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Abstract

In [8], [9] and [10] we have studied the flat geometry of surfaces and families
of surfaces in 3-space, that is the geometry associated with contact between the
surface and lines or planes. We consider in this paper the geometry associated
with contact between surfaces and spheres in 3-space and give a list of all
possible changes of the ridge and sub—parabolic sets which can occur in a generic
l—parameter family of surfaces. We also refine the work in [16] and provide a
geometric characterisation of the simple singularities of the folding map.



RESUMO

Em artigos [8], [9], e [10] estudamos a geometria plana de familias das
superficies no espaco euclidiano. Neste artigo estudamos a geometria esferica de
familias a l-parémetro das superficies. Obtemos todas as mudanqas génericas
do conjunto ridge que é o conjunto dos pontos onde a, fungi“) distimcia ao
quadrado tern uma singularidade A23.

Existe um resultado de dualidade de Bruce-Wilkinson [16] que relaciona as
singularidades da. fungzio disténcia ao quadrado e da. aplicagfio dobrzi. Esta du-
alidade permite estudar a geometria plana da superficie focal e a discoberta do
conjunto sub-parabo’lico na superficie que é a pre-imagem do conjunto parabo’lico
do. superficie focal. Obtemos todas as mudangas genéricas do conjunto sub-
pambo’lico e damos uma caracterisagio geometrica das singularidades simples
da aplicagz‘io dobré.
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1 Introduction
In [8], [9] and [10] we have studied the flat geometry of surfaces and families
of surfaces in 3—space, that is the geometry associated with contact between
the surface and lines or planes. This fiat geometry provides information on the
Gauss map and the dual of a surface, and the viewgraph in the viewsphere.
Moreover a remarkable duality relates the two types of tangency [14], [5].

We shall consider in this paper the geometry associated with contact be-
tween surfaces and spheres in 3-space. This approach gives, for instance, infor-
mation on the principal curvatures/ directions of the points of the surface, the
lines of curvature and the nature of umbilics on the surface (see [24]).

The contact between a surface and a sphere is described by the IC-classes of
the distance squared function from the centre of the sphere. The locus of points
on the surface where there is a sphere of curvature having an A3 contact with
the surface is labelled ridge curve by Porteous. Ridges are of great intrinsic
interest geometrically and have recently attracted attention in computer vision
(see for example [18], [19],[25], [26], [11]) as they provide robust features that
can be marked on an evolving shape. Our interest in this paper is to determine
all the possible transitions that can occur generically on the ridge set on a
l-parameter family of surfaces. This is motivated, for example, by the time
dependent images that often arise in medical images. A comparative study of
anatomical pictures of the same patient taken at different times may present
changes on the ridges on an associated surface, and these changes may be of
medical significance.

We shall give in §2 a list of all possible changes of ridges which can occur
in a generic l-parameter family of surfaces. The main tools employed will be
transversality theorems concerning the so—called Monge—Taylor map and strat-
ified Morse theory, or at least a version developed in [6].

Just as in the case of the flat geometry of surfaces there is a duality which has
proved to be most illuminating [16]. The dual family ofmappings is the family of
folding maps parametrised by the oriented planes in 3-space. For a fixed plane,
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the associated folding map measures the local refiectional symmetry of the
surface at its points. The key observation is that a surface is locally symmetric
at a given point across planes which contain the normal to the surface at that
point. Moreover this symmetry is most marked when those planes in addition
contain a principal direction. (One can also view the family of folding maps
as providing information on the contact between surfaces and 0-dimensional
spheres.)

It turns out that the dual of the bifurcation set of the family of distance
squared functions is the bifurcation set of the family of folding maps [16]. This
result provides a powerful tool for exploring the geometry of the focal set, and
in particular the flat geometry associated to it [16]. For instance, the locus of
points on the surface whose images on the focal set are parabolic, called the
sub-parabolic line, proved to be as important as the ridge. The sub-parabolic
line can be characterised in several ways (see §3). Its generic structure is studied
in [16], [23].

We give in §3, as in the case for ridges, all the possible changes of the
sub-parabolic line that can occur in a generic l-parameter family of surfaces.

In §4 we refine the work in [16, 29] and provide a geometric characterisation
of the simple singularities of the folding map.

We would like to thank Richard Morris, both for providing software, the
‘Liverpool Surface Modelling Package’, which proved useful in our investiga-
tions, and for convincing us that one of our earlier models for transition did not
occur.

As a general background for the singularity theory approach to differential
geometry we suggest [28] and [24].

2 Ridges on Families of Surfaces
In what follows M denotes a smooth surface in IR3. We consider the family of
distance-squared functions on this surface, defined by

d : Mle3 —> IR
(PM!) H d(17,11)=||1°—u||2-

The map d is used to describe the contact between the surface M and 2-spheres
in IR3. (This approach is due to Thom but most of the basic work in this area
was carried out by Porteous.) Clearly the sphere centred at u and with radius
r, given by the equation d(p, u) — 7-2 = 0, is tangent to the surface at some
point pg precisely when d(pg,u) = 7-2, and the function d(—,u) = d“ has a
singularity at pg. The contact is then described by the IC—equivalence class of
the corresponding germ du : M, p ——+ IR.

There is a 1-parameter family of spheres tangent to M at pg, namely those
centred along the normal to M at pg. At a general point along this normal the
sphere and surface will have contact of type A1.

Away from umbilic points, there are exactly two points on the normal where
the sphere has an A2 (or more degenerate) contact with the surface. These
points correspond to the centres of curvature. As pg varies on the surface these



centres of curvature sweep out the two sheets of the focal surface. (We shall
adopt, as in [24], an arbitrary colouring to distinguish between sets associated
to the two principal curvatures, say red for one and blue for the other.) There is
a curve on the surface where one of the spheres of curvature has an A3 contact.
This occurs when the corresponding curvature function is extremal along its
line of curvature. The A3 points are called ridge points by Porteous; they are
surface points corresponding to cuspidal edges on the focal set. The ridge points
inherit the colour of their corresponding principal curvature, so we have blue
ridges and red ridges on a surface. The ridge curve may be tangent to a line of
curvature of the same colour. This happens when the sphere has an A4 contact
with the surface.

At a generic umbilic point, where all sectional curvatures are equal but non—

zero, the distance squared function has a D4-singularity. In this case the two
centres of curvature coincide.

A transverality theorem in [20] shows that for a generic surface the distance
squared function can only acquire the singularities described above (Ak,1 3
It 5 4 and D4), and that these are versally unfolded by this family. What we
wish to do is to describe the way in which the various features (ridges, A4 points
etc) change in a generic family of embeddings. We shall describe in this section
the transitions of the ridge curve in a generic 1-parameter family of surfaces.

Let M be a given surface. We will be interested in families of embeddings
f : M x I —> IR3 where I is some open, connected and finite interval. So for
each t E I the set ft(M) is an embedded surface in R3, and will be denoted
by Mt. We first consider the contact singularities occurring generically in such
families, beyond those listed above. To establish a list, and some other useful
facts concerning unfoldings, we need a transversality theorem. See [28] for
background information.

Theorem 2.1 Let M be a compact surface, I an open interval. Let k? be a posi-
tive integer and 5 an A-invariant Whitney regular stratification of the multijet-
space er(M,IR). Let Emb°°(M, I, IR3) denote the open subset of the space of
smooth mappings f : M x IR ——> R3 with ft : M —> IR3 an embedding for each
t. Then the set Off 6 E7nb°°(M,I,IRg) with the jet-extension

rjfdo f : M”) x 1113 x I —> rJ"(M, IR)

given by

rm 0 Hp, t. u) = aka" 0 ma)
transverse to S is residual. (We can replace residual by open and dense if we
ask for transversality over a compact subinterval J of I.)

Proof The proof is a consequence of Theorem 1.1 in [5]. The key fact enabling
us to apply this result to the present situation is that the family of distance
squared functions on the ambient space is A-versal. This follows trivially from
the definition.

The key consequence that we require is the following result.



Corollary 2.2 Let M, I, J be as before (J a compact subinterval of I). Then
for an open dense set of mappings f in Emb°°(M, I, R3) there are finitely many
points {t(1), . . . ,t(s)} in the interval J such that
(i) [ft ¢ {t(1), . . . ,t(s)} then the only singularities of the distance squared func—
tions du for the surface Mt are of type A54 and D4. Moreover these singularities
are versally unfolded by the family do f, : M x IR3 —) IR.

(ii) [ft is one of the t(j) then either we have a singularity of type A5 and D5,
or we hmm one listed in (i) above which is not versally unfolded by the family
d 0 ft”). All singularities (including these) are versally unfolded by the family
do f i M X R3 X I —> IR, defined by (dOf)(p,t,U) = du(ft(P)) = HM“) — “HZ-

Proof The proof follows that of Corollary 3.2 in [8] for the family of height
functions.

So if f is a generic family of embeddings then the spherical geometry of the
family of surfaces ft(M) = M: for t G J, as determined by the families do ft,
has finitely many catastrophic events. These are of two types: (i) some point
of the surface MW) may have contact with its tangent sphere which is more
degenerate than an A4 or D4 singularities (an A5 or D5) or (ii) the singularity
may be of type A34 and D4 but not versally unfolded by the family d of distance
squared functions alone. In case (ii) this means that the contact is one of the
prescribed types, but the geometry associated to that singularity does not follow
the standard model. We remark here that versality of the unfolding is automatic
for A53 singularities, so that the various possible changes corresponding to non-
versal A53 contact are ruled out.

The full bifurcation set of the family d consists of the centres from which the
distance-squared function is not stable, Le. not Morse. This can happen in two
ways: either the function has a degenerate singularity (i.e. the corresponding
point is a centre of curvature) or it may have two critical points at the same
level. The latter corresponds to a bitangent sphere, and the locus of centres
of such spheres is the symmetry set. For a generic surface the local form of
the full bifurcation set is determined by the contact between the corresponding
(bitangent) sphere and the surface, and one can describe the local structure of
the corresponding subsets of the symmetry set. See [7]

()ur principal concern is with the ridges, and it is of interest to note that
these cannot be described using the transversality result above. Instead we use
some more direct techniques from [4]. Of course we can expect that the singu-
larities of the distance-squared family will have a bearing on the appearance of
the ridge curve on the surface, but there are further ingredients.

We shall now describe the possible changes on the ridge set associated to
the cases in (i) and those in (ii). We shall distinguish two cases depending on
whether the point po on the initial surface is an umbilic or not. (The associated
changes on the focal set are descibed in [2].)

2.1 Changes on ridges at umbilic points
As in [4] let 7) be a point on a surface, and we choose a smooth unit normal
vector field, and a unit tangent vector field in a neighbourhood U of p. This



allows us to determine at each point near p an orthonormal set of co-ordinates,
and at any point q we write our surface locally in ‘Monge form’ as the graph of
a function f of two variables x and y in the given normal z-direction. Let V3

denote the set of pairs (f2, f3) where f2 is a quadratic form, and f3 a cubic form
in the variables x and y; we call V3 a Mange-Taylor space. Taking the 3-jet of
f we obtain a smooth map, the Mange-Taylor map F : U —) V3. The set V3

has a natural SO(2)—action given by change of (my) co—ordinates (a different
choice of initial tangent vector field). A subset Z of V3 which is of any geometric
significance will be SO(2)-invariant. Moreover if Z is furnished with a Whitney
regular stratification then for any generic M the map germ M,p —) V3 will be
transverse to the strata of Z. See [4] for details.

At an umbilic point all sectional curvatures coincide. At such a point we
can write the surface locally in Monge form with terms up to order 3 in the
form 3&2 +112) + f3(:1:,y) for some cubic form f3. The cubic part of the
relevant distance-squared function is simply a nOn-zero multiple of f3(:1:,1).
The distance-squared function is of type D4 if and only if this cubic form has
three distinct roots. If all three are real it is an elliptic umbilic Dr and we have
an elliptic umbilic on the surface; if two of the roots are complex (conjugate) it
is a hyperbolic umbilic D4“.

We are interested in the set of points on the surface where the distance-
squared function has an A23 (ridge point). It is proved in [4] that there is
one smooth ridge through a generic hyperbolic umbilic and three (pairwise
transverse) through an elliptic umbilic. It is also known that ridges change
colour at an umbilic [24]. See Figure 1(ii). We wish to describe how these
configurations change in a generic l-parameter family.

We first note that any cubic form can be written as Re(az3 + fizzi) where
a and [3 are complex numbers and z = a: + iy. One can then show that any
such cubic form is SO(2)-equivalent to one of the form

Ii’,e(z3 + flz22)

(or is SO(2)-equivalent to Re(z22) = x(z2+y2)). So we can view the set of cubic
forms as points in the fl—plane. There are three subsets of this plane (at least)
of interest. The first consists of the umbilics which are not of type D4, i.e. those
cubic forms with repeated roots. The second consists of those umbilics which
are not versally unfolded by the family of distance-squared functions. (A short
calculation shows that elliptic umbilics are automatically versally unfolded.)
The third consists of umbilics at which two of the ridge lines (or more) are
tangent. In [4] it is shown that these sets correspond to the following subsets
of the w-plane (Figure 1(i)).

I: Urnbilic not of type D4: the set fl = 2s“) + 6—2“).

II: D4 singularity not versally unfolded: the set [fl] = 3; this is also the locus
of points where the Monge—Taylor map fails to be transverse to the D4
stratum,

III: Tangent ridges: the set [[3] = 1.



Figure I here

We know then when to expect changes on the ridges. We show below what
these changes are.

Theorem 2. 3 In generic 1--parameter families the ridge lines ofa surface change
as follows in a neighbourhood of an umbilic:

(U Ellipticto hyperbolic c a,
See Figure 2(i}.

(II) The birth of a pair of hyperbolic umbilics (occurs across set U). See

Figure 2(ii).
(HI) Tangent ridges at elliptic umbilic (occurs across set HI). See Figure

2(iii).
In Figure 2, the umbilics are distinguished by heavy dots, and the models

are well defined up to diffeomorphism of the surface.

Amu". mi- ,.u, b n a- ..yr, uou u U5 out

Proof We shall explain this case in some detail, since the others are similar.
Given a point p on our surface and the germ of a family of embeddings

:M x IR, (p ,0) —> IR3 we obtain a family of Monge--Taylor maps F. M x
IR, (p,0) -> V4. (Of course we need to choose some corresponding family of
orthogonal co-ordinates as in [4].) This will be transverse to the set of A3-
points, say Z, in V4 for a generic family of embeddings. This essentially was
the straightforward transversality result established in

[lit].
We then determine

the diffeomorphism type of the inverse image F” (Z)a t(p,0). For a generic
family of embeddings we expect the natural projection 7r .F 1(Z), (p, 0) u)
M x IR, (17,0) —) IR to be generic, in the sense that it will be a stratified Morse
function [6]. Usually however we can construct the module of vector fields on
M x IR (locally just IR3) tangent to to the germ F“1(Z). We can then make
a classification of smooth functions IRB,0 ——+ IR,0 up to diffeomorphisms in
the source preserving F‘1(Z). (We also often allow arbitrary changes of co-
ordinate in the target.) We expect our projection to be a stable (or the least
degenerate) germ in the classification. This is established by computing the
conditions for the projection to be non—Morse (or non—stable etc.) and showing
that the resulting set of embeddings can be avoided in l-parameter families.
In this paper we spare the reader the lengthy details. We note however that
in one case, covered in §3, the map projection 7r turns out to be non-generic
because of its geometric origins. We can, nevertheless, still identify the class of
functions to which it belongs and complete the relevant classification.

We shall start with the transition III.
Since we wish to describe the ridges on M we will need the corresponding

subset of V3. For an elliptic umbilic we may suppose that F(p) is given by

1701) = a(:':2 + y?) + w(-’v + fliy)(:1: + fifl/l

for some a,fil,fl2 with afl1fi2(fl1 — E2) 76 0 (that is we can arrange for F(p)
to take this form by a choice of co—ordinates at p). We now wish to choose
a transversal to the SO(2)-orbit through F(p) to describe the local structure



of the ridge set at F(p).The set of such points in V3 would then be locally
diffeomorphic to the product of that in the transversal with IR. This transversal
is given by

llfz, fs) = ((a+a0):1:2 +2011”! + (a+a2)y2),$(z+ (fli +b1)?/)($+ (flz +b2)?/)l-

The condition for an A23 on the surface is that when one considers the 3-jet
of the relevant distance-squared functions the quadratic part must be a perfect
square and the cubic and quadratic parts must have a common factor. Taking
the centre of the distance-squared function as (0,0,7) this implies that the
quadratic form

(1 — 27(a + ao))rE2 — 47mm + (1 — 27m + cam/2

is degenerate, and has a root in common with f3. This gives three hypersurfaces
with equations

(Li = 0, al(1—(fl1+ b1)2)"'(131+ billao — a?) = 0,

(11(1 — (52 + b2)2) — W2 + b2)(ao — G2) = 0«

So the Azg-Set, which we henceforth call the ridge-set, consists locally of three
smooth hyperplanes meeting in the umbilic set given by (Lo — (1.2 = a] = 0. This
intersection is pairwise transverse at F(p) if and only if in addition to the above
conditions we have (filfig +1) # O. The condition in invariant terms means that
the roots of the cubic jg are not orthogonal.

We now need to consider this orthogonal case, so in what follows fig = —,H1"1.

We need to analyse the ridge set near the point F(p) = a(:t:2 + 3/2) + m(z +
[fly/Hm + flgy). We change co—ordinates as follows: let ul 2 ao — (12, u? z
(1.1, 11.3 = [31 + bl, u4 = fig + (0,115 = a0 + a2, so that the three hypersurfaces
are given as

u; = 0, u2(1— egg) —- mm = 0, u2(1— ug)~u1u,1 = (J;

note that the us term is absent. The last two equations are linear in U1 and U2,
and the determinant of the coefficients is (11.3 — u4)(1 + u3u4). Since, near our
base point, u;;u4(u3 — u4) # 0 it is not difficult to see that the strata are given
by:

11.1 = “2 = 1+ U3u4 = O; u1=u2 = 0, 1+ 11,3114 # 0;

1+ “311.4 = u2(1 — fag) — 1L17L3 : O, “2 ¢ 0

together with the remaining parts of the hypersurfaces and their complement.
This is clearly a Whitney regular stratification; indeed it is a locally smooth

product stratification. So given a generic l-paraxneter family we will obtain a
three dimensional section, which will be transverse to this stratification (pro—

vided it is transverse to the 2-dimensional stratum given by u] = uz : 1 +
“3“4 = (J), and any two such will yield a diffeomorphic intersection with the
ridge set. Such a transversal is given by setting 11.4 : [32 and 71,5 : O. The
resulting stratification is diffeomorphic to the configuration in (1L,‘IJ,U))-SpaCC
given by 1w(1) — um) : (l.



We now need to consider the projection to the time parameter t. One would
expect this to determine a stratified Morse function on this set. It is clear that
the limits of the tangent spaces to the 1-dimensional strata at the base-point
(the origin) are Sp{8/811} and Sp{8/8w}, while those of the 2—dimensional
strata are Sp{8/811, 8/8111}, Sp{8/811, 8/8111} and Sp{1118/811 + 8/811,118/811 +
8/8111}. Thus the germ of a submersion h at the origin is Morse if and only if
r')l1,/811(()) and (')/1/8111(0) are both non-zero. It follows from [ti] that there are two
topological types of Morse function on this stratification with representatives
11 +111 and 11 —— 111. Indeed there is only one type, since reversing the signs of 11

and 111 preserves the stratification, and interchanges the two.
Actually it is not difficult to check that these are the correct pictures up

to diffeon‘iorphism. To do this we need to compute vector fields tangent to
the given variety in (11,11,w)—space. First we note that there are two Euler
type vector fields 118/811 + 118/811,118/811 + 1118/8111. Using one of them, say the
second, we see that we now only need to find fields which annihilate the defining
equation. Writing such a field as a sum a8/811 + (18/811 + c8/8111 we obtain the
equation

c1(112 — 21111111) + b(21111 —- 112111) + c(—11211) = 0.

From this we see that 11 divides a, and using the first Euler vector field we
find that we may suppose a z 0. It follows that the set of all vector fields is
generated by the Euler fields and 11118/811 + (211 — 11111)8/8111. (Indeed it follows
from [27] that this variety is a free divisor, 1.13. that these vector fields generate
the module of tangent fields freely.) It is now clear that the functions 11 :l:u1 are
stable in the sense described in [13], and our assertion follows quite easily.

We now turn to case I. For an umbilic of type D5 the cubic form has a
repeated root, and we may suppose that F(p) is given by

F0?) = abs? + 112) + 1:2(m + fly)

for some oz,/3 with (1/3 75 0 (that is we can arrange for F(p) to take this form
by a choice of co—ordinates at p). We now wish to choose a transversal to the
SO(2)-orbit through F(p) to describe the local structure of the ridge set at
F(p). This transversal is given by

{02,131 = «a + (10112 + 2am + (a + 1121112), (12 + 111112111 + (fl + 1121111}

The cubic has three factors, namely (T i: M—bm) and (:1:+ (fl +112)1/). Again
one expects that; the condition for an A23 on the surface will yield three hyper-
surfaces:

(Li(1 ~111) i v —bi(ae — (12) = U, 01“ — (fl +112i2i—(fl +112)(ao — (12) = 0-

However it is clearly better to put the first two expressions together, to obtain

(130. — bl)2 + b1(a0 —- (12)2 = 0.

So the ridge set consists again of these two hypersurfaces meeting in the umbilic
set given by 11“ —— (12 z (11 = (i. We change co-ordinates again: let 111 =



(10 —- (1,2, U? I a], U3 = bl, U4 = fl-l- bg, U5 = (1,0 +a2, SO that the tWO

hypersurfaces are given as

ugfl — U3)2 + afar; = 0, u2(1— of) — u1u4 : 0.

The Dr, umbilics are given by in = u2 = U3 : O, and it is not difficult to de—

termine the stratification. Again this is a locally smooth product, and a suitable
transversal is given by taking in = fl and “5 = 0. Some elementary changes of
Fri-ordinates brings the relevant set into the simpler form 14112 ~ uzw) — (l in
(11.,1),m)-space. This is a Whitney umbrella together with a plane containing
the line of self—intersection. The vector fields tangent to this variety are found as
above to be generated by u0/0u+vf)/(')v, v8/0v-l—2w0/0w, 1t20/01)+2v(')/0w,
so again we have a free divisor, and the relevant stable function here is 11. +71).
The sections are shown in Figure 2(i).

Transition II is similar, but easier.

Figure 2 here

2.2 Changes on ridges away from umbilic points
We now turn to the changes away from urnbilics and write the 5-jet of the
function f as [2 + f3 + f4 + f5, where each fi is homogeneous of degree z' in :1;

and y. We can reduce fg using the SO(2)-action to the form fg = aux? + 0.ng
and write f3 = 25:0 Iiim3‘iyi, f4 = Zi=0 61113441] and f5 = Zf’:()diw5‘iyi-

Recall that a sphere of curvature, say that corresponding to the principal
direction (0,1), has an A3,A4 or A25 contact with the surface M when the
following holds:

A3: b3 : 0; bg — 4(a0 — a2)(c4 ~ (13) # 0;
A4 : bg :: (J; 05 — 4((1,() —— (L2)((L1 — (1,3) = (l,

Inbij —— 21)2(33((I,() — 11.2) + 4d5((10 -— (1,2)2 75 0;
A25 1 03 = 0; [fig —- 4((L() —— (1.2)(64 — (1,3) = 0,

blbg — 2b2c3((1,0 — (1.2) + 4d5((zo — ag)2 = 0.
For the calculations in this section we need to compute three vectors: the

tangent to the S()(2)-orbit of the function f, and the two generators of the
image of the tangent space by the differential of the Monge—Taylor map F :

M217)
—> V4. A. simple calculation gives the first vector as v = yg—étrfl) ——

arm/(mm), that 18

v = 20“) — (L2).7;y — Mfr"3 + (31m — 2b2):172y + (2b1 — 30:01:11? + [my/3 — mail
+2(2c0 — c2)a:3y + 3(c1 — c;;)m2y2 + 2(c2 — 20037113 + egg".

Following Proposition 2.2 in [4] the image of dF(p) is generated by u, and
“2 with



U1: j4{_f$z(03 O)IE — fly/(0) 0)y + fx(x1y) _ fz1:(0a0)fz(m7y)f(x7y)—
fan/(0a 0)fy(:v,y)f(a:,y)},

= 3b“:2 + 2b1112y + by2 + 4(c0 — a8)ar3 + 3c1$2y + 2(c2 — 2aga2)x,1/2 + egg/3

+5010 — 2a§b0)1174 + 4(dl — 2a31)1)y:1;3 + 3(d2 — 2b2a5 —— 2a0()0aQ):L"‘2y2

+2013 — 2a(2)1)3 — 2a0(121)1)3:y3 + ((14 — 21L0(121)2)g/4

uz = ,')'4{—fmy(0, mm — fawn + filmy) — farm.-0)fy(w,y)f(w,y)—
fzy(07 0)fx($, y)f($, yll

= b1x2 + 2bgrry + 31733]2 + 6113 + 2(62 — 2aoa3)m2y + 30333112 + 4(C4 ‘ a%)y3

+(d1 — 2a0a2b1)$4 + 2(d2 — Zagbo — 2aoazb2)yz3
+3(d3 — 2b1ag — 2aoa2b3)z2y2 ‘l‘ 4(d4 _ 2agbzlmy3 + (615 _ 2agb3ly4-

We wish to find the condition that the Monge—Taylor map fails to be trans—

verse to the A23 set in V4. Working in a transversal to the SO(2) orbit given
by (en + Wyn? + (ag + GEM/2 + (f;; + E) + (f4 + E) in V4, where K (res—p. fl)
is a general cubic (resp. general quartic), the A23-Sel} is given by 123 + b3 2 0.
The conditions for the tangent vectors to the flag-stratum in the transversal,
the tangent space to the orbit, and U1 and uz to fail to span V4 are

(a0 — aQ)C3 — blbg = 0 and b§ — 4(a0 — a2)(c4 — (13) = 0-

The last equation implies that we have an A24 contact. The expression for the
tangent to the ridge given in §4.5 shows that, away from umbilic and parabolic
points, the conditions above are necessary and sufficient for the ridge curve to
be singular. One can also show that the family of distance squared functions is
no longer a versal unfolding of the A4 singularity when (ao — (1,2)63 — 1)le = 0.

For a given generic l-parameter family the Monge—Taylor map is transverse
to the A23 set, and in the product space M x I the ridge points form a surface.
Projection to the time parameter yields two types of Morse sections of this
surface as shown in Figure 3. The corresponding transitions on the focal surface
are well known [2]

In the transversal to the SO(2)-orbit, the A24 set is given by

_ bs + 5; = 0,
(bz +1»)2 — 4(ao + a — 02 — @)(64 + a — (az + m“) = 0-

This is a smooth set of codimension 2 in V4. If we use the coefficients of the
monomials as a set of coordinates in Vk, a calculation shows that the tangent
space to the A4 stratum in the space V4 is given by the intersection of the
kernels of the l-forms
{1 : —b2da| + 2(ao — (12)(lb3

‘

o r - bf)
£2 = (C4 — (1:3)da0— $(C3 — Za—filfifidal — ((e,1 — (1.3) + Jaflao — a2))da2 — —2-db2

+((L() — (1.2)(164.

The Monge-Taylor map fails to be transverse to the A24 set if and only if there
exists /\ and /l. with Au] +11“? 75 () such that

£1()\u1+/rug)=§2()\u1+/Lu2): 0
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Since £1(u2) = b% — 4(a0 — 0.2)(64 — (13) = 0 (A4 singularity at the origin), the
system has a non-zero solution when §1(u1) = 0 or §2(u2) = 0. We have

§1(U1l= (ao — 02)63 — 11162,

62012) = ©1173 — 217203010 — (12) + 4d5(ao — az)2~

Thus transversality fails at an A4 in two ways: (i) non-transverse A3 which is
dealt with at the begining of this section, or (ii) at a singularity worse than A4,
i.e., Ags- In the last case the Mongc-Tay.or map is generically transverse to
the A23 stratum and the ridge remains a smooth curve.

In a generic 1-parameter family, the Monge-Taylor map intersects the A24
set in a smooth curve and the resulting transitions on the ridge at an A5 are as
shown in Figure 4.

Theorem 2.4 In a generic I—parameter family the ridge curve changes as fol-
lows away from umbilic points:

(I). Morse transitions at a non—transverse A3 (Figure 3). This occurs at
A4 singularity where the family of distance squared functions fails to be a versal
unfolding.

(2), The birth of a pair of A4 points on a smooth ridge at an A5 transition
(Figure 4).

Figure 3 here

Figure 4 here

In particular, ridges are created generically as a closed curve through a non-
versal A4 singularity of the distance squared function. Note that the parabolic
set is also created as a closed curve through a non—versal A3 singularity of the
height function [8].

3 Sub-parabolic lines on families of surfaces
Let pg be a. point on the surface M which is not an umbilic. The lines of
curvature form an orthogonal net in a neighbourhood of pg. We have seen in
the previous section that the ridge is characterised as the set of points where
a principal curvature is extremal along the associated lines of curvature. The
locus of points where the principal curvature is extremal along the other line
of curvature is also of great geometric importance. This locus is called the
‘sub-parabolic line’ in [16], [29], [23], and later the ‘flexcord’ in publications of
Porteous. It can be characterised, via a computation of the first and second
l'undzunental forms of the focal set, as the locus of points on the surface whose
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image is the parabolic curve on the focal set [17], [15]. A result in [23] also
shows that the sub-parabolic line is the locus of points where the other lines of
curvature are inflexional. However, as in the case of ridges, the sub-parabolic
lines were first and are best described using singularity theory, and an associated
family of maps [29].

We choose a coordinate system for the ambient space where pg is the origin
and the normal at po is along the z-direction. We associate to the plane y = 0

the ‘folding map’ of the ambient space, given by g(:r,y,z) = (rag/2, z), and its
restriction to the surface M. The induced map 9 oi : 1112, O —-> 1113, 0 is singular
(a crosscap or worse) if and only if the folding plane y = 0 is a principal plane,
that is one of the principal directions is along the y-axis The symmetry of
the surface with respect to the folding plane is described by the A—class of the
singularities of g o i. It is proved in [16] that for a general surface, only simple
singularities of maps R2,O —> R3, 0 whose Ae-codimension is g 3 occur. If we
write the surface locally in Monge form z = f (x, y) where the Taylor series for

f starts
610962 + army + (12112 + 2220 bim3‘iyi + 232-20 gaff i+
Elle dims—Illl + 21,6:0 aims—WI + 23:0 finy’ +

then the singularities of g oi are as follows. (See the following section for their
normal forms.)

Crosscap : al # O;

Bi=511 01:0,b1¢0,ba#0;
B2: (11:0, blaéO, (13:0, 4b1(15—c§760;
B3: (11:0,b19é0,b3=0,4b1d5—c§=0,

zszf7 — (2d3d5 + 6365)b% + (cgd3 — c1C3d5)bl — clog 7a 0;

S2: 01:0,b120,b3¢0,617£0;
53: a1=0,b1=0,b3750,01=0,d17£0;
Cg: (11:0,b1=0,b3=0,61#0,63750.

Note that this is all for a folding in the plane y = 0; there is a l-parameter
family of such foldings in planes containing the normal to the surface at the
given point. There is an interpretation of the above conditions in terms of the
geometry of the focal set and the symmetry set [16].

51 general smooth point of focal set
52 parabolic smooth point of focal set
53 cusp of Gauss at smooth point of focal set
32 general cusp point of focal set
B3 (cusp) point of focal set in closure of parabolic curve on symmetry set
C3 intersection point of cuspidal-edge and parabolic curve on focal set.

It is clear then that the folding map has an 52 singularity at pg if and only
if this point is sub-parabolic, so the singularities of the folding map capture the
flat geometry of the focal surface. This is due to the duality result we pointed
out in the introduction and state below (Theorem 3.1). We can also see that
the folding map recognises ridge points (which correspond to Bg-singularities)

12



but consideration of the condition for an A4-singularity of the distance squared
function in 2.2 shows that the folding map does not distinguish such points on
the ridge.

The folding map also reveals some fascinating geometry of the surface and
its focal set at umbilics. At such points all directions are principal so folding the
surface in any normal plane induces a map with a singularity of type cross-cap
or worse. On the projective line IRP1 of such directions, there may be 3 or 1

directions where the singularity is of type 52 (resp. B2), i.e. there are 3 or 1

sub-parabolic lines (resp. ridges) through an umbilic [16]. It turns out that the
configuration of these sub-parabolic lines is closely related to that of the lines
of curvature [16], [23].

Let G denote the natural 3-parameter family of folding maps, one for each
oriented plane in 3-space [16]. Then,

Theorem 3.1 [16] The bifurcation set of the family G is the dual of the union
of the focal and symmetry sets of M. More precisely the local part of B(G) is
dual to the focal set and the self tangency part is dual to the symmetry set.

To study the changes on the sub-parabolic lines we can adapt Theorem
2.1 to deal with the family G (which is also A versal when considered on the
ambient space) and obtain the following.

Corollary 3.2 Let M, I, J be as in Theorem 2.1. Then for an open dense set
of mappings f in Emb°°(M, 1, R3) there are finitely many points {t(l), . . . , t(s)}
in the interval J such that
(i) [ft ¢ {t(l), . . . ,t(s)} then the only singularities of the folding map G, for
the surface Mt are of type 553, Egg and C3. Moreover these singularities are
versally unfolded by the family G 0 ft : M x E —) IR, where [I is the set of
oriented planes in M3.

(ii) [ft is one of the t(j) then either we have an additional singularity of type 54,
B4, C4 or F4, or we have one of the singularities above which fails to be versally
unfolded by g 0 ft. All singularities (including these) are uersally unfolded by
the family G o f : M x [I x I —> IR, defined by (G Of)(p,t,u) = yu(ft(P))-

We shall study, in this section, the transitions that can occur on sub—

paraholic lines in generic l-parameter families of surfaces. These arise in three
situations: (i) away from ridge and umbilic points, (ii) at ridgc points, or (iii)
at umbilic points.

Away from umbilics and ridge points, the focal set is smooth. Following
[8], one expects the parabolic set on the focal set of a family of surfaces to be
generically smooth or to undergo:

(i) Morse transitions at a non—transverse cusp of Gauss of the focal set,
(ii) birth/annihilation of a pair of cusps of Gauss on a smooth parabolic

curve, or
(iii) the transition corresponding to cone sections at a flat umbilic of the

focal set.
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The last transition is ruled out. If a. surface were to give rise to a focal set
with a flat umbilic then the second fundamental form of the focal set at the
relevant centre of curvature would have to vanish. This form is not difficult to
compute. Indeed assuming that we parametrise our surface locally by lines of
curvature the coefficients of the second fundamental form of the focal set at the
centre of curvature corresponding to the radius of curvature pl are

e: fifi. f=0 gzztplG Bog

pl "dul' ' 2 pév’F-Tul-

where E, F, G are the coefficients of the first fundamental form of the surface,
u2(resp. ul):c0nstant are the lines of curvature with radius of curvature pl
(resp. pg) (see [17]). Assuming the focal set has a flat umbilic, we can deduce

0 0 ) . .that fl = 6—[2— : 0 and that means in particular that we are at the centre of
ul U1

curvature corresponding to a ridge. But then the focal set is not smooth.

Corollary 3.3 Away from umbilics and ridge points, the sub-parabolic line un-
dergoes the following transitions in a generic I—parameter family of surfaces.

(i) Morse transitions at a non-transverse Sg-singularity of the folding map.
This occurs when the family of folding maps fails to versally unfold the 53
singularity.

(ii) Birth/annihilation ofa pair of 53—.singula1'ities on a smooth sub—parabolic
line. This occurs at an S4 singularity of the folding map.

Proof The proof follows from [8] and the fact that the Sk- singularities of the
folding map correspond to the Ak singularities of the height function on the
focal set, [16].

In [29], T. Wilkinson computed the conditions for the family of folding maps
to fail to versally unfold an Sg-singularity. With the notation as before, this
condition is, in addition to having an 53 (b1 = cl = 0),

“an - We — 2aoa3) — bz(3b0 — as) = 0.

The computation in Lemma 4.5 shows that these conditions are equivalent to
the sub-parabolic line being singular. It is also equivalent to the Monge—Taylor
map failing to be transverse to the Sg stratum.

When the sub-parabolic line crosses the corresponding ridge, the folding
map acquires a singularity of type 023. In general the two curves meet transver—
sally, but may become tangential in a generic l-parameter family. The tangency
is eliminated by a generic perturbation of the surface. This case is studied in
detail in §4.3.

Suppose now that 7)” is an umbilic point. The configuration of the sub—

parabolic lines depends only on the cubic part of the function f [16, 29], and
if this cubic is represented as in §2 in the form Re(z3 + £3222) then changes on
these curves occur in two ways:

14



1. On the hypocycloid fl = —3(2ei0 + e‘2i0): three 52’s inside, one outside.
This curve separates the lemon from star and monster umbilics.

2. On the circle Ifll = 3: 52 is not versally unfolded by the family of folding
maps. The circle separates the star from the monster.

It is also shown in [29] that the stratification of the Monge-Taylor space V3

by the equations defining the sub-parabolic lines coincides with that defined by
the ridges after a certain transformation is ap died. Indeed up to an orthogonal
change of co-ordinates we can work with elements of the form Re{'yz"2 + 722 +
z3+/322'z'} where fl, 7 are complex and r is real. The map (fi, 7, r) H (—3fl, 7, r)
is a self diffeomorphisrn of this affine space which interchanges the A3(: B2)
and SQ subsets. As a consequence we would expect that the changes on these
sets will coincide with those of the ridge curves described in §2.1. This is true
for the transitions across the hypercycloid 6 = —3(2€i0 + 6-2“) in the space
of umbilics. However there is an additional complication on the circle lfl| = 3.

This now corresponds to two different phenomena covered in II and III in §2,
namely the sub-parabolic lines are not transverse and the Monge-Taylor map
fails to he transverse to the D4 stratum. The point here is that the failure
of the transversality of ridges on the circle |/}| = l translates to failure of
transversality of sub—parabolic lines on [fl] = 3, while failure of transversality
of the Monge—Taylor map to the D4 stratum remains |fi| : 3.

Suppose given a generic family of surfaces M x I —) IRB. The Monge—Taylor
map F : M x I —> V3 is transverse to the stratification of V3. The relevant
strata are the 52 points and from our work in §2 we know that the pull back
at a generic umbilic point corresponding to |fl| = 1 is diffeomorphic to the set
uv(v — um) = 0. The set u = v = 0 corresponds to umbilics. The set U = w = 0

corresponds to points of the surface where there are two 52 reflection planes.
The upshot is that in this case we still have to consider a function on the set

dilleomorphic to ooh; — uw) = (J at (a, min) = (0,0, 0). However the fibre of the
relevant submersion is tangent to the closure of the stratum X1 (respectively
X2) given by v : 0 (respectively 11 : uw) (see below). We start by making a
classification of the relevant functions.

Let X = {(u,1),w) : uv(v — um) = 0}. From §2.1, the set of all vector fields
tangent to this variety is generated by the vector fields

0 0 0
62 = v,—— + w—,eg = uv,— + (21) — um)—Ow

0
e = u,—— + 1),—1

du dv’ do 611) do

We shall classify germs of submersions h : IRBJ) —> IR,() (of low codiinension)
up to diffeomorphisms that preserve the variety X in the source and allow any
smooth change of coordinates in the target. We denote the resulting group by
Q. The tangent space to the Q-orbit of a germ h by this action is given

TQJL : (93031(h,),e2(h),e;;(h))+li'(M1)

where C), denotes the set of germs of functions “13,0 —> IR, and ”(A/h) the
pull back of the maximal ideal M]. We use the complete transversal tools in
[ill] and proceed inductively on the jet level.



Let h = an + be + cw with a, b,c not all zero. We have e1(f) = an + bv,
e2(f) = bv + cw and (:3(f) = bnv + c(2v — am).

0 e 9é 0: we can use Mather’s lemma (see [12]) to reduce the l-jet to an+cw.
If a # 0 then (using 9: to denote g-equivalence), h z u + w which is 1-9—

determined. If a = 0 then a complete 2-transversal is given by h = w + du2.
This is equivalent to w + U2 (for d yé 0) which is 2-g—determined.

o c = 0: then h z u + v if ab yé O. A complete 2-transversal is given by
h = u + v + aim2 which reduces, after a change of scale for d 75 0, to u + v zl: wz.
This germ is 2-g-determined.

o c = I) z 0, a yé 0: the l—jet can be written in the form h = n, and a
complete 2-transversal has the form h = u-I—lv2 +mvv) +n1v2. It is not difficult
to show that this reduces to h : a-i—v2 iwz which is 2-g—<leterniined, provided
n(7n,2 — 417i) # 0.

o e = a = O, 1) ¢ 0: we write h = 1) by scaling. A complete 2—transversal
is given by h = v + ta2 + mun) + nwz. HI 75 0 we can reduce to h = v +
u2 + mnw + mug. A complete 3-transversal for this 2—jet is given by h =
v + “2 + muv + my? + 121113. This is equivalent to h = v + 11,2 + muv + nu)2 + w3

when p ¢ 0.
Calculations show that the 3-jet h = v + u2 + muv + nw2 +1113 is 3-g-

determined provided

n(m2 — 471)((1 + m)2 — 4n) # 0.

(The term 11)"3 in h is actually topologically redundant, though we do not use
this result here.) We now seek a recognition criterion for a germ of this type.

Lemma 3.4 A germ h : 1113, X, () —-> lR.,() is equivalent to v—l-n2 +mnv+nw2 +
in” if
(I) the germ h is a submersion;
(2) the set h = 0 has A1 contact with X1 (given by v z 0) and X2 (given by
v : mu);
(3) in the case when the contacts are both hyperbolic (i.e. that is lC—eqvivalent
to 1:2 —- 7/2) the branches are pairwise transverse.

Proof Conditions (1) and (2) show that the linear part of h is of the form (11) for
(r # 0. In this case we can set oz = 1. The quadratic parts of the contact between
h = U and Xi are then determined by h(u, 0, w) = lu2 +mnw + mu2 + O(3) say.
These forms are in2 —+—mnw+mv2 and la2 +(1+7n)uw+nw2. The two quadratic
forms are non-degenerate if (m2 — 41n)((1 + in)2 — 41n) # 0, and they have no
connnon roots ifand only ifln # 0. It is clear from above that these conditions
ensure that h is 3-Q determined and hence equivalent to v+u2+muv+nw2+w3.

We can now determine the intersection of the fibres of the function v + n2 +
mm) + 711112 + 7113 with the variety nv(v — mu) 2 () for values of a given (m,n)
in each connected component of the set n(m2 — 4n)((1 + m)2 — 4”) = 0. These
are as in Figure 5.

It will be convenient to parametrise the cubics of the form Re{z3 + fizzf}
with if}! = 3 in a slightly dillerent way.
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Lemma 3.5 Any such cubic form is SO(2) equivalent to one of the form a:1:3+
aby .

Proof Replace 2 by zew. This yields Re{z3e3i0 + $222} for some 7 —_- 71 + 71ny

with |7| = 3. Expanding we find the 2:23; and xyz terms are -—3sin(39) +72 and
—3 cos(30) — 71 which both vanish for the correct choice of 0.

We now wish to describe the stratification in the V3 space more explicitly. It
is rather difficult to determine equations for the X; (S? strata): we can however
find the tangent space at our base points to the closures of the X1 and X2
surfaces.

Lemma 3.6 If a general point in V3 is yiycn as any:2 + alazy —1— egg/2 ~|— bnar‘l —|—

billy + ngy2 + bgy3 then the tangent space at ao(;1;2 + yz) + bozr3 + bgy3 : 10
to the X1 and X2 surfaces is given by al : 0.

Proof These tangent spaces coincide with the sum of the tangent space to the
umbilic D4 and 252 strata. We now need only find suitable paths in these strata,
differentiate and evaluate to prove the result. For the umbilic stratum the path
F“ + tC'(a;, y), where C is an arbitrary cubic, shows that Sp{:n3, zrzy, uni/2, y3} is
a subset of the tangent space. For the 252 stratum one can check that p +2531:2

and p + ty2 are paths of the required type, and the result now follows.

The above result shows that the Xi are determined by equations of the
form a] + gi(a,b) = 0 where the gi lie in M2(a,b), a = (a0,a1,a2) and b =
(l)(),()1,l)2,()3).

Let F : M x IR, (0,0) —> V3 be the Monge-Taylor map and let 7r : M x
IR, (0,0) —) IR,0 be the natural projection. We have seen that there are two
smooth codimension l submanifolds of V; at F(0,0) which intersect in a D4
stratum and a 252 stratum. Let their equations be given by {11,92 : V3, 0 —) IR, 0.
We are interested in the projection 7r : M x IR,F_1(p), (0,0) —> IR, 0. We have
seen however that the type of this projection is determined by the contact with
the smooth surfaces (gi o F)"l(0). This contact is also encoded (see [22]) by
the map gi o F : M x {0}, (0,0) —> IR,0. Conditions (2) and (3) in Lemma 3.4
correspond to the assertions that the yi o F have A1 singularities and in the
hyperbolic cases the branches are pairwise transverse.

We have seen above (Lemma 3.6) that the gi are of the form al +hi(a, b), hi 6
M2(a, b).

Proposition 3.7 In a generic I—parameter family of surfaces, the contact yioF'
is of type A1 and in the hyperbolic case the branches are pairwise transverse.

Proof The proof follows by using Thom’s transversality theorem in the Monge-
Taylor space V3. Note that the non—versal umbilic set is a variety of codimension
3, so this singularity occurs generically at isolated points in a family ofsurfaces.
If in addition the contact (Ii o F is of type worse than A; or in the hyperbolic
case the branches are not pairwise transverse, then this adds an extra condition
that is, defines a variety of codimension 4 in V3 which is therefore avoided by
the map F.
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Corollary 3.8 In a generic I-parameter family the sub—parabolic line changes
as follows at umbilic points.

1. Lemon to monster (or vice versa) changes across the hypocycloia’ w :
—3(2ei0 + e“2w). This is the transition (I) in Theorem 2.3, Figure 201}

II. Birth of two umbilics (a monster and a star) across the circle |fl| = 3.
See Figure 5.

Note that the circle |,8| : 3 corresponds to the birth of umbilics. The two
newly born umbilics are of opposite index, i.c. one is a star and the other
a monstar(see [24]). This implies that we nmst have a crossing of the two
sub-parabolic lines (of different colour; otherwise we have in addition a Cg-
singularity) before the moment of transition.

Figure 5 here

4 Geometric characterisation of simple singularities
of the folding map

in this section, we generalise the duality results in [16] and characterise geo-
metrically the simple singularities of the folding map. These singularities are
as follows (see [21]).

Normal form Name Ag — codimension C
m, 1/2, $1 Crosscap 0 0J

(”H/2,372.71 i 1/2'5'“),/c 2 1 Bi? k 2

(flax/2&3 i wk'Hi/tk' Z 1 Sick k 0

(:I:,_1/2,:1:y3 zi: :1;ky),/a 2 3 C13: 1: la:

(15, 112,1537, + 2/5) F4 4 1

Here C denotes the number of (complex) crosscaps that emerge in a small
generic deformation of the given germ. We gave in the previous section geomet—
ric inter]irctations of singularities of codimension S 3. We aim to characterise
all the simple singularities of the folding map in terms of the geometry of the
surface M, its focal set and its symmetry set.

4.1 The 5k series
These singularities are associated with parabolic points on the smooth parts
of the focal surface. Their bifurcation sets are (liscriininants of Ak-siugularities
[16]. This is not surprising as we know from [3] that the dual ofa smooth surface
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is the discriminant of the family of height; functions, and that the bifurcation
set of the folding map is the dual of the focal surface.

We have shown in [8] that the Ak-singularities of the height function on a
surface X have a simple geometric characterisations. Assume the ridge and the
parabolic curve (on M or on its focal surface) are smooth. Then:

Theorem 4.1 [8] The height function on X has an Ak (h 2 3) singularity if
and only if the ridge and the parabolic curve on X have (It — 2)—point contact.

Taking X to be the focal set of the surface we obtain the following.

Corollary 4.2 The folding map on M has generically an SA. singularity if and
and only if the ridge and the parabolic curve on the focal surface of M have
(k — 2)—point contact.

The set of points on the surface M corresponding to parabolic points on the
focal surface is the sub—parabolic line of M and has the property of being the
locus of points where the lines of curvatures are momentarily geodesics [23]. It
would be interesting to find an analogous interpretation for the set of points on
M corresponding to the ridge line on the focal surface.

The Sic-series can also be characterized by the contact of the sub—parabolic
line and the other line of curvature. A consequence of Lemma 4.5 below is that
the folding map has an Sg-singularity at a sub—parabolic point if and only if the
sub-parabolic line is transverse to the other line of curvature (cl aé 0). It has
a singularity of type 5k, I: > 2 when the two curves are tangential. The degree
of tangency is the number of (possibly complex) transverse intersections in a
generic perturbation. Thus the arguments used [5] can be used to establish the
following:

Corollary 4.3 Generically the folding map of M has an SA. singularity if and
and only if the sub—parabolic line and the other line of curvature have (I: — 1)—

point contact.

The bifurcation sets of multi—local singularities are often also discriminants
[8] and a similar result can be made established here, that is

Corollary 4.4 Generically the folding map has a multi—local singularity of type
Ak if and and only if the ridge and the parabolic curve on the symmetry set have
(k: — 2)—point contact.

The same question can also be asked concerning the Sk series, that is to
find a geometric interpretation of the ridge and the parabolic curve on the
symmetry set of the surface A4 which ensure a singularity of this type. This
question remains to be investigated.



4.2 The Bk-series
We have seen in the previous section that a Bg singularity is characterised
as a cusp point on the focal set in the closure of the parabolic curve of the
symmetry set. The conditions on the coefficients of the Monge form for a B23
singularity imply that the distance squared function has an A3 singularity which
is versally unfolded by the family of distance squared functions. So the focal
surface remains a cuspidal edge for all the Bk-singularities.

The bifurcation set ofa Bk singularity can also be viewed as the discriminant
of a function on a surface with boundary [21]. By the duality result described
earlier, the singularities of this discriminant are related to the parabolic set on
the symmetry set.

4.3 The Ck-series
Let the surface M be given locally at the origin in the Monge form (113, y, f(m, y))
where f has no constant or linear terms. As before write f = f2 +f3 +f4 +O(5)
with f2 = (10322 + alrry + agyz, f3 = 2320 bin‘iyi and f4 = 22:0 ci$4_iyi. It
follows from above that folding along the principal direction (0,1) (away from
umbilics and parabolic points) produces a singularity of type CkUc 2 3) when

0120, b1=0, b3=0, 63350.

The singularity is of type C3 when furthermore cl 75 0. These conditions can
be interpreted geometrically as follows:

a, z 0: the folding plane y = 0 contains the principal direction (0,1)
a1 = (kg = 0: the origin is a ridge point
al = bl = O: the origin is a sub-parabolic point

In order to give a geometric interpretation of the Ck series we need to look
at the way the ridge and the sub-parabolic line meet at the origin. We have
the following.

Lemma 4.5 Suppose the origin is neither a parabolic nor an umbilic point.
Then:

(i) the leading terms in the equation of the ridge are

[(a0 — a2)C3 — blbghv — [bg — 4(a0 — a2)(C4 — a%)]y -+— = 0.

(ii) The leading terms in the equation of the sub—parabolic line are

361 (do — (1,2).13 + [2((I.0 — 0,2)(02 — 20.005) -— b2(3b0 —- 2b2)]y + = 0

Proof These equations are found using the computer algebra package Maple.

Lemma 4.5 provides a great deal of information. We can, for instance7
deduce the conditions for the ridge to be singular. These coincide with the
Monge- ‘aylor map failing to be transverse to the A23 stratum of the distance
squared function (see 52.2).
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We can also see that the tangent line to the ridge is along the principal
direction (0, 1) if and only if the distance squared function has an A4 singularity.
This characterisation of an A4 singularity as a point where a line of curvature
and a ridge meet tangentially is already known [24].

We can deduce from Lemma 4.5 that, generically, when the folding map has
a Ck singularity the ridge and the sub-parabolic line remain smooth. When
bl = O the initial terms in the equation for the ridge become

(GU - azlcai — lb; ‘ 4(a0 " dzliq —‘ dilly" ‘i' — 9

so that the condition C3 # 0 expresses the fact the ridge is transverse to the
‘other’ line of curvature. Moreover from the equation of the sub—parabolic line
we see that cl = 0 if and only if the sub-parabolic line and the ‘other’ line
of curvature are tangent. A simple calculation shows that the ridge and the
sub-parabolic line are tangential when

Cg[2(a0 —- a2)(62 — 20,003) — b2(3b0 —- 2b2)] — 3Cl[bg — 4(a0 — az)(C4 - 03>] Z 0

This is exactly the condition for the family of folding maps to fail to versally
unfold the singularity C3, see [29].

This condition can also be recovered by looking at the Monge-Taylor map.
Using the notation of §2.2, the sub—parabolic stratum is given by bl = 0 in the
transversal to the SO(2)-orbit, and the tangent space to this stratum in V3 is
the kernel of the l-form

£1 = (300 — 2b|)dal — 2(CL() —- a2)db1.

(Basically the l-form annihilates elements in the transversal given by bl = 0 as
well as the tangent vector v to the SO(2) orbit of f given in §2.2.)

For the ridge stratum, given by b3 = O in the transversal, the tangent space
in V3 is the kernel of the l-form

£2 : l)2dal — 2010 — a2)db3.

The tangent space to the 03 stratum (given in the transversal by bl = b3 = 0)
is the intersection of the kernels of £1 and £2. Now the Monge—Taylor map fails
to be transverse to this stratum if and only if there exists a non-zero vector of
the form Am + [Luz such that §1(/\ul + pug) = §2(z\u1 + mtg) = 0, that is when

£1011) 51W?) 20.
E2(U1) 520ml ’

equivalently, when

(an — 0.2)C3 bg — 4(a0 — a2)(04 — 0,3)
2 0

3(a0 —- a2)61 2(a0 — (L2)(CQ — 20.0113) — b2(3b0 — 2b2) '

The rows of the above determinant give the coordinates of the tangent vectors
to the ridge and sub—parabolic lines at a C3. Non-transversality of the Monge-
Taylor map to the C3 stratum is therefore equivalent to the family of folding
maps not being versal.
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Note that at singularities of type Ck, k 2 4 or F4, the Monge~Taylor map
is tranverse to the Cg-stratum, so on the surface the sub-parabolic line and the
ridge still meet transversally at such singularities.

We can also deduce from above the conditions for the sub-parabolic line or
the ridge to be singular. These are given by asking that the Monge-Taylor fails
to be transverse to the sub-parabolic or the ridge stratum respectively. We thus
have

Theorem 4.6 Suppose that the origin is neither a parabolic nor an umbilic
point, but is a ridge point and a sub-parabolic point. Then

(i) The folding map has a 03 singularity if and only if the ridge meets the
sub—parabolic line of the same colour and both curves are transverse to the other
line of curvature. The family of folding maps fails to versally unfold the 03
singularity iffurthermore these two curves are tangential. This is equivalent to
the Monge-taylor map not being transverse to the Cg—stratum. See Figure 6.

(ii) The folding map has a Chic > 3, singularity if and only if the ridge
meets the sub—parabolic line of the same colour and is transverse to the other
line of curvature while the sub-parabolic line is tangent to it. See Figure 6.

Figure 6 here

We also obtain the following geometrical interpretation of the Ck series.

Theorem 4.7 Suppose that the hypothesis of Theorem 4.6 (ii) holds. Then the
folding map has a Ck singularity if and only if the sub-parabolic line and the
other line of curvature have (k — 2)-point contact.

Proof The proof is straightforward. Since the hypothesis of Theorem 4.6 (ii)
holds, the folding map has a singularity of type Ck, k > 3. It is then a matter
of determining the integer h.

It follows from Mond’s adjacency diagram in [21] that the most degenerate
ajacent singularity in the S'k series to a Ck singularity is Sk_1. By Corollary
4.3 such a singularity is if and only if the sub—parabolic line and the other line
of curvature have (k — 2)—point contact.

So a Ck singularity can be viewed as an accumulation of an Sk_1 singularity
together with a Cg-singularity. In a generic perturbation of a Ck-singularity,
(k — 3) singularities of type 53 and one Cg should appear on the sub-parabolic
line, that is the parabolic set of the focal surface should have (lc — 3) cusps of
Gauss and a point of intersection with the cuspidal edge of the focal set.

4.4 The F4 singularity
Another application of Lemma 4.5 is the provision of an interpretion the F4
singularity. With f as before, the folding map has an F4 singularity when

01:0, b1=0, 63:0, 63:0, 615240, d53é0.
Sucht conditions will be satisfied in a generic l-pararnetcr family. Thus,
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Proposition 4.8 Generically the folding map has a singularity of type F4 if
and only if the ridge meets the sub-parabolic line and is tangent to the other
line of curvature while the sub-parabolic line is transverse to it. (See Figure
6(iv).)

The F4 singularity is of Ae-codimension 4. It can therefore occur at isolated
points in generic l-parameter family. In order to recover the 3-dimensional
pictures, we need to consider generic functions on the full bifurcation set of F4.

A lesult of fvio‘ud [21] shows that the singularities of folding maps, which
can always be put in the form F = (az,y2,yp(a:,y2)), are determined by the
singularities of p(:r, y) as a function on the surface with boundary {(ac, y) : y 2
0}. The full bifurcation set of F is the discriminant of a versal unfolding of p.

It is easy to generalise the work in [1] on discriminants to discriminants of
functions on surfaces with boundary.

Let f be a smooth function on the surface with boundary {($1, ,.., 2:11) 6 IR" :

9:1 2 0}, with O(z)/(xld—£, gig," "EcLl a vector space of finite dimension. Let
g1,...,g,, be a basis for this space. It follows that F(a:,a) = f(:v) + 2&0 aigi is
a versal unfolding of f and that g1, ...,g,, generates freely

OF OF BF
)O(ZB, (l)/<.’II|

7023-13 a—z'z', ..., 55:
as an O(a)-module. Therefore there exists unique aij E (9(a) such that

OF BF BF
a mod (9 at, a a: —— .9.1.2; ijgl ( )/( 16m17672i 16111)

Theorem 4.9 The vector fields 9j = -_0 aijd/aai are smooth vector field
tangent to the discriminants D ofF and form a free (9(a) basis for Der(logD).

We also have the following result concerning stable functions on the dis—

criminant D of F.

Theorem 4.10 ([13]). A function h : D C IR” —> R is stable if and only if

MOI) C (9j(h)) + M2(a)

where M(a) is the maximal ideal in C’)(a).

For the F4 singularity (m, yz, y(a:3 +y4)) the associated function on a surface
with boundary is p(:r,y) = x3 + y2 whose versal unfolding is given by

F(ac,y,t,u,v,w) = 1:3 +312 + tmy+uy +va: +w.
The discriminant of F has two components,

A] ={(t,u,v,1u):F= QE 2 Q_F =0}dz dyl .

{(t, —2v — fix, —tv — 3x2,v2 + 23:3 + twyhv 2 0},

A2 ={(t,,,):uuu; y=F=’———?’I— 0}

=({tu, —3ac2 ,213.)}
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Calculations show that the l-jets of the vector fields Hj (j = 1...4) in the theorem
are given by

91 = wB/Bt
92 = $v8/6t + wa/du
03 = Tia/at +11)0/31)
94 = Eta/at + %u8/3u + %v8/0v + ind/Bu)

it is clear then that there is only one stable function on A — A1 U An withb

representative (t,u,v,w) i—) t.

We shall investigate the geometry of A by slicing it by planes t =constant.
We are therefore considering in IR3 the sets parametrised as At = {(—2y —

tm, —-ty — 311524;2 + 22:3 + tccy),y 2 O} and A5 = {(u, —3m2,2x3)}.
The surface Ag does not depend on t (we shall denote it by A2). It is a

cuspidal edge with the singular set along the n—axis.
At t = 0, A? intersects A2 in two curves one of which is the image of the

boundary y = O and is given by F? = {(0, —3:1:2,2:1:3)}. This curve has an
ordinary cusp at the origin. The surface A? is in fact a cuspidal edge away
from F]. The cuspidal edge curve is given by P2 = {(—2y,0, y2)}.

When t # 0 the intersection curve F‘l = {(—t:1;, —3z2,2m3)} (image of the
boundary) becomes smooth and meets the cuspidal edge curve I‘ll = {(—2y ~
l—lz-t", —ty— 4175154412 + fit3y+ 5513715634 2 O} of Ag at (—1—12-t3, —%t4, 8fitfi). This
point is a B3 singularity of the folding map.

The F4 may thus be characterised as an accumulation of a B3 and a C3

singularity. Figure 7 illustrates the generic sections of the full bifurcation set
of F4. One can see, and easily prove, that the C3 singularity changes from C;
to C3— at the moment of transition.

Figure 7 here

Proposition 4.11 If the folding maps arising from a family of embeddings
parmnetrised by t is versal at an F4 singularity, then the projection along the
t—parameter yields generic sections on the bifurcation set of this family.

4.5 The non—transverse C3

We have stated in Theorem 4.6 that the family offolding maps fails to be a versal
unfolding of C3 when the ridge and the sub-parabolic line become tangential.
This may occur in a generic 1-parameter family. So we need to consider Morse
sections of the product of the full bifurcation set of C3 with a line. A versal
unfolding of the C3 singularity is

(a), y27 xiv/3 + y(:l::1:3 + waz2 + m: + u))
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and the full bifurcation set is given by

Bif(C3) = {(0,v,w),v 5 0} U {(:!:2:r;3 + wxz, —2w:r ¥ 322,110}.

A Whitney stratification of Bif(C’3) x IR is given by the product of the strat-
ification of Bif(C3) with IR. It follows from [6] that Morse functions on the
product set are determined by the Morse functions on Btf(C:;) whose base
stratum is a single point. There is only one non—general transverse plane to the
stratification of Bif (03). This is given by u —- 0. It follows again from {6} that
topologically there is only one stable function on Bif(C’3) with representative
11). Therefore the Morse functions on Bif(03) x IR are represented by w + t2

and w — t2. These are equivalent when we allow scaling in the target.
In order to obtain the right pictures up to diffeomorphism we need to classify

germs of submersions in IR3 up to diffeomorphisms preserving Bif(C,-;) in the
source. We proceed as for the F4 case. The associated function on a surface
with boundary for the 03 singularity is given by p(x,y) = my :l: 183 whose versal
unfolding is

F(x,y,u,v,w) =myiz3+wm2 +v$+u.
The l-jcts of the vector fields 0j (j = 1,2, 3) in Theorem 4.9 are given by

0] 2 11,0,”

92 = 200,” + adv
i

It is clear that there is only one stable germ whose representative is given by
(w,v,u) H w. The Morse function on the full bifurcation set is thus of the
form w + t2, which agrees with the topological pictures. Figure 8(ii) illustrates
these generic sections and Figure 8(i) illustrates the situation on the surface.

F igurc 8 here

Proposition 4.12 If a generic I-parameter family of embeddings yields, at
t = 0 a family of folding maps which has a non-versal Cg singulariti, then
locally the projection along the t-parameter yields generic Morse sections on
the bifurcation set of this family as described above.
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Figure l. (i) Generic ridges through (left to right) a hyperbolic urnbilic, and
the two types of elliptic umbilic; (ii) The partition of the space of cubic forms.
Types I, II, III mark the boundaries.

Figure 2. Generic evolutions of ridges at umbilics (i) via a D5 singularity, (ii)
with the birth of a pair of hyperbolic umbilics, (iii) corresponding to tangent
ridges at an elliptic umbilic.

L-l‘
1 ll

..5 ..l ..DIUC U (inFigure 3. Morse transitions on ridges. (Two Appoints on 716 t
transition corresponding to the tangency of the ridge and a line of curvature of
the same colour.)

Figure 4. A5 transition.

Figure 5. Generic transitions on subparabolic lines at umbilics.

Figure 6. Ridge (thick line) and subparabolic line (dashed), against the lines of
curvature (thin lines). Geometric characterization of (i) C3, (ii) non—transverse
6,31 (ill) (JINk > 3, (IV) F4.

Figure 7. Evolution of full bifurcation sets: the F4 transition.

Figure 8. A non-transverse C3 transition (i) on the surface, (ii) on the bifurca-
tion set.
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