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Objetivos 

Na regeneração tecidual tem-se a utilização de 
matrizes poliméricas que devem possuir 
características como atoxicidade, 
biocompatibilidade, biodegradabilidade, poros 
interconectados, superfície para adesão 
celular, integridade mecânica e possibilidade 
de esterilização. Tanto o colágeno como a 
quitosana são biopolímeros que apresentam 
tais características desejáveis; entretanto, 
matrizes de colágeno possuem uma baixa 
estabilidade térmica, uma alta taxa de 
biodegradação e propriedades mecânicas 
fracas, que limitam suas aplicações. Para 
minimizar esses problemas pode-se recorrer à 
adição de quitosana e/ou agentes reticulantes 
como compostos polifenólicos, que não 
produzam efeitos citotóxicos e diminuam a taxa 
de degradação in vivo destas matrizes1. O 
curcumin é extraído do chamado ‘’açafrão da 
terra’’ e possui características antioxidantes, 
anti-inflamatórias e antissépticas2. Assim, 
matrizes compostas de colágeno: quitosana: 
curcumin são interessantes para possível 
aplicação na reconstrução de tecido mole, no 
revestimento de queimaduras e outras lesões.  
Este trabalho visa estudar a incorporação de 
curcumin a matrizes de colágeno da pele de 
peixe:quitosana e caracterizá-las. 

Métodos e Procedimentos 

A matriz de colágeno (CP) foi obtida a partir de 
peles de tilápia (Oreochromis niloticus) limpas e 
submetidas à hidrólise alcalina3, em uma 
solução de no máximo 0,1 mol L-1 de OH-, por 

48 h 4. Em seguida as peles foram 
neutralizadas, lavadas e liofilizadas. A 
quitosana (Q) foi obtida por desproteinização e 
desacetilação3 de gládios de lula (Doryteuthis 
spp.), preparando-se uma solução de Q 0,25% 
(g/g) em ácido acético (HAc) 1% (g/g). O 
curumin (Cur) utilizado foi comercial e foram 
preparadas soluções hidroetanólicas (50%, v/v) 
de curcumin (2 e 20 mg mL-1). Ao gel de 
quitosana foi incorporado o curcumim 
resultando em um gel de 1 e 10 mg 
curcumin/10g de gel. Nos géis de quitosana e 
quitosana com curumin foram submersas as 
matrizes de colágeno e colocadas sob vácuo 
por 15 min, sendo então retiradas, congeladas 
sob N2(l) e liofilizadas. As matrizes foram 
denominadas de CPQ, CPQ1Cur e CPQ10Cur, 
de acordo com a concentração de curcumin. As 
matrizes foram caracterizadas por calorimetria 
exploratória diferencial (DSC), porosidade em 
etanol e absorção em PBS (tampão fosfato 
salino). 

Resultados 

As curvas DSC fornecem a temperatura de 
desnaturação (Td) do colágeno, 
correspondente ao rompimento estrutural da 
hélice tripla a uma forma amorfa (gelatina), ou 
seja, passando de uma estrutura altamente 
organizada a um estado desorganizado. A 
Tabela 1 mostra um aumento no valor de Td 
com o aumento da concentração de Cur, o que 
implica em ligações intermoleculares mais 
resistentes, sugerindo um efeito reticulante. 

Tabela 1 - Valores da temperatura de desnaturação, 
porosidade e absorção em PBS para as matrizes. 



 

Amostra 
Td 

(C°) 
Porosidade 

(%) 
Absorção 
60min (%) 

CPQ 57.8 72.4±1.0 920±91 

CP1CUR 60.4 66.9±0.8 820±69 

CP10CUR 62.7 70.2±2.7 729±76 

 
A porosidade em todos os casos foi cerca de 
70%, o que sugere uma matriz com capacidade 
para neovascularização e possível crescimento 
celular5. A adição do Cur e o aumento em sua 
concentração não promoveram efeitos 
significativos sobre os valores de porosidade 
das matrizes. 
A capacidade de absorção de fluidos 
fisiológicos é importante no crescimento de 
tecidual, pois permite a difusão de células, 
eletrólitos e água, bem como a 
incorporação/liberação de fármacos para seu 
interior, o que torna seu estudo cinético 
relevante. A Figura 1 mostra as curvas de 
absorção obtidas em PBS: observou-se uma 
absorção máxima para todas as matrizes em 
60 min (Tabela 1). Além disso, o aumento na 
concentração de Cur diminuiu a % de 
absorção, sugerindo novamente algum tipo de 
reticulação na matriz.  
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Figura 1 - Porcentagem de absorção das matrizes. 

 
O estudo cinético da absorção foi feito através 
do modelo cinético de pseudo-primeira e 
pseudo-segunda ordem6,7. Para pseudo-
primeira ordem a cinética pode ser expressa 
pela equação (1) 

ln[Qmax/(Qmax-Qt)] = kt   (1) 
 
onde, Qmax é a razão de intumescimento no 
equilíbrio, Qt é a razão de intumescimento no 
tempo t, k é a constante de primeira ordem 
para o intumescimento (min-1). 

O modelo cinético de pseudo-segunda ordem 
ou modelo de Schott6,7 é descrito pela equação 
(2).  

t/Qt = (1/Qmax)t+1/k  (2). 
 
A Tabela 2 mostra os parâmetros cinéticos de 
intumescimento: em todos os casos, o melhor 
ajuste foi refletido pelo modelo de Schott, com 
a constante de velocidade cinética muito 
próxima entre as matrizes, o que sugere que o 
Cur não interferiu na velocidade de absorção 
de PBS pelas matrizes e nem na razão máxima 
de intumescimento (Qmax). 

Tabela 2 - Parâmetros cinéticos de intumescimento 
(absorção) para as matrizes.  

 CPQ CPQ1Cur CPQ10Cur 

1ª 2ª 1ª 2ª 1ª 2ª 

Qmax 8.60 9.26 7.72 8.21 7.20 9.26 

k 0.26 3.61 0.36 4.67 0.35 3.61 

R2 0.951 0.983 0.956 0.994 0.975 0.983 

1ª cinética de pseudo-primeira ordem 
2ª cinética de de pseudo-segunda ordem ou modelo 
de Schott 

Conclusões 

A incorporação de curcumin a matriz de 
colágeno de peixe levou a um efeito levemente 
reticulante, com aumento do Td e diminuição 
na absorção de PBS. Contudo, não afetou sua 
porosidade e nem a velocidade de absorção do 
PBS pela matriz. As caracterizações sugerem, 
até o momento, que as matrizes são passíveis 
de utilização na regeneração tecidual. 
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