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Abstract: Land-use conversion changes soil properties and their microbial communities, which,
combined with the overuse of antibiotics in human and animal health, promotes the expansion of the
soil resistome. In this context, we aimed to profile the resistome and the microbiota of soils under
different land practices. We collected eight soil samples from different locations in the countryside of
Sao Paulo (Brazil), assessed the community profiles based on 16S rRNA sequencing, and analyzed the
soil metagenomes based on shotgun sequencing. We found differences in the communities’ structures
and their dynamics that were correlated with land practices, such as the dominance of Staphylococcus
and Bacillus genera in agriculture fields. Additionally, we surveyed the abundance and diversity
of antibiotic resistance genes (ARGs) and virulence factors (VFs) across studied soils, observing a
higher presence and homogeneity of the vanRO gene in livestock soils. Moreover, three (3-lactamases
were identified in orchard and urban square soils. Together, our findings reinforce the importance
and urgency of AMR surveillance in the environment, especially in soils undergoing deep land-use
transformations, providing an initial exploration under the One Health approach of environmental

levels of resistance and profiling soil communities.
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1. Introduction

Antimicrobial resistance (AMR), one of the most serious health risks of the 21st
century, is a common competition mechanism used by environmental bacteria to ensure
their survival in their natural environment. Although evidence of antimicrobial resistance
in bacteria dates back to the pre-antibiotic era, studies suggest that human activity has a
significant impact on the extension and diversity of the bacterial resistome [1-3].

Even though the soil microbiota naturally presents a large and robust diversity of
ARGs in its intrinsic resistome, land-use transformation due to anthropic activities, such
as the excessive use of antibiotics in livestock production [4], antibiotic-enriched manure
application [5,6], and excessive use of xenobiotics in crops [7,8], along with increasing
levels of deforestation for farming or urban purposes, can alter bacterial communities and
disseminate ARGs throughout the environment [9]. In these highly modified sites, soil
bacteria more frequently are in close proximity to commensal and pathogenic bacteria,
which could lead to an increased horizontal ARG transfer rate among them, followed by a
dominance of organisms with acquired resistance in comparison to intrinsically resistant
bacteria [10].

The “One Health” surveillance approach takes into consideration the interrelated
link among people, non-human animals, and the environment [2]. The substantial role
of the latter in AMR spread can be noted in the soil’s capacity to serve as a resistance
gene reservoir, facilitating the spread of ARGs found in mobile genetic elements (MGEs),
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such as plasmids, integrons, and transposons, among different bacterial species, speeding
the development of multidrug-resistant (MDR) pathogens [11]. According to Ghosh et al.
(2021) [12], MDR pathogens are thought to be responsible for up to 10 million cases of
fatalities annually worldwide, with a mortality rate of 392,000 in Latin America.

Brazil, the largest country in Latin America, presents a population of 192 million
people. Although the National Health Regulatory Agency (ANVISA) in Brazil has compiled
data regarding healthcare-associated infections and levels of antimicrobial resistance in
clinical settings over the last decades [13], the country is not equipped with a central
microbiology reference laboratory, increasing the difficulty in conducting national data
analysis regarding bacterial resistance [14]. The Sao Paulo state, located in the southeastern
region in Brazil, inhabited by over 45 million people [15], is a critical region in terms of high
levels of resistance among important pathogens, such as non-fermenting Gram-negative
bacilli and Gram-positive cocci, such as Staphylococcus aureus [15].

Recent estimates suggest that Brazil was responsible for almost 8% of all antibiotic
consumption for veterinary purposes globally in 2017 and has an increased consumption
projection of 11.8% in 2030 [16]. This is mainly due to a shift toward intensified livestock
production systems that regularly use antimicrobial agents, which can directly affect
the number of ARGs disseminated through the environment and, consequently, might
contribute to increased levels of AMR in clinical settings [16].

Previous studies have shown the seriousness and urgent need to tackle AMR in the
countryside of Sao Paulo, Brazil, especially after COVID-19 pandemic [17]. During this
period, high rates of antibiotic use in hospitalized patients and prolonged time in invasive
therapy have caused an alarming increase in polymyxin B-resistant Klebsiella pneumoniae
isolates in 2021 [18] and a nosocomial outbreak of extensively drug-resistant (EDR) K.
pneumoniae in 2022 [19].

Despite the extreme importance of monitoring healthcare infections associated with
antibiotic-resistant bacteria to combat AMR, there is still a lack of data regarding envi-
ronmental levels of resistance in northeastern soils of the Sao Paulo state, where there
has been historical land use of soils for urban construction, agricultural, and livestock
practices, leading to a population density of approximately 1.75 million inhabitants [20-22].
Considering the urgent need to tackle AMR, not only in clinical settings, but also taking into
account the One Health approach, we used 165 rDNA and shotgun sequencing to profile
the bacterial communities and resistome of eight sites in the countryside of Sao Paulo, to
provide the first, to our knowledge, environmental AMR surveillance of soil samples in
this region.

2. Results
2.1. Bacterial Community Dynamics

To understand the differences in bacterial communities across soils from different
locations and land uses, we collected eight soils from different sites across Sao Paulo’s
northeast region (Table 1 and Figure S1), and we assessed the community profiles based
on 165 rRNA sequencing through an Oxford Nanopore MinlON device, which allows full-
length sequencing of the 16S gene (Figure 1A). In all sampling sites, Bacillus was observed
as one of the most ubiquitous bacteria in the communities, with relative abundances of
1.7% in the campus lawn soils and in the PPA, 2% in the urban square, 2.4% in the orchard,
4.4% in the hen house, 11.7% in the cattle sites, 17.7% in the pasture area, and 31.1% in the
agriculture soils. Two other frequent genera identified were Vicinamibacter, with relative
abundances ranging from 1.9% (orchard) to 6.2% (pasture) and Rhodoplanes, ranging from
1.9% (hen house) to 4.4% (PPA soil) (Table S2).
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Figure 1. Most abundant taxa and their distributions throughout the study sites at genera level. (A) Rela-
tive abundances of groups found in environmental samples according to 16S sequencing. All taxa found
with relative abundances below 2.5% in each sample were labeled as “Others”. (B) Principal component
analysis (PCA) of most abundant bacteria, clustered together per sampling site and colored according to
land-use classification. (C) Correlogram indicating negative (in red) and positive (in blue) correlations
among most abundant taxa (minimum relative abundance of 5%) in the studied sites.

Additionally, in order to comprehend bacterial diversity in each area, the Shannon
index was calculated for each soil sample, indicating a smaller diversity in agricultural soils
(3.781), followed by campus lawn (4.343) and PPA (4.504), and the highest diversity was
found in the urban square (5.056) and hen house soils (5.087), in the analyzed conditions
(Table S3). We next performed a principal component analysis (PCA) and a hierarchical
clusterization (Figure 1B and Figure 52, respectively) with the resulting microbial profiles of
each soil site sampled. In the former, the variance of sampling sites in two distinct groups
was explained mostly by the first principal component (PC1 = 70.8%), which created a
gradient of samples according to degree of land-use change. When this result was analyzed
in combination with the PC2 (13%), three apparent clusters were formed, corroborating
the land-use classification used. Additionally, statistical analyses indicated significant
differences (F-value = 5.229, p-value < 0.001) in the relative abundance of genera across
sampled sites.

To further understand the dynamics of bacterial communities, we performed a correla-
tion analysis for taxa with a minimum relative abundance of 5% (Figure 1C). As shown
in the figure, Terrimonas and Lysobacter displayed the strongest positive correlation (0.92),
followed by Bacillus and Staphylococcus. On the other hand, Fimbriiglobus and Lysobac-
ter displayed the strongest negative correlation (—0.69), followed by Fimbriiglobus and
Pseudolabrys (—0.64) and Vicinamibacter with Occallatibacter (—0.58).
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Table 1. Main characteristics and soil sample locations.
. Geological Land Use . . . . . .
Soil Samples Classification Classification Anthropic Activity Sampling Site  Coordinates
Agriculture . Large sugarcane crop site I —21.16643,
(Agri) Red Latosol Farming + Agrochemical use Sertaozinho, SP 47.99004
Pasture Deep Quartz . . - —21.921,
(Pas) Sand Farming Small familiar cattle farm  Sao Carlos, SP 4790373
Cattle Site Bauru Farmin cil;caiig;cicoar:ti)ef SIZZ' Il_ilii d Taquaritinga, —21.48066,
(Catt) Sandstone & . peop SpP —48.54118
livestock
Orchard Deep Quartz . . . - —21.92674,
(Orch) Sand Farming Small familiar orchard site ~ Sao Carlos, SP _47.87008
Hen House Deep Quartz . Small familiar - —21.95133,
(Hen) Sand Farming poultry farm Sdo Carlos, SP —47.89079
Urban Square High circulation of people <. —21.1134,
(UrbSq) Red Latosol Urban and small animals Sertaozinho, SP 4798762
*
I%’igteiil).;nzr;izt Red Latosol Forest Protected area. Access Ribeirao Preto, —21.1662,
restricted to research SP (USP) —47.86036
(PPA)
USP Campus Lawn High circulation of people  Ribeirao Preto, —21.16511,
(Lawn) Red Latosol Forest and animals SP (USP) —47.85944

* University of Sao Paulo (USP).

2.2. Abundance and Diversity of ARGs and VFs in Soils’ Metagenomes

Aiming to understand the abundance and diversity of antibiotic resistance genes
(ARGs) and virulence factors (VFs) across studied samples, we proceeded to analyze the
soil metagenomes based on shotgun sequencing through the Illumina platform (Figure 2).
Using the CARD database, we detected ARGs in all sampled sites with a total of 254 ARGs
identified, ranging from 17 (PPA) to 60 (cattle site) (Table S5). The identified ARGs con-
ferred potential resistance to eight pharmacological classes of antibiotics, with glycopeptide
(77.5%), rifamycin (12.2%), and macrolide/penam (5.9%) being the most frequent ARG
types across all soils analyzed, followed by trimethoprim (1.1%), phenicol (0.8%), amino-
glycoside (0.4%), and isoniazid /rifamycin (0.4%) (Figure 2A).

In total, 12 ARG types were identified in all soils, with vanRO and vanSO (glycopep-
tide), rbpA (rifamycin), and mirA (macrolide/penam) being the most frequent genes, fol-
lowed by dfrB3 and dfrB7 variants (trimethoprim), cpt (phenicol), aac2-Ib (aminoglycoside),
and efpA (isoniazid/rifamycin resistance). Additionally, three 3-lactamase genes were
identified, one being a serine-p-lactamase (SBL), identified as blaF, in urban square soils
and two metallo-3-lactamase (MBL) encoding genes, identified as blaBJP-1 and blaLRA-9,
in orchard soils (Figure 3A).

Our analyses indicated a higher dissimilarity between the resistome profiles of live-
stock soils (pasture and cattle sites) and forest soils (0.5), whereas other soils did not have
such a pronounced dissimilarity in the relative abundances of ARGs (Figure 3B). Although
dissimilarities were found, no statistical difference was observed in the resistome profiles
across the studied sites (F-value = 1.06, p-value = 0.37) (Figure S3).

In order to visualize connections between the resistome (dis)-similarities of the selected
soils, ARGs' relative abundances across the studies sites were used to plot a chord diagram
(Figure 4A). This indicates that even though vanRO, mtrA, and rbpA were widespread in all
soils, a higher abundance of genes in cattle sites and pasture soils was observed. Notably,
vanRO was the ARG with the most hits across soils, with 54 and 37 hits in cattle and pasture
fields, respectively (Figure S4). Differently, a higher diversity of ARGs was identified in
orchard and urban square soils, including in addition to the aforementioned -lactamases
genes, the two dfrB variants, cpt, aac2-Ib, and efpA ARG types.
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Figure 2. Relative abundances of ARGs and VFs per soil metagenome. (A) Relative abundances of
the identified ARGs per soil metagenome, colored by resistance category, as indicated in the legend.
(B) Relative abundances of the identified VFs per soil metagenome, colored by function, as indicated
in the legend. The ARGs were identified by CARD and VFs by VFDB, and the abundances were
estimated by dividing the number of distinct resistance genes in the category (i.e., ARG potential
resistance or VF function) by the total number of genes for all classes found in that site. Land use is
indicated in orange (farming), blue (urban) and green (forest).
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Figure 3. Resistome profiles across studied soils. (A) Distribution of different ARGs per soil
metagenome, colored by resistance category, as indicated in the legend. The absence of color indicates
the absence of occurrence of the ARG in the soil. (B) Heatmap showing the (dis-)similarity between
two soil resistome profiles using Bray—Curtis distance. The purple to yellow scale (0-0.6) indicates
the degree of dissimilarity between the ARGs’ relative abundances in two soils, as indicated in the
legend. Land use is indicated in orange (farming), blue (urban) and green (forest).
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Figure 4. Identified gene distributions across sequenced soil samples. (A) Chord diagram showing
the distribution of different ARGs per soil metagenome. Resistance genes are colored by resistance
category and soil sites are colored by land-use system as follows: orange—farming; blue—urban;
green—forest. (B) Chord diagram showing the distribution of different VFs per soil metagenome.
Virulence-related genes are colored by function, as indicated in the legend. (acpXL, alg, mucD) Acyl
carrier proteins; (icl) isocitrate lyase; (hsiB1/vipA) type VI secretion system, T6SS; (fIg, fli, cheW) Flagella;
(pil) type IV pili; (esx) type VII secretion system, T7SS; (waaG) B-band O-antigen polymerase; (phoP)
possible two-component system response transcriptional positive regulator; (mbtH) putative protein;
(ideR) iron-dependent repressor and activator. * (vanSO, efpA, aac2-1b, cpt, bla, dfrB); ** (ideR, mbtH,
phoP, mucD, waaG); *** (flgC, alg, icl). Resource: https:/ /public.flourish.studio/visualisation /116771
& https:/ /public.flourish.studio/visualisation/116970. Accessed on 22 November 2022.

From the VFDB database, 143 virulence genes were detected in all soil samples,
divided into 25 different genes, assigned to 10 classes referring to their virulence functions
(Figure 2B). Among them, the main virulence factor was an acyl carrier protein encoded by
the acpXL gene (Figure 4B), which corresponded to 45.5% of all VFs identified throughout
the soils. Types IV and VI secretion systems together composed 22.4% of the virulence genes
found (Tables S6-58), mostly involved in adaptation and manipulation of their environment
and also in the aggravation of infectious conditions when present in pathogenic bacteria [23].
Nonetheless, genes associated with bacterial motility related to type IV pili, such as pilT,
pilM, pilG, and pilH, and rotating flagella, such as fIgC, fliE, fliQ, fliP, fliN, and fliA were also
widespread in soils. When aligning our sequences against the PlasmidFinder database, no
plasmid markers were identified in our metagenomic data.

3. Discussion
3.1. Bacterial Community Structure and Dynamics

The apparent clusterization of soils based on microbial composition in our analyses
corroborated the land-use classification previously used. This could be observed, for
instance, in the statistically significant difference between the agriculture field and PPA
communities (adjusted p-value < 0.005) and the similarity between the PPA and campus
lawn communities (adjusted p-value > 0.9). This result suggests that bacterial communities
in soils are shaped and modified according to land use over the years, endorsing previous
reports in the literature [24-26].
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Vicinamibacter and Rhodoplanes genera, members of the Acidobacteriota and Pseu-
domonadota phyla, respectively, were ubiquitous and abundant in all soils, likely due to
their essential roles in carbon, nitrogen, and sulfur cycling [27-30]. Forest soils presented
smaller diversity indexes compared to urban and livestock soils (Table S3), which corrob-
orates a previous hypothesis that higher taxonomic diversity is essential to stressed soils
maintenance [31]. The main genera found in those soils were Lysobacter, Pseudolabris and
Bradyrhizobium (phylum Pseudomonadota), Ocallatibacter (phylum Acidobacteriota), and
Terrimonas (phylum Bacteroidota) [32-34], with a smaller abundance of Bacillus species
compared to other sites (<2.5%), which goes in accordance to previous studies that profiled
bacterial communities in preserved soils [9,10,35].

In the other hand, urban soils presented, along with hen house soils, the highest
diversity indexes (Table S3), which could be explained by the accumulation of human
activity wastes and by-products in the former, as well as the introduction of gastrointestinal
microbiota members in the latter [36]. Both soils were abundant with Massilia (phylum
Pseudomonadota), common environmental bacteria that have been shown to cause op-
portunistic infections in immunocompromised patients [37,38]. Farming soils presented a
higher abundance of Bacillus, especially in livestock and agricultural soils (relative abun-
dances of 12-31%), indicating a dominance of this group in farming land-use systems in Sao
Paulo’s northeastern soils, corroborating previous reports [39,40]. This could be explained
by a spore-forming characteristic of Bacillus, which facilitates their high resistance to most
adverse environmental conditions on farming land-use systems, such as heat, desiccation,
and high levels of UV radiation [33,41,42].

In agricultural soils, Staphylococcus and Bacillus represented the majority of sequenced
members (Figure 1A), which could be connected to the 84% positive correlation observed
(Figure 1C). In addition, the microbial diversity in agriculture fields was smaller compared
to other soils, which could be attributed to soil microbial community homogenization
due to the intensified land use of sugarcane crop soils [43,44], such as the one collected
for this study. It is important to note that some environmental microorganisms, such as
Staphylococcus and Bacillus identified in the studied soils, not only are commonly found
in the environment due to their important interactions with other bacteria and functional
maintenance in soils, but can also infect humans and other animals [45]. An imbalance
caused by anthropic activities on soil microbial communities could favor Staphylococcus
and Bacillus species due to their early proliferation characteristics [46], taking advantage of
transient conditions to outgrow more fastidious microorganisms. Thus, the early prolifera-
tion of these bacteria, along with positive interactions between them, could explain their
dominance in agricultural fields [47,48].

Members of the genus Bacillus are among the most abundant bacterial genera found
in soils, with a widespread distribution through different ecological niches, which goes in
accordance to our findings [49]. Although Bacillus species were sequenced in all studied
soils, a higher prevalence of the genus was observed in farming soils, which corroborates
previous reports [50,51]. In spite of the fact that the majority of Bacillus species are strictly
environmental, common mechanisms used for environmental competition and cell survival
can aid the infection process of vertebrate hosts in certain strains, allowing these bacteria
to occupy an additional niche [52,53]. Bacillus anthracis, for instance, can persist for many
decades in soils as endospores and, when inhaled by humans or grazer livestock animals,
can result in the anthrax disease [54,55]. Nonetheless, human exposure to B. anthracis spores
has been associated over the years with agricultural contact or along cattle trails, both in
South and in North America [56,57].

On the other hand, Staphylococcus spp. Are common in the biosphere and possess
the capacity to withstand extreme temperatures and pH variations, allowing them to
occupy different niches, including soil, water, non-human animals, and humans [58,59].
Comparably, other studies that profiled soil microbiota have also shown a high abundance
of this genus in the microbial community [60,61]. In this sense, Staphylococcus aureus is one
of the most prevalent bacteria in the genus, being part of the microbiota as a commensal
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organism or the agent of several diseases, such as dermatitis and urinary, gastrointestinal,
and respiratory tract infections [62,63]. Leung and collaborators have correlated a higher
number of S. aureus in the environment with the severity and persistence of atopic dermatitis
in the United States [64]. In that sense, the substantial abundance of Staphylococcus in
agriculture fields (5.8%) could suggest a concerning scenario, due to the high circulation of
people in the area and the broad range of niches the bacterium can occupy, reinforcing the
importance of more studies with a One Health approach.

3.2. Resistance Genes and Virulence Factors Identification

Although no statistical difference was observed among the resistome profiles of soils
with different land uses, dissimilarities were identified (Figure 3B). One of the most pro-
nounced results was the notorious number of genes related to glycopeptide resistance
(vanRO and vanSO) in livestock soils, totaling 91 ARG hits within these soils (Figure S4).
Differently, forest soils presented a smaller number of hits for the same gene (28 hits),
with a threefold difference compared to the total hits in livestock soils. It is also worth
mentioning that vanRO was identified in all sampled soils and vanSO in 38% of them
(Figure 3A). Both vanRO and vanSO, components of the same vanO gene cluster that can
potentially confer glycopeptide resistance, were first identified in Rhodococcus equi soil
isolates in Denmark [65]. Glycopeptide antibiotics, such as vancomycin, are a last-resort
treatment option for methicillin-resistant S. aureus (MRSA) and vancomycin-resistant ente-
rococci (VRE) infections [66,67]. In Brazil, several waves of resistance of S. aureus against
antimicrobials have been reported, with increasing numbers of MRSA strains isolated in
different hospitals in Sao Paulo, one of the most affected in recent decades [61,66,68]. Addi-
tionally, glycopeptides, such as avoparcin, have been historically used as growth promoters
in the livestock industry, with worldwide reports of VRE in cattle, poultry, and swine
samples [69,70]. As a result of this, glycopeptide-resistant genes are commonly reported
as abundant in fecal samples [71,72], which could explain the higher number of vanRO
hits in livestock and poultry soils in our study. Nonetheless, other environmental studies
have reported the presence of these genes in permafrost samples from over 10,000 years
ago and throughout the environment, suggesting an innate resistance reservoir in the soil
microbiome [73,74]. Although vancomycin resistance genes are commonly found in soils
worldwide [74], our findings highlight the importance of environmental surveillance, given
that the Staphylococcus genus was one of the major bacteria present in agricultural soils, and
this soil showed a high abundance of vanRO genes. This, added to the facilitated route of
transmission of vanRO from livestock to humans, either through direct contact or by the
food chain, reinforces the need for monitoring of these soils [70].

Macrolide antibiotics act by binding to the bacterial 50S ribosomal subunit, causing the
cessation of bacterial protein synthesis, as a bacteriostatic agent [75]. The broad antibacterial
activity of this antimicrobial has led to its widespread use in gastrointestinal and respiratory
tracts, and in sexually transmitted infections [76]. In staphylococcal infections, there is an
increasing cross-resistance to macrolides in MRSA strains, categorizing these bacteria as
pathogens of great concern [77]. 3-lactam antibiotics share the presence of a 3-lactam ring
in their structures, with a broad-spectrum activity due to the penicillin-binding protein
(PBP) inactivation that hampers cell wall formation [77]. These are the most prescribed
antibiotic classes in clinical settings worldwide, with annual expenses of approximately
US $15 billion, representing 65% of the total antibiotic market [78,79]. In the last few years,
the dissemination of Gram-negative bacteria resistant to 3-lactams has been considered
a public health threat, especially when considering the absence of new antibiotics with
activity against these bacteria in the last 20 years [80]. The transcriptional activator of
the mtrCDE multidrug efflux pump, mtrA (widespread through all sampled soils of this
study), is responsible for expressing the operon that exports a wide variety of antimicrobial
agents, including p-lactams and macrolides [81-83]. The aforementioned gene has been
previously reported as abundant in soils, especially in those that have undergone land-use
conversion [83-85].
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Rifamycin resistance genes have been reported as abundant in both pristine and highly
modified soils, which goes in accordance with our findings [86,87], although, to the best
to our knowledge, no previous studies have reported such a robust presence of the rbpA
gene in farming soils. Its genetic product is an RNA-binding protein that is responsible
for conferring low resistance levels in the soil bacterium Streptomyces coelicolor [88]. In
addition, Bortoluzzi and collaborators have pointed out that this gene could account for
the transcriptional activity in Mycobacterium tuberculosis against rifamycin antibiotics [89].
In 2019, 73,000 new cases of tuberculosis (TB) and 4500 deaths due to this disease were
reported, with several of them related to rifampicin-resistant strains [89,90]. Additionally,
genomic characterization of the zoonotic and human-opportunistic pathogens R. equi and
Mycolicibacterium peregrinum obtained from human, pig, and soil samples in Asia indicated
the presence of the rbpA gene in all isolated genomes [91-93]. Nonetheless, the authors
of the aforesaid study suggest that infections caused by these antibiotic-resistant bacteria
might have an environmental source [93]. Moreover, in the farming soils of the present
study (rbpA-enriched), the genera Rhodococcus, Mycolicibacterium, and Mycobacterium were
identified as minor components of the soil microbiota, which represents a cause for concern.
To the best of our knowledge, there have been no reports of the rbpA gene in Brazilian
clinical settings, but the presence of the ARG in soils containing opportunistic pathogens or
in close proximity to humans and livestock could pose a threat if the gene is transferred
through the food chain or to pathogenic bacteria. Thus, studies under a One Health ap-
proach are of extreme importance when it comes to understanding possible environmental
sources of ARGs and which opportunistic pathogens are present in the environment.

While fewer genes represent the majority of ARGs in livestock soils, the highest
microbial and ARG diversity was identified in urban square and orchard soils, including
-lactamase-encoding genes. The products of these genes might confer resistance to most
of the drugs included in the 3-lactam class, which correspond to the vast majority of
less toxic options used to treat bacterial infections [78,79]. These enzymes are capable
of inactivating [3-lactam antibiotics and can be classified either as SBLs, with an active
site containing a catalytic serine residue [93], or as MBLs, which use zinc as a cofactor
for catalyzation [94]. The two MBL-encoding genes (blaLRA-9 and blaBJP-1) identified
in orchard soils are categorized in the B3 MBL subclass and were previously reported
in environmental samples in China, Japan, and Alaska [95,96], conferring high levels of
resistance when expressed in Escherichia coli clones [97,98].

Although no reports, to our knowledge, of the aforementioned MBLs have been
performed in clinical settings, the occurrence of these genes in orchard soils could pose
a threat to human health if they migrate to pathogens. For example, blaBJP-1 confers
less sensibility to chelating agents compared to other MBLs and a high catalytic activity
with meropenem—a watch group antibiotic [99]. Thus, the transfer of these ARGs could
lead to a risk of selection of bacterial resistance that should be prioritized as targets of
stewardship programs and monitoring [99]. Carbapenem antibiotics have a broad activity
spectrum against the majority of pathogenic bacteria, thus their classification as a “last-
resort” treatment option [100]. These antibiotics show strong performance against extended-
spectrum f3-lactamases, but may be more susceptible to MBLs [101,102]. Although intrinsic
carbapenem resistance is presented by some bacterial species due to the production of
endogenous MBLs, acquired resistance, caused by horizontal gene transfer, is more common
in clinically important bacteria, which highlights the potential thread related to the presence
of MBLs in the studied soils [103].

On the other hand, the SBL-coding gene identified in urban square soils, blaF, is a
chromosomally encoded class A (3-lactamase [104]. This ARG has been previously reported
in China and Rio de Janeiro (Brazil), usually identified in nontuberculous mycobacteria,
organisms commonly found in soils and water, also causing opportunistic infections in
humans [105,106]. It has shown broad-spectrum activity against most (3-lactam antibiotics,
with the exception of third-generation cephalosporins [107,108]. Few studies have indicated
the presence of this 3-lactamase in soils, reinforcing the need for environmental surveillance
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in highly modified soils, aiming to provide further information regarding environmental
[-lactamases and their associated risks to human health.

Considering the results related to virulence factor identification in the eight metagenomes,
the acpXL gene was found in higher prevalence and it encoded an acyl carrier protein, re-
quired during the process of adding very long-chain fatty acid (VLCFA) to lipid A [109,110].
LPSs are known for their role in bacterial invasion, an essential function for the host in-
fection process, and in bacterial adaptation in the environment, regardless of established
mutualistic or pathogenic interactions [110]. The VLCFA attached to lipid A has been
found in most members of the Rhizobiaceae family, as well as in the Bradyrhizobium genus,
both found in the soils of our study. VLCFA presence could confer greater tolerance to
stress and adaptation in distinct habitats [111,112] due to the stability conferred to the
external membrane. In addition to its functions against stress, VLCFA can also be found in
pathogenic or intracellular strains, such as the pathogen Brucella, for example, in which the
linked lipid A ensures poor recognition by innate immunity [112].

Protein secretion systems, the second most common virulence class found in our study,
are used for bacterial cells to interface with their environment through interaction and
manipulation, where the secreted proteins can act as virulence factors, allowing these
interactions [113,114]. The type VI secretion system (T6SS), with relative abundance of
11.2% in our samples (Figure 2B), is established by the VipA protein. This complex acts as a
specialized bacterial nanomachinery that releases protein particles to other cells or to the
environment, allowing bacteria to interact with their surrounding environment [115,116].
Thus, it consequently acts as an important determinant of the pathogenicity of eukaryotic
cells, as well as in their competitive fitness in the community [116,117]. This indicates that
secretion systems have a key role in shaping the microbiota of many ecological niches and
explains the ubiquity of the T6SS-related genes across soils [117,118].

On the other hand, the second VF with the highest relative abundance found in
our study was the secretion system type VII (T7SS). This system is a specialized protein
secretion machinery that transports substrates through the cell envelope, widespread in
Gram-positive members of the Actinomycetota and Bacillota phyla, abundant across all
studied soils [119-121]. Finally, it is important to highlight that the overall abundance of
the VF could be related to important housekeeping functions of T7SS, such as sporulation,
conjugation, and cell wall stability, given that it is widespread among pathogenic and
environmental microorganisms [122].

4. Materials and Methods
4.1. Study Area and Sample Collection

The samples used in this study were collected from different sites across Sao Paulo’s
northeast region (Figure S1 and Table 1). Approximately 50 g of samples were aseptically
taken from the upper 10 cm layer, after a 5 cm removal of litterfall, and placed in sterile
Falcon tubes. For each selected site, 3 samples were collected and mixed for a better
representation of the microbial community within. In total, eight samples were collected
from: (i) a permanent preservation area (PPA) in the University of Sao Paulo campus—
Ribeirdo Preto, Sao Paulo; (ii) the University of Sao Paulo campus lawn—Ribeirao Preto,
Sao Paulo; (iii) an agriculture field—Sertaozinho, Sao Paulo; (iv) a pasture field—Sao Carlos,
Sao Paulo; (v) a livestock site—Taquaritinga, Sao Paulo; (vi) a hen house—Sao Carlos, Sao
Paulo; (vii) an orchard field—Sao Carlos, Sao Paulo; and (viii) Urban square—Sertaozinho,
Sao Paulo.

All soils were allocated in three categories, according to their land uses over the last
decades, with those being (i) farming—sugarcane field, livestock site, hen house, pasture
field, and orchard; (ii) urban—urban square; and (iii) forest—PPA and campus lawn.

4.2. DNA Extraction and Sequencing

The metagenomic DNA of each soil sample was extracted using DNAeasy Power-
s0il®Kit (QIAGEN), following manufacturer’s recommendations. The quantification and
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quality analysis of the extracted DNA was performed using Nanodrop™ One (Thermo
Fisher Scientific) and by an agarose (1%) electrophoresis gel. Part of the extracted DNA
was used for triplicate amplification of 16S rDNA, following Nanopore—16S Barcoding
Kit 1-24 (SQK-165024, Oxford Nanopore Technologies—ONT) recommendations, adding
different barcodes for each replicate. All samples were individually purified, quantified by
Nanodrop™ One, and mixed in proportioned amounts in order to make a representative
pool of all soil samples. A single multiplex sequencing was performed using the afore-
mentioned kit and Flongle flowcells in MinlON model Mk1B. The remaining extracted
DNA was submitted to metagenomic sequencing on an Illumina NovaSeq 6000 platform at
Novogene (Sacramento, CA, USA), with a sequencing depth of 12 Gb/sample. Table S1
shows the data quality summary of raw data from shotgun sequencing.

4.3. Data Processing and Analysis
4.3.1. Amplicon Sequencing

Processing and analysis of the 165 rDNA reads were performed as recommended by
de Siqueira and collaborators (2021) [123]. Briefly, reads were base-called using Guppy
Base-calling Software (version 6.1.3) with the dna_r9.4.1_450bps_hac.cfg configuration
file [124]. Base-called reads had their quality assessed by NanoStat (version 1.6) and
NanoFilt (version 2.8) was used to select reads with quality scores above Q7 [125]. After
the initial filtering step, demultiplexing of reads was performed by Porechop (version 2.4)
using the barcodes from 16S Barcoding Kit 1-24 (SQK-165024). Demultiplexed reads were
mapped to a 165 rDNA NCBI reference database using minimap2 (version 2.17) [126].

4.3.2. Shotgun Sequencing

Shotgun sequencing raw data were processed with the fastp (version 23.1) tool
(https://github.com/OpenGene/fastp, accessed on 17 November 2022) for adapter and
low-quality reads removal [127]. High-quality reads assembly was carried out with the
MegaHIT tool (https://github.com/voutcn/megahit, accessed on 17 November 2022) and
the metagenome annotation was performed with Prokka (https://github.com/tseemann/
prokka, accessed on 17 November 2022) [128], with the assembly statistics calculated with
assembly_stats (https://github.com/sanger-pathogens/assembly-stats, accessed on 17
November 2022). The identification of ARGs, virulence factors (VFs), and plasmid markers
was performed with the ABRICATE pipeline (https://github.com/tseemann/abricate,
accessed on 17 November 2022), with an identity cut-off of 80%, by searching previously
annotated genes in reference databases (ARG-ANNOT, CARD, PlasmidFinder, ResFinder
and VFDB) [129-133].

4.4. Statistics and Graphical Representation

All statistical analyses were performed using R version 4.1.0. Differences between
microbiota composition in the studied soils were measured using one-way ANOVA with
Tukey post hoc test for determination of significance levels. A comparison was considered
statistically significant at an adjusted p value < 0.05. Differences between resistome profiles
in the studied soils were calculated using PERMANOVA. Vegan (version 2.5.7) [134] and
Tidyverse (version 1.3.0) [135] packages were used for data manipulation and processing.
Graphical representation was performed using ggplot2 [136] and Flourish Studio (https:
/ /flourish.studio, accessed on 22 November 2022).

5. Conclusions

The concept of One Health highlights that human health is interconnected to the
health of other members on ecosystems, such as soils, animals, and plants. In that sense,
microorganisms are crucial in One Health, given that they are the links among all these
members, seen in the role of commensal bacteria in driving the organisms’ fitness, as well
as maintaining key soil functions. Here, we showed that structure and composition of
the microbial communities of soil samples correlate to its land use, along with concerning
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interactions among environmental and opportunistic pathogens in soils that have under-
gone land conversion. Our study has also shown several commonly found ARGs in soils
that are also responsible for antibiotic resistance in potential pathogenic bacteria that are
widespread in soils, with the highest abundances present in livestock soils, providing
the first, to our knowledge, environmental AMR surveillance of soil samples in a crucial
region of Brazil, in terms of population density and economic relevance. Although ARGs
found in the soil samples in this study may confer resistance against competitors in these
habitats, their gene products may also serve other functions in soils. Thus, we reinforce
that ARG or VF hits within samples do not indicate actual antibiotic resistance or actual
virulence determinants. Nevertheless, identifying (3-lactamases in highly modified soils
highlights the importance of environmental surveillance to pull the brakes and gather more
information regarding resistance levels in regions at risk for higher selective pressure due
to anthropic activities.
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