2;

(m— 1)k

I:—l m+k-2

+ ;—-2 Z )+(reg)

1

Sn(—m, —k) = MJL) e (%gN ot ,S %
‘ ()

when &k > 1.

We will see many terms N®t#-% (k = integer > 0) in the calculation, but
they all disappear from the final result (1). Since the calculation is rather
long, we first do it formally and then with remainder estimates.

If N =2n+1, Sn(a,f) = Y _ k(N —k)* + K’(N —k); but for N = 2n,

k=1
the term with k = n = N — k would be counted twice in this sum. Let
ey = 1if N is odd, ey = 0 if N is even; then

a+f8 n
Sw(e,B)+ (1 —en) (%) = g k(N — k) + K(N = k)" =
- /5 . . (7)
—1Y NF-i ati ¢ [(FN(_1yiNe—i S Bt
g(j)( YN ;1: + (J.)( YN ;

- N —
N 5 = g— or —21, whichever is an integer.

The Euler-Maclaurin formula (details later) gives, if p # —1,
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P~ — — p P
E k? ~ ((—p) + + + E (2k " 1)

where n =
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2n+1

asn —+o0o. When N=2n+1, weuseZk" 2"’21;:’ Z(k+ =), so

we combine the odd and even cases as:

Sowrn g(p)+ B 1oen (E)”Jr
k=t

p+17 7 3 \2
B ] :
2% (Zk—l)NP - {L+en(2' - 2))

E>1

(8)

Formal substitution of (8) in (7) yields
atB i
SN(a,ﬂ) + (1 — €1v) (ﬂ) o~ E C),N‘H'ﬁ_k
+ -1 (§) Weie-0- i)+ 1y (") )

j>0

B0 055
S (s ()

and for k > 1, Ca =0, Cypy = 52—" {1 +en(2* - 2)} Qus-1(e, B),

ato= S ()L () (1)

It is easy to see that Co = (1 — ex)27>#, and that C_, is analytic in a,
B if neither is a negative integer. If ¢ > —~1 and g8 > —1,

Gy = ;0( 1)1( ) /o tJ+Bdt+(-1)f(?) /% (1 =ty

L a ol
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where
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alf! .
Thus C_, = m for all @, in C\ {~1,-2,-3,---}.

()’ k,H(|z|+t)—( 1)*( ||> we see, for |t| < 1, the

double series Zt"Qk(a, B) is absolutely convergent with the sum
k20

() -9+ G+ G-

an even function of ¢. Thus all odd coefficients vanish and all Coz_y = 0.

This gives , formally, the result (1) - at least when o, 3 are in C\
{-1,-2,-3,---}. Now we argue with more care, and with remainder esti-
mates.

Using

Let m be some fixed positive integer, and for p # —1, define

= S (W22 e (N7

k=1

BB ) 0raeon)

where n = Nf2 or (N 1)/2, whichever is an integer. (We estimate Zn(p, m)
later, for large N and possibly large |p|.) Substitution of (9) in (7) yields:
fora, Bin C\ {-1,-2,-3,---}

(9)

18! o
Sn(a, B) = {(Tr_fﬁ_-'T)!N +p+1

+3 (9N -+ (4 crpnsiga- ,-)} -

=0

.

(10)
- Z (‘;)(-1)1'N°"" (Zn(B+ j,m) — (=B~ 7)) + (sym)
+ Z ( )( 1Y N~ Zn(8 + j,m) + (sym),
j=m+l
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where “+(sym)” means to add the corresponding term with « and /3 inter-
changed. Our estimate for Zy(p, m) will show (if |a], |3| < m — 1) the right-
side of (10) has modulus O(NRe a+Re f-2m+1 4 NRs a-m—1 4 NRe f-m-1) 54
N = oo (or, O(NBe a-m-1 | NRe f-m-1) 55 N — o0, if min{Re a, Re 8} <
m — 2) uniformly for allowed @, 8. (The “m” used here may be different
from that of (2) above.)

The exact Euler-Maclaurin formula for a C*™*? function f : [a,b] =+ C,
where a, b are integers with a < b, is:

Zf(k) [+ 3@+ f(b)+z(f;;. @),

_I_‘/; g:i(f))f(2m+l)($)dz

where Bi(z + 1) = E,,(z) for all z, By = Bi(0%), and for |t| < 2,

eo—

, ml<z<l,

= t"Bk
- 1 ¥ E :
With f(z) = 2” (p # —1),a =1, b = n, we have

Zk"

k=1

P+E sz( p )np—2k+1 +2n(p,m) (11)
where

— S Ba P "5 p p~2m=1
za(pm) ‘2 p+l E (2k—1)+/, B’"‘“("’)(zmﬂ)z .

If Re p < 2m, z,(p, m) converges as n — oo:

2a(pym) = 2eo(p,m) — / Bzm+1(z)(2 +1) im-lgg
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and p — 2zoo(p,m) is analytic for p # —1, Re p < 2m. If Re p < —1,
Zeo(p, m) = {(—p), s0 equality holds for all p # —1 with Re p < 2m. (Formula
(11) may be used to compute {(—p).)

Ifp# -1, Rep <2m,

Re p-2m

entem) =<0 < [ (5, 1) 00 Bamis Ol

m+ 1

for any p with |p + 1| > 1,
|2, m)] < Con(1 + [p)?™+1(1 + nPe 2-2m+1)

where the constant C,, depends only on m. (Here we use the crude estimate:
n
/ z'dz <1+ n"*? for any real sand n > 1.)
1

Similarly with f(z) = (¢ +1/2)

Yh(k+1/2) = Zalp,m)+ EEA 4 L(n 4+ 1/2)

—~Bu( p -2k+1
+ o (2k__1)(n+1/2)”

k=1
where

)| (n +1/2)Re p-2m

5 [Bamsa ( 2m—Rep

H

z —((- -? _ 4
[Falp,m) — ((=p)(2 ~ 1)] < |(2m § 1)
for Re p < 2m, and for Re p > —m with [p+1]| > 1,

Izn(p, m)l S 6'".(1 + Ipl)2m+l(1 + (n + 1/2)Re p—-2m+l)

for a constant Cp, depending only on m.

When N is even, Zn(p,m) = znj2(p,m); when N is odd, Zn(p,m) =
27 Pzn(p,m) — 'ZLz-_l(p, m).

For Re p < 2m

N /2)Re p—2m

sup | Bams1(-)| (2m —Rep i (12)

tem) - - <2 (7, )



for Re p> —m with [p+ 1| 2 1,

(e, m)| < Com(1+ o)™ (1 + (N/2) 72m4) (13)

where C,, = 2™C,,+C, depends only on m. Also, forp € C, ' (2mp+ 1) ‘ /(14

Ip})*™t! is bounded by a constant depending on m.

Now suppose o, § € C\ {-1,-2,-3,---} and |a], |B| < m—-1. If
p=a+jor B+ j for integers j > 0, then Re p > —m + 1 for all j,
Rep<2m—1for0<j<m,andforj2m+1,|p+1/>2j+2-m>3.
Substitution of (1) and (3) in (10) shows the right-side of {10) has modulus
O(NRe atRe f=am+1 4 NRe a=m=1 4 NRe f-m-1) 39 N — oo, uniformly for
allowed a, 8. Thus the asymptotic expansion is proved even when a or 3 (or
both) is a negative integer.
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