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A B S T R A C T

Pesticides can affect all receiving compartments, especially soils, and their fate and effects may be enhanced by
temperature, increasing their risk to ecological functions of soils. In Brazil, the most widely used pesticides are
the insecticide Kraft 36 EC® (a.s. abamectin) and the fungicide Score 250 EC® (a.s. difenoconazole), which are
commonly used in strawberry, often simultaneously as a mixture. The aim of this study was to evaluate the
toxicity of realistic environmental applications, single and in mixtures, for both pesticides to the springtail
Folsomia candida and the plant species Allium cepa (onion) and Lycopersicum esculentum (tomato). Mesocosms
filled with Brazilian natural soil (lattosolo) were dosed with water (control), Kraft (10.8 g a.s/ha), Score
(20 g.a.s/ha) and Kraft + Score (10.8 + 20 g a.s./ha). The applications were repeated every 7 days, during 18
days of experiment, and simulating rainfall twice a week. Collembola reproduction tests were conducted with
soils from the first (day 1) and last day (day 18) of experiment for each treatment. Plant toxicity tests were
carried out in the experimental units. The experiments were run at 23 °C and 33 °C. Kraft, alone and in the binary
mixture, showed high toxicity to the springtails in soils from both days 1 and 18, especially at 23 °C where it
caused 100% mortality. Score however, was not toxic to the springtails. Plant growth was reduced by Score, but
responses varied depending on temperature. This study indicates a high environmental risk of the insecticide
Kraft, particularly at lower temperatures (23 °C), and an influence of temperature on pesticide fate and effects.

1. Introduction

It has generally been acknowledged that temperature may impact the
toxicity of contaminants as well as on their distribution over different
environmental compartments (Bell et al., 2007; Van den Brink et al.,
2018; Noyes et al., 2009; Schiedek et al., 2007). Pesticides may pollute
the environment through different routes (Vryzas, 2018) and have been
detected in all environmental compartments (Estévez et al., 2012;
Lapworth et al., 2012). Most studies evaluating pesticides have focused
on surface water (Chelinho et al., 2012; Kuster et al., 2008; Murray et al.,
2010; Niemeyer et al., 2017), even though soils and sediments have been
indicated as the largest deposits of these compounds (Vryzas, 2018),

which may lead to significant risks to the ecological functions of soils,
plant growth and even human health (Sun et al., 2018).

Brazil is currently the world's largest consumer of pesticides, ac-
counting for approximately 20% of the total global use (Albuquerque
et al., 2016). Brazil is also the third largest fruit producer in the world
after China and India (FAO, 2017). For example, strawberry production
in Brazil heavily depends on the use of the insecticide/acaricide Kraft
36 EC® (a.s. abamectin) and the fungicide Score 250 EC® (a.s. difeno-
conazole) (Pitombeira de Figueirêdo et al., 2019), which are often used
simultaneously as a mixture (Novelli et al., 2012; Sanches et al., 2017).

In recent years, studies have demonstrated a high toxicity of
Score 250 EC® and especially Kraft 36 EC® to non-target organisms
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(Moreira et al., 2017; Nunes et al., 2016; Nunes and Espíndola, 2012;
Pitombeira de Figueirêdo et al., 2019). For example, Oliveira et al.
(2018), evaluating their toxicity to the potworm Enchytraeus crypticus,
the collembolan Folsomia candida, and the mite Hypoaspis aculeifer,
concluded that environmentally relevant concentrations of both pes-
ticides may significantly affect the reproduction of Collembola
(Oliveira et al., 2018). In addition, mixtures of the two pesticides
showed synergistic effects on aquatic organisms, indicating that en-
vironmental risk evaluations based on individual compounds may not
adequately protect aquatic ecosystems (Moreira et al., 2017; Sanches
et al., 2017). Besides, most studies evaluating these compounds were
conducted with a concentration series to determine toxicity values
(e.g. EC50, NOEC). It therefore is still unclear how these toxicity values
relate to actual risks in the environment under realistic exposure
scenarios.

The aim of the present study was to evaluate the toxicity of Kraft
36 EC® and Score 250 EC®, single and in mixture, to the collembolan
Folsomia candida and two plant species (the onion Allium cepa and the
tomato Lycopersicum esculentum Mill). A mesocosm experiment was
conducted simulating a realistic pesticide application scenario and the
toxicity was evaluated by conducting the experiments at 23 °C and 33 °C.

2. Materials and methods

2.1. Mesocosm experiment

Mesocosms (n = 12) were constructed in fiberglass jars of cylindrical
shape (0.52 m in diameter, 0.67 m in height), filled with 100 kg natural
soil (lattosolo, 11.06% organic matter; cation exchange capacity (CEC)
3.52 (cmolc/kg); 35% clay, 21% silt, 22% fine sand, 20% medium sand,
2% coarse sand). The natural soil was collected at the field station of
Center for Water Resources and Environmental Studies (CRHEA/
22°01′22″S, 43°57′38″W), São Carlos School of Engineering (EESC),
University of São Paulo (USP), that has not received application of pes-
ticides in the last 25 years (Chelinho et al., 2012; Nunes and Espíndola,
2012). The soil was sieved through approximately 5 mm and dried under
a controlled temperature of 60 °C in an oven. After allowing the meso-
cosms to stabilize for 3 days, the following treatments were prepared
with 3 replicates each: Kraft (K), Score (S), Kraft + Score (K + S) and
control. Following the manufacturer's instructions for strawberry crop,
the doses applied corresponded for Kraft 36 EC® with 10.8 g abamectin/
ha and for Score 250 EC® with 20 g difenoconazole/ha. Application so-
lutions of 1 L Milli-Q® water with the single compounds were apply the
dose in each mesocosm (filled with air-dried soil obtained as described
above), for mixtures, the solutions were prepared in 0.5 L Milli-Q® water,
thus also counting 1 L of solution for contaminating the simulators (Table
S1). Pesticides solutions were individually applied directly on soil, once a
day, with the help of hand sprayers for approximately 30 min. Also
following the manufacturer's instructions, the pesticide applications were
repeated 7 and 14 days following the first application, with a total test
duration of 18 days. Experiments were conducted at 23 °C and 33 °C in
separate temperature-controlled climate rooms. These temperatures
correspond with temperatures measured in the region (Ferrari, 2012;
Neves et al., 2018; Soares et al., 2012). After the first pesticide appli-
cation (day 0), 35 L uncontaminated water (corresponding to 225 mm of
rain, average of the wettest months in the region) was sprayed on the
surface of each mesocosm. Another five rain events (twice a week) were
simulated by applying 6 L (on pesticide application days, 5 L lake water
and 1 L pesticide solution) to each mesocosm, corresponding to 37.5 mm
which is the approximate average of months with less precipitation
(INMET, 2019).

To evaluate the impact of the pesticide applications, toxicity tests
were conducted with the collembolan Folsomia candida and two plant
species, one monocotyledone (Allium cepa, cultivar: Baia Periforme) and
one dicotyledone (Lycopersicum esculentum Mill, cultivar: Super
Marmande).

2.2. Test organisms

A culture of F. candida (Collembola) has been kept in the tem-
perature-controlled laboratory (NEEA/CRHEA/EESC-USP) for many
years. Cultures are kept at 20 ± 1 °C with a 12/12 h light-dark regime,
in a substrate of activated charcoal and plaster of Paris with water-
saturated base. Animals were fed weekly ad libitum with dried baker's
yeast (Saccharomyces cerevisiae) which was moistened to 40–60% with
distillated water. The plant seeds used in the experiments were pur-
chased from specialized stores (A. cepa, Feltrini Sements®, Lot: 4707S2,
Germination rate: 88%; L. esculentum Mill, Isla Sements®, Lot: 38,452-
S2, Germination rate: 85%).

2.3. Collembola tests

Reproduction tests (28 d) with F. candida were conducted directly
after (approximately 2 h) the first pesticide application and at the end
of the 18-day incubations at 23 °C and 33 °C. Tests were conducted as
described in the standardized ISO protocol 11,267 (ISO, 2014). As in-
dicated in this protocol, ten juveniles (10–12 day old) were exposed in
100 mL test jars to 30 g soil of each mesocosm. The soil was collected by
taking subsamples from the surface of the mesocosms ( ± top 5 cm),
using a spoon, from three different points, to guarantee the sampling
representativeness. The sampled soil was mixed in a plastic bag and
used to perform the collembolan test. Five replicates were used for each
treatment. All tests were conducted in a climate room at 20 °C and a
16 h/8 h light/dark cycle. During the tests, soil moisture content and
food availability were checked weekly and adjusted if needed (greater
than 2% of initial water content). After the 28-d exposure period, the
number of surviving adults and new-born juveniles were assessed by
extracting the animals through flotation with water, after which digital
photographs were made and animals were counted using the Image J
software.

2.4. Plants test

After removing the soil for the tests with F. candida, the top soil
layer was structured for planting the seeds, and the toxicity tests with
A. cepa and L. esculentum were carried out in the experimental units
according to the standard protocol ABNT NBR ISO 11269–2 (2014),
with minor modifications due to the size of the experimental unit and
the duration of the experiments. In each mesocosm, 15 seeds of each
plant were planted, with equal spacing between the seeds and with
intercalated arrangement. The planting was carried out immediately
after pesticide treatment and removal of the soil for the Collembola
tests. After 18 days, the plants were harvested, after which the length
(aerial part, i.e. length of the stems and the major axis) and weight
(wet and dry) were measured. The plants of each species were
weighed together per mesocosm due to the low weight of the in-
dividual plants. The pooled value was divided by the total number of
plants weighed per replicate to enable determination of the average
weight per plant.

2.5. Chemical analyses of the test compounds

Pesticide stock solution concentrations were analytically confirmed
by HPLC-DAD (Agilent 1200 series), using a C18 (4.6 × 250 mm, 5 μm)
column. The isocratic mobile phase utilized was acetonitrile and acid-
ified water, 1% with 95% acetylic acid), at an injection volume of 20 μL
and a flow rate of 1 mL/min. Each stock solution was measured in
triplicate on the same day of preparation and application to the me-
socosms. Abamectin and difenoconazole were detected and measured at
246 nm (with retention times, RT, of 3.6 min) and 220 nm
(RT = 7.3 min), respectively. The recovery rates were 98.0 ± 4.6% for
abamectin and 95.4 ± 8.5% for difenoconazole and detection limits
were 0.05 mg/L and 0.01 mg/L, respectively.
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2.6. Statistical analyses

The generated dataset was analyzed using the Generalized Linear
Model (GLM) and Generalized Linear Mixed Model (GLMM) ap-
proaches, since these are models that allow to analyze data that are
independent but without homogeneity in their variance, involving ef-
fects random (time factor) (Lo and Andrews, 2015; Lopes et al., 2018).
For both Collembola and plant analyses, the explicative variables were
treatments (Kraft, Score, Kraft + Score and Control), temperatures
(23 °C and 33 °C) and their interactions. In the case of Collembola, the
collection time (first and the last experimental day) was added as
random effect due to possible correlation effects.

The response variables for Collembola models were: mortality,
which was considered to follow a Binomial probability distribution, and
the average number of new-born juveniles per surviving adult, which
was considered to follow a Gamma probability distribution. Logit and
log functions were adopted as link functions for these variables, re-
spectively. For the plant models, the response variables were wet and
dry weight, stem length (both plants), and the major length (only for
tomatoes). For all plant variables, a Gamma probability distribution
and a log-link function were considered. The suitability of fitted models
was evaluated by residual diagnostics, and the significance of estimated
coefficients for each factor was verified using Wald test (Binomial

distribution) and t-test (Gamma distribution). The diagnostic of re-
siduals indicated that all probability distributions were appropriate to
represent data variability (see FigS. 1–4 in supplementary material), as
well as the model structure. All statistical tests were performed con-
sidering the control treatment at a temperature of 23 °C as reference
group and a significance level of 5%. The statistical analyses were
performed using R software environment (R Core Team, 2018). For the
GLMM approach, the “lme4” package (Bates et al., 2015) was used.

3. Results and discussion

3.1. Toxicity to F. candida

The insecticide/acaricide Kraft 36 EC® and its mixture with the
fungicide Score 250 EC® were extremely toxic to the springtail F. candida
at 23 °C. Soil collected from the mesocosms incubated at 23 °C on the
first (day 1) and the last day (day 18) of the experiment caused 100%
mortality and no juveniles were produced. Soil collected from the me-
socosms incubated at 33 °C, however, was much less toxic with effects on
springtail survival and reproduction in the single Kraft exposure de-
creasing at day 18 compared to day 1 and increasing in the mixture
exposure (Fig. 1). Score 250 EC® showed no toxicity to the springtails for
both experiments performed at 23 °C or 33 °C (Fig. 1 and Table S2).

Fig. 1. Mean ± standard deviation (n=5) mortality (%) and reproduction (number of juveniles) of Folsomia candida when exposed to soil taken after 1 or 18 days
from mesocosms nontreated (Control, C) or treated 3 times at 7-day intervals with normal doses of abamectin in the formulation Kraft (K), difenoconazole in the
formulation Score (S) or their binary mixture (K+S) and incubated at 23 °C and 33 °C.
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However, even with the high toxicity (100% mortality at 23 °C on
days 1 and 18) no significant difference was observed for the K and
K + S estimates (p > 0.05). This was attributed to a statistical phe-
nomenon called “separation” (Albert and Anderson, 1984). As the re-
sponse variable has only one predicted value for these cases, the odds
want to be infinite, leading to high standard error values. To demon-
strate the significant effects of the interaction terms, the Likelihood
ratio test (LRT) between the full model and the model without inter-
action was carried out. The second model presented almost twice the
Akaike's Information Criterion (AIC = 1044.61) value in comparison to
the full model (AIC = 540.43), indicating the significant effects of the
interactions between temperature and K and K + S treatments (LRT,

2 = 510.8, P < 2.2e−16).
Previous studies revealed a rather large variation in the toxicity of

abamectin to collembolans. Oliveira et al. (2018), for example, noted a
50% reduction in F. candida when exposed to 0.06 mg a.s./kg in a
natural Brazilian soil (15% organic matter content; CEC 3.33 (meq/
100 g); 48% clay; 12% silt; and 19, 11, and 10% of fine, medium, and
coarse sand, respectively) in the laboratory. However, Diao et al. (2007)
reported such a reduction at a ten-fold higher concentration in a natural
(York, England) sandy-loamy soil (21% clay, 12% silt, 67% sand, 2.22%
organic carbon and a pH of 7.0) (EC50 F. candida = 0.68 mg a.s./kg). In
the present study, 100% mortality of F. candida was seen in the test
conducted at 23 °C while at 33 °C no lethal effects were observed
(Fig. 1). It is indeed known that soil properties have a great influence of
pesticide fate and (hence) toxicity (see Daam et al., 2019 for a recent
review).

At high temperatures, the faster degradation of the compound may
explain for the absence of toxicity to the test organisms. The faster
degradation of abamectin-based compounds at high temperatures has
been reported in the literature (Awasthi et al., 2013; UE, 2011).

Jegede et al. (2017) evaluated the toxicity of three pesticides (di-
methoate, chlorpyrifos and deltamethrin) to F. candida at 20 °C and
28 °C. They noted that the toxic effects of dimethoate and chlorpyrifos
on reproduction were higher at higher temperatures, whereas toxicity
of deltamethrin was greater at 20 °C. Greater toxicity of pesticides at
higher temperatures has been attributed to higher uptake rates,
whereas lower toxicity may be related with a faster dissipation and
higher elimination rates in organisms (Daam et al., 2019; Römbke et al.,
2007). Neurotoxic pesticides like abamectin, for example, have been
indicated to have greater toxicity to insects at lower temperatures due
to increased stability of sodium channels and influx as compared to
higher temperatures, increasing the vulnerability of the nervous system
to the toxic effects of this compound (Jegede et al., 2017).

The fungicide Score 250 EC® had no effects on F. candida at both
temperatures tested (23 and 33 °C). Oliveira et al. (2018) determined
an EC50 for F. candida of this compound of 28.9 mg a.s./kg soil. F.
candida was clearly less sensitive to difenoconazole than to abamectin.
Given the mode-of-action of these compounds, collembolans may in-
deed be expected to be more sensitive to insecticides like abamectin
than to fungicides like difenoconazole (Daam et al., 2011; Oliveira
et al., 2018; Pitombeira de Figueirêdo et al., 2019). The toxicity of
difenoconazole to invertebrates, such as F. candida, remains unknown,
since few studies have been carried out with this group of organisms
(US Environmental Protection Agency, 2016). Regarding vertebrates,
experiments with fish (Danio rerio) indicate that the toxic effects result
from a specific mode of action and are not related, therefore, to sys-
temic toxicity (Teng et al., 2018).

Temperature has already proven to influence the action of fungi-
cides such as difenoconazole, as confirmed by Filimon et al. (2015),
who detected a lower enzymatic activity of the soil microbiota when
exposed to difenoconazole at higher temperatures. Temperature also
influenced the rate of dissipation of these compounds in natural soils, as
tested by Guo et al. (2010), Castillo and Torstensson (2007) and Fenoll
et al. (2009), supporting our results, especially from tests at higher
temperatures.

For the mixture of the compounds, the statistical analysis performed
(estimated values, Table S2) confirmed that the toxicity is mainly due to
the insecticide Kraft 36 EC®. Since we tested only one combination of
the pesticides, it is not possible to show synergistic, additive or antag-
onistic effects.

3.2. Sensitivity of the plants to the pesticides

The effects on both plant species tested were significant, especially
for dry weight and length at 23 °C, while at 33 °C an increase in weight
(dry weight) and length was observed for both plant species. For fresh
weight, temperature increase, as an isolated parameter, was the most
significant parameter, making it impossible to verify the effect of the
contaminants alone or in mixture (Tables S3 and S4; Figs. 2 and 3).

Tiyagi et al. (2004) found adverse effects on plant growth para-
meters (plant height, weight and root nodulation) after chickpea plant
exposure to aldicarb, carbofuran, phorate, fensulfothion, and fenami-
phos. However, in the present study the fungicide Score 250 EC® caused

Fig. 2. Mean ± standard deviation fresh weight (g), dry weight (g) and length
(mm) of Allium cepa grown for 18 days at 23 °C and 33 °C in mesocosms non-
treated (C- 8 control) or treated 3 times at 7-day intervals with normal doses of
abamectin in the formulation Kraft (K), difenoconazole in the formulation Score
(S) or their binary mixture (K+S). Asterisks (*) mean statistical difference from
control (GLM, p < 0.05).
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an increased dry and fresh weight, specially at 33 °C, of both plant
species (Figs. 2 and 3). This corroborates with Grossmann (1990) who
demonstrated that triazoles pesticides influence the cytokinin content
that could allow an increased plant biomass by killing pathogenic me-
soorganisms (Van Den Brink et al., 2000). An increase in germination,
plant height, and dry weight was also found by Mohamed and
Akladious (2017) when studying the effects of the fungicides Maxim
(fludioxonil), Vitavax T (carboxin and thiram), Hemixet (hymexazol)
and Flosan (thiram) used on cotton.

Ahemad and Khan (2012) also showed that four fungicides (tebu-
conazole, hexaconazole, metalaxyl and kitazin), two of them of the
same class of fungicide studied in this work, at recommended doses,
had less reducing effects on plant growth promoting factors. Baćmaga
et al. (2016) also found significant effects of the pesticide Falcon
460 EC® (fungicide, containing active ingredients spiroxamine, tebu-
conazole and triadimenol) on seed germination capacity and root
elongation of Lepidium sativum, Sinapsis alba and Sorghum saccharatum
at concentrations 30 times greater than the recommended dose. How-
ever, in the same study the authors reported strong inhibition of the
activity of dehydrogenase, catalase, urease, acid phosphatase and al-
kaline phosphatase.

The monocotyledonous species A. cepa was more sensitive to the
studied pesticides than the dicotyledonous species L. esculentum (Figs. 2
and 3). This is confirmed by Boutin et al. (2004) who suggests that the
anatomical and physiological differences of the plant types make them
respond differently to pesticide toxicity.

Temperature seemed to affect seed germination, especially of A.
cepa with about 50% less germination at the higher temperature
(Table 1). However, it is already known that increasing the temperature
alters the physiological activities of the plant and may even lead to
dormancy at very low (0 °C) or high (25–30 °C) temperatures (Resende
et al., 2007). The plant weight and length suggested a reduced toxicity
with increasing temperature (Figs. 2 and 3). This can be explained by

the degradation of the most toxic compound studied, abamectin, which
corroborates the results of Boukhrissa et al. (2017) who proved that
abamectin degradation (Kraft 36 EC®) increases with increasing tem-
perature. This antagonistic behavior of temperature and toxicity was
also found by Lima et al. (2015) when studying the effects of carbaryl
on Triticum aestivum. However, in the same paper the authors also re-
port synergistic effects of this chemical with temperature on another
species (Brassica rapa) demonstrating this relationship is species spe-
cific.

In the evaluation of combined pesticides much has been studied
about their effects on a wide range of organisms, especially for binary
mixtures. Martin and Ronco (2006), when studying a cypermethrin-
glyphosate mixture, found a 7 times higher toxicity of the mixture
compared to the individual components on root elongation of Lactuva
sativa L., corroborating with Cedergreen (2014) who affirms that for
autotrophic organisms the main effect of pesticide mixtures is syner-
gism. However, as in this study, there was no difference in the toxicity

Fig. 3. Mean ± standard deviation fresh weight (g), dry weight (g) stem length (mm) and major length (mm), of Lycopersicum esculentum grown for 18 days at 23 °C
and 33 °C in mesocosms non-treated (C- control) or treated 3 times at 7 day intervals with normal doses of abamectin in the formulation Kraft (K), difenoconazole in
the formulation Score (S) or their binary mixture (K+S). Asterisks (*) mean statistical difference from control (GLM, p < 0.05).

Table 1
Total number of germinated plants in mesocosms nontreated (Control; C) or
treated 3 times at 7-day intervals with normal doses of abamectin in the for-
mulation Kraft (K), difenoconazole in the formulation Score (S) and the binary
mixture of Kraft and Score (K + S) for the species Allium cepa and Lycopersicum
esculentum in the experiments performed at 23 °C and 33 °C of a total of 45 plant
seeds for each species.

A. cepa L. esculentum

23 °C 33 °C 23 °C 33 °C

C 38 15 31 28
K 32 14 33 28
S 34 16 35 29
K+S 32 18 33 29
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of the mixture of the compounds and that of the individual pesticides,
since the mixture effect was dominated by that of the insecticide aba-
mectin (Kraft 36 EC®) for all evaluated parameters. Queirós et al.
(2018) also reported no additional effect of a combination of ter-
buthylazine and nicosulfuron for Portulaca oleracea, stating that adding
nicosulfuron apparently is useless.

4. Conclusions

The insecticide abamectin, formulated as Kraft 36 EC®, is extremely
toxic to the collembolan F. candida and to the plant species A. cepa and
L. esculentum, with strong effects already seen at the recommended
dose. Effects were highest at 23 °C, which indicates a high environ-
mental risk of this compound, since this pesticide is mostly applied in
temperate regions with temperatures around 20 °C. At the higher test
temperature, pesticide degradation leads to a reduced toxicity for the
species evaluated in this study. The fungicide difenoconazole was not
toxic to the tested species at recommended field dose.
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