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ABSTRACT 
A computationally inexpensive involution called value-dependent swapping is intro­

duced. This involution is included in the non-linear cryptographic family of functions 
called Parity Circuits to increase its non-affineness and thus increase its strength against 
cryptanalysis. Our analysis shows that this augmented version of Parity Circuits still have 
fundamental cryptographic properties. The addition of this involution introduces a new 
type of randomization while preserving the invertibility of the functions being defined. 
We formulate affineness for a. general function, and introduce a normalized non-affineness 
measure. We prove some non-affineness conditions for the augmented Parity Circuits, 
and evaluate their non-a.ffineness. We suggest the value-dependent swapping can also be 
incorporated into DES-like cryptographic functions as well to make them stronger against 
cryptanalysis. □ 

1. Introduction 
We introduce a random involution called value-dependent swapping, VDS. In the VDS, 

the left half and the right half of a sequence of bits are swapped if its weight is odd. VDS 
is included in the cryptographic family of functions called Parity Circuits C(n,d) [KT90] 
to obtain an augmented version called C+ ( n, d), where n is the the plaintext input length, 
and dis the depth of the circuit. Cryptographic properties of C+(n,d) a.re analyzed. In 
particular, we prove that C+(n, d) for n 2! 4 is not affine. We also show the degree of the 
non-affineness of C+(n, d) increases as n or d increases. 

This work is in response to a very recent short note by Youssef and Tavares [YT97] in 
which they show our original Parity Circuits [KT90] are affine and hence insecure. 

In Section 2, we introduce VDS, and in Sections 3 and 4, we summarize the Parity 
Circuits C(n,d) and define the augmented circuits C+(n,d). In Section 5, the swapping 
properties for C+(n,d) are clarified. In Section 6.1, we formulate affi.neness for a. general 
function, and introduce a normalized non-affineness measure. In Section 6.2, we prove non­
a.ffineness conditions for C+(n, d). In Section 6.3, we evaluate the non-affi.neness measure 
for the circuits C+(n,d) when nor d increases. In Section 7 and 8, other cryptographic 
properties are briefly described. 

2. Value-dependent swapping 
1Thia work was presented to the 1997 Information Security Workshop (Japan Advanced Institute of 

Science and Technology, Kanazawa, September 17-19, 1997, Japan) 
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We propose a random involution called value-dependent swapping (V DS). A function 
called value-dependent swapping is generally defined as follows. 

Definition 1 Let x = L II R be a sequence of 2k (k > 0) bits, where L stands for left half 
of x, a.nd R stands for right, length(L) = length(R) = k. A value-dependent swapping, or 
V(x), is defined to be 

where h(x) E {O, 1}. □ 

{ 
RII L 

V(x) = 
LIi R 

if h(x) = O, 

if h(x) = l, 

Notice that V(x) is an involution: V(V(x)) = x if h(L II R) == h(R II L). 
Among various candidates for h(x) satisfying h(L II R) = h(R II L), we ca.n define a 
particular involutional value-dependent swapping called V DS. 

Definition 2 (V DS) Let x = L II R be a sequence of 2k (k > 0) bits, where length(L) = 
length(R) = k. AV DS, which is an involutional value-dependent swapping based on the 
parity of the weight of x, is defined to be 

{ 

R II L if weight(x) is odd, 
V(x) = V(L II R) = 

L II R othm»ise, 

where weight(x) is the number of l's in the bit-sequence x. □ 

Notice that if L = R, then weight(x) is even a.nd no swapping occurs. 
From now on in this paper, we will assume that n is even, unless otherwise noticed. 

3. Summary of Parity Circuits C(n,d) 
We summarize in this section the basic concepts defined in [KT90] which will be used 

later. 

Definition 3 A parity circuit layer with length n, or simply an L(n) circuit layer, is a 
Boolean device with an n-bit input and an n-bit output, characterized by a key that is a 
sequence of n symbols from {O, 1, +, -}. □ 

The symbols O and 1 are called testers, the symbol + is called even inverter, and - is 
called odd inverter. 

Definition 4 A function B = f(K,A) computed by an L(n) circuit layer with key K = 
k1k2 · · • k,. E {O, 1, +, - r is the relation from an n-bit input sequence A = a1 02 · · · a,. E 
{0,1}" to an n-bit output sequence B = b1b1 ···b,. E {0,1}" defined below. An L(n) 
circuit layer computes first the variable T modulo 2 such that: 

T-"" t· od2 h t--{l if(k;=Oanda;=O)or(k;=landa;=l) 
- L-j=t ' m w ere ' - 0 otherwise. 

Note that T = 0 if there a.re no testers in K. When T = 0 we will say an even parity event 
ocurred; otherwise, an odd parity event occurred. 

The output B = b1~ · · · bn of the circuit layer is then 
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b; = { 

k; = + and T = 0 (even event) 
or 

a; if k; = - and T = 1 (odd event) 
or 
k; = 1 

a; otherwise. □ 

It is shown in (KT90] that every circuit layer L(n) computing f has an inverse layer 
L-1 (n) to compute 1-1 i.e., J- 1(K,f(K,A)) = A, for any n-bit input A and any key K. 

Definition 5 A parity circuit of width n and depth d, or simply a C(n, d) circuit, is a 
matrix of d L(n) circuit layers with keys denoted by K = Ki II K2 II · · · II Kd for which 
the n output bits of the ( i -1 )-th circuit layer are the n input bits for the i-th circuit layer, 
for 2 ~ i ~ d. The key for the C(n, d) circuit is ad x n matrix with its d lines containing 
the circuit layer keys. □ 

Let F(.) be the function from {O, l}n to {O, 1r computed by a circuit C(n, d) with 
key Ki II K2 II · · · II Kd, That is, F(K, A) is defined as 

F(K,A) = f(Kd,/(Kd-1, · · · f(Ki,A) · · ·). 

It is also shown in [KT90] the inverse function F-1(.) is computed by the "inverted" circuit 
c-1(n, d) with key Kd II Kd-1 II '' • II K1. 

Table 1 shows the behavior of an example of C( n, d) circuit {KT90} with width n = IO 
and depth d = 3 that will be referred to as Example 1 with key K* in the later sections. 

Table 1. Example 1: C(n, d) when n = 10 and d = 3 

4. Augmented Non-affine Parity Circuits C+(n,d) 
Definition 6 A function B = f+(K,A) computed by an augmented L(n) circuit layer 
with key K, or simply L+(n) layer, is the function V(f(K, A)), where V is the VDS 
function as in Defintion 2, and/ is the function computed by an L(n) circuit layer. □ 

We will see next that L+(n) layer is still invertible: for invertion just compute V(:r) 
before computing the inverse of L(n) (as pointed out, V(x) is an involution). 

Theorem 1 Every function B = f+(K,A) computed by an L+(n) layer is invertible, i.e., 
for any n-bit input sequence A, and any key K, there i, an inverse layer, L:;1(n) layer, 
to compute f+1 so that f+ 1(K, f+(K, A)) =A.· 

Proof First, we have from Lemma 1 in [KT90] that every function J(K,A) computed 
by an L( n) layer has an inverse 1-1 • From the definition, we have / + = V o f and 
f+ 1 = J-1 o V. Since V is an involution, we ha.ve 
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f+ 1 of+ = J-1 o Vo Vo f 
= identity □ 

L+(n) layers are composed as L(n) layers are in Section 3: 

Definition 7 An augmented parity circuit of width n and depth d, or simply a C+(n, d) 
circuit, is a matrix of d L+(n) layers with keys denoted by K = K1 II K2 II · · · II Kd for 
which the n output bits of the ( i -1 )-th circuit layer are then input bits for the i-th circuit 
layer, for 2 s; i $ d. The key for the C+(n, cl) circuit is ad x n matrix with its d lines 
containing the circuit layer keys. A function F+(K, A) is computed by a C+(n, d) circuit 
as: 

F+(K, A)= f+(Kd, f+(K.,.-1, · · ·, f+(K1, A)···) 

where each f+(K;, .) is computed by a L+(n) circuit layer as defined before. □ 

Since each function computed by L+ ( n) layers is invertible, as we have seen, the 
functions F+ computed by C+(n, cl) circuits are also invertible. 

Table 2 shows the behavior of a C+(lO, 3) circuit with the same input and the same 
key K* in Example 1. 

Table 2. C+( n, d) when n = 10 and d == 3 

5. Swapping Properties for C+ Circuits 
The swapping properties for C+ are clarified in the following Theorems 2, 3 and 4. 

Theorem 2 Let n be a positive integer {n ? 1), let A = a1 a2 • • • a,. E {O, lJn be an 
n-bit input sequence to a circuit C(n,d) with key Kand let B = b1~···b,. E {0,1}" be 
the n-bit output sequence. If A is uniformly generated, then 

Prob{weight(B) is odd}=½, Prob{weight(B) is even}==½· 

Proof By hypothesis, Prob{a; = O} = 1/2 and Prob{a; = l} = 1/2, for 1 s;j s; n. 
Let p = Prob{a; is complemented by K}. Then: 

Prob{b; = O} = Prob{a; = 1} · p + Prob{a; = O} . (1 - p) 
= (1/2)p + (1/2)(1 - p) = 1/2. 

Similarly, one ca.n show Prob{b; = l} = 1/2, for 1 s; j s; n. 
By mathematica.l induction, we show Prob{weight(B) is odd} = 1/2 for any pcraitive 
integer n. When n = 1, we have Prob{weight(B) is odd} = 1/2. Let BE {O, 1}1, a.nd 
B+ = (B II bi.+1) E {O, l}k+1 . If Prob{weight(B) is odd}= 1/2, then we have 
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Prob{weight(B+) is odd} = Prob{weight(B) is odd} - Prob{b1-+1 = O} 
+Prob{weight(B) is even}· Prob{bt+l = 1} 

= (1/2) · (1/2) + (1/2) · (1/2) 
- - 1/2. □ 

From Theorem 2, a swapping occurs in a.n L+(n) layer with probability 1/2. If A 
is uniformly generated, then we have the following formulas from well known results of 
binomial distribution, 

Prob{one or more swappings occur in C+(n,d) circuit}= 1- (~t 
The average of the number of swappings in C+(n, d) circuit is : f 
The variance of the number of $Wappings in C+(n,d) circuit is: f 

Let p be the probability that the swapping occurs in one layer. Considering now d layers, 
we have: the first formula is derived from the equation: 

Prob{ one or more swappings occur in d layers} 

= 1 - Prob{ no swappings occur in d layers} 

The average and the variance a.re derived from well known results of binomial distribution: 
the average of the number of swappings in d layers is dp, and its variance is dp(l - p). 
Since p = 1/2, we have the a.hove formulas. 

By randomization through VDS, the output of F+(K,A) coincides with the output of 
F(K, A) with the following probability. 

Theorem 8 Let P(n,d) = Prob{F+(K,A) = F(K,A)} for a common set of input A and 
key K, where F+(K,A) is computed by C+(n,d), and F(K,A) is computed by C(n,d). If 
A and K are uni./ ormly generated, then 

if d ~ 2. 

Proof 
Case 1 (d = 1): If the weight of f(K,A) is odd, then L-/- Ra.ndf+(K,A) = Vof(K,A) :/: 
f(K,A). Since Prob{f+(K,A) :/: f(K,A)} = 1/2, we have P(n, 1) = 1/2. 
Case 2 (d ~ 2): Let Ket be the key of d layers. If d = 2, f+(Ki,A) = f(K1,A) (= A') and 
f+(Ki,A') :/: f(Ki,A'), then F+(K2,A) f- F(K2,A) with probability 1. If /+(K1,A) j 
f(K1 ,A), then F+(K2 ,A) = F(K2 ,A) with probability 1/2". Thus, when d = 2, we have 

P(n,2) 
= PraF+(K2 ,A) = F(K::a,A)~ = Prob f+(K2,f+(K1,A)) = f K2,f(K1,A))} 
= Pr f+(K1,A) = f(Ki,A) =A')}· Prob{f+(K2,A') = /(K2,A')} 

+Prob{f+(Ki, A):/: /(Ki, A)}· #, 
= ¼ + ½#. 

5 



More generally, when d ~ 2, we have 

P(n,d) 
= Prob{F+(Kd,A) = F(Kd,A)} 
= Prob{F+(Kd-1,A) = F(K.t-1,A) (=A")}· Prob{/+(Kc1,A") = f(Kc1,A")} 

+Prob{F+\K.t-1,A) # F(Kd-1,A)} · t,; 
= P(n,d- lh + (1 - P(n,d - l))i,. 
= P(n,d-l)·(½-t,;)+f,.. 

By obtaining a finite geometric. sum, we have the above formula. □ 

6. Non-afflneness 
6.1 Non-affineness Measure 

In general, a cryptographic function :F is affine if and only if the following equation 
holds for any input A= (ai,a2 , .. •,an), a; E {0,1} and any key K. 

:F(K, A)= .r(K, 0) EB a11'(A..) EB a2VCA..-1) EB··· EB anV(A1), (1) 

where 1'(A;) = .r{K, A;) EB :F(K, 0), and A; (1 :S i :S n) denotes an input with only the 
i-th bit equal to I, and EB denotes the exclusive-or operation. 

If there is a nonempty set of inputs A and a nonempty set of keys K for which equation • 
(1) does not hold, then .r is non-affine. A measure of non-affineness can be defined by the 
number of pairs (A, K) for which equation (1) does not hold. It is similar to a measure 
of non-linearity which is often defined by the order of the Boolean canonical form of the 
nonlinear function [R86]. Thus, we introduce a normalized non-a.ffineness measure as 
follows. 

Definition 8 Let A be the input set, and IAI be the number of elements in A. Let H 
be the number of elements in A for which equation (1) does not hold. A key-dependent 
non-affineness measure NK for a cryptographic function .r with key K is defined by 

Let 1C be the key set, and l,q be the number of elements in K.. A non-affineness measure 
N is defined by an average of NK over the key set K as 

Note that :F is affine if and only if N = O. Even if :F is non-affine, there may exist keys 
implying NK = 0. If .r is F+(K, A) computed by C+(n, d), then N is evaluated by all of 
the combinations of 2n inputs and 4nd keys. In general the bounds for N are evaluated as. 

follows. 

Theorem 4 Let~ be a bijection from {0, l}n to {O, l}n. A non-affineness measure N is 
bounded as 

O<N<l-n+l. 
- - 2" 
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.. .. 

• 

• 
• 
• ~roof For any cryptographic function F a.nd any key K, equation (1) holds for the inputs 

A; (1 :5 i :5 n) and the input equal to zero. That is, n + 1 inputs always satisfy equation 
(1) .• Thus, we have H ~ 2" - (n + 1). Consequently, we have the above inequality. o 

Theorem 5 Let F be a bijection from {0, 1}" to {0, 1}". If n == 2, then F is affine. 

Proof If F is a. bijection from {0, 1 }2 to {0, 1 }2, then the function F has four outputs 
such as B1 = (0, 0), B2 = (0, 1), 83 == (1, 0) and B4 = (1, 1). Since B; = B; ff) B1c ff) Btfor 
any combination of distinct subscripts (i,j, k, l), equation (1) always holds. o 
6.2 Non-afflneness for C+ Circuits 

The non-affine conditions for L+(n) and C+(n, cl) will be shown in Theorems 6 and 7. 

Theorem 6 A function f+(.) based on L+(n) is not affine if n ~ 4. 

Pr~of: We prove tha.t there is a key K so that f + ( K, A) is not affine. Consider four input 
sets Ao, A1 , A2, AJ and their outputs such that 

B; = (b;,1,b;,2, ... ,b;,,.) = f+(K,A;) = f+(K,(a;,1,a;,2, ... ,a,,n)), (0 :5 i $ 3, n;?; 4). 

Ao= (0,0,0, ... ,ol, (aoJ=O (lSjSn)), 
A1 = (1,0,0, ... ,o, (a1,1=l,G1j=O (~=/-1)), 
A2 = (0,1,0, ... ,o, (a2,2=l, GzJ=O (3f2)), 
A3 = (1, 1, 0, ... , 0 , (03,1 = 113,2 == 1, 03,; = 0 (j # 1, 2)). 

If the function f+(.) is affine, then t.he following equation must hold for any key. 

B11 = BoeB1@ B2, 

However, when the key K is all zero, we have 
Bo (o,o,o, ... ,o,o, ... ,oi, (bo.;=O (1:5i:5n)), 

B2 = 0, 0, 0, ... , 0, 1, ... , 0 , b,,n/2+2 - 1, "2., - 0 (J ~ n/2 + 2)), 
B1 = io,o,o, ... , 1,0, ... ,o , ~"1.,.,i+1 '.: 1, bi~: o (~ f n/2 + 1)), 

~ = 1,1,0, ... ,0,o, ... ,o), bs.i=b:J.2=1, bs.;=O u=11,2)), 
and 

83 =/:- Bo EB B1 EB B2. 
Thus, the function/+(.) is not affine if n;?: 4. o 

Theorem 7 A function F+(.) based on C+(n,d) ia not affine if n ~ 4. 

Proof: Without loss of generality, we show the case when n = 4. We prove that we 
can construct keys K = K 1 II K 2 /I · · • II K~ so that F+(K,A) is not affine. To check 
non-affi.neness simply consider the four input sets Ao, A1, A:, and ~ such that 

Ao = (0, 0, 0, 0), A1 = (1, 0, 0, 0), A2 = (0, 1, 0, 0), AJ = (1, 1, 0, 0) 
Let Bf be the output of the l-th circuit layer L+(4) for input A;. 

Bf= f+(Kt, f+(Kl-1, · · • f+(Ki, (a;,1,a;,2,a;;i,tli,4)), (0 Si S 3). 
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If the function F+(.) is affine, then the following equation must hold for any key. • 

s: = sg EB Rt ffJ sg . 

. However, we can choose key K so that this equation does not hold. 

(1) If dis odd, each layer key is chosen as 

Kt= (0,0, 0,0) (1 $ l $ d). 

Thus, we have 

Bg-1 = (0,0,0,0), Bt-1 = (l,0,0,0), B;-1 = (0,1,0,0), B;-1 = (1,1,0,0), 

Dg=(O,O,O,O), Bf=(O,O,l,O), Bt=(0,0,0,1), B;=(l,1,0,0). 

Consequently, 
B: :/; Bg ffi Bf fl) B;_ 

{2) H d is even, each layer key is chosen as 

Kt= (0,0,0,0), {l $ l $ d- 2), K,1_1 = (+,-,0,0), K,1 = (+,0,0,0). 

Thus, we have 

Bg-1 = (0, 0, 0, 0), Bt-• = (1, 0, 0, 0), B:-• = (0, 1, 0, 0), Bg-• = (1, 1, 0, 0), 

Bg-1 = {D, 0, 1, 0), Bf-1 = (0, 0, 0, D), B;-1 = (1, I, O, 0), B;-1 = (0, O, 0, 1), 

Bg = (1,0,1,0), Bf= (0,0,0,0), Bt = (O,D,D,l), Bi= {1,0,0,1). 

Consequently, 

From cases (1) and (2), we conclude that function F+(.) is not affine when n = 4. The 

genera.I case when n ~ 6 is similarly formalized as in the proof of Theorem 6. □ 

6.3 Evaluation of Non-aflineness Measure for C+ Circuits 

6.3.1 Example 
We use here the same key K• used in C(lO, 3) of Example 1 in Section 3 for comparison 

reasons. 
Putting :F = F+ and D(A.) = F+(K•,o) EB F+(K0 ,.A;), we have checked whether or 

not equation (1) holds for all of 1024 inputs. There are only 64 inputs satisfying the affine 

equation (1) as shown in Table 3. Therefore, the function computed by this C+(n,d) 
circuit is not affine. 

Table 3. Inputs satisfying the affine equation for C+(l0,3) with K* 

0 
QQl lil.O. Oil 063 073 
.llQ2. 013 043 067 QBQ. 
.Q!M. Q2Q 061 06b 08c 

3 
Oef llb 
1QQ. 160 
103 163 

178 lfO 20c 
193 lf4 22c 
197 lfc 22£ 
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288 2ef 370 399 3t'8 
28c 313 378 39a 319 
2ee 31b 37c 39b 3fc 



Since IAI = 1024 and H = 960 (= 1024 - 64), we have NK• = 960/1024 = 0.9375. Note 
that equation (1) holds fot the inputs A; with only the i-th bit equal to 1 (1 '$ i '$ 10), as 
shown in underlined numbers in Table 3. 

6.3.2 Total Properties of Non-afflneness 
By computer simulation, we have estimated the non-aflineness measure N for C+(n, d) 

when 2 ::5 n $ 16 and 1 ::5 d ::5 10. Table 4 shows the range of the values of NK, which 
have been exhaustively computed for all keys. For example, if n = 4 and d = 1, then 
NK = N = 1/4 = 0.250 for any key among a.11 of 256(= 44

) keys. From Table 4, we can 
observe that circuita C+(n,d) may imply NK = 0 for some keys if n = 4, 1 :::; d:::; 2. 
However, NK -:f O otherwise. Table 5 shows the values of N obtained by an extensive 
computer simulation. From Table 5, we can observe that the degree of non-aflineness N 
for C+(n,d) increases as nor d increases. 

n 
4 
4 
4 
6 
8 

Table 4. Key-dependent non-aflineness measure NK 

NK = 0.250 
0.000 '$ NK $ 0.500 
0.000 ::5 NK :5 0.625 
0.375 :5 NK $ 0. 750 
0.438 :5 NK :5 0.813 

• o. o test.e eys 
256(= 4 ) 

65536(= 48
) 

16777216(= 412) 

4096(= 46
) 

65536(= 4 ) 

omments 

NK = 0 for 25.00% keys 
NK = 0 for 3.125% keys 

Table 5. Non-aflineness measure N (*: results of exhaustive tests) 

= 1 
d=2 0.00 0.266* 0.548 0.823 0.913 0.999 
d=3 0.00 0.350* 0.683 0.886 0.946 0.999 
d=4 0.00 0.405 0.740 0.901 0.969 0.999 
d=6 0.00 0.440 0.810 0.921 0.980 0.999 
d=B 0.00 0.492 0.853 0.939 0.983 0.999 
d= 10 0.00 0.527 0.866 0.952 0.986 0.999 

7. Other Cryptographic Properties for C+ Circuits 
Besides involution and non-aflineness, other cryptographic properties such as nonlin­

earity, the probability of bit complementation, avalanche effect for C+(n, d) circuits can be 
clarified. These properties (except non-aflineness) are similar to those for C(n, d) circuits, 
which were described in [KT90]. For C+(n,d) circuits, then and d values can be increased 
as necessary to properly secure a cryptosystem. 

8. Conclusions 
We have proposed a family of augmented non-affine parity circuits C+(n,d) by intro­

ducing a random involution called value-dependent swapping (VDS). 
We also incorporated VDS into DES to make it stronger against differential (BS90] and 

linear cryptanalysis (KKT94,NKKT96]. 
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