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Resumo:

O objetivo principal deste trabalho é a inferéncia utilizando o método de
maéaxima verossimilhanga para o modelo de calibragao comparativa estrutural
(Barnett, 1969), o qual é frequentemente utilizado nos problemas para avaliar
a calibracéo e a precisao relativa de um conjunto de p instrumentos, que foram
projetados para medir a mesma caracteristica, em um grupo comum de n
unidades experimentais. Consideramos testes assintéticos para responder as
questdes de interesse. A metodologia é aplicada a conjunto de dados reais e
um pequeno estudo de simulacdo é apresentada.
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ABSTRACT

The main objective of this paper is to discuss the maximum likelihood inference for the
comparative structural calibration model (Barnett,1969), which are frequently used in the
problem of assessing the relative calibrations and relative accuracies of a set of p instruments,
each designed to measure the same characteristic on a common group of 7 experimental units.
We consider asymptotic tests to answer the outlined questions. The methodology is applied

to a real data set and a small simulation study is presented.

1. INTRODUCTION

In this paper we analyze the problem of comparative calibration, where p > 2 instruments
are used to measure the same unknown quantity z in a common group of n experimental
units.

The problem of comparing measurement devices which varies in price, time spent to

like engineering, medicine, psychology and agriculture. Grubbs (1948, 1973) considered an



experiment designed to compare three types of chronometers and Barnett (1969) considered
a comparison of four combinations of two instruments and two operators to measure the
vital capacity. Several other examples in the medical area are presented in the literature,
specially in Kelly (1984, 1985), Chipkevitch et al. (1996) and Lu et al. (1997). Illustrations in
agriculture are considered in Fuller (1987) and for applications in psychology and education,
see for example, Dunn (1992).

Suppose that n experimental units (person, physical object, etc.) are randomly selected
from a population of such units. Let z; denote the true value of the quantitative characteristic
to be measured in the jth unit, j = 1,--- ,n, which is measured by all the p instruments
and y;; the true value of the measurement for the jth unit measured by the ith instrument,
t=1,---,p,3=1,--- ,n. We assume that the y;; satisfies the linear structural relationship
with the true (unobserved) z; and denote by Y;; the observed value (subject to measurement
error) of the measurement of the jth unit by the i¢th instrument. The described model can
be represented as

Yij = i + Biz;, (1.1)

)/'ijzyij+eija Zzl,,p and jzla"',n)

where e;; ~ ind.N(0,¢:), z; ~ ind.N(usz, &), z; independent of e;j, ¢ = 1,---,p and
j=1---,n.

As pointed out by many authors (Bolfarine and Galea -Rojas (1996), Galea-Rojas, Bol-
farine and Vilca-Labra (2002) and Barnett (1969), for example) the model (1.1) is not iden-
tifiable. The common way to deal with this problem is to impose restrictions on the model
parameters. As considered in Barnett (1969), we assume that there is a reference instru-
ment which measures without bias (additive and multiplicative) the quantity of interest.
Without loss of generality, we consider that the reference instrument is the first one. Hence,

corresponding to instrument 1, we have
a; =0 and B =1. (1.2)
Another alternative way to identify the model is to consider that the parameters of the

2



characteristic to be measured (z;) is known. The value of these parameters (u, and ¢.) are
obtained by external information as is pointed out by Lu et al. (1997).

Usually, it is considered p > 2 instruments. In the case p = 2 instruments the model
(1.1) corresponds to the structural measurement error model and additional restrictions are
needed to deal with the identifiability of the model (see Fuller (1987)). In the case of p =3
instruments, Barnett (1969) derived the maximum likelihood estimators for the parameters
explicitly. However, it is possible that some estimates of the variances are negative. Carter
(1981) considered the derivation of nonnegative variance estimates in this case. For p > 3
instruments, no explicit form are available for the maximum likelihood estimators of the un-
known parameters as was pointed out by Barnett (1969). Bolfarine and Galea-Rojas (1995a)
obtained the maximum likelihood estimates using the EM-algorithm for p > 3 instruments.
Moreover, they considered a study of inference using the Wald statistics. However, as can be
seen in the simulation study presented in Section 5, the Wald test statistics may be liberal,
i.e., the null rejection rates may be greater than the nominal level of the test.

An important concept in the comparative calibration problem, which is used to assess
the relative calibration and relative accuracy of a set of p instruments are the reliability
and precision of the instruments (see for example, Shyr and Gleser (1986), Bolfarine and
Galea-Rojas (1995a)). These quantities are defined respectively as

6B 1
P b+ 6 PN

Usually in comparative calibration analysis, the problem of comparing different instruments

and m; = t=1,---,p.

or measurement methods reduce to making inferences about the additive and multiplicative
bias, a; and f;, and the reliability of the instruments, p;, ¢ = 1,--- , p. Thus, some hypothesis

that may be considered to assess the quality of the instruments are:

)Hyp:aa=-=0,=0, fo=---=0,=1,
i) He:ap =" =0p=0, fo=---=0,=1, ¢y=---=¢,
i) Hog : o= =fBy=1, y=-- =,

iv) Hog a3 =+ = 4 =0,

V) Hos: fo=---=f,=1,



vi) Hog : o1 = -+ = Pp.

The hypothesi Hy; means that the measurements of the instruments are without bias
(multiplicative and additive), while the hypothesi Hoq (Hos) means that the instruments
measure without additive (multiplicative) bias and hypothesi Hpy means that besides the
instruments measurements are without bias, they are equally reliable. Notice that the null
hypothesis Hp, is equivalent to Hjy : s = ... =, =0, fo=..=08, =1, p1=...= pp,
which is easier to interpret, but on the other hand, it is more difficult to obtain the likelihood
ratio statistics and Score statistics. For that reason, we are going to use the hypothesis Hyp,
which is easier to implement. Finally, the Hypothesi Hys means that the instruments measure
without multiplicative bias and they are equally reliable.

Bolfarine and Galea-Rojas (1995b) considered an equivalent factor analysis version of the

Barnett’s model presented in Theobald and Mallinson (1978). This Model can be represented

as

Yy = pi + AiFj + ey, (1.3)

where \; denote the unknown calibration factors, F; and e;; are all mutually independent,
with F; ~ N(0,1) and e;; ~ N(0,¢;), ¢ = 1,...,p and j = 1,...,n. Without loss of gener-
ality we can admit that the first instrument is the reference instrument, in this case, the

relationship between the models defined in (1.1) and (1.3), can be represented as

Ai

fo = 1, ¢z = AL, ﬁi=)\—1 a; = i — Bip,

1= 2,...,p. From the last relationship, we have that u; = a; + B;ts.

In the literature, the study of the hypothesis testing for the model (1.1) has been con-
sidered based only on the Wald statistics (see Bolfarine and Galea-Rojas (1995a)). In the
particular case where p = 2, i.e., the measurement error model (Fuller, 1987), Arellano-
Valle and Bolfarine (1994) considered the score and likelihood ratio test statistics to test
Hy : B = 1. Bolfarine and Galea-Rojas (1995b) considered the hypothesis testing using the
Wald test statistics and the factor analysis version of the model (1.1) given in (1.3).



In this paper we discuss the problem of hypothesis testing based on these three tests and
p > 2. Also, we present a small simulation study based on these three tests, as well as different
sample sizes, different parameter values and the hypothesis of interest, (i) through (vi), just
described. In Section 2 we describe the model and obtain the information matrix in closed
form expressions. Also, we present the EM-algorithm to obtain the maximum likelihood
estimates under the restrictions imposed by the hypothesis described earlier. In Section
3, we discuss the hypothesis testing and in Section 4 we present the model considering the
factor analysis version. Finally, in Section 5 we apply the methodology to the data presented

in Chipkevitch et al. (1996) and Barnett (1969) and a small simulation study is presented.

2. THE MODEL
The model defined by (1.1) with the restriction given in (1.2) may be written as

Yj=a+b:1:j +ej,

where Y; = (Y4j,---,Y)", a = (0,09, ,0,)", b = (1,Bs,---,5,)" and e; = (ey;,

-, €)', 5 =1,---,n. Thus, from (2.1), we have that Y, ---,Y, are independent
and identically distributed with Y'; ~ N,(u,X), where p = E(Y;) =a+ by, and X =
Var(Y;) = ¢,bb" + D(¢), with D(¢) denoting the diagonal matrix with the diagonal
elements given by ¢ = (¢1,...,¢,)". By letting o = (0y,...,a,)" and 8 = (Ba,-..,05,),

the model parameters are given by
0= (', B, 60, 0"),
and the log-likelihood function may be written as
U8) =) 1;(8) =) log f(Y;,0), (2.1)
=1 i=1
where 1;(0) = —Zlog 2m — log |X| — 1d;(8), with d;(0) = (Y; — u)TZ}(Y; — ).

2.1 INFORMATION MATRIX
In this section, we present the score function and the information matrix required for the

implementation of the Wald and Score statistics.
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The score function, which is the derivative of the likelihood function [(8) with respect to

0 is given by
) = az(o) ZU o), (2.1.1)

where

04(0) _ _10log|%|  94;(0),
00 2 00 20 "

with d;(0) as given in (2.1). In Appendix A, we present the derivatives of log |} and d;(8)

U;(0) =

with respect to the components of 6 (u,, a, 3, ¢, and ¢@).
From (2.1.1) it follows that the information matrix denoted by Ir(8) is given by

(Bipe Tia g 0 0 )
Iy, Taa Ing O 0O
IF0)= I, Iga Igp Igs. I8¢ |-
0 0 Id&ﬁ I¢z¢.$ I¢z¢
\ 0 0 Ipg Iy, Ipg

(2.1.2)

with the components given by

11
Do, = -(——f— lua=c8TD7W), I,_g=c"mp D)
Ioae = D7) — =D ()BT D (), Ing = belao,

Iag = (H2+¢s— —)D @)+ 22 (2 2 4D (9)88" D7 @),
Ig, = (c—1)c’D7'()B,

Isg = ZDw)D(B)Ig ~ LD ()BT DBID (),

I, = ?(C—l), f¢,¢=-—2~bTD(b)D_2(¢),

2

Ipp = 3D - Dz(b)D (#) + 55D 7*(#)D(b)bb" D(b)D~(4),
with ¢ = (d2,...,¢p) ", L) = [0,L,-1]  and c=1+¢.b' D} (g)b.

2.2 MAXIMUM LIKELIHOOD ESTIMATION



In this Section we present the EM algorithm to obtain the maximum likelihood estimates
of the parameters under different restrictions. Bolfarine and Galea (1995a) presented the EM
algorithm for the obtention of the maximum likelihood estimates of the parameters under
the restriction that a; = 0 and #; = 1. Considering this restriction and the hypothesis
described in Section 1, namely Hy;, ¢ = 1,...,6, we obtained the EM algorithm under the
réstrictions imposed by the hypothesis in question.

The methodology of EM algorithm consists in the augmentation of the observed data Y =
(Y],... ,Y)T by some unobserved data, x = (z,...,2,)7, in a way that the maximum
likelihood estimator (MLE) of the parameters based on the augmented data, Z = (Y ',z)T
is easy to obtain. Given the estimates of 8 in the mth iteration, 0™ the E step consists in
the obtention of the expectation of the complete data log-likelihood, 1(8/Z), with respect to
the conditional distribution of z given Y and ™. The M step consists in the maximization
of the function obtained in the E step with respect to 8, which gives the estimates of the
parameters at the next iteration, 00" Each iteration of the EM algorithm increments
the log-likelihood function of the observed data 1(8/Y), ie., (8™ /Y) < 1(8™V/Y).
When the likelihood function of the complete data belongs to the exponential family, the
implementation of the EM algorithm is usually simple. In our case, the E step consists in
the obtention of E(z;/Y) and E(z2/Y), j = 1,--- ,n. In the M step, we maximize the
log-likelihood function of the complete data where the values of the sufficient statistics were
substituted by the expected values obtained in the E step. Next, we are going to present
the log-likelihood function of the complete data given by Z; = (:t:j,Y]T Y',j=1,---,n,in
order to implement the EM algorithm. Considering (1.1), we have Z i~ Npa(p,,2,),7 =

1,...,n, with

Hm, = a and X, = 2 ¢

M bé, ¢.bb" + D(¢)

which gives the following log-likelihood function

1o/z) = -2+1

n 1< _
log 27 — 5 log Izzl - § Z(ZJ - ”’z)TEz l(zj - u’z)’ (221)

J=1



where

p
Bl =¢.[[¢: and =77 =
=1

¢/ s
D7Y(¢)b

~b'D7Y(¢)
D7Y(¢)

, with c=1+ ¢,b' D7}(¢)b.

Considering the properties of the multivariate normal distribution, the E step consists in the

obtention of

&Y = E(z;/Y;0m)
g m-1)T Py
. (m——l m—1
- )+ (m l)b
and
;2.("’) _

2

D™Y(¢) ™ V(Y;

Var(z;/Y;,0™ V) + (E(z;/Y;, 0™ 1)) =

— a(m_l) —_

ugm—l)b(m—l))

?g_l_)_ + (5{;(.’"))2 .
c(m=1) J

Notice that the complete log-likelihood function and also the estimates of z; and :cf depend

on the values of @, b and ¢. For the case where there are no additional restrictions, the

estimates of the parameters in the M step is given in Bolfarine and Galea-Rojas (1995a).

Next, we present the estimates of the parameters in the M step under the null hypothesis

Hy;, i = 1,4,5 and 6. Under the null hypothesis given in Hyp, and Hps, we do not need to

use the EM algorithm, as it is possible to find the restricted estimators of the parameters

explicitly. First, we present the values of a, b and ¢, for each hypothesis in Table 1.

Table 1: The values of a, b and ¢ under different null hypothesis

Null hypothesis a b c
Hy:as=-=ap,=0;F=---=0=1]|0, 1, 1+¢z1;D_1(¢)1P
Hy:as=--=a,=0 0, (1,B")" | 1+ ¢.b" D! (g)b
Hos:fo=--=f=1 0,a")7 |1 1+ ¢.1, D (@)1,
Hos:r=--=¢,=¢ 0,aN)" | (1,B)T |1+ %b7b

Next, we obtain the estimates of the parameters in the M step for each null hypothesis,

considering the expressions given in Table 1 and the values of a“:gm)

'\2(m) .
and x with the values

of a, b and c, substituted by their respective values given in Table 1.
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Under Hy;, i@ = 1,4, 5,6 the estimates of the parameters in the M step is given by
1) Estimates under Hy;

n 3(m)
- am) DRI+ ~(m)ss
a8 G = 205 G2
“(m ~(m - =~ (m) .
e (z s 23 v + 302 ) il
j=1 j=1 j=1
~(m)
w1th.7t:\() ;—’;lfl—
2) Estimates under Hoy
m) i) S BV yo_2™
ﬁ;m+1)=—x- , B _ &= Z; (m)a, ¢:(tm+1): J=1nJ —(E )2 and

Z?:l x]
~(m+1 m+1 N ~ (m+1)\ g o 5(m) .
¢E )=;<Z —2ﬂ( )ZYV _gm)'i’(Bt )22‘1:? ); ’L=1,“',p,
i=1

j=1
with ﬁ(m+1) =1 and Y2] (Y'Zia ot 1Y;7j)T'

3) Estimates under Hgs

3 ;2("1)
fmD) — E(m), a£m+1) V. - %(m)’ Gl — .7=1n i (g(m))2 and
. n
~ - R - ~ (m)
¢§m+l) (Z(Y;J (m+1))2 9 Z (m) agm-{—l)) T Z :I:? m ) ,
Jj=1 j=1
with &™) =0and Vi =157, Yy, i=2,...,p
4) Estimates under Hyg
n  ~(m) Q(m)
P 5 5(m+1> _ 2_5=1(F; :( ) )(Y(zﬂ) Y2) &™) =Y, — B(mﬂ)%(m),
n \m
Zj:l 33? —n(z ")?
-, (m)
n 3
Jo 2 2% g
£ n
n
(m+1) _ (Z(Y _ ~(m+1))T(Yj _ 6(m+1)) -9 Zi;m) (’B’(m—l—l))T(Yj _ a(m+1))+
i=1



(g(m+1))Tg(m+l) Z%("‘”)) ’
j=1

~(m+1) ~{(m+1)

where @™=(0, (@™ )T, 5"V =(0, @"™Y)T and Y, = LD P £73
Notice that in all cases, the maximization step is given in closed form expressions, with
no need to develop numerical iterative process during the M-step, which makes the algorithm
extremely simple and computationally inexpensive.
Moreover, as commented earlier, under the hypothesis Hypo and Hys the restricted esti-

mator of the parameters may be obtained explicitly. These estimates under Hy, is given

by

e =Y, ¢ n(p_l)ZZ( 2 and

j=1 i=1
= 1i<v-—?>2—:=i>:z X
n v K] - p np 4 )
where Y = ;1; Z?=1 P Y;andY S ¢ 1 Yi;. Observe that in this case the estimate

of ¢, can be negative. If qbz < 0, then we can proceed considering ¢, = 0 and in this case

the estimate of ¢ is given by

Finally, under the hypothesis Hys the restricted estimator of the parameters may be obtained

explicitly, which is given by

n P

~ 35 ~ _V. _V : 2
Hz = Y1.1 a; Yz. Yl.a ? 27---7p7 n(p__ 1) ;; (YU Y ) (Y Y ) ]
and

51: = _Z(Y g

by



3. HYPOTHESIS TESTING
In this Section we present three asymptotic tests to test the hypothesis Hy;, 2 =1,--- ,6,

which was discussed in the Introduction. Let’s denote by @ the MLE of the parameters
6 = (a7, BT, ¢", s, ¢)T and 8; the restricted MLE under the ith hypothesi.

3.1 WALD’S STATISTICS

Observe that the 6 hypothesis of interest given in the Introduction may be rewritten
as Hy : A; 8 = q;, where A; is an adequate r; X 3p matrix of rank 7, with r; < 3p,
i=1,---,6. Let ¢ = p—1, I, an identity matrix of order ¢, 1, an ¢ x 1 vector composed by

1’s and analogously 0, an ¢ X 1 vector of 0’s. Then, the hypothesis Hy;, ¢ = 1, ...,6, may be

written as,
1) Ay =[Izg Ozqx(p+2) and qo = (0,17)7,
I 0 0
2) A2 _ 2q 2¢%x2 and Ay = (O;r, 1"11"0;1’ T,

0 qup qu2

0 I 0 O
3) As = qxq ¢ gx2 and Qg3 = (1;,0;1' T’
O O qup qu2

4) Ay = [Iq 0qx(q+p+2)] and Qo4 = Oq,
5) As = [0gxq I OqX(P+2)] and qg5 = 1,

6) As = [Ogx2q Byxp Ogxa] and g = 0y,
withB=[1, -1I].

Considering A;, i = 1,---,6, just described, we can test each of the hypothesis Hy;
considering the Wald test statistics, which is given by

Wo = n[Aia - Qm]T[Ailz;l(a)A;r]-I{Aia ~ Qo

where I;'() is the inverse of the observed information matrix given in (2.1.2). So considering

the Wald test statistics, we only need to obtain the unrestricted MLE to calculate the test

statistics.
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3.2 SCORE STATISTICS
In this case, the Score statistics for each hypothesis Hy;, i = 1, ...,6, is given by
1 =7 =~
Soi = EU*' Iﬁl(ei)Ui,
. ~ . o8 . . . s
where U; = U(0;) = 50 = 1,...,6 and U(@) as given in (2.1.1). Notice that in this

case we only need to obtain the estimated values under Hy. Depending on the situation, it is

easier to obtain the parameter estimates under Hj, rather than the unrestricted parameter

estimates. So when this is the case, the Score statistics takes advantage over the Wald’s

statistics.

3.3 LIKELIHOOD RATIO STATISTICS
The likelihood ratio statistics is given by

RV = —2[1(6) — 1(6;)],

for each hypothesis Hy;, 1 =1,---,6.

Under usual regularity conditions, each of the statistics Wy;, Sp; and RV, ¢ =1,:--,6,
has an asymptotic x2, distribution under the null hypothesis. So we reject Hyp; with signif-
icance level a, if Wy;(Soi, RVoi) > x%l_a’,i), where X%l—a,n) is the 100(1 — a)% percentile of

the chi square distribution with r; degrees of freedom, i =1, ..., 6.

4. THE FACTOR ANALYSIS VERSION

In this Section, we consider the factor analysis version considered by Theobald and Malli-
son (1978) defined in (1.3). Under the factor analysis version, Bolfarine and Galea-Rojas
(1995b) presented the hypothesis testing based on the Wald statistics, where the estimates
of the parameters were obtained by the use of the EM algorithm.

4.1 ESTIMATION AND TESTING HYPOTHESIS ABOUT THE CALIBRATION LINES
Under the parametrization of factor analysis, we can reproduce some of the hypothesis
defined as Hy;, i = 1,--- , 6 presented in Section 2 as follows:

1) Hp, is equivalent to Hy, : piy = ... = pp, Ay = ... = Ay,

12



2) Hop is equivalent to Hjy : piy = ... = fhp, M= ... =Xy, 1= ... = ¢p.
3) Hos is equivalent to Hjz : Ay = ... = Ay, @1 = ... = ¢y,
4) Hys is equivalent to Hys : Ap = ... = A,

The hypothesi Hyg is the same as the hypothesi Hos. The hypothesi Hos does not have
a simple representation under the factors analysis version as given before for the other
hypothesis. It may be written as Hy, : pus — %ul = = Uy — %’ful = 0. In this case it is
more complicated to test the hypothesi (Hy,) considering the Score and the likelihood ratio
statistics. An alternative is to test the hypothesi H{, based on the asymptotic distribution of
the maximum likelihood estimators of the 4 = (us — %Ml, cooy Php — %’li,ul)T and then consider
the Wald statistics.

As presented in Section 2, the maximum likelihood estimator under the hypothesis H{,
and H); may also be obtained explicitly for the factor analysis version. The restricted

maximum likelihood estimates under HY, is given by

— o~ 1 L
o =Y = Y., —Y )?
M ) ¢ n(p_l)gg( 7 ]) a'nd
- 1 n _ . g 1 n p
= —_ Y.—-Y 2.1 = —_ — 2
A ”,=1( =Y -2 np;;% Y.)2-¢

Observe that A? can be estimated negatively, in this case it may be considered as A = 0
and then consider the maximum likelihood estimator of the parameter ¢ as
~ 1 &L —
=L -7y
L
Under the hypothesi Hg; the restricted estimator of the parameters may be obtained

explicitly, which is given by

—_— o~ 1 L 4 . . .
pno= Y = — L i 2 _ L 2
! ¢ n(,p_l);;[mj Y:)=(¥,;-Y.) and
~ 1 no_ _ a
Y= i@, -7 -2
"jzl( e



. T 5 ~ ~ ~\T
with Y; = (Yyj,+ %), Y =2 300 Y and o= (fia, -+, fbp) -
Observe that A can also be estimated negatively, in this case we can proceed considering

A = 0 and the maximum likelihood estimator of the parameter ¢ is given by

n

F= (Y5 =TT

=1
For the rest of the hypothesis we are going to consider the EM algorithm and the ECM
algorithm (Meng and Rubin (1993)) to obtain the restricted estimative of the parameters.

The estimator of F; and F? in the E-step is given in Bolfarine and Galea-Rojas (1995b)

as
B = D) TD g )(Y, — pm D) and
mm_ 1 f(m)
F2j = =y + (FJ )2’

where ¢™= 1 = 1 + (AP NT D1 HMD)AM=D and A= (N, -+, M) T

Next, we obtained the restricted estimates of the parameters in the CM-step under the
hypothesis Hj, and Hy; and M-step under the hypothesis H)s. The ECM-algorithm replaces
each M-step of the EM-algorithm by a sequence of S conditional maximization steps (CM-
steps), each of which maximizes the expectation of the complete data log-likelihood, 1(6/Z),

with respect to the conditional distribution of F' given Y and 0™ over @ but with some

vector function of 8, g,(0) (s = 1,---,S) fixed at its previous value (see Meng and Rubin
(1993)).
1) CM-Step
e Estimates under Hy, : 3 =---=ppand Ay =--- = ),
_1,5m) n am -
X(m—i—l) — 1TD 1(¢ ) j=1 -F:'?( )(Y - Y)

170G, (S5, B - "))

PN o Cooais ™ il )TD ‘@)L,
17013 ™),
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and

~(m+1) L { ~m ~~(m) ~ 1) ~—(m
= —T; (()‘( +1))2F]~2 lp - 2)‘( +1)E1§ )(Yj - 1p#’( +1))+
i=1
D(Y 5 — LA™Y — Lm™)) .
e Estimates under Hjz : Ay =---= A,
T Zm)y S n flm) v om
Nm+1) _ L, D" (¢ )Zj=1Fj ¥ - }(,)) ﬁ(m+1) — ?_X(mﬂ)lp'j;’“( )
~(m) n 3m =(m ’ ’
1D (¢ )1, (ijl F? " —n(F )2)
and
~{(m-+1) 1 e~ " —(m) m m ~(m
@ - Z(()\( “))2Ff — 9 +1)F( )(Y Y4
j=1
D(Y; = E™ )Y - i)
2) M-Step
e Estimates under Hyg: 1=+ = ¢
n (m) (e
X(m+1) _ (m) (Y; Y)) ﬁ(m+1) - V- X(m+1)~F—( )’
and
~ 1 o /(M) ~(mt1) -~ (m+1) ~(m+1) ~
(m+1) _ F2 A TA 2F(m) by T Y (m+1) +
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(Y ~(m+1))T( ﬁ'(m+1))) )

Next, we are going to present the test statistics for the hypothesis Hy,, Hgp,
and Hpg.

4.1.1 WALD STATISTICS
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Let @ = (u",A",¢")7 be the vector of parameters under the factor analysis version.
Then under usual regularity conditions \/n(@ — 8) —¢ Ns,(0,1;1(8)), where 8 is the max-
imum likelihood estimator of @ and 1r(@) is the Fisher information matrix presented in

Appendix B. Denoting

0 o Q, 0 O
o =1 0 QD Qi
0 Q’l/J

Q=1;(0) = (

and ¥ = (AT,¢")7, with AT = (\y,-+-,),) and ¢' = (¢1,--- , $p), the Wald statistics for
the hypothesis Hy,, Hy,, Hys, Hps and Hyg are, respectively, given by

Wy = n[a"BT(BO,.BT)'Bii+ A BT (BQ,BT)'BA|,
Ws = nla"BT(B,B") B+ B (Bln.B") By,
Wa = n B (BOpsBT) By,
Wy = nX BT(BOuBT) B,
Ws = né BT(BO4BT)"' By,

B 0
where B = ( : ) , with B as given in Section (3.1) and p" = (p1,- -+ , p)-
0 B

4.1.2 SCORE STATISTICS

The score statistics for each hypothesis H{;, ¢ =1,2,3,5 and 6, is given by

1~ ~ o~
S5 = U, I;' @)U,

with U; = U(8;) = > Uj(@-), where U;(8;) was obtained in Appendix B.
4.1.3 LIKELIHOOD RATIO STATISTICS

The likelihood ratio statistics is given by

RVg; = —2[1(8) - 1(8.)],

for each of the hypothesis Hyy, Hep, Hgs, Hos and Hyg, where 1(8) = 377, log f(Y;,6), with
Yj = (}/1,7" U ’YI'>j)T ~ P(”‘v’ E)! B = (p‘l’ e Hu'p)T and ¥ = AAT + D(¢)
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Under usual regularity conditions, each of the statistics Wg;, Sg; and RVj;, presented
above has an asymptotic x2, distribution under the null hypothesis. So we reject Hy; with
significance level @, if Wg;(Sg;, BVg:) > X§1_ g,y Where X7, _, . is the 100(1 — )% percentile
of the chi square distribution with r; degrees of freedom. Considering the hypothesis under

question, we have that r; =2(p—1), 7, =3(p—1), 13 =2(p—1),rs=p—lerg=p— 1.

5. APPLICATION AND SIMULATION

In this section we apply the results obtained in the previous sections to the data set
presented in Barnett (1969) and Chipkevitch et al. (1996). Barnett (1969) considered a
comparison of four combinations of two instruments and two operators to measure the lung
capacity in 72 patients. In Table 2 we present the maximum likelihood estimates of the
parameters and in Table 3 we present the restricted maximum likelihood estimates of the

parameters under the null hypothesis.

Table 2: The estimated values of the parameters with the standard deviations between paren-

thesis

Lz as as ay B2 B3 Ba
2246.11 -204.46 -528.58 -437.25 1.060 1.192 1.131
(90.08) (105.66) (121.88) (123.27) (0.045) (0.052) (0.052)

o 1 o2 &3 o4
534042.4 50248.08 19150.75 29235.73 38843.20

(9.71x10%) (9607.77) (5255.33) (7260.35) (8272.19)

In Table 4 we show the Wald, Likelihood Ratio and Score test statistics together with
the p_values.

Looking at Table 4, we reject all the hypothesis at o = 5%, which means that considering
these four combinations of instruments and operators, none o then are measuring without
bias (additive, multiplicative or both) and they are not equally reliable. If we consider

a = 1%, we do not reject the last hypothesi if we use the Wald or Likelihood Ratio test
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statistics, which means that these combinations are equally reliable. However, if we consider

the Score test statistics we reject this hypothesi.

Table 3: The estimated values of the parameters under the null hypothesis

6 Hoy Hos Hys Hoq Hos Hog
U 2170.33 2168.16 2246.11 2218.29 2246.11 2246.11
ag - - -70.42 - -70.42 -183.58
as - - -97.50 - -97.50 -513.75
o4 - - -143.89 - -143.89 -430.75
Ba - - - 0.978 - 1.05
B3 - - - 0.980 - 1.19
Ba - - - 0.956 - 1.13
¢ | 627813.30 638788  645769.70 655311.80 629064.90 538315.4
¢1 | 56755.62 42067.94 38446.91 53193.62  49979.14 34849.27
¢o | 12765.54 42067.94 38446.91 13163.44  14128.62  34849.27
¢s | 45622.65 42067.94 38446.91 45425.38  43830.90 34849.27
¢4 | 53250.35 42067.94 38446.91 49810.37  46330.41 ' 34849.27
Table 4: The Wald, Likelihood Ratio and Score test statistics.
" Hypothesis | Wald p_value Likelihood p.value Score p_value
Ratio

Hy, 33.45 0 34.59 0 29.8 0

Hy, 43.29 0 51.56 0 55.23 0

Hys 28.29 0.0001 32.12 0 33.27 0

Hyy 24.78 0 27.07 0 23.40 0

Hys 18.45 0.0004 19.21 0.0002 16.67 0.0008

Hgg 8.98 0.03 11.19 0.01 12.73  0.005

Chipkevitch (1996) considered the measurements of the testicular size of 42 adolescents

obtained based on five methods to calculate the volume of the testicle. The objective was

to test the lack of bias and the accuracy of the instruments. In Chipkevitch et al. (1996),

the transformed data was considered by taking the cube root of the volume to satisfy the

normal assumption of the data. We will also consider the transformed data set.
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Table 5 shows the estimated values of the parameters, while Table 6 presents the restricted
maximum likelihood estimates of the parameters under the null hypothesis.
Table 5: The estimated values of the parameters with the standard deviations between paren-

thesis
Bz as as a4 as B2 Bs Ba Bs bz
2.10 0.07 0.03 0.03 0.38 0.93 0.97 1.03 0.90 0.12
(0.06) (0.11) (0.11) (0.11) (0.10) (0.05) (0.05) (0.05) (0.05) (0.03)

$1 b2 &3 b4 (o3
0.007 0.008 0.007 0.007 0.006
(1.88x1073) (2.07x1073) (1.83x107%) (1.90x1073) (1.61x1073)

Table 6: The estimated values of the parameters under the null hypothesis

8 | Hy Hype Hos Hoy Hos Hog || @ | Ho  Hoe Hes Hos Hos  Hgs
Q2 - - -0.074 - -0.075 0.068 || p. | 2.100 2.133 2100 2.103 2100 2.100
a3 - - -0.036 - -0.036 0.030 || ¢, | 0.118 0.113 0.116 0.112 0.115 0.123
Qy - - 0.100 - 0.100 0.033 || ¢1 | 0.005 0.017 0.007 0.007 0.007 0.007
a - - 0.172 - 0.172 0387 || ¢2 | 0.150 0.017 0.007 0.008 0.008 0.007
Ba - - - 0.964 - 0.932 || ¢3 | 0.008 0.017 0.007 0.007 0.006 0.007
B3 - - - 0.982 - 0.968 || ¢4 | 0.020 0.017 0.007 0.007 0.008 0.007
Ba - - - 1.047 - 1.032 || ¢s | 0.040 0.017 0.007 0.009 0.007 0.007
Bs - - - 1.077 - 0.897

Table 7 shows the test statistic values considering the Wald, Likelihood Ratio and Score
test statistics together with the p_values.
Table 7: The Wald, Likelihood Ratio and Score test statistics.

Hypothesis | Wald p_value Likelihood p_value Score p_value
Ratio
Hy, 273.297 0 133.439 0 77.324 0
Hyo 274.067 0 159.040 0 127.978 0
Hys 10.343  0.242 9.011 0.341 8.597 0.377
Hpy 19.681 0.001 15.776 0.003 14.045  0.007
Hgys 9.574 0.048 8.528 0.074 8.173 0.085
Hog 0.614 0.961 0.591 0.964 0.557 0.967
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Analyzing Table 7, we notice that the hypothesis 1,2 and 4 are rejected, while the hy-
pothesis 3 and 6 are not rejected. Considering the hypothesi 5, we reject at a = 5% if we
use the Wald test statistic, meaning that the instruments measure with multiplicative bias.
However, if we consider the Likelihood Ratio or Score test statistics we do not reject this
hypothesi. Motivated by this result we conducted a small simulation study where we ob-
served that for the sample size in consideration, the hypothesi in question and the estimated
parameter values obtained for the Chipkevitch data set, the Wald test statistic is liberal
under the nominal level 5%. So the result obtained by the Likelihood Ratio and Score test
statistics may be more accurate, i.e., the instruments are measuring without multiplicative
bias.

We have conducted a small simulation study considering all the 6 hypothesis to compare
the three asymptotic test statistics for different sample sizes and parameter values. Let
¢ =0.123, ¢y = --- , ¢, = ¢, with ¢ = 0.007 and ¢ = 0.05, p,=0.1, p,=2 and p,=5. For
the intercept and slope parameters, we have considered as, = 0.07, ag = 0.03, ay = 0.03,
as = 0.38, B, = 0.93, B3 = 0.97, B4 = 1.03 and (5 = 0.90. So we have considered p = 5
and the parameter values near the estimated values of the parameters of the Chipkevitch
data set and some other values. To study the behavior of Wy, S¢; and RV, i=1,---,6 for
moderate and large sample sizes we generated a thousand samples of sizes 40, 50 and 100
considering the model defined in (2.1). Considering the nominal significance level oo = 5%
we obtained the corresponding empirical significance levels.

When we changed the value of the parameter y,, keeping all the other parameters fixed,
as well as the sample size and the different hypothesis, the conclusion of the simulation study
were the same, implying that the value of the parameter u, seems not to change the behavior
of the test statistics in the cases considered here. The same happened when we considered
different values for the parameter ¢. So we are going to present here only the results of
the simulation study for u, = 2 and ¢ = 0.007, which are the values close to the estimated
values of Chipkevitch data set. Table 8 shows the empirical significance levels obtained in

this simulation study.
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Table 8: Empirical significance levels considering the Wald, Likelihood Ratio and Score test

statistics.

Hoyp:opg=--=a5=0; | Hp:oz=---=as=0; | H3:02=--=Ps=1;
Bo=-=fs=1 |fp=-=ps=1 pr=" =05 =0
$r=--=¢5=9.

n | Wau RVn So1 Wo2  RVpe Soz2 Wos  RVos Sos
40 11 7.3 4.9 121 7.6 5.2 11.1 7.8 6.3
50 11 6.1 4.8 8.8 54 4.8 7.1 5.8 5.6
100 | 5.6 4.5 4.8 5.8 5.3 4.9 6.5 5.8 5.5
Hog:ag=---=a5=0. | Hs:Bp=---=fs=1. | Hg:$p2=---=¢5=¢.
n Wo1 RVn So1 Woz RVa2 Se2 | Wos RVps Soz
40 9.1 7.0 5.5 99 7.5 5.9 9.6 8.2 5.3
50 8.7 5.9 4.2 8.2 5.9 4.0 6.0 6.0 54
100 | 5.7 4.7 4.2 5.1 4.3 41 6.0 5.9 5.2

Analyzing the Table 8, we observe that regardless of the hypothesis in question, we
conclude that the Wald test statistics is liberal, i.e., it is displaying null rejection rates that
are greater then the nominal level of the test even for n=100. For moderate sample sizes
the Score test statistics seems better than the other two test statistics. The same conclusion
were obtained for the other parameter values that are not shown here.

Considering the factor analysis version, the estimated values and the values of the test
statistics are very close to the ones obtained earlier. Table 9 and Table 10 (Table 11 and Table
12), shows respectively, the estimated values of the parameters and the Wald, Likelihood
Ratio and Score test statistics for the Barnett (Chipkevitch) data set.

Table 9: The estimated values of the parameters with the standard deviations between paren-

thesis

p1 K2 ©3 tea A1 A2 A3 A
2246.11 2175.69 2148.61 2102.22 730.78 774.39 871.03 826.23
(90.08) (92.71) (104.61) (100.10) (66.46) (66.62) (75.40) (72.73)
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1 o2 o3 N
50248.08 19150.75 29235.73 38843.20
(9607.40) (5258.81) (7259.32) (8269.97)

Table 10: The Wald, Likelihood Ratio and Score test statistics.

Hypothesis | Wald p_value Likelihood p.value Score p_value
Ratio
Hpy 34.81 0 34.59 0 29.8 0
Hyo 44.58 0 51.56 0 55.23 0
Hyz 29.12  0.0001 3211 0 33.45 0
Hys 19.35 0.0002 19.21 0.0002 16.67 0.0008
Hgs 8.98 0.03 11.19 0.01 12,73 0.005

So, considering the Barnett data set and the hypothesis of interest we obtained the same
result as the one obtained earlier.
Table 11: The estimated values of the parameters with the standard deviations between paren-
thesis

1 2 (3 Ha U5 A1 A2 A3 Aq As
2.10 2.03 2.06 2.20 2.27 0.35 0.33 0.34 0.36 0.32
(0.06) (0.05) (0.05) (0.06) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04)

$1 b2 ?3 b4 o5
0.007 0.008 0.007 0.007 0.006
(1.88x1073) (2.07x1073) (1.83x107%) (1.90x1073) (1.61x1073)

Table 12: The Wald, Likelihood Ratio and Score test statistics.

Hypothesis | Wald p_value Likelihood p._value Score p_value
Ratio
Hy 268.021 0 133.438 0 77.323 0
Hyo 268.763 0 159.040 0 127.978 0
Hos 8.825 0.357 9.009 0.341 8.669 0.371
Hos 8.084 0.088 8.528 0.074 8.173 0.085
Hos 0.614 0.961 0.591 0.964 0.554 0.968
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Considering the Chipkevitch data set, we obtained the same results as the one obtained
earlier considering the model defined in (1.1) except for the hypothesi Hys;. In this case,
if we use the Wald test statistics we had rejected the hypothesi H};. On the other hand,
if we consider the Likelihood Ratio or the Score test statistics we had not rejected this
hypothesi. Based on the simulation study, we have concluded that the result obtained under
the Likelihood Ratio or the Score test statistics were more reliable. Considering the factor
analysis version, we reached the same conclusion meaning that the instruments measure

without multiplicative bias at the significance level a = 5%.
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APPENDIX A: Computing the first derivatives under the Barnett’s model

In this section we present the score function which is given by U(8) = >_7_, U;(0), where
ey 06i(8)  1dloglx| 1
vy(0) = 25 - S TEEL g, (A1)
9d;(0)

where djy = ) Y = Ug, &, B, &, d and d;(0) as in (2.1). Further, using results in Nel
(1980) related to vector derivatives it follows that,

3“;'2’ = 0, fory=pma "’“;gﬂ’z’_z"’zp Y()8,

Tl lel TR pm)p-2e)b + Do),
djp, = —2b'E7'W;, djq = 21 EIW,,
dg = —2¢;D7 ($)Wy +2ﬁaqu' )8, djg, = —c %,
d¢ = —D-2(¢)D(wj)wj—ib£ 2D(b)D—2(¢)b+2?£a,D(b)D“2(¢)WJ,

where ¥ = (d2,...,8p)", ¢ = e + ¢ a5, with a; = W] D N($)b, W; = Y; —
Wi =Y — a — Bug, Ya=(va5, ..., ypj)T and b, c as defined in Section 2.

APPENDIX B: Computing the first derivatives under factor analysis

In this appendix we obtained the score function under the parametrization of factor

analysis. In This case
oy 0;(8)  10log|E| 1
U;(8) = oy =2 By 3% (B.1)
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9d;(6)
o
AXT + D(¢). Thus, it follows that

where djy = Y = m,A ¢ and d;(0) = WS IW,, with W; = Y; —p and X =

dlog|®|  _Olog|X| | ;. Olog|X| 4 o 1p-2

o " 0~y =2D (P)A, 3% = D7 (¢)1p — ¢ DT P)D(A)A,
djy = —2X7'W,

dix = —2c7'D7Y)W,;W D H(p)A +2c%c;1 D7 (@),

disg = —DX)D(W ;)W +2c7 c;oD 2(¢)D(AN)W; — ¢ 2cjiD2(¢)D(A)A.

where c as given in Section 4, ¢;; =W ] MW ; and ¢; =W D~}(¢)), with M = D~} (¢)AXT D~} (¢).

Iuyp O 0
The Information Matrix is given by Ir(6) = 0 Iy Iy b | with Iy = L
0 Iox Ipg

Ina = Hle= D)D) + (2~ )M]; Ing = I35 = 1 [D(#)D() — 2MD($)D(N)]
and Igg =  [D~2(@) — 2D-*($)D(A)D(X) + 5D~ (¢) DIANYMD(A)D*(4)].
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