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The purpose of this paper is to show that the set of linear nonautonomous 
retarded functional differential equations such that the solution operator is 
one-to-one is a dense subset of all linear equations. We also show by example 
that this set is not too large. 

1. PRELIMINARIES 

Let Rn be an n-dimensional Euclidean space with norm 1 . I, I = [-r, 01, 
r > 0, and C(1, IF) be the Banach space of all continuous functions 4: I -+ R” 
with the norm 11 q% /I = supBE, I$(L~)/. Let 2l be the Banach space of all linear 
continuous functions A: C(I, IF) ---f R” with the usual norm 11 A 11 = 

SWldll=l I 44N 
Consider now the Banach space 23 of all n x n matrices 17 of normalized 

functions of bounded variation on I, 7 = (qij), with 
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where V(qij , I) is the variation of the normalized function qij: I + R. The 
classical Riesz representation theorem [l] defines a topological linear isomor- 
phism between ‘u and 23; to each A E 9I corresponds an 7 E b such that 
Ij A 11 < 11 q /) and A+ = cr &(e)+(e) for all 4 E C(I, R”). Also, there is a 
constant k > 0 such that (( q 11 < k I/ A 11 for all A. 

Let C’(R, QI) be the space of P-mappings from R to ‘8 with the Cl uniform 
topology on compact sets of R. Given E > 0 and any compact set K E R, 
a (K, c) neighborhood of L E Cl(R, ‘3) is the set v(L, K, c) of all HE Cl(R, ‘$I) 
such that 

/I H(t) - L(t)ll + II lict) - Lt(t>ll < E for any t E K. 

The symbol A(t) denotes the derivative of H(t) with respect to t. The topo- 
logical linear isomorphism between ‘8 and !$3 considered above shows that if 
H(t)+ = ]yY dv(t, 8) 4(e), HE Cl(R, 2l), then the map V: t E R -+ v(t, .) E B 
is differentiable and Ei(t)$ = f-r &(t, 0) d(0). 

Also, let C”(R, rU) be the space of continuous mappings from R to ‘$1 with 
the uniform topology on compact subsets of R. 

DEFINITION 1.1. One says that L: R -+ Cu has smoothness on the measure 
if there exists a scalar function y(t, s) continuous for t E R, s E [0, r], 
y(t, 0) = 0, such that if L(t)+ = syr dq(t, 0) 4(e), then 

for any t E R, 0 < s < r. If the matrix A(t; L) = $t, -Y+) - q(t, -r) is 
nonsingular at t = u, one says that L is atomic at -r at u [2]. If A(t; L) is 
nonsingular on a set K C R, one says L is atomic at -Y on K. 

LEMMA 1.1. If L E @(R, 2l), then L has smoothness on the measure. 

Proof. IfL(t)+ = j’rr dT(t, 0)4(e), then (I L(t)]/ < jJ y(t, .)I\. SinceLE C”(R, 2f), 
for any t E R, E > 0, there is a 6 > 0 such that I/ T(t, .) - ~(7, .)I1 < E if 
1 t - 7 / < S. This means that for any [a, b] C I and any i, j = 1, 2 ,..., n, 

Vb(t, .> - rlij(~, .); [a, bl) -=c c if It-71 (6. (1.1) 

ForafixediandO <s < r,let 

CL&, 4 = 9gl qrlii(4 .)> L-r+, --T + 4). 

From (1 .l), we have pi(t, s) is continuous in t uniformly with respect to s. 
Also, pi(t, s) is nondecreasing in s, pi(t, s) --+ 0 as s -+ 0. 
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In R2, consider the set ((s, y), y = pi(t, s), s E (0, Y]}, and its closed convex 
hull r(t). Let ri(t, S) = sup{ y: (s, y) E r(t)}. Then yi(t, S) is continuous in t 
uniformly with respect to S. Also, for each fixed t, it is continuous in s with 
yi(t, S) -+ 0 as s --t 0. If we define yi(t, 0) = 0, then yi(t, S) is jointly continu- 
ous in t, s. If y(t, S) = maxi yi(t, s), then y satisfies the conditions of the 
lemma and the proof is complete. 

2. LINEAR RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS (LRFDE) 

For any L: R + 9I a LRFDE for a function x taking a subset of R into R* 
is defined as 

3(t) = L(t) Xi , (2.1) 

where, for each t E R, xt is an element of C(I, R*) defined by ~~(0) = x(t + 6), 
0 ~1. A solution of (2.1) through (a, (6) E R x C(I, R”) is a continuous 
function x defined on an interval [u - Y, u + p), for some /3 > 0 such that 
x, = 4 and x satisfies (2.1) on [a, 8). A solution through (a, 4) will be denoted 
by x(u, 4) and we let T(t, u)+ = xt(u, 4). The operator T(t, u) will be called 
the solution operator. 

The following lemma is a special case of [2, Theorem 6.11. 

LEMMA 2.1. If L E CO(R, ‘8) is atomic at -Y at u and there is an 0 < a: < Y 

such that &6) is continuous for B E [-a, O&#(O) = L(u, $), then there is an 5, 
0 < E < OT and a unique solution x of (2.1) on [u - Y - 15, U] through (u, +). 

The meaning of this lemma is the unique backward continuation of the 
solution of (2.1) defined by the initial condition (u, 4). It is easy to see that if L 
is atomic at -r for any t E R, then the solution operator T(t, u) is one-to-one. 

Our objective is to understand what happens when det A(t; L) = 0 for 
some t. As we shall see below, the set of L E CI(R, 9X) for which the solution 
operator is one-to-one is dense in Cl(R, ‘3). To prove this result we need to 
make two types of approximations of L; the first one on the jump A(t; L) and 
the second one on the measure 7. 

We shall also see that for any compact set K C R, the set of L E C1(K, ‘21) 
for which the solution operator is one-to-one is not open. Here, C1(K, ‘%l) 
is the space of Cl functions from K to 2l with the Cl uniform topology. 

3. PERTURBATION OF THE JUMP MATRIX 

Let 9.P be the Banach space of dimension n2 of all n x n real matrices 
with the usual norm. If A(t, L) is the jump matrix of (2.1) with L E P(R, QI), 
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then the mapping t + A(t, L) is a Cl-mapping from R to !VP. For any open 
set 0 C !UP, consider C1(R, 0) with the Cl uniform topology on compact sets 
of R. The following result will be needed. 

LEMMA 3.1. For any integer k 3 0, the set L,lz of all n x n matrices of 
rank k is a smooth submanifold of ‘W of dimension na - (n - k)2. Also, the set 
of all n x n matrices with zero determinant is thejinite (closed) union U,,$RGn-lLkn. 

Recall that a set % in a topological space X is called residual if there exists 
a countable set S of open dense subsets s2, C X such that ‘% 1 flneS !Rn . 
Since Cl(R, 0) is a Baire space, any residual subset % is dense. We say 
A E Cl(R, 9JP) is transversal to L kn if, whenever the curve A(t) intersects 
Llcn, then A(t) and L,n span the whole space at the point of intersection. The 
following special case of Thorn’s transversality theorem [3] is needed. 

LEMMA 3.2. For any integer k the set of A E Cl(R, mZ*) such that A is 
transversal to Lkn is a residual subset of C’(R, !W). 

Let D = det: ‘9JP -+ R be the determinant function. A regular point 
ME !UP is a matrix where the derivative D’(M) is surjective. Let !lRz-, = 
{A E M? rank A >, n - l}. It is clear that %M~-, is open in !JJP since the 
determinant function is continuous in the coefficients of the matrix. 

LEMMA 3.3. The set of regular points of D is the open set %I~-, . 

Since the finite intersection of residual sets is a residual set, we may apply 
Lemma 3.2 (n - l)-times to obtain a residual set in Cl(R, 9.P) such that any 
A in this set is transversal to LOn, Lln,..., Li-, . Since dim Lkn = n2 - (n - k)2, 
it follows that A(t) #Lk*, 0 < k < n - 2, for any t E R. Therefore, A(t) E !JI& 
for all t and A is transversal to the manifold L&, . Then, by Lemma 3.3, the 
graph of the determinant map t ---)r (t, D(A(t))) is transversal in Ra to the 
t-axis. 

We may now prove 

PROPOSITION 3.1. For any L E CI(R, 2l), E > 0, there is an z E Cl(R, 2X), 
IIE -L 11 < E such that the jump matrix A(t;f;) of E is in ‘92~-, for all t, 
A(*, t) is transversal to Li-, , and the set of t E R such that A(t; l) E LE-, is a 
zero dimensional submanifold containing only a finite number of points in each 
compact set. 

Proof. From the remarks preceding the statement of the proposition there 
is an d as close to A( *; L) as desired in C1(R, ‘%P) such that 2 satisfies all the 
properties stated in the proposition. Let B(t) = ii(t) - A(t; L) and E(t)4 = 
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L(t)+ + B(t)$(-r). Then A(t,E) = x((t). If A is close to A(*; L) in 
C1(R, %V), then it is easy to see thatL is close to L in Cl(R, q), and the proof 
is complete. 

As a corollary to the proof of the above result, we have 

COROLLARY 3.1. Let 9 = {L E CI(R, a): there is a countable set U of points 
with no Jinite accumulation point such that for any t $ U, there is an E > 0 with 
T(t, t - E; L) one-to-one}. Then 2’ is a residual set in Cl(R, a). 

This remark is interesting for the following reason. Consider the subset 
9(R) C Cl(R, ‘%) with the following property. For any L Ed, there is an 
integer N such that the corresponding measure ~(t, 8) has at most N dis- 
continuities in 0 for all t E R and, in addition, q(t, 8) is a step function in 8. 
For any compact set K C R, 9(K) is defined in a similar way. 

COROLLARY 3.2. The set of L in 9(R) f or which the solution operator is 
one-to-one is residual. Also, for any compact set K C R, the corresponding set 
is open in 9(K). 

Proof. The remarks preceding Proposition 3.1 imply that there is a 
residual set of A E C1(R, mn) such that J(t) E !DZz-, for all t, 2 is transversal 
to -g-l and the set of t E R such that A(t) E Lz-, is a countable set U con- 
taining only a finite number of points in each compact set. Let L be any 
element of B(R) with A(t; L) = A(t). Th e set of all such L is a residual set 
in 9(R). Also, for any t f U, there is an E > 0 such that T(t, t - c; L) is 
one-to-one. 

To discuss t E U, we need some notation. Let e,(t) be any point of dis- 
continuity of Tij(t, 0) with jump fij(t) # 0. We wish to show there is an 
open interval containing t such that each eij(t) is constant in this interval. 
In the proof of Lemma 1.1, it was shown that for any E > 0, there is a 6 > 0 
such that for any closed interval J C I and containing e,,(t), 

V7&, .I - 7id7, *); 1) < 6 

if / t - 7 / < 6. Choose l < j Eij(t)l and suppose there is a 7 with 1 t - T 1 < 6 
such that ~~(7, 0) is continuous at 0 = eij(t). Then there exists a J such that 
747, f3) is continuous in 8 on 1. But, then 

V(7i&, .) - 7&, *I); J> = I &&)I > e> 

which is a contradiction. Consequently, 8,,(T) is constant for / t - 7 / < 6. 
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Returning to ~(t, 0), this means there are a finite number of numbers 
0 < r1 < f-2 < ... < rb = r, K < N, such that the LRFDE is given by 

k-l 

k(T) = c B,(T) X(T - s-j) + A(T) X(T - Y) (3.1) 
j=l 

for 1 t - 7 j < S, where the Bj are Cl matrix functions. 
From the properties of J(r), there is Sl , 0 < 6, < 6, such that A(T) is 

nonsingular for t - 6, < 7 < t. Therefore, the solution of (3.1) is given by 

X(T - r) = x-‘(T) [g(T) - 2 B,(T) X(T - $)]s 

This shows there is a unique backward solution of this equation on t - 6, < 
7 < t corresponding to the initial data (t, 0). Since the system is linear, it is 
sufficient to consider such initial data. Therefore, T(t, u; L) is one-to-one 
even when t E U. This completes the proof of the first part of the corollary. 

To prove the second part, one repeats the complete argument using the 
fact that Thorn’s transversality theorem gives the openess for compact K 
since the union U@Q&-I L,” is closed by Lemma 3.1. 

To complete this section, we give an example to show that the above 
perturbation on the jump matrix is not enough to guarantee uniqueness of 
backward continuation. 

EXAMPLE 3.1. Consider the scalar equation 

Lqt) = --(t/2) x(t - 1) - so x(t + 0) de. 
-1 

In terms of our general notation n = 1, r = 1, 

L(M = -W) +(--1) - s” 4(e) de, 
-1 

A(t; L) = -t/2. The function A(t; L) is nonzero except at t = 0. Choose 
a point to = -E, E > 0, and consider the function z(t) = --t - 1 for 
t E [--I - E, -11 and z(t) = 0 for te r-1, --cl. The function x(T) = X(T) 
for 7E[-1 -E, -cl and X(T) = 0 for 7 E [-E, 0] is a solution of the given 
equation. In fact, one observes that 

0 = -(t/2) x(t - 1) - 1” x(t + 8) de 

= -(t/2)(-t) - C’Ct - e - I) de 

= (W) + j-’ (-t + 8) dt. 
0 
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Thus, ~(7) satisfies the equation and X(T) = 0 for T 3 0. This shows that 
we do not have uniqueness of the backward extension with initial data 
(u,$) = (0, 0). In fact, X(T) and th e zero function are two distinct solutions. 

The phenomena in Example 3.1 have been independently observed by 
Lillo [4], where a more complete discussion of the backward continuation 
problem is also given. 

4. THE MAIN RESULT 

Our purpose in this section is to prove 

THEOREM 4.1. Suppose L E Cl(R, 5%) is given. Then, in any neighborhood 
of L in C1(R, 2l), there is an z such that the solution operator T(t, a; L) of the 
LRFDE I(t) = L(t) xt is one-to-one. 

Proof. IfL(t)+ = s!r dv(t, e)+(e), h c oose 0 < p < r and define L, E Cl(R, a) 

by 

Low! = 4 L) 4(-r) + s:,. 4(4 4 C(e)* 

Our first task is to show that L, is close to L if p is sufficiently small. 
From Lemma 1.1, both L and L have smoothness on the measure. Con- 

sequently, there are y(t, p), p(t, p) continuous for t E R, 0 < p < r, vanishing 
at p = 0 such that for any p > 0, 4 E C(1, R”), 

On the other hand, these expressions shou that 

G r@, P) II + IL 

II L,(t) - WI + IlM> - WI G At, P) + Y(tY P) 

for all t, p. 
Suppose K is a compact set in R and c > 0 is given. Then there is a p0 > 0 

such that y(t, p) + $t, p) < E if t E K, 0 < p < p,, . The estimate above 
shows that L, belongs to the (K, G) neighborhood of L if 0 < p < pO. 
This shows L, is close to L if p is sufficiently small. 

From Proposition 1, we may assume A(t; L) has a countable number of 
points where D(A(t; L)) = 0 and these points have no finite accumulation 
point. Our next objective is to show that under these conditions, T(t, CT; L,) 
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is one-to-one for 0 < p < Y. The reason for this is basically the same as 
stated in Corollary 3.2, but we give the complete proof. 

Consider the equation 

f(l) = L,(t) X$ = A(t; L) x(t - r) + jy+, d?#, e> x(t + 0). 

Since the system is linear, we may assume the initial data (a, 4) are (a, 0). 
From the properties of A(t;L), there is a 6 > 0 such that A(t,L) is non- 
singular for 0 - 6 < t < U. Therefore, the solution of the above equation is 

x(t - r) = A-‘(t;L) [k(f) - /:r+o dr)Q, e> x(t + e,]. 
Since -r + p < 6 < 0 and (T - 6 < t < (T, we have (u - r) + (p - 6) < 
t + 6’ < (J. This shows that x(t - Y) = 0 for a - 6 < t < u and the solution 
through (a, 0) has a unique backward extension. This completes the proof 
of the theorem. 

5. A COUNTEREXAMPLE 

Theorem 4.1 shows that the set of equations for which the solution operator 
is one-to-one is dense in Cl(R, ‘8). We are not able to prove or disprove that 
it is residual. The purpose of this section is to show that even on a compact 
set K C R, the set of one-to-one maps is not open in cI(K, a), in contrast to 
the situation encountered in the proof of Corollary 3.2. 

To see this, suppose ?t = 1, Y = 1, and consider the equation 

a(t) = -(t/2) x(t - 1) + 1” d7](t, e) x(t + e). 
-1+ 

As we have seen in the proof of Theorem 4.1, we can approximate this 
system by 

9(t) = -w YO - 1) + J-JO+ MC 4 Ye + 49 

with p > 0 such that the solution operator is one-to-one. 
We now show that we can find another equation arbitrarily close to this 

one for which the solution operator is not one-to-one. The approximates can 
be made to involve B only in the interval [- 1, - 1 + p/2] so that the un- 
perturbed equation may be taken as 

y(t) = -(t/2) y(t - 1) ds L(t) yt . 
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Choose a sequence of positive l i -+ 0 as j -+ CO and 0 < Sj < Ej . Define 
a P-function aj: R -+ R so that aj is nonincreasing on (- co, - 11, non- 
decreasing on (- 1, CO) such that aj(S) = 0 for -CO < s < - 1 - E$ , 
~j(S)=-~jfor--1-8j~S~-l,~j(S)=OfOr-l+~j-8j~S<CO, 

and Jr1 1 oj(t + f9)\ d6 < l j for all t E R. Now consider the equation 

.i.(t) = -(t/2) z(t - 1) + j” cxj(t + e> z(t + e) de 
-1 

= -(t/2) x(t - 1) + 11, olj(s) z(s) ds e L,(t) zt . 

Consider the functions #j(t) = (-t - 1) 4 for t E [-Si - 1, -11, &i(t) = 0 
for t E [--I, -S,]. Let aj = -Sj and consider the initial value problem 
(~j, 4j) with $j = #jO*. If t E [-Sj , 01, then 

.$t) = -(t/2)(-trj) - S,1, E+(S) dS 

= [(t2/2) - 11: (--S ’ 1) ds] Ej 

= 0. 

Consequently, z(t) = 0 on [-Sj , 0] and z, = 0. Since z = 0 is also a 
solution, we see that the solution operator corresponding to aj is not one-to- 
one for any j. This proves the assertion, since 11 L(t) - Lj(t)ll < c for all t 
and j large enough. 
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