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Resumo:
O objetivo principal deste trabalho é a inferéncia utilizando o método de
méxima verossimilhanga, para 0 modelo de calibragio comparativa estrutural
(Barnett, 1969), o qual é frequentemente utilizado nos problemas para avaliam
a calibragéo e a precisfio relativa de um conjunto de p instrumentos, que foram
projetados para, medir a mesma caracterl’stica, em um grupo comum de n
unidades experimentais. Consideramos testes assintéticos para responder as
questées de interesse. A metodologia é aplicada a conjunto de dados reais e
um pequeno estudo de simulagéo é apresentada.
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ABSTRACT

The main objective of this paper is to discuss the maximum likelihood inference for the

comparative structural calibration model (Barnett,1969), which are frequently used in the
problem of assessing the relative calibrations and relative accuracies of a set of p instruments,
each designed to measure the same characteristic on a common group of n experimental units.

We consider asymptotic tests to answer the outlined questions. The methodology is applied

to a real data set and a small simulation study is presented.

1. INTRODUCTION

In this paper We analyze the problem of comparative calibration, Where p > 2 instruments

are used to measure the same unknown quantity x in a common group of n experimental
units.

The problem of comparing measurement devices which varies in price, time spent to

measure and other features, such as efficiency, has been of growing interest in several areas
like engineering, medicine, psychology and agriculture. Grubbs (1948, 1973) considered an



experiment designed to compare three types of chronometers and Barnett (1969) considered

a comparison of four combinations of two instruments and two operators to measure the

vital capacity. Several other examples in the medical area are presented in the literature,

specially in Kelly (1984, 1985), Chipkevitch et al. (1996) and Lu et al. (1997). Illustrations in

agriculture are considered in Fuller (1987) and for applications in psychology and education,

see for example, Dunn (1992).

Suppose that n experimental units (person, physical object, etc.) are randomly selected

from a population of such units. Let x,- denote the true value of the quantitative characteristic

to be measured in the jth unit, j = 1, ~ .. ,n, which is measured by all the p instruments

and yij the true value of the measurement for the jth unit measured by the ith instrument,

i = 1, - -~ , p, j = 1, - - - ,n. We assume that the yij satisfies the linear structural relationship

with the true (unobserved) x,- and denote by Y}, the observed value (subject to measurement

error) of the measurement of the jth unit by the ith instrument. The described model can
be represented as

yij = ai + flflj, (1.1)

Yij=yij+eij1 zzlimap and j=1,"'ani
where eij ~ ind.N(O,¢,~), at, N ind.N(uz,¢z), an, independent of eij, i = 1,--- ,p and

j = 1, - - - ,n.
As pointed out by many authors (Bolfarine and Galea —Rojas (1996), Galea-Rojas, Bol-

farine and Vilca-Labra (2002) and Barnett (1969), for example) the model (1.1) is not iden—

tifiable. The common way to deal with this problem is to impose restrictions on the model

parameters. As considered in Barnett (1969), we assume that there is a reference instru—

ment which measures without bias (additive and multiplicative) the quantity of interest.
Without loss of generality, we consider that the reference instrument is the first one. Hence,

corresponding to instrument 1, we have

a1 = O and [31 = 1. (1.2)

Another alternative way to identify the model is to consider that the parameters of the
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characteristic to be measured (ccj) is known. The value of these parameters (in, and 9251.) are

obtained by external information as is pointed out by Lu et al. (1997).

Usually, it is considered p > 2 instruments. In the case p = 2 instruments the model

(1.1) corresponds to the structural measurement error model and additional restrictions are
needed to deal with the identifiability of the model (see Fuller (1987)). In the case of p = 3

instruments, Barnett (1969) derived the maximum likelihood estimators for the parameters

explicitly. However, it is possible that some estimates of the variances are negative. Carter

(1981) considered the derivation of nonnegative variance estimates in this case. For 19 > 3

instruments, no explicit form are available for the maximum likelihood estimators of the un-
known parameters as was pointed out by Barnett (1969). Bolfarine and Galea—Rojas (1995a)

obtained the maximum likelihood estimates using the EM—algorithm for p > 3 instruments.

Moreover, they considered a study of inference using the Wald statistics. However, as can be

seen in the simulation study presented in Section 5, the Wald test statistics may be liberal,

i.e., the null rejection rates may be greater than the nominal level of the test.
An important concept in the comparative calibration problem, which is used to assess

the relative calibration and relative accuracy of a set of p instruments are the» reliability
and precision of the instruments (see for example, Shyr and Gleser (1986), Bolfarine and

Galea—Rojas (1995a)). These quantities are defined respectively as

,_ at? J_p’ ” as? + a an?
Usually in comparative calibration analysis, the problem of comparing different instruments

and 7r,~= i=1,-~,p.

or measurement methods reduce to making inferences about the additive and multiplicative
bias, a, and Bi, and the reliability of the instruments, p,, z' = 1, - - - , p. Thus, some hypothesis

that may be considered to assess the quality of the instruments are:

i)H01:a2=~--:ap:~0, fi2f...fflp:1’
iilHoziaz=---=ap:0,fizz-nfflpfl,¢1f...f¢p’
iii)H03;fi2-:...:,3p21,¢,f...=¢p,
iV)H04:a2:~-=ap—_~O,
V)H05:fl2:“'fl,3p:1,



Vi) H061¢1 =”'=¢p-
The hypothesi Hm means that the measurements of the instruments are without bias

(multiplicative and additive), while the hypothesi H04 (H05) means that the instruments

measure without additive (multiplicative) bias and hypothesi Hm means that besides the

instruments measurements are without bias, they are equally reliable. Notice that the null

hypothesis Hog is equivalent to H62 : 0:2 : = up = O, 62 z = Q, = 1, pl = = pp,

which is easier to interpret, but on the other hand, it is more difficult to obtain the likelihood

ratio statistics and Score statistics. For that reason, we are going to use the hypothesis Hm

which is easier to implement. Finally, the Hypothesi Hog means that the instruments measure

without multiplicative bias and they are equally reliable.

Bolfarine and Galea—Rojas (1995b) considered an equivalent factor analysis version of the

Barnett’s model presented in Theobald and Mallinson (1978). This Model can be represented

as

Yij =fli+AiFj+eija (1-3)

where A,- denote the unknown calibration factors, Fj and 6,5 are all mutually independent,
with F, N N(0, 1) and 6,7 ~ N(O, 415i), i = 1,...,p and j = 1,...,n. Without loss of gener—

ality we can admit that the first instrument is the reference instrument, in this case, the

relationship between the models defined in (1.1) and (1.3), can be represented as

2 /\i
fizz/Uh ¢z=/\1, fiizA—l’ ai=Mi—fliflia

i = 2, ..., p. From the last relationship, we have that a, = a,- + fiium.

In the literature, the study of the hypothesis testing for the model (1.1) has been con—

sidered based only on the Wald statistics (see Bolfarine and Galea—Rojas (1995a)). In the

particular case where p = 2, i.e., the measurement error model (Fuller, 1987), Arellano—

Valle and Bolfarine (1994) considered the score and likelihood ratio test statistics to test
H0 : fiz = 1. Bolfarine and Galea—Rojas (1995b) considered the hypothesis testing using the
Wald test statistics and the factor analysis version of the model ( 1.1) given in (1.3).



In this paper we discuss the problem of hypothesis testing based on these three tests and

p > 2. Also, we present a small simulation study based on these three tests, as well as different

sample sizes, different parameter values and the hypothesis of interest, (i) through (vi), just
described. In Section 2 we describe the model and obtain the information matrix in closed

form expressions. Also, we present the EM—algorithm to obtain the maximum likelihood

estimates under the restrictions imposed by the hypothesis described earlier. In Section

3, we discuss the hypothesis testing and in Section 4 we present the model considering the

factor analysis version. Finally, in Section 5 we apply the methodology to the data presented
in Chipkevitch et al. (1996) and Barnett (1969) and a small simulation study is presented

2. THE MODEL

The model defined by (1.1) with the restriction given in (1.2) may be written as

Yj=a+bxj+ej,
where Y, = (Y1j,--- ,Y;,j)T, a = (0,a2,--- ,ap)T, b = (1,fl2,-~- ,fip)T and ej = (elj,

-
, emf, j = 1,-~- ,n. Thus, from (2.1), we have that Y1,--- ,Yn are independent

and identically distributed with Yj ~ Np(y,, 2), where u = E(Yj) = a + byz and E =
Var(Yj) = gisxbbT + D(q§), with D(¢) denoting the diagonal matrix with the diagonal

elements given by q5 = (¢1,. .. ,¢p)T. By letting a = (012, . . . ,ap)T and fi = (fi2,...,fip)T,
the model parameters are given by

9 = (flm,aT,fiT, «Sm, ¢T)T,

and the log-likelihood function may be written as

K") =EW) = 210g f(Y,-, 0), (2-1)
j=1 j=1

where lj(0) = —g log 27r — élog |2| — édfle), with dj(0) = (Yj —— u)T2_1(Yj — u).

2.1 INFORMATION MATRIX

In this section, we present the score function and the information matrix required for the

implementation of the Wald and Score statistics.
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The score function, which is the derivative of the likelihood function l(6) with respect to

0 is given by

U(0)—.. a_1__(g) =ZU (s) (2.11)

where
a1j(s)__1[a____10g|z| adj-(sh
as 2 as as ’

with dj(0) as given in (2.1). In Appendix A, we present the derivatives of log IE] and dj (0)

Uj(0) =

with respect to the components of 0 (pz, 01,1642c and (13).

From (2.1.1) it follows that the information matrix denoted by IF(0) is given by

1M: Lisa I g 0 0

Ian: Iaa rag 0 0

IN"): Is“, Isa Iss [am Is» 7

0 0 I¢zfi [Mgz I¢z¢
0 0 has 14m f¢¢

(2.1.2)

with the components given by

1M = (fig—fig Ip1a=c‘1DTD‘1<¢), Iyxfi=c"lflzfiTD_1(¢l7

Iaa =D_"1(1/)) IT—1(¢)fi13TD 1('¢) Iafl=uzfaw
133 = (ui+¢x——)D1(¢)+¢fi(2fm—ui— ssDwssTDlw)
[as = (c—1)c"2D1(¢)s,

1M = 95.17D"2(¢)D(fl)11(p) 21>(w)stD<b)D~2<¢>

[mm = 5720—11 f¢,¢=—2~bTD(b)D_2(¢),
2

I¢¢ = —D‘2(¢)— féz-‘Dflbw 3(<15) +2—C2D‘2(¢)D(b)bbTD(b)D‘2(¢),

with s = (sz, . . . , spy, is?) = [11,1194] and c = 1 + ¢szD‘1(¢)b.

2.2 MAXIMUM LIKELIHOOD ESTIMATION



In this Section we present the EM algorithm to obtain the maximum likelihood estimates

of the parameters under different restrictions. Bolfarine and Galea (1995a) presented the EM

algorithm for the obtention of the maximum likelihood estimates of the parameters under

the restriction that a1 = O and fil = 1. Considering this restriction and the hypothesis

described in Section 1, namely Hm, i = 1,...,6, we obtained the EM algorithm under the
restrictions imposed by the hypothesis in question.

The methodology of EM algorithm consists in the augmentation of the observed data Y =
(Y1T,. . . ,YI)T by some unobserved data, x = (3:1, . . . ,xn)T, in a way that the maximum

likelihood estimator (MLE) of the parameters based on the augmented data, Z = (YT, x)T

is easy to obtain. Given the estimates of 9 in the mth iteration, 90”), the E step consists in

the obtention of the expectation of the complete data log-likelihood, l(0/Z), with respect to

the conditional distribution of as given Y and 00”). The M step consists in the maximization

of the function obtained in the E step with respect to 9, which gives the estimates of the

parameters at the next iteration, g(7n+1)' Each iteration of the EM algorithm increments

the log-likelihood function of the observed data l(9/Y), i.e., l(0(m)/Y) g l(0<m+1>/Y).

When the likelihood function of the complete data belongs to the exponential family, the

implementation of the EM algorithm is usually simple. In our case, the E step consists in

the obtention of E(:rj/Y) and E(x12-/Y), j = 1, - -- ,n. In the M step, we maximize the

log—likelihood function of the complete data where the values of the sufficient statistics were

substituted by the expected values obtained in the E step. Next, we are going to present

the log-likelihood function of the complete data given by Zj = (1.3,Y15— )T, j = 1, - - -
, n, in

order to implement the EM algorithm. Considering (1.1), we have Zj N Np+1(uz, 22), j =
1,...,n, with

13 Z bTZ
Me:

It and 22: ¢ ¢

u babe ¢ebbT + D(¢)

which gives the following log—likelihood function

p+1l(0/Z) = ~ 2
n 1 n

_10g 271. __ 5 10g Izzl _ 5 Z(ZJ h” Mz)T2z 1(Zj — fix), (2‘21)
j=1



where

c/asx —bTD-1(¢>

-—D“1(¢>)b D‘1(¢)

P

|zz|=¢zH¢i and 2;1= , withc=1+¢szD-1(¢>b-
12:1

Considering the properties of the multivariate normal distribution, the E step consists in the

obtention of

(m) — E(xj/Yj,9(m‘1))J
a) |

H
¢gm—1) T 1

“gm—4) + b(m—1) D—1(¢)(m— )(Yj _ a(m—1) __ “(mm—1)b(m—1))
c(m—1)

and

A2(m> (W1) (mm 2 37“) 4m) 2

(L‘j = Var(:1:j/Yj,0 )+(E(£Ej/Yj,9 )) =m+<$j ) .

Notice that the complete log-likelihood function and also the estimates of xj and (I)? depend

on the values of a, b and c. For the case where there are no additional restrictions, the

estimates of the parameters in the M step is given in Bolfarine and Galea—Rojas (1995a).

Next, we present the estimates of the parameters in the M step under the null hypothesis

Hm, i = 1, 4, 5 and 6. Under the null hypothesis given in H02 and HQ3, we do not need to

use the EM algorithm, as it is possible to find the restricted estimators of the parameters

explicitly. First, we present the values of a, b and c, for each hypothesis in Table 1.

Table 1: The values of a, b and c under difierent null hypothesis
Null hypothesis a b c

H01:a2: ... zap=0;fl2 : --.=/3p:1 0p 1p 1+¢z1;—D_1(¢)1p
H0, ; a, = ... z ap = o o, (1, flT)T 1 + ¢szD”1(¢>)b

Hos ; 52 = . .. = 51, z 1 (0, aT)T 1; 1 + ¢x1;D*1(¢)1,,
H06 : $1 = ' ' ' = ¢p z ¢ (0) aT)T (lifiTYr 1 + %bTb

Next, we obtain the estimates of the parameters in the M step for each null hypothesis,

considering the expressions given in Table 1 and the values of 1757”) and 53071) with the values

of a, b and c, substituted by their respective values given in Table 1.
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Under Hui, z' = 1, 4, 5, 6 the estimates of the parameters in the M step is given by

1) Estimates under Hm

Am). (n $2
fi£m+1) = §(m)J ¢£m+1): Zj=1n$j _(-—(m))2an

~m+1 A m
71 A0")

4,5. >_ $(ZY5-2214,-g )+Zm§ , =1, -,p,
j-l j=1 j=1

7: 4m)
with gm): gfi—iflfi
2) Estimates under H04

~<m+1>_ can) ~<m+1> 2221?me 7M 23215?” sun) 2
“a: ,fl :___:FnT—’ ¢$ =————n———~—($ ) and

ELI xi

~(m+1) 1 "
~(m+1) 4m) ~<m+1> 2

" Eon) _

¢i 25 ZYiJ2—2fli jigij] +(Bi )sz i 1:1,"‘,p,
j=1 j=1

With fi(m+1)_— 1 and Y2j= (Yaja ' ' ' JEF-
3) Estimates under Hos

Zn 12W)

~£m+1)___ E(m)Janm+1) = 7L _ gm; an“) = j=1nxj _ (gm)? and

. 11

~ N A ~ A(m)W i(;<yu— §m+1>>2—2; -—a5m+1>>+;w% ij=1 j=1
~ m 1 .witha §+>——0andY=lzyzlicj, z=2,...,p.

4) Estimates under Hos

n A(m)_ _(m)
figmm : gm; 5mm = 241“? (mJ

XYszJJJJ—J
Y?) a<m+1> Z 372 _ B<m+1>§on>J

23:1 33? ”(97 )2

A('")n 2
~(m+1) = Z'=1xi _ 20") 2$1:

n
_ (x ) and

~ 1 "
~ ~

" ~W” = 5; (Em- — a<m+1>>T<Yj — aw”) — 2Z fifim’wwmfm — a<m+1>)+
j=1 j=1



(g(m+1))T'5(m-l-l) 1225-3070) ,

"“1

~)(m+1~(m+1)where a<m+1>=(0 (a<m+”)T)Tb =<o (fl W and Y} =%§:}‘=1Yzj-
Notice that in all cases, the maximization step is given in closed form expressions, With

no need to develop numerical iterative process during the M—step, which makes the algorithm

extremely simple and computationally inexpensive.

Moreover, as commented earlier, under the hypothesis H02 and H03 the restricted esti—

mator of the parameters may be obtained explicitly. These estimates under Hog is given

by

fix = 7..,¢ n(p—1)ZZ( 2and
j=1i=1

55x = ~}:(Y —Y_) 2}; —¢,

Where 7" = 51; 21111 Yij and Y-j $21 Kj. Observe that in this case the estimate
of (fit can be negative. If ¢m < 0, then we can proceed considering (fix = 0 and in this case

the estimate of 45 is given by

~ 1 n p _¢ 2 —" 20/21“ "' Y..)2-
np j=1 i=1

Finally, under the hypothesis Hog the restricted estimator of the parameters may be obtained

explicitly, which is given by
Tl P

fix = 71“, a,: =7L ”71.7 i: 21"'7p7¢ ZZ[ (Yij- Yi)2 (Y'j— vyl=n(p—1)
j=1 i=l

and

_$_ y. _3,23 p

If 5x < 0, then we can proceed considering (bx = O and in this case the estimate of ¢ is given

by



3. HYPOTHESIS TESTING

In this Section we present three asymptotic tests to test the hypothesis Hm, i = 1, - - - ,6,

which was discussed in the Introduction. Let’s denote by ”5 the MLE of the parameters
0 = (aT, BT, dJT, ,uz, ¢z)T and 5,- the restricted MLE under the ith hypothesi.

3.1 WALD’S STATISTICS

Observe that the 6 hypothesis of interest given in the Introduction may be rewritten

as Hm : A,- 0 = qu, where A; is an adequate Ti x 31) matrix of rank Ti, with Ti 5 3p,

i = 1, - - ~
, 6. Let q = p —- 1, L, an identity matrix of order q, 1,1 an q x 1 vector composed by

1’s and analogously Oq an q x 1 vector of 0’s. Then, the hypothesis Hog, i = 1, ..., 6, may be

written as,

1) A1 = [12:1 02qx(p+2)l and (101 = (01, 1DT’

I 0 O
2) A2 = 2q 2qx2 and (102 = (02,12’02’ T,

0 qup qu2

0 I 0 0
3) A3 = qxq q qx2 and (103 2 (13,0; T,

0 O qup qu2
4) A4 = [IQ 0q><(q+p+2)l and q04 = Oq’

5) A5 = [quq Iq OqX(p+2)l and C105 2 1m

6) A6 2 [09x2q qup qu2l and (106 = 0:1,

with B = [1,1 — Iq] .

Considering A“ i = 1, - -- ,6, just described, we can test each of the hypothesis H0,

considering the Wald test statistics, which is given by

Wot = n[Ai6 — leTIA£I;1(§)A:l-1[Ai§ _ quL

where 15109) is the inverse of the observed information matrix given in (2.1.2). So considering

the Wald test "statistics, we only need to obtain the unrestricted MLE to calculate the test
statistics.
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3.2 SCORE STATISTICS

In this case, the Score statistics for each hypothesis Hot, z' = 1, ..., 6, is given by

1 ~T ~ ~
SOi = fiUi I;1(6i)Uia

where f],- = U(6,~) = gigs—3L), i = 1,...,6 and U(0) as given in (2.1.1). Notice that in this

case we only need to obtain the estimated values under H0. Depending on the situation, it is

easier to obtain the parameter estimates under H0, rather than the unrestricted parameter

estimates. So when this is the case, the Score statistics takes advantage over the Wald’s

statistics.

3.3 LIKELIHOOD RATIO STATISTICS

The likelihood ratio statistics is given by

Rvo, = —2[z(§> — £0910],

for each hypothesis Hm, i: 1, - -- ,6.

Under usual regularity conditions, each of the statistics Wm, So, and RI/bi, i = 1, - - - ,6,

has an asymptotic x3, distribution under the null hypothesis. So we reject Hg,- with signif—

icance level a, if WOi(So,', RVm) > Xfl—am')’ where xéwm is the 100(1 —— a)% percentile of

the chi square distribution with r,- degrees of freedom, z‘ = I, ..., 6.

4. THE FACTOR ANALYSIS VERSION

In this Section, we consider the factor analysis version considered by Theobald and Malli-

son (1978) defined in (1.3). Under the factor analysis version, Bolfarine and Galea—Rojas

(1995b) presented the hypothesis testing based on the Wald statistics, where the estimates
of the parameters were obtained by the use of the EM algorithm.

4.1 ESTIMATION AND TESTING HYPOTHESIS ABOUT THE CALIBRATION LINES

Under the parametrization of factor analysis, we can reproduce some of the hypothesis

defined as Hm, i = 1, ~ - . ,6 presented in Section 2 as follows:

1) H01 is equivalent to H61 : [1,1 = = up, A1 = = A,,.

12



2) H02 is equivalent to H62 : H1 = = up, A1 = = AP, (bl = = (zip.

3) H03 is equivalent to [1763 : A1 = = AP, ¢1 = = d),,.

4) Hos is equivalent to H65 : A1 = = AP.

The hypothesi H66 is the same as the hypothesi Hos- The hypothesi HM does not have

a simple representation under the factors analysis version as given before for the other

hypothesis. It may be written as H64 : N2 — $31“ = = up -— iii-pl = 0. In this case it is

more complicated to test the hypothesi ( 64) considering the Score and the likelihood ratio

statistics. An alternative is to test the hypothesi H64 based on the asymptotic distribution of

the maximum likelihood estimators of the ‘7 = (M2 — film, ..., up — imQT and then consider

the Wald statistics.
As presented in Section 2, the maximum likelihood estimator under the hypothesis 1162

and [1763 may also be obtained explicitly for the factor analysis version. The restricted

maximum likelihood estimates under H62 is given by

_ ~ 1 n 1"

~ _ Y = x Y 2
M 7

(b n(p_1);§( J II) and

~ 1 n _ _ a 1 n p
= _ Y —Y 2——= — — 2—A

n J=1( J )
p np J; ;(Y;] Y ) ¢

Observe that A2 can be estimated negatively, in this case it may be considered as /\ = O

and then consider the maximum likelihood estimator of the parameter ¢ as

Under the hypothesi H63 the restricted estimator of the parameters may be obtained

explicitly, which is given by

g:
M II

13



. T —- ~ ~ ~ TWlth Yj = (Y1j,--- ,ij) ,Y=%Z?=1Yj and N=(u1,--' Mp) -

Observe that /~\ can also be estimated negatively, in this case we can proceed considering

A = O and the maximum likelihood estimator of the parameter ¢ is given by

For the rest of the hypothesis we are going to consider the EM algorithm and the ECM

algorithm (Meng and Rubin (1993)) to obtain the restricted estimative of the parameters.

The estimator of F,- and Ff in the E—step is given in Bolfarine and Galea-Rojas (1995b)

as

Eggm) = C_1___(m_—(A(m—1))TD—1)1(¢(m—1))(Yj _”(m-—1)) and

(m) 1 “(m) 2F2j _(m—1)+(Fj )’
where c('"‘1)"= 1 +(Mm-IUTD-l(¢(m-1>)A<m-1> and A = (A1, . -. ,A,,)T

Next, we obtained the restricted estimates of the parameters in the CM—step under the

hypothesis H61 and H65 and M—step under the hypothesis Has. The ECM—algorithm replaces

each M—step of the EM—algorithm by a sequence of S conditional maximization steps (CM-

steps), each of which maximizes the expectation of the complete data log—likelihood, l(0 /Z),
with respect to the conditional distribution of F given Y and 00"), over 0 but with some

vector function of 0, gs(9) (s = 1, - -- ,.5’) fixed at its previous value (see Meng and Rubin

(1993)).

1) CM-Step

0 Estimates under Hélzm ="'=Mp and A1 _—_...:)\p

_ ~(m) n A m ——

X(m+1) : lgD 1(¢ ) j=1Fj( )(Yj "“ Y)
~(m) n A071) _(m)

1;D-T<¢ )1p(zj=1F;2'" —n<F F)

mm“) =
(y_;<m+n1Fm)TD1(¢w)1

1;TD—1(¢)1,,)
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and

~ m 1 1 " ~ Aw») ~ A m ~m¢( + )

a (()\(m+1))2.Fj2 1p __ 2A(m+1)F}( )(Yj __ lpl-l'( +1))+
j=1

D(Yj _1pu(m+1))(Yj _1pfi(m+1)))

0 Estimates under Hés : /\1 = -- ~ = AP

~(m) n A(m) ——

X(m+1) z 1TD_1(¢ )Zj=1 E7 (Yj _ Y) ~(m+1) Y _ X(m+l)1 F(m)

n A(m) gun) ’ ’

1pTD_1(¢(m ))1p (23:11 F3? “ ”(F )2)

and

~(m+1) 1
71.

~ m AU”) m m ~ m¢ = EEa» +1))2F;‘2 __2)\( +1)F( )(Yj— ”( +1))+
1:1

pm. — fi‘mH’ij — awl)».

2) M—Step

0 Estimates under H56 : $1 = . - - = qfip

F(m) . __ “ A mion“): 21:11? (1,122 fi(m+1) = ‘Y‘ — X<m+1)F( ),

Zj=1 F]? _ "(F )2

and

~ 1 ” AW) ~<m+1> ~(m+1) ~<m+1> ~(m+1) = __ F2 A TA _2F(m) A T Yj" “(m+1) +¢
WZ( , < > < > < )

(yj _ fi(m+1))T(Yj __ fi(m+1))) .

Next, we are going to present the test statistics for the hypothesis H61, H62, H63, H65

and H66.

4.1.1 WALD STATISTICS

15



Let 0 = (if, AT, ¢T)T be the vector of parameters under the factor analysis version.

Then under usual regularity conditions Jab ~ 0) —+d N3p(0, I;1(0)), Where 5 is the max-

imum likelihood estimator of 0 and Ip(0) is the Fisher information matrix presented in

Appendix B. Denoting

QM 0 0
_1 QM“ 0

QZIF (0) = z 0 ”AA QM:
0 0,4)

and 11: = (AT,¢T)T, with AT = (A1, - -- ,A,,) and J = (¢1,-.- ,¢,,), the Wald statistics for

the hypothesis H61, 62, H63, 65 and H66 are, respectively, given by

W51 = n[fiTBT(BfiWBT)“1Bfi+XTBT(BQMBT)'1BX],

Wt = anBWBfiWBU-IBMJTBWBfiMBU-lw,
W53 = ntZTBT(B§(A,¢)BT)—lntz,

W3}, = nXTBT(Bfi,\,\BT)‘1BX,

Wat = naTBT<Bfit¢BTrlBa

B 0
where B = ( - ) , with B as given in Section (3.1) and ”T = (m, . -- Hap).

O B

4.1.2 SCORE STATISTICS

The score statistics for each hypothesis H6“ i = 1, 2, 3, 5 and 6, is given by

l ~T ~ ~
S611 = EUi IEIWJUM

with 17} = U (52) = ELI Uj(5i), Where Uj (Bi) was obtained in Appendix B.

4.1.3 LIKELIHOOD RATIO STATISTICS

The likelihood ratio statistics is given by

RVo’i = —2[l(5) — 1050],

for each of the hypothesis H61, H62, H63, H65 and H56, Where l(9) = 2221 log f<Yj,9), with

Yj =(Y1j" ' ' $1]?ij N 1101", 2): p’ 2 (M1, ° ‘ ' nu'p)T and z = AAT + D(¢)
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Under usual regularity conditions, each of the statistics W3“ 531. and RVOfi, presented

above has an asymptotic xi. distribution under the null hypothesis. So we reject Hg.) with

significance level a, if wuss), RVO‘E) > xfham, Where xfhayn) is the 100(1 wa)% percentile

of the chi square distribution with ri degrees of freedom. Considering the hypothesis under

question, we have that r1 = 2(p — 1), rz = 3(p — 1), 7‘3 = 2(p — 1), T5 = p — 1 e rs =p — 1.

5. APPLICATION AND SIMULATION

In this section we apply the results obtained in the previous sections to the data set

presented in Barnett (1969) and Chipkevitch et al. (1996). Barnett (1969) considered a

comparison of four combinations of two instruments and two operators to measure the lung
capacity in 72 patients. In Table 2 we present the maximum likelihood estimates of the

parameters and in Table 3 we present the restricted maximum likelihood estimates of the

parameters under the null hypothesis.

Table 2: The estimated values of the parameters with the standard deviations between paren—

thesis

M (12 as 04 52 133 fl4

2246.11 —204.46 —528.58 —437.25 1.060 1.192 1.131

(90.08) (105.66) (121.88) (123.27) (0.045) (0.052) (0.052)

¢z (bl ¢2 453 (754

5340424 5024808 1915075 2923573 3884320

(9.71x104) (9607.77) (5255.33) (7260.35) (8272.19)

In Table 4 we show the Wald, Likelihood Ratio and Score test statistics together with
the p_values.

Looking at Table 4, we reject all the hypothesis at a = 5%, which means that considering
these four combinations of instruments and operators, none 0 then are measuring without
bias (additive, multiplicative or both) and they are not equally reliable. If we consider

a = 1%, we do not reject the last hypothesi if we use the Wald or Likelihood Ratio test
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statistics, which means that these combinations are equally reliable. However, if we consider

the Score test statistics we reject this hypothesi.

Table 3: The estimated values of the parameters under the null hypothesis

9 H01 H02 H03 H04 H05 H06

[1.x 2170.33 2168.16 2246.11 2218.29 2246.11 2246.11

ag — - -70.42 — -70.42 -183.58

(13 - - -97.50 - -97.50 -513.75

014 — — -143.89 - —143.89 —430.75

fig - - - 0978 ~ 1.05

fl3 - — - 0.980 - 1.19

[34 - - - 0.956 - 1.13

(b, 62781330 638788 64576970 65531180 62906490 5383154

¢1 5675562 4206794 3844691 5319362 4997914 3484927

¢2 1276554 4206794 3844691 1316344 1412862 3484927

¢3 4562265 4206794 3844691 4542538 4383090 3484927
434 5325035 4206794 3844691 4981037 4633041

'

3484927

Table 4 : The Wald, Likelihood Ratio and Score test statistics.
‘ Hypothesis Wald p_value Likelihood p_va1ue Score p_value

Ratio

Hm 33.45 0 34.59 0 29.8 0

H02 43.29 0 51.56 0 55.23 0

H03 28.29 0.0001 32.12 0 33.27 0

H04 24.78 0 27.07 0 23.40 0

H05 18.45 0.0004 19.21 0.0002 16.67 0.0008

Hos 8.98 0.03 11.19 0.01 12.73 0.005

Chipkevitch (1996) considered the measurements of the testicular size of 42 adolescents

obtained based on five methods to calculate the volume of the testicle. The objective was

to test the lack of bias and the accuracy of the instruments. In Chipkevitch et al. (1996),

the transformed data was considered by taking the cube root of the volume to satisfy the

normal assumption of the data. We will also consider the transformed data set.
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Table 5 shows the estimated values of the parameters, while Table 6 presents the restricted

maximum likelihood estimates of the parameters under the null hypothesis.

Table 5: The estimated values of the parameters with the standard deviations between paren—

thesis

flz 012 as 014 as fl2 fla [34 fls d’z

2.10 0.07 0.03 0.03 0.38 0.93 0.97 1.03 0.90 0.12

(0.06) (0.11) (0.11) (0.11) (0.10) (0.05) (0.05) (0.05) (0.05) (0.03)

451 452 ¢3 ¢4 ¢5

0.007 0.008 0.007 0.007 0.006

(1.88x10-3) (2.07x10-3) (1.83x10"3) (1.90x10“3) (1.61x10-3)

Table 6: The estimated values of the parameters under the null hypothesis

0 H01 H02 H03 H04 H05 Hos 9 H01 H02 H03 H04 H05 H06

(12 — - -0.074 - -0.075 0.068 F's: 2.100 2.133 2.100 2.103 2.100 2.100

cm — — —0.036 — -0.036 0.030 $3; 0.118 0.113 0.116 0.112 0.115 0.123

(14 - — 0.100 — 0.100 0.033 ¢1 0.005 0.017 0.007 0.007 0.007 0.007

a5 — — 0.172 — 0.172 0.387 $2 0.150 0.017 0.007 0.008 0.008 0.007

fig - — - 0.964 - 0.932 053 0.008 0.017 0.007 0.007 0.006 0.007

fig) — -
l

— 0.982 - 0.968 ¢4 0.020 0.017 0.007 0.007 0.008 0.007

fl4 — - - 1.047 - 1.032 ¢5 0.040 0.017 0.007 0.009 0.007 0.007

55 - — - 1.077 — 0.897

Table 7 shows the test statistic values considering the Wald, Likelihood Ratio and Score

test statistics together with the p_values.

Table 7: The Wald, Likelihood Ratio and Score test statistics.
Hypothesis Wald p.value Likelihood p_value Score p_value

Ratio

Hm 273.297 0 133.439 0 77.324 0

H02 274.067 0 159.040 0 127.978 0

H03 10.343 0.242 9.011 0.341 8.597 0.377

HM 19.681 0.001 15.776 0.003 14.045 0.007

Hos 9.574 0.048 8.528 0.074 8.173 0.085

Hos 0.614 0.961 0.591 0.964 0.557 0.967
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Analyzing Table 7, we notice that the hypothesis 1,2 and 4 are rejected, while the hy-

pothesis 3 and 6 are not rejected. Considering the hypothesi 5, we reject at a = 5% if we

use the Wald test statistic, meaning that the instruments measure with multiplicative bias.

However, if we consider the Likelihood Ratio or Score test statistics we do not reject this

hypothesi. Motivated by this result we conducted a small simulation study where we ob-

served that for the sample size in consideration, the hypothesi in question and the estimated

parameter values obtained for the Chipkevitch data set, the Wald test statistic is liberal

under the nominal level 5%. So the result obtained by the Likelihood Ratio and Score test

statistics may be more accurate, i.e., the instruments are measuring without multiplicative

bias.

We have conducted a small simulation study considering all the 6 hypothesis to compare

the three asymptotic test statistics for different sample sizes and parameter values. Let

qbz = 0.123, ¢1 = ,¢p : d), with (15 = 0.007 and d) = 0.05, nx=0.1, ”35:2 and ”3:5. For

the intercept and slope parameters, we have considered 072 = 0.07, a3 = 0.03, 014 = 0.03,

015 = 0.38, fig = 0.93, fig = 0.97, fi4 = 1.03 and fi5 = 0.90. So we have considered p = 5

and the parameter values near the estimated values of the parameters of the Chipkevitch

data set and some other values. To study the behavior of Wei, SO,- and RVOi, z' = 1, - - - , 6 for

moderate and large sample sizes we generated a thousand samples of sizes 40, 50 and 100

considering the model defined in (2.1). Considering the nominal significance level a = 5%

we obtained the corresponding empirical significance levels.

When we changed the value of the parameter um, keeping all the other parameters fixed,

as well as the sample size and the different hypothesis, the conclusion of the simulation study
were the same, implying that the value of the parameter pm seems not to change the behavior
of the test statistics in the cases considered here. The same happened when we considered

different values for the parameter (15. So we are going to present here only the results of

the simulation study for ya, : 2 and qfi = 0.007, which are the values close to the estimated
values of Chipkevitch data set. Table 8 shows the empirical significance levels obtained in

this simulation study.
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Table 8: Empirical significance levels considering the Wald, Likelihood Ratio and Score test
statistics.

H01=02="'=05=0; H02102=“'=05=0; H031fl2="'=55=;
fi2=“'=fls=1~ fl2="'=fls=1; ¢1=“'=¢5=¢-

¢1 ="'=¢5=¢~
11 W01 RV01 301 W02 RVoz 302 Was RVbs 303

40 11 7.3 4.9 12.1 7.6 5.2 11.1 7.8 6.3

50 11 6.1 4.8 8.8 5.4 4.8 7.1 5.8 5.6

100 5.6 4.5 4.8 5.8 5.3 4.9 6.5 5.8 5.5

H04za2=---=a5:0. H05152=“'=fls=1- Hosi¢2="'=¢5=¢-
11 W01 Rl'ln 301 W02 RVbz 502 , Woa RV03 503

40 9.1 7.0 5.5 9.9 7.5 5.9 9.6 8.2 5.3

50 8.7 5.9 4.2 8.2 5.9 4.0 6.0 6.0 5.4

100 5.7 4.7 4.2 5.1 4.3 4.1 6.0 5.9 5.2

Analyzing the Table 8, we observe that regardless of the hypothesis in question, we

conclude that the Wald test statistics is liberal, i.e., it is displaying null rejection rates that
are greater then the nominal level of the test even for n=100. For moderate sample sizes

the Score test statistics seems better than the other two test statistics. The same conclusion

were obtained for the other parameter values that are not shown here.

Considering the factor analysis version, the estimated values and the values of the test
statistics are very close to the ones obtained earlier. Table 9 and Table 10 (Table 11 and Table

12), shows respectively, the estimated values of the parameters and the Wald, Likelihood

Ratio and Score test statistics for the Barnett (Chipkevitch) data set.

Table 9: The estimated values of the parameters with the standard deviations between paren—

thesis

M1 M2 H3 H4 A1 /\2 A3 A4

2246.11 2175.69 2148.61 2102.22 730.78 774.39 871.03 826.23

(90.08) (92.71) (104.61) (100.10) (66.46) (66.62) (75.40) (72.73)
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(151 (152 ¢3 ¢4

5024808 1915075 2923573 3884320

(9607.40) (5258.81) (7259.32) (8269.97)

Table 10: The Wald, Likelihood Ratio and Score test statistics.

Hypothesis Wald p_va.lue Likelihood p_value Score p_va.lue

Ratio

Hm 34.81 0 34.59 0 29.8 0

H02 44.58 0 51.56 0 55.23 0

H03 29.12 0.0001 32.11 0 33.45 0

H05 19.35 0.0002 19.21 0.0002 16.67 0.0008

H06 898 0.03 11.19 0.01 12.73 0.005

So, considering the Barnett data set and the hypothesis of interest we obtained the same

result as the one obtained earlier.

Table 11: The estimated values of the parameters with the standard deviations between paren—

thesis

fll N2 M3 M 115 A1 /\2 A3 /\4 A5

2.10 ~ 2.03 2.06 2.20 2.27 0.35 0.33 0.34 0.36 0.32

(0.06) (0.05) (0.05) (0.06) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04)

¢1 $2 ¢3 (134 455

0.007 0.008 0.007 0.007 0.006

(1.88x10—3) (2.07x10-3) (1.83x10—3) (1.90x10—3) (1.61x10—3)

Table 12: The Wald, Likelihood Ratio and Score test statistics.

Hypothesis
' Wald p_value Likelihood p_value Score p_value

Ratio

H01 268.021 0 133.438 0 77.323 0

H02 268.763 0 159.040 0 127.978 0

Has 8.825 0.357 9.009 0.341 8.669 0.371

Hos 8.084 0.088 8.528 0.074 8.173 0.085

Hos 0.614 0.961 0.591 0.964 0.554 0.968
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Considering the Chipkevitch data set, we obtained the same results as the one obtained

earlier considering the model defined in (1.1) except for the hypothesi H65. In this case,

if we use the Wald test statistics we had rejected the hypothesi H65. On the other hand,

if we consider the Likelihood Ratio or the Score test statistics we had not rejected this

hypothesi. Based on the simulation study, we have concluded that the result obtained under

the Likelihood Ratio or the Score test statistics were more reliable. Considering the factor

analysis version, we reached the same conclusion meaning that the instruments measure

without multiplicative bias at the significance level a = 570.
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APPENDIX A: Computing the first derivatives under the Barnett’s model

In this section we present the score function which is given by U(0) = , 91:1 Uj (0), Where

. . _ aej(0)_ _1§____10g|2| 1
.we) — 87 —2 87 jaw. (A.1)

adjW)where dj—y = , 7 = ax, a, fi, ¢m (15 and dj(0) as in (2.1). Further, using results in Nel

(1980) related to vector derivatives it follows that,

lefi’gl = O, f0r7=flm,a, ai~((;——ggz!=2¢czD 1(‘l/))fi,

01222! = $7; 6105412!__¢_§D(b)D*2(¢)b+D_1(¢)1p,

dim = “2bT2—1Wj’ dja=_21(p)zrle,
djfi = —2qu_1(¢)W2j +2fianjD—1(¢)fia dj¢z= 0—2“?

«1M, = —D‘2(¢)D(WJ-)Wj —§a2D(b)D—2(¢)b+2ffa,D(b)D“2(¢)Wj,

where 10 = (¢2,--~,¢p)T 7 Qj = Us: + 6“1¢xaj, With Gj = WJTD"1(¢)b, Wj = Yj — it

ng = ng — a — Bax, Y2j=(y2j, ..., ypj)T and b, c as defined in Section 2.

APPENDIX B: Computing the first derivatives under factor analysis

In this appendix we obtained the score function under the parametrization of factor
analysis. In This case

(fly-(0)
__ __1_310gl2| 1

.

67 _ 2 87
— 5 17’UN”) = (13.1)
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34109)
37

AAT + D(¢). Thus, it follows that
,—y = u,«\,¢ and djw) = WJTzerj, with W,- = Y,- — u and z =Where dry =

610g|2| _ 610g|2|_ —1 —1 Blog|2|_ —1 ~ —1 —2T — (LT—2c D (¢)& 64)
—D (¢)1p c D (¢)D(>\)A,

d,- = —22—1Wj,

dj = —2c-1D-1(¢)W,-WJTD-1(¢)A+2c-2chD-1(¢)A,

dj : —D-2(¢)D(Wj)wj + 2c-1cj2D-2(¢)D(A)Wj — c_2cj1D"2(¢)D()\)A.

where c as given in Section 4, OJ] =WIMWJ~ and ng =WID‘1(¢)A, withM = D‘1(¢)AATD“1 (¢).

fun 0 0

The Information Matrix is given by Ip(0) = 0 IAA IA¢ , with I”N = 2—1;

0 145A 1¢¢>

1» % [<c — 1)D-1(¢) + e — 1)M] ; [w = I;,\ = % [D-2(¢>D<A) — iMD-lwwon
and I¢¢ ; % [D-zw) —- %D—3(¢>D(A)D(A) + 5D*1(¢>D(A>MD(A>D-l(¢>l
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