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This paper concerns extension of maps using obstruction theory under a
non-classical viewpoint. It is given a classification of homotopy classes of maps and
as an application it is presented a simple proof of a theorem by Adachi about
equivalence of vector bundles. Also it is proved that, under certain conditions, two
embeddings are homotopic up to surgery if and only if the respective normal bundles
are SO-equivalent.
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1. Introduction

The classification of embeddings between manifolds is an interesting problem in
topology which have been studied extensively. This paper is devoted to classification
of embeddings between manifolds, up to surgery.

Two embeddings f, g : M → N between manifolds are homotopic up to surgery
on N if it is possible to make a finite number of surgeries on N outside of the images
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1466 C. Biasi

of f and g obtaining a new manifold N ′ and maps f ′, g′ : M → N ′ such that f ′ and
g′ are homotopic.

Consider the case where M and N are closed orientable C∞ manifolds of dimen-
sions m and n, respectively, and m � (n − 2)/2. Then we ask on which conditions
f and g are homotopic up to surgery on N? In [3], the authors showed that if
M = S

m or N is a π-manifold then f and g are homotopic up to surgery on N .
In this paper, we prove the following theorem.

Theorem 1.1. If M and N are two closed orientable manifolds of dimensions m
and n, respectively, with m � (n − 2)/2, such that:

(a) H4k(M ; Z) are free groups, for all k � 1,

(b) H8k+1(M ; Z2) = H8k+2(M ; Z2) = 0, for all k � 1,

then two embeddings f, g : M → N are homotopic up to surgery on N if and only
if the normal bundles νf and νg are equivalent as orientable vector bundles.

Also, as an application of this theory we give a simple proof of a nice result of
Adachi [1], about equivalence of vector bundles.

This paper is organized as follows: in § 2, basic and essentially known results of
homotopy theory are considered, and in § 3, applications of the theory are given.

2. Homotopy of maps

Let X be a CW-complex and Y an n-simple CW-complex, for some n � 1. For
an abelian group G, let K = K(G,n) be an Eilenberg–MacLane space and in ∈
Hn(K;G) an n-characteristic element.

Given u ∈ Hn(Y ;G), by [5, 8.1.10] there exists a map ϕ : Y → K such that
ϕ∗(in) = u. The induced homomorphism ϕ∗ : πn(Y ) → πn(K) gives a coefficient
homomorphism

ϕp
u : Hp(X;πn(Y )) → Hp(X;πn(K)), for all p. (2.1)

Theorem 2.1. Let f, g : X(n+1) → Y be homotopic maps over X(n−1) satisfying
f∗(u) = g∗(u). If ϕn

u is a monomorphism, then f and g are homotopic maps over
X(n).

Proof. Let H : X(n−1) × I → Y be a homotopy between the restricted maps
fn−1 = f |X(n−1) and gn−1 = g|X(n−1), and consider d(fn,H, gn) ∈ Hn(X;πn(Y ))
the obstruction to the extension of H to a homotopy between fn = f |X(n) and
gn = g|X(n).

Since ϕn
u(d(fn,H, gn)) = d(ϕ ◦ fn, ϕ ◦ H,ϕ ◦ gn) and f∗(u) = g∗(u), then

(ϕ ◦ f)∗(in) = (ϕ ◦ g)∗(in). Hence, d(fn,H, gn) = 0 and so the result follows. �

Theorem 2.2. Given a map f : X(n+1) → Y and α ∈ Hn(X(n+1);G), there exists
a map g : X(n+1) → Y such that g∗(u) = α and g|X(n−1) = f |X(n−1) if and only if
α − f∗(u) belongs to the image of ϕn

u.
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Proof. Let c : X(n+1) → Y be a constant map. Suppose that there exists
g : X(n+1) → Y as stated in theorem 2.2. Then, one has ϕn

u(d(fn, gn)) = d(c,
ϕ ◦ gn) − d(c, ϕ ◦ fn) = α − f∗(u).

Conversely if α − f∗(u) belongs to the image of ϕn
u, let β ∈ Hn(X;πn(Y )) be

such that ϕn
u(β) = α − f∗(u).

It follows then the existence of g : X(n+1) → Y such that d(fn, gn) = β and
g∗(u) = ϕn

u(d(fn, gn)) + d(c, ϕ ◦ fn) = α. �

Theorem 2.3. Consider f : X(n) → Y and α ∈ Hn(X(n+1);G). If ϕn
u is an epi-

morphism and ϕn+1
u is a monomorphism, then there exists g : X(n+1) → Y such

that g|X(n−1) = f |X(n−1) and g∗(u) = α.

Proof. Let o(f) ∈ Hn+1(X;πn(Y )) be the obstruction to the extension of fn−1 to
(n + 1)-skeleton. Since ϕn+1

u (o(f)) = o(ϕ ◦ f) = 0 and ϕn+1
u is a monomorphism

we have that o(f) = 0. Then, there exists an extension of fn−1 to X(n+1) and so,
applying theorem 2.2 to it, the proof is finished. �

Proposition 2.4. Assuming that Y is n-simple for all n � dim X, Hi(X;πi(Y )) =
0 for i �= n, Hi+1(X;πi(Y )) = 0 for i > n, and ϕn

u is a monomorphism, then the
map E : [X,Y ] → Hn(X;G) defined by E([f ]) = f∗(u) is injective and im E =
im ϕn

u ≈ Hn(X;πn(Y )).

Proof. Since Hi(X;πi(Y )) = 0, for i < n, any two maps f, g : X → Y are homo-
topic over the (n − 1)-skeleton. If f∗(u) = g∗(u) and ϕn

u is a monomorphism, it
follows from theorem 2.1 that f and g are homotopic over the n-skeleton. Since
Hi(X;πi(Y )) = 0 for i > n, then f and g are homotopic and so E is injective.

Given f : X → Y then f is homotopic to a constant map over the (n − 1)-skeleton.
It follows from theorem 2.2 that E([f ]) = f∗(u) belongs to the image of ϕn

u.
If α ∈ Hn(X;G) = Hn(X(n+1);G), by theorem 2.2 there exists h : X(n+1) →

Y such that h∗(u) = α and h is constant over the (n − 1)-skeleton. Since
Hi+1(X;πi(Y )) = 0 for i > n, there exists f : X → Y with f∗(u) = α. Hence
im E = im ϕn

u. �

Theorem 2.5. Suppose that Y is n-simple, for all n � dim X and J = {n :
Hn(X;πn(Y )) �= 0} �= ∅. For each n � 1, let Gn be an abelian group, un ∈
Hn(Y ;Gn) and ϕn

un
: Hn(X;πn(Y )) → Hn(X;Gn) as in (2.1). If ϕn

un
is a

monomorphism, then the function

E : [X,Y ] →
∏
n∈J

Hn(X;Gn)

given by E([f ]) =
∏

n∈J f∗(un) is injective (where
∏

denotes the Cartesian
product).

Proof. Let p be the least positive integer such that Hp(X;πp(Y )) �= 0. Since
Hi(X;πi(Y )) = 0, i < p, any two maps f, g : X → Y are homotopic over X(p−1).

Suppose f∗(up) = g∗(up). Since ϕp
up

is a monomorphism, it follows from
theorem 2.1 that f and g are homotopic over X(p) and so applying theorem 2.1
successively, the result follows. �
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1468 C. Biasi

Now, we present some interesting consequences of theorem 2.5.
Let K = K(Hn(Y ), n) be an Eilenberg–MacLane space. Then, the map ϕ : Y → K

such that ϕ∗(in) = un induces the Hurewicz homomorphism

ϕ∗ = X(Y ) : πn(Y ) → πn(K) = Hn(Y ).

Let us consider

Xp
n(Y ) = ϕp

un
: Hp(X;πn(Y )) → Hp(X;Hn(Y ))

the coefficient homomorphism as defined in (2.1).
Let un ∈ Hn(Y ;Hn(Y )) be an element such that 〈un, x〉 = x, for all x ∈ Hn(Y ).

Theorem 2.6. If Xn
n(Y ) is a monomorphism for all n ∈ J then the function E is

injective.

Proof. Let K = K(Hn(Y ), n) and observe that the commutative diagram

πn(Y )
X(Y )

��

ϕ∗
��

Hn(Y )

ϕ∗
��

πn(K)
X(K)

�� Hn(K)

induces for all n the commutative diagram

Hn(X;πn(Y ))
Xn

n(Y )
��

ϕn
un

��

Hn(X;Hn(Y ))

idn

��

Hn(X;πn(K))
Xn

n(K)

�� Hn(X;Hn(K)).

Then, the result follows from theorem 2.5. �

Corollary 2.7. Suppose Xn
n(Y ) is a monomorphism and Hn−1(X) a free group,

for all n ∈ J . Then, two maps f, g : X → Y are homotopic if and only if for each
n ∈ J the induced homomorphisms f∗, g∗ : Hn(X) → Hn(Y ) are equal.

If Y is (n − 1)-connected (π1(Y ) abelian if n = 1) and u ∈ Hn(Y ;πn(Y )) is the
element corresponding to the inverse of the Hurewicz homomorphism

X(Y ) : πn(Y ) → Hn(Y )

then ϕ∗ : πn(Y ) → πn(K) is the identity map, where ϕ : Y → K is such that
ϕ∗(in) = u. It follows that ϕp

u is an isomorphism for all X and p. This is true
if u is any n-characteristic element.
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Let Y and Z be topological spaces and ϕ : Y → Z a map. The following
commutative diagram

πn(Y )
ϕ∗

��

X(Y )

��

πn(Z)

X(Z)

��

Hn(Y )
ϕ∗

�� Hn(Z)

induces for all topological space X, the commutative diagram

Hp(X;πn(Y ))
ϕp

��

Xp
n(Y )

��

Hp(X;πn(Z))

Xp
n(Z)

��

Hp(X;Hn(Y ))
ϕp

�� Hp(X;Hn(Z)).

Theorem 2.8. Let X and Y be CW-complexes and Y i-simple, for all i � dim X.
If Xi

i(Z) ◦ ϕi : Hi(X;πi(Y )) → Hi(X;Hi(Z)) are monomorphisms, then ϕ induces
an injective map ϕ# : [X,Y ] → [X,Z] defined by ϕ#([f ]) = [ϕ ◦ f ].

Proof. Consider K = K(Hi(Z), i), ui
Z ∈ Hi(Z;Hi(Z)) for all i and E′ : [X,Z] →∏

i Hi(X;Hi(Z)) defined by E′([ϕ ◦ f ]) =
∏

i(ϕ ◦ f)∗(ui
Z).

Let us define E : [X,Y ] → ∏
i Hi(X;Hi(Z)) by E([f ]) =

∏
i f∗(ui

Y ) where ui
Y =

ϕ∗(ui
Z). So we have the commutative diagram

[X,Y ]
E

��

ϕ#

��

∏
i Hi(X;Hi(Z))

[X,Z]
E′

�����������������

and since Xi
i(Z) ◦ ϕi are monomorphisms for all i, it follows from theorem 2.5 that

E is injective and so, ϕ# is injective as well. �

3. Applications

Given an O-stable vector bundle ξ → B where O is the stable orthogonal group, let
wi(ξ) ∈ Hi(B; Z2) and pk(ξ) ∈ H4k(B; Z) be the Stiefel–Whitney and Pontrjagin
classes of ξ, respectively.

Let γ → BO be the O-universal bundle and let wi = wi(γ) and pk = pk(γ) be
the universal Stiefel–Whitney and Pontrjagin classes, respectively.
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1470 C. Biasi

Write πn = πn(BO), Kn = K(πn, n) and let in ∈ Hn(Kn;πn) be the element
corresponding to the inverse of Hurewicz homomorphism.

Also, consider the maps ϕn : BO → Kn for n � 1 satisfying

ϕ∗
n(in) =

{
wn, n = 1, 2,

pk, n = 4k, k � 1,

and denote by ϕ# : πn(BO) → πn(Kn) the homomorphism induced by ϕn, which
induces the coefficient homomorphism

ϕn
n : Hn(X;πn(BO)) → Hn(X;πn),

for any topological space X.

Lemma 3.1. Let X be a topological space satisfying:

1. if x ∈ H4k(X; Z), x �= 0, and k � 1, then (2k − 1)!akx �= 0, where

ak =

{
1, for k even,
2, for k odd.

2. H8j+1(X; Z2) = H8j+2(X; Z2) = 0, for each j � 1.

Under these conditions, the coefficient homomorphism ϕn
n is a monomorphism

for n = 1, 2 or n = 4k, with k � 1.

Proof. For n = 1, 2 the proof is straightforward since πn(BO) = Z2.
For n = 4k, with k � 1, the homomorphism ϕ : πn(BO) → Z is given by ϕ(α) =

(2k − 1)!ak, where α is the generator of πn(BO) (see [1]).
Consider the long exact sequence

· · · → Hn−1(X;H)
β−→ Hn(X; Z)

ϕn

−−→ Hn(X; Z) → Hn(X;H) → · · ·
where H = Z/ im ϕ and β is the Bockstein operator. We see that there are no non-
zero elements of Hn(X; Z) belonging to the image of β, because if there is such an
element we would have (2k − 1)!akx = 0.

Then, ϕn are monomorphisms, for n = 4k with k � 1. �

Theorem 3.2 Adachi. Let X be a CW-complex satisfying conditions 1 and 2 of
lemma 3.1 and let ξ1 and ξ2 be two O-stable vector bundles over X. Then, ξ1 and ξ2

are equivalent if and only if w1(ξ1) = w1(ξ2), w2(ξ1) = w2(ξ2) and pk(ξ1) = pk(ξ2),
for every k � 1.

Proof. Let f1, f2 : X → BO be the classifying maps for ξ1 and ξ2. Thus,

f∗
1 (wi) = wi(ξ1) = wi(ξ2) = f∗

2 (wi), i = 1, 2,

f∗
1 (pk) = pk(ξ1) = pk(ξ2) = f∗

2 (pk), k � 1,

and since Hn(X;πn) = 0 for n �= 1, 2 and n �= 4k, k � 1 and ϕn is a monomorphism
in these dimensions, it follows from theorem 2.5 that f1 is homotopic to f2. �
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Remark 1. Let us observe that in the Adachi’s proof [1, theorem 5], using results
on the characteristic classes, a mapping F was explicitly constructed by the skele-
tonwise induction as being the homotopy between f1 and f2, with f1, f2 : X → BO
the classifying maps for ξ1 and ξ2.

Let f : S
p → Nn be an embedding with trivial normal bundle. Consider N ′ the

manifold obtained by surgery on N along the embedding f . In this case, we say
that a surgery of type (p + 1, n − p) was done on N ′.

From [4], one has the following:

Proposition 3.3. If N is a compact orientable manifold then it is possible to obtain
N ′ by surgeries of type (p + 1, n − p) on N , with p � (n − 2)/2, such that the map
ϕi : πi(N ′) → πi(BSO(n)) induced by the classifying map for the tangent bundle of
N ′ is injective for i � (n − 2)/2.

Let now ϕN# : [M,N ] → [M,BSO(n)] be the map defined by ϕN#([f ]) =
[ϕN ◦ f ], where ϕN : N → BSO(n) is the classifying map for the tangent bundle
of N .

Next, we prove the main result of the paper.

Proof of Theorem 1.1. Let N ′ be the manifold obtained by surgery on N (of type
(p + 1, n − p) with p � (n − 2)/2) outside of the images of f and g, such that
ϕi : πi(N ′) → πi(BSO(n)), the induced of the classifying map of N ′, is injective
for i � (n − 2)/2 (see proposition 3.3). Moreover, since N ′ is 1-parallelizable (N ′ is
orientable), by [4, theorem 3] we get that N ′ is 1-connected, and consequently N ′

is i-simple for all i.
Now, we show that the coefficient homomorphism

Xi
i(BSO(n)) ◦ ϕi : Hi(M ;πi(N ′)) → Hi(M ;Hi(BSO(n))),

induced by ϕi and the Hurewicz homomorphism Xi(BSO(n)), is a monomorphism
for i � dim M = m � (n − 2)/2 (cf. [2, theorem 3.1]).

If i = 8k + 1 or 8k + 2, for k � 1, with i � (n − 2)/2, then πi(BSO(n)) = Z2

and since ϕi is injective it follows that πi(N ′) is either the trivial group or Z2. If
πi(N ′) = Z2, since H8k+1(M ; Z2) = H8k+2(M ; Z2) = 0 for k � 1 by assumption, it
follows that Xi

i(BSO(n)) ◦ ϕi is a monomorphism.
For n � 6, observe that X2(BSO(n)) and ϕ2 are isomorphisms because

π1(BSO(n)) = 0 and π2(BSO(n)) = Z2.
Consider h : S

4k → BSO(n) a generator of π4k(BSO(n)) and pk a Pontrjagin
class of h∗(γn). Then, we obtain that h∗(pk) = (−1)k+1(2k − 1)!aks, where s is a
generator of H4k(S4k) (see [1]) and ak is defined in lemma 3.1(1).

Further, h∗([S4k]) �= 0, where [S4k] ∈ H4k(S4k) is the fundamental class of S
4k.

Thus, if β is a non-zero element of π4k(BSO(n)) then X4k(β) is a multiple of
h∗([S4k]), from which it follows that the Hurewicz homomorphism

X4k : π4k(BSO(n)) → H4k(BSO(n))

is a monomorphism, for k � 1.
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1472 C. Biasi

Next, if i = 4k with i � (n − 2)/2, we have πi(BSO(n)) = Z, H4k−1(M) is torsion
free and then ϕ4k and X4k are monomorphisms. So, we conclude that X4k ◦ ϕ4k are
monomorphisms also, for 4k � (n − 2)/2. For other k, the groups πi(BSO(n)) are
trivial.

By theorem 2.8, we conclude that ϕ : N ′ → BSO(n) induces the injective map

ϕ# : [M,N ′] → [M,BSO(n)].

In addition, since ϕN ◦ f : M → BSO(n) classifies f∗(τN), the diagram

M
f,g

��

f ′,g′
������������� N

ϕN
�� BSO(n)

N ′
ϕ

��������������

guarantees that νf 
 νg ⇔ ϕN ◦ f 
 ϕN ◦ g ⇔ ϕ ◦ f ′ 
 ϕ ◦ g′ ⇔ f ′ 
 g′. �
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