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ABSTRACT: We present a new Monte Carlo method to simulate ionic liquids in slab
geometry at constant potential. The algorithm is built upon two previous methods while
retaining the advantages of each of them. The method is tested against a Poisson—
Boltzmann theory and the constant surface charge ensemble, achieving consistency
among all of them. We then analyze the computational time of the developed algorithm,
showing substantial speedup in relation to the method of Kiyohara and Asaka [J. Chem.
Phys., 2007, 126, 214704]. As an application of our method, we investigate crowding and
overscreening in confined room-temperature ionic liquids. We show that we can switch
between two behaviors of the double layer by changing the Bjerrum length alone.

I. INTRODUCTION

Since the appearance of computing machines, Ewald
summation is a ubiquitous algorithm in physical chemistry.
This is because many systems of scientific interest have
components with bare electric charge at the atomic scale:
nanoconfined electroly’tes,l_4 polyelectrolytes near flat surfa-
ces,”® ionic liquid supercapacitors,” "' and electrolyte-based
electrowetting devices' ' are just a handful of examples. The
proper computational simulation of these systems requires
Ewald summation techniques to calculate the energy of the
target system.'” In this article, we present a new method to
efficiently simulate confined charged liquids at constant
potential, using a modified three-dimensional (3D) Ewald
summation and a Monte Carlo (MC) algorithm. The system is
illustrated in Figure 1.

The calculation of bulk electrostatic energies has its
beginning in 1921 when the German physicist Paul Peter
Ewald set out to calculate the energy of cubic-lattice crystals.'”
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Figure 1. Illustration of the system in a two-dimensional projection.
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Considering the distance between cations and anions g, the so-
called lattice constant, g the proton charge, and ¢ the
permittivity of space, the electrostatic potential at one atom
in the infinite system is

b= Z (_1)i+j+lci 1

ik it +jt+ kK ca (1)

where (i, j, k) € Z, M is defined as the Madelung constant,
and the technique used to evaluate the series is nowadays
called Ewald summation. The summation excludes all indices
equal to zero, and the (—1)™/** takes care of whether it is an
anion or a cation, for example, the alternating atoms of sodium
chloride. The basic idea of the method is to split the potential
into a long- and a short-range contribution, computing the
former on the reciprocal space and the latter on the real space.

Ewald summation is necessary because the Coulomb
potential is long-ranged, which means it extends to infinity.
Therefore, simple nearest neighbors periodic boundary
conditions of the main box, as used in short-ranged potentials,
are not enough. One has to consider infinite replicas of the
main simulation cell to achieve the thermodynamic equili-
brium. These series of replications are tackled with Ewald’s
method and its many optimizations realized over the

years.'“>' Unfortunately, Ewald summation methods are
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efficient when the system is isotropic, i.e., it has periodicity in
three dimensions. When one dimension is finite, much of the
velocity of the convergence is lost, since the Fourier
transformation of the long-range potential yields special
functions in a slowly convergent series.”””> However, this
geometry is present in electrolytes or ionic liquids confined by
capacitor plates and many more systems of intense
technological interest.”* " Therefore, optimizations were
devised to overcome this computational time problem and to
simulate these interesting systems in two-dimensional (2D)
geometry.”' > The most successful one is by Yeh and
Berkowitz (YB),” where the fast convergence is retained using
an extra energy term and a vacuum region between the
spurious replicas.

Following this tradition of optimizations, in this article, we
present a new method that is able to rapidly simulate confined
charged systems at constant potential. The method simulates a
nano-supercapacitor; see Figure 1. The basic idea of the article
is to merge the method by Levin et al.’” with the method by
Kiyohara and Asaka (KA),” retaining the positive points of
both. While the method by Levin et al. is applied to the
constant charge ensemble, we adapt it for the ensemble
proposed by KA. With our new algorithm, we avoid special
functions used by KA and have fast convergence, while still
treating the charged plates as an external potential. At this very
point lies the superiority in the velocity of our numerical trick.

After the derivation of the system’s energy, we test the
method against a mean-field Poisson—Boltzmann (PB) theory
in the weak coupling limit and also against the constant surface
charge ensemble, which is complementary in thermodynamics
to the constant potential ensemble. All MC simulations and
the PB theory agree, thus validating our algorithm. We then
present a comparison of computational speeds between our
developed method and the one by KA, which is basically a
Lekner summation. Finally, we apply the method to study
crowding and overscreening in confined ionic liquids.
Computational speed is a cornerstone here, since ionic liquids
have much higher volume fractions and ionic coupling than
usual electrolytes. Furthermore, conclusions and guidelines for
future work are presented at the end.

Il. METHOD

Consider N charges g, with j = (1, 2, .., N), randomly
positioned in the main simulation cell, with position vectors r;.
We replicate the simulation box of dimensions L = (L,, L,, L,)
in every direction and define the charge densities /)j(rj) = qjé(s
— 1} — 1), where 8(x) is the Dirac delta function, ., = L'n
and n = (nx, , 11,), where n/’s are integers. Thus, we can write
an analogous equatlon of eq 1 in an integral form

(r)—ZZf P()

elr—sl

()

to calculate the electrostatic potential at an arbitrary position r
of the simulation box. The integration is over all space and the
replication vector .., projects the real charges in the replicated
boxes, forming an infinite periodic system. The main box is at
n = (0, 0, 0). The core idea is now to split the potential into a
long- and a short-range contribution. Thus, we perform a
simple addition and subtraction of a function to the total
potential, and then we write the potential as

7843
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elr—sl
DI
n =1 r=s (3)
where
K3
pj‘G(s) = \/; exp[i’ls— r rePI ] @

Note that k is an artificial, damping parameter and the total
energy cannot depend on it for neutral systems. Other
damping functions may be chosen. However, for speed
purposes, this is a default choice. The terms of the right-
hand side of eq 3 are the long- and short-range potentials. To
compute the former, we perform a 3D Fourier transformation.
This procedure is chosen to avoid 2D Fourier operators, from
which complicated functions arise. We then take the limit from
bulk to slab geometry to yield the correct potential. The short-
and the long-range potentials assume the forms

N
4. =g,
=1

erfc(klr—r])

€|r—rj|

Z Z e ex [—— + ik (r = 1))]

k——oo j=1

with p(r) = ¢.(r) + ¢, (r)

¢,(r) =

©)
The Fourier vectors are k = (27n,/L,, 2an /Ld, 27n,/L,), V =
L2L, is the volume, and we set L, =L,=Ly Wlthout any loss of
generality. For the short-range potentlal we consider just
nearest neighbors periodic boundary conditions, excluding the
sum over n. This is justified since the erfc(x) function decays
exponentially fast with x.

We note that the term corresponding to k = 0 diverges in the
long-range potential, ¢,. This divergence has a long debate
recorded in the literature; see for example refs 14, 39, 40,
where it is discussed how to properly handle the infinite term.
In the present work, we are interested in slab geometry, while
retaining the speed of 3D Ewald summation, where the system
of interest is isotropic in three directions. To achieve this, we
follow the study by Levin and co-workers,”” where a detailed
treatment of the term k = 0 is performed for slab geometry.

There the E = (0, 0, O) divergence gives rise to an energy term
that is dependent solely on the geometry of the system. That is,
even for isotropic systems, the contribution exists and it is
usually neglected. In the paper, they explain that this omission
usually does not affect isotropic systems on average. Most
importantly, they deduce the term for slab geometry
rigorously. Levin’s method was inspired by the YB algorithm.
The main difference is that it does not appeal to the so-called
tinfoil boundary at infinity, for there is no sense in an infinitely
replicated system to be bounded. The energy term, which is
due to specific periodic boundary conditions, was derived using
rigorous methods to sum over conditionally convergent series.
Therefore, as shown in ref 37, for slab-shaped systems, the
term arises due to the summation infinitely faster in the
periodic directions in comparison with the sum in the
nonperiodic dimension. Moreover, a vacuum region must be
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Figure 2. Charge densities p, for a 1:1 and a 2:2 electrolyte in panels (a) and (b), respectively. (a) Mutual consistency of all approaches, thus
validating the new algorithm. The parameters are ¢ = 0.015 C/m? p = 100 mM, and radius of particles R = 2 A. These parameters represent the
weak coupling limit. (b) In the strong coupling limit, where higher charge densities and bigger molar concentrations are present, the mean-field
approach is doomed to fail, as shown. The parameters are p = 550 mM, ¢ = 0.075 C/m?, and R = 3 A. The distance between the plates is L = 96 A.

inserted between the slabs to nullify the effects of the
undesired replicas in the z dimension. This is due to the fact
that we still perform a “slow” summation in z. In addition, the
algorithm allows one to consider the charged slabs as an
external potential, this way avoiding the construction of the
plates with point charges. This slow procedure to construct the
confinement basically spreads equally separated point charges
in the plane and adjusts the Coulomb charge to match the
desired surface density. Its slowness is due to the fact that at
each simulation step the points must be considered in the main
loop of the simulation. Thus, we note that the modified Ewald
summation by Levin et al. suits perfectly to be merged with the
algorithm by KA, since then the plates are also treated as an
external potential. The main disadvantage of the KA algorithm
is the appearance of Bessel functions in the ion—ion
interaction, which we overcome in the present new method
using only exponentials, resulting in a much faster convergent
series.

Following eq 6 and Levin, Girotto, and dos Santos,”” we
write the potentials of the now confined ions. The confinement
appears due to the summation mentioned above, ie., due to
the specific treatment of the divergent term Ikl = 0. The ion—
ion (i—i) potential and the ion—plate (i—p) potential are thus

written
kI
¢, ZZ el 4 k(= )]
VW
erfc(xlr— rl) 2 5
zq’ elr—r| % j:zlqj(z_zj)

4ro J
gbi_P(z) = — Z z;
€ 3
(6)

where o is the charge density of the plates and ¢(r) = ¢;_;(r) +
¢ _P(z). The third term to the right of ¢;_; is the contribution
to the energy that arises precisely from the consideration of the
confinement of the ions. However, for the following constant
potential partition function of the KA ensemble

N
-1
Z,= f | | dr; f do eXp{—[U(fv o ) ©)
e kT

- WGLZ]}
! )

where y is the external potential applied to the cell, we also
need the interaction of the plates with each other. This way we
properly consider the dependence of the total energy on the
charge of the plates. The potential one plate produces in the

other (p—p) is

b = _ 2o,

PP e (8)
where L is the distance between the plates. We note that the
KA ensemble is complementary to the constant charge
ensemble, NVTo, and for our algorithm to be valid, it must
obey the equivalence of ensembles, as shown in Figure 2a. To
obtain the proper total energy, U(ry, ..., ry, 6), we double sum
over the potentials, considering now the plate—plate (p—p),
plate—ion, and ion—ion interactions

276°

Uty o 1y, 0) = = Z gp(r) + T2-LL
1#1
=U.it+tU,+U, )

where the second term on the first equality is the plate—plate
energy. U_, + U,_,, yields all energies that are not interionic.
We write them separately due to the fact that the difference in
energies between the present algorithm and the one used by
KA is only the ion—ion energy. Therefore, by simply replacing
the decoupled energy, one can update the KA-based code to a
faster version. This is one of the main advantages of our
method. The interionic energy is

u_, = Z IS(k)1” kP

. —=r
eV il 2 &

2
2
+ — Z;
eV Z 9

erfc(klr— rl)
SN

" elr— rI

(10)
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with S(k) = Y, g; exp(k-r;) and the last term to the right is the
so-called self-energy. The remaining energy is due to the
plate—ion interaction and plate—plate interaction, defined as

4ro 2 59
U,+U_,=— D qz+ —Lo’L;
€ 5 € (11)

We note that for the constant charge ensemble the plate—plate
interaction is constant, and then it may be set to zero, and y =
0. This way one can recover the canonical ensemble from eq 7,
resulting in the ensemble used in Levin’s paper. Finally, the
ion—ion interaction in the paper by KA is

= 2 (Y (a)
i ij ij
E E cos| —«;; [Ko|27n, [| — + m| +|—

[ Ly l}] ’ \/[L ] [L )

d d
1 v 19 2 2
- = Z —In cosh[—ﬂz,i) - cos[—”yi]
2 Z e L 1,7

- Z ql—quln(x/i) + U

i#j €
(12)

where (x; — x;, y; — ¥, 2, — z;) = (%}, y; z;) and Uy is a constant
term that accounts for the self-energy and does not depend on
positions. We point to the simplicity of eq 10 in comparison
with eq 12, which will be reflected in computation speed. The
extension of the methods to molecular dynamics simulations
could be achieved by calculating the force on ion i with

V.U(ry,..., ry, 6) = E. However, this would increase the
computational time of our algorithm, which is expected for
molecular dynamics simulations when compared to Monte
Carlo.

I1l. POISSON—-BOLTZMANN THEORY
Using the first Maxwell equation

4r

V-E(W) = 2 p(r) )
and the PB theory, we can consider the distribution of charges
in a first approximation as “smeared” over a constant dielectric
background. The PB theory is ubiquitous in liquid theory and
successfully explains a range of physical and chemical
phenomena.*’ Tt is, more generally, a nonlinear version of
the Debye—Hiickel theory, first proposed in the beginning of
the last century to explain the osmotic pressure of dilute
electrolytes. Furthermore, in the PB theory, the density
distribution is governed by the Boltzmann—Gibbs statistics
and is an approximation to the level we can ignore charge—
charge positional correlations and consider a mean-field
electric potential. Hence, it is valid for weakly interacting
liquids, contrary to the case of room-temperature ionic liquids,
even if artificial steric effects are introduced.**~** Thus, for an
electrolyte in slab geometry, we write

Y

i=+,—

1 Mqie—ﬁqid)(z)
T2 d ,
L; /(; e_/f‘i,vlf’(z )dz’

—V2(z) = hil — 066(z) + 66(z—L)

(14)
where N, is the number of anions and N_ is the number of
cations. g, and q_ are their charges, respectively. The first term
is the distributed charge in accordance with the Boltzmann
weights and the Dirac deltas are the charges of the plates,
positioned at z = 0 and z = L. To solve this equation, we
integrate over volume, apply the divergence theorem on the
electric field, and obtain

7845

—Pa(2)
z 1 Nge™
B =Y (e Y L — 68(2) + 0B(' - 1)
€ 0

2 o
(1)

with f the inverse thermal energy. With the relation E(z) =
- f s¢p(z')dz’, we can solve eqs 14 and 15 iteratively using the
Picard iteration. We begin with an initial guess to the potential
and a mixing parameter of y = 0.95. The latter parameter is
artificial, and it is used to improve the range of convergence of
the theory. It must be found by trial and error to optimize the
computational time and the temperature/density scope of the
theory.

IV. VALIDATION OF ALGORITHM

We begin performing MC simulations at the constant potential
ensemble, NVTy, and at the constant surface charge ensemble,
NVTo. We first let the NVTo ensemble simulation relax to
equilibrium and extract the averaged electric potential
difference between the plates

_4_ﬂ/ dZ,‘/‘ pC(Z”)dZ”
€ 0 0

4 = , ,
- [ @) ()

P(2)

(16)

where p, is the charge density and y = ¢(L) will be used as
input to the MC algorithm at the NVTy ensemble. The
equivalence of ensembles is the first trial of our new method.

The simulations through this work are performed with the
Metropolis algorithm, using 10° steps to achieve the
thermodynamic equilibrium and using S X 10* uncorrelated
samples to extract the averaged system properties. We use
long- and short-range movements to properly and efficiently
sample the phase space. The long-range movements are trial
displacements that assign a new random position to the chosen
particle in the whole box, helping the system avoid local free
energy minima. The proportion is 1:10 in relation to short-
range movements, in which the particle moves only a random
fraction of its radius. Considering the NVTy ensemble, we
must perform one type of trial movement that is a transfer of a
random amount of charge from one plate to another. This is
done to the average charges on the plates achieve the
equilibrium state. Again, the proportion is 1:10 in relation to
the trial movements related to the spatial displacements of
particles. We adjust the maximum of charge exchanged on the
fly, to make sure 1/2 of the trials are accepted. We use 1377 k-
vectors to compute the long-range energy, summing 2 times
more vectors in the k, direction in relation to remaining
dimensions. Thus, we set the vacuum region L,,. = L, which is
enough to avoid interactions with the artificial replicas in the z
dimension. The periodic dimensions L; = L, = L, are set to 96
A. The distance L between the plates is chosen to guarantee a
bulk-like regime in the electrolyte far away from each plate.
The particles through the work are modeled as hardcore
spheres with varying sizes. This is known as the primitive
model of electrolytes. The Bjerrum length is defined as Az =
Bq’/€, and it measures the strength of system interactions in
relation to temperature, i.e., the distance at which the entropy
energy is equal to electric potential energy. We test different
initial conditions to ensure that no trap in free energy results in
spurious data. This last point is unfortunately usually ignored
in the literature and it is essential to ionic liquids, since the

https://dx.doi.org/10.1021/acs.jpcb.0c03510
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Figure 3. Charge densities p, for 1:1 room-temperature ionic liquids: (a) Behavior of the double layer can be tuned between overscreening and
crowding by the Bjerrum length alone, at constant potential y = 20 kzT/q. The Bjerrum lengths are indicated in the figure. (b) We simply show
that the behavior can be tuned also by the applied voltage, as shown by Kornyshev and co-workers. The potentials are indicated on the plot, where
V* = gfV and Ay = 36 A, which is characteristic of ionic liquids at room temperature.

strong interactions form many local minima in the free energy
landscape.

For analyzing the PB theory against MC simulations we set
A = 7.2 A, which is characteristic of aqueous electrolytes. In
Figure 2a, we show the equivalence of ensembles and
consistency of our simulations with the PB theory, forming
this way a solid stand to our algorithm. In Figure 2b, we show
that the PB theory fails when the coupling strength of the
system is high and when there are large densities and strong
surface charges. We plot this figure to show that the mean-field
approach will be inadequate to describe room-temperature
ionic liquids, which have much higher volume fractions and
Bjerrum lengths than weak electrolytes.” This gives rise to the
necessity of computer simulations or to complicated liquid
theoretical approaches, like density functional theory or
integral equations. The authors further suggest that new
approaches to liquid theory that rely on solid statistical
mechanical grounds are necessary to overcome the challenge of
properly describing ionic liquids theoretically.

V. IONIC LIQUIDS AND COMPUTATIONAL TIME

We use both egs 12 and 10 to compare computational times,
calculating the initial energy of a system of 1000 randomly
positioned particles. We prepare 1000 initial states and
measure the average computational time to perform the
energy calculations. The parameters of the Ewald summation
are the same as in previous sections, while for the Lekner
summation, we used 35n replicas and 11k replicas. These
numbers are typical of Lekner summation. Our algorithm
performed 2 orders of magnitude faster than the one by KA.
More specifically, for this number of particles, the CPU time
was R200 shorter for our algorithm. This time ratio tends to
increase further with N. This is because the computational
time to calculate the long-range energy in our method, which is
usually the most expensive part of the computation, scales with

O(N) and the Lekner summation scales with O(N*).*" It is
noteworthy that our method when calculating the total energy,

which includes the short-range part, also scales with O(NY).
However, the short-range contribution is expected to be
dominant only when the number of particles is much bigger.
Also, this could be further mitigated using meshing schemes to
reduce computational complexity.'® This speedup may allow
the simulations of highly dense ionic liquids at constant
potential, simulations which previously had prohibitive times

7846

of execution. Merging this algorithm with other techniques,
such as Parallel Tempering recipes, will allow investigations
into new regimes of ionic liquids.

Ionic liquids are a new class of materials sometimes referred
to as solvent-free electrolytes or room-temperature plas-
mas. 0226394 Thig is because, even without a solvent, the
charged molecules are in the liquid state at room temperature.
Furthermore, their properties are highly tunable by engineering
the molecules that will be synthesized. Then, for example, the
dielectric constant or the size of the molecules can be modified
by different synthesis techniques. They usually have lower
dielectric constants than water and have bigger packing
fractions, though this also can vary substantially."*

Following the literature, we define the volume fraction as the
total volume occupied by the molecules divided by the volume
of the simulation box, p, = Y. v,/V, where v, is the volume of
the molecules. We model the ionic liquid as hard spheres with
0.8 nm of diameter and volume fraction p, = 1/3. To achieve
the bulk regime in between the plates, we set them apart at
distance L = 24 nm. We use the same number of k-vectors, MC
steps, and L, as in previous sections.

In a work by Kornyshev et al,”’ it was shown that,
depending on the applied voltage on a confined ionic liquid,
the double layer can present two distinct behaviors: crowding
and overscreening. In the crowding phenomenon, there are not
enough ions to neutralize the plate within just one layer; hence,
two layers are necessary, crowding the plate. Overscreening is
characterized by the fact that one layer of ions has more
surface charge density than the plate, therefore attracting a
second layer of atoms with the opposite charge. In Figure 3a,
we show that by tuning the Bjerrum length, that is, increasing
the temperature or dielectric constant, one can have the two
behaviors at the same potential. This is because, in such a
highly interacting system, the average charge density on the
plates does not depend only on the externally applied potential
but also on the “internal” parameters of the system. In Figure
3b, we switch between double layers by the potential, as usual.
We note, however, a “flat” portion of neutral charge between
the first and the second layer of charge. This is probably
because of the strong steric interactions present in ionic
liquids. We hope that our results serve as benchmarks to
complex liquid theories that aim to study such defying systems.

https://dx.doi.org/10.1021/acs.jpcb.0c03510
J. Phys. Chem. B 2020, 124, 7842—7848
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VI. CONCLUSIONS

We have presented a new Monte Carlo method to rapidly
simulate ionic liquids in slab geometry at the constant potential
ensemble. Merging two previous methods,””** we retained the
advantages of both of them. This is mainly because we avoided
complex summations over modified spherical Bessel functions,
computing just simple exponential series in the reciprocal
space. Furthermore, we have shown equivalence between the
method of constant surface charge and the method of constant
potential. In addition, to lay our algorithm on solid grounds,
we compared it with a Poisson—Boltzmann theory, achieving
perfect consistency in the weak coupling limit. Finally, we
studied room-temperature ionic liquids and showed that the
alternation between crowding and overscreening can be
controlled by the Bjerrum length alone, that is, by varying
kT or the dielectric constant of the liquid one can switch
between behaviors. Our method has a major advantage that it
can replace the KA algorithm by just changing the ionic—ionic
interaction.

With this new method, it is easy and less error-prone to
calculate the differential capacitance of ionic liquids by simply
computing the dispersion of the surface charge density. With
fast enough simulations, one can study how specific parameters
modify the shape of the capacitance curve. That is, with the
algorithm presented in this article, a new and systematic study
of capacitance curves of ionic liquids at constant potential is
possible. This is the subject of our future work.
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