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'The purpose of this paper is to show that the set of linear nonautonomous
retarded functional differential equations such that the solution operator is
one-to-one is a dense subset of all linear equations. We also show by example
that this set is not too large.

1. PRELIMINARIES

Let R” be an n-dimensional Euclidean space with norm | - |, I = [—7, 0],
r = 0, and C(Z, R") be the Banach space of all continuous functions ¢: I — R*
with the norm || ¢ | = sup,; | #(68)!. Let A be the Banach space of all linear
continuous functions A: C(I, R*) — R* with the usual norm || 4| =
supjg—1 | A(B)-

Consider now the Banach space B of all # X n matrices n of normalized
functions of bounded variation on I, y = (»;;), with

Iyl = max [Z V(m-,-,l)]
NES =1
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where V{(n,; ,I) is the variation of the normalized function %,;: I — R. The
classical Riesz representation theorem [1] defines a topological linear isomor-
phism between U and B; to each 4 €A corresponds an 5B such that
14l <linll and A = ﬁ, dn(6) $(8) for all ¢ € C(Z, R"). Also, there is a
constant £ > 0 such that || 5 || < k|| 4 || for all 4.

Let CY{R, N) be the space of C1-mappings from R to A with the C* uniform
topology on compact sets of R. Given ¢ > 0 and any compact set K€ R,
a (K, €) neighborhood of L € CY(R, N) is the set v(L, K, €) of all H € CY(R, )
such that

| H@t) — L) + | H(t) — L(#) <e  forany teK.

The symbol H(t) denotes the derivative of H(¢) with respect to . The topo-
logical linear isomorphism between U and B considered above shows that if
H(t)p = jﬂr av(t, 0)$(0), He CYR, ), then the maprv:te R — u(t, ) e B
is differentiable and H(t) = [°, di(t, 6) $(6).

Also, let C°(R, ) be the space of continuous mappings from R to A with
the uniform topology on compact subsets of R.

DeriNrrioN 1.1.  One says that L: R — U has smoothness on the measure
if there exists a scalar function y(¢, s) continuous for te R, se[0,r],
¥(t,0) = 0, such that if L(t)¢ = fo_r dn(t, ) $(6), then

tim [ dn(t, 0) 40 ( < ¥t 9) |9l

ho0t Y —T+h

for any te R, 0 < s < r. If the matrix A(t;L) = n(t, —rt) — 7(¢, —7) is
nonsingular at ¢ = o, one says that L is atomic at —r at o [2]. If A(t; L) is
nonsingular on a set K C R, one says L is atomic at —r on K.

Levmma 1.1, If L e CoR, W), then L has smoothness on the measure.
Proof. IfL(t)p = jﬁ,, dn(t, 0)$(6), then || L)l < i 52, -)II. Since L € C(R, ),
for any te R, € > 0, there is a 8 > 0 such that [|5(¢, -) — 5(r, )| < € if
[t — 7| < 8. This means that for any [4,8] CI and any 1, j = 1, 2,..., n,
Vst ) — mis(m, )i [, 8]) <« if [t —7] <8 (1.1)
Forafixediand 0 < s < r, let
f"'i(t» s) = Z V(T)ii(t’ ')’ [—T+, —r + s])
j=1

From (1.1), we have p(t, $} is continuous in ¢ uniformly with respect to s.
Also, p(t, s) is nondecreasing in s, {2, s) — O as s — 0.
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In R? consider the set {(s, ), ¥ = pi(2, 5), s € (0, r]}, and its closed convex
hull I'(). Let y(t, s) = sup{ y: (s, ) € ['(t)}. Then (2, s) is continuous in ¢
uniformly with respect to s. Also, for each fixed ¢, it is continuous in s with
yi(t, §) — 0 as s — 0. If we define y,(¢, 0) = 0, then y,(¢, s) is jointly continu-
ous in #, 5. If ¢(z, s) = max; y{t, s), then y satisfies the conditions of the
lemma and the proof is complete.

2. Linear ReTARDED FuncTiONAL DirrereNTIAL EqQuations (LRFDE)

For any L: R — A a LRFDE for a function x taking a subset of R into R”
is defined as

#(t) = L(t) x,, @.1)

where, for each ¢ € R, x, is an element of C(Z, R") defined by x,(8) = x(¢t + 6),
fel. A solution of (2.1) through (o,¢)e R x C(I, R®) is a continuous
function x defined on an interval [oc — 7, o 4 B), for some 8 > 0 such that
x, = ¢ and « satisfies (2.1) on [o, B). A solution through (o, ¢) will be denoted
by (o, ¢) and we let T(¢, 0)p = x,(0,4). The operator T(¢, o) will be called
the solution operator.

The following lemma is a special case of [2, Theorem 6.1].

Lemma 2.1. IfL e C(R, N) s atomic at —r at o and thereisan0 < o <r
such that ¢(8) is continuous for 0 € [—a, 0], $(0) = L(a, §), then there is an &,
0 < a < o and a unique solution x of (2.1) on [0 — r — &, o] through (o, ¢).

The meaning of this lemma is the unique backward continuation of the
solution of (2.1) defined by the initial condition (g, ¢). It is easy to see that if L
is atomic at —r for any z € R, then the solution operator T'(¢, ¢) is one-to-one.

Our objective is to understand what happens when det A(f; L) = 0 for
some t. As we shall see below, the set of L € CY(R, ) for which the solution
operator is one-to-one is dense in CY(R, A). To prove this result we need to
make two types of approximations of L; the first one on the jump A(#; L) and
the second one on the measure 7.

We shall also see that for any compact set K C R, the set of L € CY(K, )
for which the solution operator is one-to-one is not open. Here, CY(K, )
is the space of C1 functions from K to W with the C* uniform topology.

3. PERTURBATION OF THE JuMP MATRIX

Let M» be the Banach space of dimension n2 of all n X n real matrices
with the usual norm. If A(z, L) is the jump matrix of (2.1) with L € CY{(R, ),
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then the mapping ¢ — A(t, L) is a C1-mapping from R to D", For any open
set @ C M, consider CYR, ) with the C* uniform topology on compact sets
of R. The following result will be needed.

Lemma 3.1. For any integer k > 0, the set L,” of all n X n matrices of
rank k is a smooth submanifold of M* of dimension n* — (n — k)2, Also, the set
of alln X nmatrices with 2ero determinant is the finite (closed) union  Jo<rcn— L™

Recall that a set R in a topological space X is called residual if there exists
a countable set .S of open dense subsets R, C X such that R O (Vs R, .
Since CY(R, 0) is a Baire space, any residual subset R is dense. We say
A e CYR, Mr) is transversal to L," if, whenever the curve A(t) intersects
L,", then A(t) and L;* span the whole space at the point of intersection. The
following special case of Thom’s transversality theorem [3] is needed.

Lemma 3.2. For any integer k the set of A€ CYR,IM") such that A is
transversal to L," is a residual subset of CY(R, IM™).

Let D = det: M" —> R be the determinant function. A regular point
M eI is a matrix where the derivative D'(M) is surjective. Let M?_, =
{AeMn: rank 4 = n — 1}. It is clear that M?_, is open in IM™* since the
determinant function is continuous in the coefficients of the matrix.

Levma 3.3.  The set of regular points of D is the open set MT_; .

Since the finite intersection of residual sets is a residual set, we may apply
Lemma 3.2 (n — 1)-times to obtain a residual set in C(R, ") such that any
4 in this set is transversal to Ly®, L,",...,L%_, . Since dim L, = n® — (n — k)2,
it follows that A(¢) ¢ L,", 0 < k < n — 2, for any t € R. Therefore, A(t) e M~*_,
for all ¢ and 4 is transversal to the manifold L? , . Then, by Lemma 3.3, the
graph of the determinant map ¢ — (¢, D(A(t))) is transversal in R? to the
t-axis.

We may now prove

ProposiTioN 3.1. For any L e CY(R, ), € > 0, there is an L. € CY(R, ),
\L —L|| < e such that the jump matrix A(t;L) of L is in M7_, for all t,
A(-, L) is transversal to L _, , and the set of t € R such that A(t; L)eL"_, is a
zero dimensional submanifold containing only a finite number of points in each

compact set.

Progf. From the remarks preceding the statement of the proposition there
is an 4 as close to A(-; L) as desired in CY(R, ") such that 7 satisfies all the
properties stated in the proposition. Let B(t) = A(t) — A(t; L) and L(t)$ =

505/20/1-3
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L(typ + B(t)¢(—r). Then A(t,L) = A(t). If A is close to A(;L) in
CY(R, ™), then it is easy to see that L is close to L in C*(R, ), and the proof
is complete.

As a corollary to the proof of the above result, we have

.

CoroLLARY 3.1. Let # ={L e CYR, N): there is a countable set U of points
with no finite accumulation point such that for any t ¢ U, there is an ¢ > 0 with
T(t, t — ;L) one-to-one}. Then ¥ is a residual set in C'(R, ).

This remark is interesting for the following reason. Consider the subset
2(R) C CY(R, A) with the following property. For any L € D(R), there is an
integer N such that the corresponding measure y(Z, §) has at most N dis-
continuities in # for all £ € R and, in addition, %(t, 8) is a step function in 6.
For any compact set K C R, Z(K) is defined in a similar way.

CoroLLARY 3.2. The set of L in 2(R) for which the solution operator is
one-to-one is residual. Also, for any compact set K C R, the corresponding set
is open in D(K).

Proof. The remarks preceding Proposition 3.1 imply that there is a
residual set of 4 € CY(R, M*) such that A(t) e M?:_, for all ¢, 4 is transversal
to L7 _, and the set of # € R such that A(t) L} , is a countable set U con-
taining only a finite number of points in each compact set. Let L be any
element of Z(R) with A(t; L) = A(t). The set of all such L is a residual set
in Z(R). Also, for any ¢¢ U, there is an ¢ > 0 such that T(¢,t — ;L) is
one-to-one.

To discuss t e U, we need some notation. Let 8,;(f) be any point of dis-
continuity of 7;(t, §) with jump £,;(¢) = 0. We wish to show there is an
open interval containing f such that each 6;(t) is constant in this interval,
In the proof of Lemma 1.1, it was shown that for any € > 0, thereisad > 0
such that for any closed interval J C I and containing 6,,(t),

Vini(t, ) — mas(m, ) J) < e
if |t — 7| < 8. Choose ¢ << | £;,(¢)| and suppose thereisarwith [z — 7| <8

such that »,,(r, 8) is continuous at § = 6,,(t). Then there exists a ] such that
7:5(7, 0) is continuous in 6 on J. But, then

V(is(t, ) = a7, ) J) = | €] > e,

which is a contradiction. Consequently, #;,() is constant for | — 7| < 8.
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Returning to 7(t, §), this means there are a finite number of numbers
0 <7 <ry <+ <1, =r, k <N, such that the LRFDE is given by

k-1
#r) = Y. By(r) alr — 1) + Al) alr — 1) (3.1)
=1
for | t — 7| < 8, where the B; are C* matrix functions.
From the properties of A(r), there is §,, 0 < 8, < §, such that A(7) is
nonsingular for t — 8; <{ v <C ¢. Therefore, the solution of (3.1) is given by

_ k-1
a(r — ) = A7) [ir) — Y, Br) atr — )]

This shows there is a unique backward solution of this equation on t — 8; <
7 < ¢ corresponding to the initial data (¢, 0). Since the system is linear, it is
sufficient to consider such initial data. Therefore, T(¢, ;L) is one-to-one
even when t € U. This completes the proof of the first part of the corollary.

To prove the second part, one repeats the complete argument using the
fact that Thom’s transversality theorem gives the openess for compact K
since the union (Jocpcn_y Ly is closed by Lemma 3.1.

To complete this section, we give an example to show that the above
perturbation on the jump matrix is not enough to guarantee uniqueness of
backward continuation.

ExampLE 3.1. Consider the scalar equation

i) = —(tf2) st — 1) — | " u(t + 6) do.

In terms of our general notationn =1, r = 1,

L =~ 1) — [ 40) ab

A(t; L) = —1t/2. The function A(t; L) is nonzero except at t = 0. Choose
a point f, = —e, € > 0, and consider the function 2(f) = —t — 1 for
te[—1 —¢ —1] and 2(¢) = 0 for t € [—1, —¢]. The function x(7) = 2(r)
for re[—1 — ¢, —€] and x(7) = O for 7 € [—¢, 0] is a solution of the given
equation. In fact, one observes that

0 = —(t/2) x(z — 1)-f° x(t + 6) db

(—t—0—-1)df

-1

=200~ [
— (©)2) + jo “(—t+ 8 de.
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Thus, x(r) satisfies the equation and x{v) = 0 for v > 0. This shows that
we do not have uniqueness of the backward extension with initial data
(o, ¢) = (0, 0). In fact, x(7) and the zero function are two distinct solutions.

The phenomena in Example 3.1 have been independently observed by
Lillo [4], where a more complete discussion of the backward continuation
problem is also given.

4. THE MaIN ResuLT
Our purpose in this section is to prove

THEOREM 4.1. Suppose L € C{R, N) is given. Then, in any neighborhood
of L in CY(R, N), there is an L such that the solution operator T(t, o; L) of the
LRFDE #(t) = L(t) x, is one-to-one.

Proof. IfL(t)p = | f, dn(t, 6)(0), choose 0 < p << 7 and define L, € C}(R, N)
by

L0 = AGL)H—) + [ dn(t,0)$00).

Our first task is to show that L, is close to L if p is sufficiently small.

From Lemma 1.1, both L and L have smoothness on the measure. Con-
sequently, there are y(¢, p), y(2, p) continuous for € R, 0 < p < 7, vanishing
at p = 0 such that for any p > 0,¢ € C(I, R®),

lim f dn(t, 0)4(6) | < #(t,p) 11,

~r+p
|tim [ aite, ) 00)| <7 P 141
—r+h
On the other hand, these expressions show that

ILo(2) — LI + I Lo(2) — LI < ot p) + 7t p)

for all ¢, p.

Suppose K is a compact set in R and € > 0 is given. Then thereis a p, > 0
such that y(t, p) +-y(t,p) < € if te K, 0 < p < p,. The estimate above
shows that L, belongs to the (K, €) neighborhood of L if 0 <<p < p,.
This shows L, is close to L if p is sufficiently small.

From Proposition 1, we may assume A(¢; L) has a countable number of
points where D(A(t; L)) = 0 and these points have no finite accumulation
point. Our next objective is to show that under these conditions, T(t, o; L,)
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is one-to-one for 0 < p < r. The reason for this is basically the same as
stated in Corollary 3.2, but we give the complete proof.
Consider the equation

#(t) = L) x; = A(t; L) #(t —r) + f_o dn(t, 6) x(t -+ 6).

Since the system is linear, we may assume the initial data (o, ¢) are (o, 0).
From the properties of A(t; L), there is a § > 0 such that A(t, L) is non-
singular for 0 — & < t < 0. Therefore, the solution of the above equation is

At — ) = AW L) [4() — f_o+ dn(t, 6) x(t + 6)].

Since —r +p <0< 0ando— 8 <t <o, wehave (o0 —7) + (p — 8) <
t + 6 < o. This shows that x(¢ — r) = Ofor ¢ — & <{ ¢ < ¢ and the solution
through (o, 0) has a unique backward extension. This completes the proof
of the theorem.

5. A COUNTEREXAMPLE

Theorem 4.1 shows that the set of equations for which the solution operator
is one-to-one is dense in CY(R, A). We are not able to prove or disprove that
it is residual. The purpose of this section is to show that even on a compact
set K C R, the set of one-to-one maps is not open in C{(K, ), in contrast to
the situation encountered in the proof of Corollary 3.2.

To see this, suppose # = 1, r = 1, and consider the equation

i(t) = —(4/2) a(t — 1) + f_o dn(t, 6) x(t + ).

As we have seen in the proof of Theorem 4.1, we can approximate this
system by

50 = =3¢~ 1)+ [ do(e,0) 3¢ +0),

with p > 0 such that the solution operator is one-to-one.

We now show that we can find another equation arbitrarily close to this
one for which the solution operator is not one-to-one. The approximates can
be made to involve @ only in the interval [—1, —1 -} p/2] so that the un-
perturbed equation may be taken as

Wty = —(@/2) 9t — 1) L L) y, .
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Choose a sequence of positive ¢, —> 0 as j — oo and 0 << §; < ¢; . Define
a Cl-function o;: R — R so that «; is nonincreasing on (— o0, —1], non-
decreasing on (—1, ) such that o(s) =0 for —o0 < s < -1 — ¢,

:x,-(s)oz —e,- for -1 —§; <s < —1, o(s) =0for —1 + ¢ —§; s < o0,
and [_; | oyt + 8)] d8 < ¢, for all £ € R. Now consider the equation

()

—(t2) 2(t — 1) + f_ol ay(t -+ 6) 2(t -+ 6) db
— )t~ D+ [ o) ale) ds B LD =,
-1

Consider the functions () = (—t — 1) ¢; for te[—8; — 1, —1],s(t) =0
for te[—1, —§;]. Let o; = —§; and consider the initial value problem
(o;, ;) with¢; = "l'fa,‘ If te[—3;, 0], then

) = —2(—te) — | en(s) de

— [(12/2) _ J;: (—s—1) ds] €5
= Q.

Consequently, 2(¢#) =0 on [—8§;,0] and 2z, = 0. Since 2 =0 is also a
solution, we see that the solution operator corresponding to «; is not one-to-
one for any j. This proves the assertion, since || L(t) — Ly(t)|| < e for all ¢
and j large enough.
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