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ABSTRACT

A computationally inexpensive involution called value-dependent swapping is intro-
duced. This involution is included in the non-linear cryptographic family of functions
called Parity Circuits to increase its non-affineness and thus increase its strength against
cryptanalysis. Our analysis shows that this augmented version of Parity Circuits still have
fundamental cryptographic properties. The addition of this involution introduces a new
type of randomization while preserving the invertibility of the functions being defined.
We formulate affineness for a general function, and introduce a normalized non-affineness
measure. We prove some non-affineness conditions for the augmented Parity Circuits,
and evaluate their non-affineness. We suggest the value-dependent swapping can also be
incorporated into DES-like cryptographic functions as well to make them stronger against
cryptanalysis. O

1. Introduction

We introduce a random involution called value-dependent swapping, VDS. In the VDS,
the left balf and the right half of a sequence of bits are swapped if its weight is odd. VDS
is included in the cryptographic family of functions called Parity Circuits C(n,d) [KT90]
to obtain an augmented version called C,.(n,d), where n is the the plaintext input length,
and d is the depth of the circuit. Cryptographic properties of C4(n,d) are analyzed. In
particular, we prove that C(n,d) for n > 4 is not affine. We also show the degree of the
non-affineness of €' (n, d) increases as n or d increases.

This work is in response to a very recent short note by Youssef and Tavares [YT97) in
which they show our original Parity Circuits [KT90] are affine and hence insecure.

In Section 2, we introduce VDS, and in Sections 3 and 4, we summarize the Parity
Circuits C(n,d) and define the augmented circuits Cy(n,d). In Section 5, the swapping
properties for Cy(n,d) are clarified. In Section 6.1, we formulate affineness for a general
function, and introduce a normalized non-affineness measure. In Section 6.2, we prove non-
affineness conditions for C(n,d). In Section 6.3, we evaluate the non-affineness measure
for the circuits Cy(n,d) when n or d increases. In Section 7 and 8, other cryptographic
properties are briefly described.

2. Value-dependent swapping

1This work was presented to the 1997 Information Security Workshop (Japan Advanced Institute of
Science and Technology, Kanazawa, September 17-19, 1997, Japan)



We propose a random involution called value-dependent swapping (V DS). A function
called value-dependent swapping is generally defined as follows.

Definition 1 Let z = L || R be a sequence of 2k (k > 0} bits, where L stands for left half
of z, and R stands for right, length(L) = length(R) = k. A vealue-dependent swapping, or
V(z), is defined to be

R|L if h(z)=0,
V(z) =
LR i h(z)=1,
where h(z) € {0, 1}. O
Notice that V(z) is an involution: V(V(z)) ==z if k(L || R) = h(R || L).
Among various candidates for h(z) satisfying A(L | R) = k(R || L), we can define a
particular involutional value-dependent swapping called VDS.
Definition 2 (VDS) Let z = L || R be a sequence of 2k (k > 0) bits, where length(L) =
length(R) = k. A VDS, which is an involutional value-dependent swapping based on the
parity of the weight of z, is defined to be
R L if weight(z) is odd,
Viz)=V(L| R) = { _
L|| R otherwsse,
where weight(z) is the number of 1’s in the bit-sequence z. O

Notice that if L = R, then weight(z) is even and no swapping occurs.
From now on in this paper, we will assume that n is even, unless otherwise noticed.

3. Summary of Parity Circuits C(n,d)

We summarize in this section the basic concepts defined in [KT90] which will be used
later.

Definition 3 A parity circuit layer with length n, or simply an L(n) circuit layer, is a
Boolean device with an n-bit input and an n-bit output, characterized by a key that is a
sequence of n symbols from {0,1,+,-}. O

The symbols 0 and 1 are called testers, the symbol + is called even inverter, and — is
called odd inverter.
Definition 4 A function B = f(K, A) computed by an L(n) circuit layer with key K =
kik;-- -k, € {0,1,+, —}" is the relation from an n-bit input sequence A = a; a3 --- a, €
{0,1}" to an n-bit output sequence B = byby---b, € {0,1}" defined below. An L(n)
circuit layer computes first the variable T modulo 2 such that:

1 if (kj =0and a;=0) or (k; =1 and @; = 1)

T=3%",tjmod 2 wheret; = { 0 aofherr e,

Note that T' = 0 if there are no testers in K. When T = 0 we will say an even parity event
ocurred; otherwise, an odd parity event occurred.

The output B = b;by - - - b, of the circuit layer is then



k;j =+ and T =0 (even event)
or
@; if{ kj=— and T =1 (odd event)
bj E | or
k=1

a; otherwise. O

1t is shown in [KT90] that every circuit layer L(n) computing f has an inverse layer
L(n) to compute f~* i.e. , fYK, f(K, A)) = A, for any n-bit input A and any key K.

Definition 5 A parity circuit of width n and depth d, or simply a C(n,d) circuit, is a
matrix of d L(n) circuit layers with keys denoted by K = K || K3 || -+« || K4 for which
the n output bits of the (i — 1)-th circuit layer are the n input bits for the i-th circuit layer,
for 2 <4 < d. The key for the C(n, d) circuit is a d x n matrix with its d lines containing
the circuit layer keys.

Let F(.) be the function from {0, 1}" to {0, 1}" computed by a circuit C(n, d) with
key Ky || Kz || --- || K4 That is, F(K, A) is defined as

F(K,A) = f(K4, f(Ka-1,--- f(Ky1, A)--).

It is also shown in [KT90] the inverse function F~!(.) is computed by the “inverted” circuit
C~Y(n,d) with key Kz || Ka_y || - - || Ka.
Table 1 shows the behavior of an example of C(n,d) circuit [KT90] with width n = 10
and depth d = 3 that will be referred to as Example 1 with key K* in the later sections.
Table 1. Example 1: C(n,d) whenn=10and d =3

Input 1 111070 010
K, I
Output
Ky

utput
Ks

Output

=R Lt

| off +={ | < St
|l ot of| o |
o | || ot ol of | =

= - !

o4 = | || +f =3
=t el -] = |

-t

O |
|| = | o+
o= B f=E5

4. Augmented Non-affine Parity Circuits C,(n,d)

Definition 6 A function B = f;(K, A) computed by an augmented L(n) circuit layer
with key K, or simply L.(n) layer, is the function V(f(K, A)), where V is the VDS
function as in Defintion 2, and f is the function computed by an L(n} circuit layer. O

We will see pext that L,(n) layer is still invertible: for invertion just compute V(z)
before computing the inverse of L(n) (as pointed out, V(z) is an involution).

Theorem 1 Every function B = f,(K, A) computed by an L, (n) layer is invertible, i.e.,
for any n-bit input sequence A, and any key K, there is an inverse layer, L7'(n) layer,
to compute f;! so that f7 (K, f1(K,A)) = A.

Proof First, we have from Lemma 1 in [KT90] that every function f(K,A) computed
by an L(n) layer has an inverse f~'. From the definition, we have f; = V o f and

7' = f~" o V. Since V is an involution, we have
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L. (n) layers are composed as L(n) layers are in Section 3:

Definition 7 An augmented parity circuit of width n and depth d, or simply a C.(n,d)
circuit, is a matrix of d Ly (n) layers with keys denoted by K = K, || K3 || --+ || Kq for
which the n output bits of the (i —1)-th circuit layer are the n input bits for the i-th circuit
layer, for 2 < i < d. The key for the C,(n, d) circuit is a d X n matrix with its d lines
containing the circuit layer keys. A function F4 (K, A) is computed by a Ci(n,d) circuit

as:
F+(K7A) = f+(Kd’f+(Kd-1: o ’f+(K1,A) “ i )
where each f,(K;,.) is computed by a L4 (n) circuit layer as defined before. o

Since each function computed by L. (n) layers is invertible, as we have seen, the
functions F computed by C,(n,d) circuits are also invertible.

Table 2 shows the behavior of a € (10,3) circuit with the same input and the same
key K* in Example 1. .

Table 2. Cy(n,d) whenn =10 and d = 3

Input 1 JOJIJTTOJOTTIJOJO[TI [swap?
Ky ~JOJ1|=T1+[+]JT]2T7-1+
Output | O JOJI[TIJTTI[OJO {0 [0 [0yes
)€ +ITJOJTJIT+]0T=-T+1T-
Output [0 [T[TJTOJOIO0OJO[T{0[|TI[no
Ks [—JOJT[+[+[0][-JF[+][-
Outpat O {00 TJT|O]TI]0 1 | yes

5. Swapping Properties for C, Circuits
The swapping properties for 'y are clarified in the following Theorems 2, 3 and 4.

Theorem 2 Let n be a positive integer (n > 1), let A = aj az -+ a, € {0,1}" be an
n-bit input sequence to @ circuit C(n,d) with key K and let B = byby-+-b, € {0,1}* be
the n-bit output sequence. If A is uniformly generated, then

Prob{weight(B) is odd} = %, Prob{weight(B) is even} = %
Proof By hypothesis, Prob{e; =0} = 1/2 and Prob{a; =1} =1/2, for 1 <
Let p = Prob{a; is complemenied by K} . Then:

Prob{b; =0} = Prob{a;=1} - p + Prob{a; =0} - (1 —p)

1/2)p + (1/2)Q -p) =1/2.

Similarly, one can show Prob{b; =1} =1/2,for 1 < j <n.
By mathematical induction, we show Prob{weight(B) is odd} = 1/2 for any positive
integer n. When n = 1, we have Prob{weight(B) is odd} = 1/2. Let B € {0, 1}* and
Bt = (B ] bx41) € {0, 1}*¥2. If Prob{weight(B) is odd} = 1/2, then we have

Jj<n.

il



Prob{weight(B*) is odd}

Prob{weight(B) is odd} - Prob{b;,; = 0}
+Prol weightEB/ is even} - Prob{bes = 1}
gl/é2) -u1/2)+ 1/2) - (1/2)

i

From Theorem 2, a swapping occurs in an L, (n) layer with probability 1/2. If A
is uniformly generated, then we have the following formulas from well known results of
binomial distribution,

Prob{one or more swappings occur in Ci(n,d) cireuit} =1 — (%)d'

The average of the number of swappings in Cy(n,d) circuit is:

e, e

The variance of the number of swappings in Cy(n,d) circuit is:

Let p be the probability that the swapping occurs in one layer. Considering now d layers,
we have: the first formula is derived from the equation:

Prob{one or more swappings occur in d layers}

= 1 — Prob{no swappings occur in d layers}

The average and the variance are derived from well known results of binomial distribution:
the average of the number of swappings in d layers is dp, and its variance is dp(1 — p).
Since p = 1/2, we have the above formulas.

By randomization through VDS, the output of F, (K, A) coincides with the output of
F(K, A) with the following probability.

Theorem 38 Let P(n,d) = Prob{F,(K, A) = F(K, A)} for a common set of input A and
key K, where Fy (K, A) is computed by Cy(n,d), and F(K, A) is computed by C(n,d). If
A and K are uniformly generated, then

1
P(n,1)=§,
1 1 1 1 1.d-2 1
=5 — e e L e _dfiad] el N ]
P(n,d) (4 on+l 9n—1 + 1)(2 2") + 2n~1 +1 ifd N 2

Proof

Case 1 (d = 1): If the weight of f(K|, A) is odd, then L # Rand f.(K, A) = Vof(K, A) #
J(X, A). Since Prob{f;(K,A) # f(K,A)} =1/2, we have P(n,1) =1/2.

Case 2 (d > 2): Let K4 be the key of d layers. If d = 2, f1(K1, A) = f(K), A) (= A') and
f+(Ka, A') # f(K3, A'), then Fy(Kj, A) # F(Kj, A) with probability 1. If f,{K;, A) #
f(Ky, A), then Fy (K3, A) = F(Ka, A) with probability 1/2®. Thus, when d = 2, we have
P(n,2)

Prob{F,(Kz, A) = F(K,, A)
Prob f+EK2, fo(Ky, A)) = f KZ;fSKlaA))}

Prob{f(Ky, A) = f(K1, A) (= A)} - Prob{f,(K2, A') = f(K3, A')}
;i“P"Ob{f-n-(KnA) # f(K1,A)}- 5

11
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More generally, when d > 2, we have
P(n,d)
PTObEHEKd’A) F(Kg4,A)}
Prob{F(Ka s, 4) = F(Ka_1,4) (= A")} - Prob{y(Ke, 4") = f(Ka, A")}
+Prob{F, (Ka s, A) # F(Ka_,A)} - =
P(n,d—1)7 + (1~ P(n, = 1))k
P(n d 1) (2 2") + 2"

By obtaining a finite geometric sum, we have the above formula. O

I

6. Non-affineness
6.1 Non-affineness Measure

In general, a cryptographic function F is affine if and only if the following equation
holds for any input A = (a;,4z,---,a,), @i € {0,1} and any key K.

F(K, 4) = F(K,0) ® :D(4,) @ 6:D(An-1) @ -+ - B 0, D(A)), ()

where D(A;) = F(K, A;) @ F(K,0), and A; (1 < i < n) denotes an input with only the
i-th bit equal to 1, and @ denotes the exclusive-or operation.

If there is a nonempty set of inputs A and a nonempty set of keys K for which equation
(1) does not hold, then F is non-affine. A measure of non-affineness can be defined by the
number of pairs (A, K') for which equation (1) does not hold. It is similar to a measure
of non-linearity which is often defined by the order of the Boolean canonical form of the
nonlinear function [R86]. Thus, we introduce a normalized non-affineness measure as
follows.

Definition 8 Let A be the input set, and |A| be the number of elements in A. Let H
be the number of elements in A for which equation (1) does not bold. A key-dependent
non-affineness measure Nk for a cryptographic fimction F with key K is defined by

Let X be the key set, and |K| be the number of elements in K. A non-affineness measure
N is defined by an average of Nk over the key set K as

Yx Nk

N=
K|

a

Note that F is affine if and only if N = 0. Even if F is non-affine, there may exist keys
implying Nx = 0. If F is F(K, A) computed by Cy(n,d), then N is evaluated by all of
the combinations of 2* inputs and 4™ keys. In general the bounds for N are evaluated as
follows.

Theorem 4 Let F be a bijection from {0,1}" to {0,1}". A non-affineness measure N is
bounded as S

on "

0<N<L1-



Proof For any cryptographic function F and any key K, equation (1) holds for the inputs
A; (1 <4 < n) and the input equal to zero. That is, n + 1 inputs always satisfy equation
(1).. Thus, we have H < 2" — (n + 1). Consequently, we have the above inequality. o

Theorem 5 Let F be a bijection from {0,1}" to {0,1}". Ifn =2, then F is affine.
Proof If F is a bijection from {0,1}? to {0,1}?, then the function F has four outputs

such as By = (0,0), B; = (0,1), B3 = (1,0) and B, = (1, 1). Since B; = B; ® By @ B, for
any combination of distinct subscripts (i, , k, £), equation (1) always holds. O

6.2 Non-affineness for C, Circuits
The non-affine conditions for L, (n) and Cy(n,d) will be shown in Theorems 6 and 7.

Theorem 6 A function f,(.) based on Ly(n) is not affine if n > 4.

Proof: We prove that there is a key K so that f, (K, A) is not affine. Consider four input
sets Ao, A1, Az, A; and their outputs such that

B; = (b,"l,b,"z, ...,b.-',.) = f+(K, A.) = f+(K, (a.-,l,a,-,g, ...,a.-,,,)), (0 <:<3, n> 4).

A = (0:0$ 0,...,0), (aOJ =0 (1 <j< n))1

Al = (1,0, 0, ...,0 N (01'1 = 1, ay; = 0 (] # IB,

Ag = 50,1,0,...,0 y éaa'2=1, az.,-=0 (]752 ,

A3 = 14Uy V), @31 = d3g = 1, Q3 ; = 0 (j # 112))'

If the function f,(.) is affine, then the following equation must hold for any key.
By = By @ B, @ B;.

However, when the key K is all zero, we have

By, = (0’0:01-"1010)- 701 (b0.3=0 (1 SJS")):

B, = 01 0, 01"'1 1;01 veey Oiy bl,n/2+l =1, bl.f =0 j # n/2 + 1;37
By = (0,0,0,...,0,1,..,0), (bymyasz =1, bag=0 (5 # n/2+2)).
By = (1,1,0,..,0,0,...,0), (bsa=bsa=1, bs;=0 (3 #1,2),

and
B3 # By ® B, @ B,.

Thus, the function f,.(.) is not affineifn > 4. 0O
Theorem 7 A function E,(.) based on Cy(n,d) is not affine if n > 4.
Proof: Without loss of generality, we show the case when n = 4. We prove that we

can construct keys K = K || K3 || --+ || Kq so that F; (K, A) is not affine. To check
non-affineness simply consider the four input sets Ap, A;, A; and As such that

Ag = (0,0, 010)1 A = (11 0,0, 0): Ay = (0’ 1,0, 0)7 As = (11 1, an)
Let Bf be the output of the £-th circuit layer L, (4) for input A;.

Bf = fo(Ke, fo(Kee1, - f1(Kny (051, G52, 803, 8i)), (0<i<3).

7



If the function F.(.) is affine, then the following equation must hold for any key.
B! = B3 ® B{ © B;.

. However, we can choose key K so that this equation does not hold.
(1) If d is odd, each layer key is chosen as

K;=(0,0,0,0) (1<¢£<d).
Thus, we have
B! =(0,0,0,0), B'=(1,0,0,0), Bf'=(0,1,0,0), B =(1,1,0,0),

BY=(0,0,0,0), B{=(0,0,1,0), Bf=(0,0,0,1), Bj=(1,1,0,0).
Consequently,
B? # B3 & B{ © Bj.
(2) If d is even, each layer key is chosen as
K¢=(0,0,0,0), (1<£<d-2), Ks1=(+,-,0,0), Ka= (+,0,0,0).
Thus, we have
Bg'—z = (0, 0, 0,0), B:-z = (1,0, 0, D), B:—z — (0, 1, 01 0)9 33-2 = (11 1,0, 0)’
Bo_‘ = (ana 1’0)1 Bi’_l = (0,0,0, 0)1 32—1 = (1)11010)1 Bg_l = (O’an’ 1),
Bi=(1,0,1,0), Bf=(0,0,0,0), Bf=(0,0,0,1), By=(1,0,0,1).
Consequently,
B3 # Bi® B{ @ B;.
From cases (1) and (2), we conclude that function F,(.) is not affine when n = 4. The
general case when n > 6 is similarly formalized as in the proof of Theorem 6. O

6.3 Evaluation of Non-affineness Measure for C, Circuits
6.3.1 Example

We use here the same key K* used in C(10,3) of Example 1 in Section 3 for comparison
reasons.

Putting F = F; and D(4;) = F{ (K*,0)® F,(K*, A;), we have checked whether or
not equation (1) holds for all of 1024 inputs. There are only 64 inputs satisfying the affine
equation (1) as shown in Table 3. Therefore, the function computed by this Ci(n,d)
circuit is not affine.

Table 3. Inputs satisfying the affine equation for C(10,3) with K*

284 [ Zeb [ 311 [ 397 | 3H

=
(=
=

008 [ 023 [062 | 070 [[0e3 [ 117 || 174 | 181

010 | 040 | 063 | 073 | Oef | 11b | 178 | 1fD | 20c | 24 | 288 | 2ef | 370 | 399 | 318
043 | 067 | 080 || 100 | 160 || 193 | 1f4 | 22c | 263 | 28¢ | 313 | 378 | 39a | 3f9
020 | 061 | 06b | 08¢ || 103 | 163 |[ 197 | 1fc | 22f | 26f | 2ee | 31b | 37c | 39b | 3fc

200 | 24c

ERE

8



Since |A] = 1024 and H = 960 (= 1024 — 64), we have Nx. = 960/1024 = 0.9375. Note
that equation (1) holds for the inputs A; with only the i-th bit equal to 1 (1<i<10),as
shown in underlined numbers in Table 3.

- 6.3.2 Total Properties of Non-affineness

By computer simulation, we have estimated the non-affineness measure N for Ci(n,d)
when 2 < n €16 and 1 < d < 10. Table 4 shows the range of the values of Ny, which
have been exhaustively computed for all keys. For example, if n = 4 and d = 1, then
Nx = N =1/4 = 0.250 for any key among all of 256(= 4*) keys. From Table 4, we can
observe that circuits C'y(n,d) may imply Nx = 0 for some keysifn =4, 1 <d<2.
However, Nk # 0 otherwise. Table 5 shows the values of N obtained by an extensive
computer simulation. From Table 5, we can observe that the degree of non-affineness N
for C.(n,d) increases as n or d increases.

Table 4. Key-dependent non-affineness measure N

d] Hange of Ny No. of tested Lkeys | Comments

1 Ng =0.250 256(= 4%)

2| 0.000 £ Nk < 0.500 65536(= 4%) Nx =0 for 25.00% keys
3

1

1

0.000 < Nk < 0.625 | 16777216(= 4'%) | N =0 for 3.125% keys
0.375 < Nic < 0.750 | 4096(= 4°)
0.438 < Nk < 0.813 |  65536(= 4%)

OO O b W o33

Table 5. Non-affineness measure N (*: results of exhaustive tests)

n=2In=4 n=06 [n=8 [n=10n=1b
d=1 0.00 0.2507 [ 0.445" | 0.566° | U.605 | 0999
d=2 |0.00 |0.266" | 0.548 | 0.823 | 0.913 | 0.999
d=3 [0.00 |0.350" | 0.683 | 0.886 | 0.946 | 0.999
d=4 |0.00 | 0.405 |0.740 | 0.901 | 0.969 | 0.999
d=6 | 000 | 0440 | 0.810  0.921 | 0.980 | 0.999
d=8 |0.00 |0.492  0.853 |0.939 |0.983 | 0.999
d =10 | 0.00 | 0.527 | 0.866 | 0.952 | 0.986 0.999

7. Other Cryptographic Properties for C, Circuits

Besides involution and non-affineness, other cryptographic properties such as nonlin-
earity, the probability of bit complementation, avalanche effect for C,(n, d) circuits can be
clarified. These properties (except non-affineness) are similar to those for C'(n, d) circuits,
which were described in [KT90]. For Cy(n,d) circuits, the n and d values can be increased
as necessary to properly secure a cryptosystem.

8. Conclusions

We have proposed a family of augmented non-affine parity circuits C;(n,d) by intro-
ducing a random involution called value-dependent swapping (VDS).

We also incorporated VDS into DES to make it stronger against differential [BS90] and
linear cryptanalysis [KKT94,NKKT96].
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