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Abstract. Composite materials are extremely important in several industrial areas and have been
thoroughly used to solve many engineering problems. In more recent years, new numerical models
and manufacturing processes have promoted a new interest spike on those materials. This work
contributes to the state of the art of composite materials modelling by proposing an embedding
technique for thermal problems using the finite element method. The technique relies on rewriting the
reinforcement finite element variables according to the matrix finite element form functions. By doing
such operations, it is possible to embed the reinforcement element without increasing the total degrees
of freedom number. The embedding method is capable of modelling the phase’s direction as well as
it’s placement. It’s also possible to make use of non-linear conductive parameters to model non-linear
thermal problems. Numerical examples are described to show the technique's capability. The
numerical results show good agreement, as well as limiting an increase on the total number of degrees
of freedom and being able to model nonlinear material behavior. Such characteristics make the model
suitable to perform more complex analysis such as reliability, optimization, multi-physics, etc.

1. INTRODUCTION

Composite materials are extremely important in several industrial areas and they are used to
solve many engineering problems [1-2]. New numerical models and manufacturing processes have
brought challenges to overcome. In this sense, this work proposes an embedding technique for thermal
problems using the finite element method.

Composite material models are basely classified in three categories, according to its
simulation technique: discretization, homogenization and embedding [3]. The embedding model used
in this work has been successfully applied on structural models [4-5]. We now show the use of the
same embedding strategy in thermal problems. The technique relies on rewriting the embed
reinforcement variables according to the matrix form functions. By doing such operations, the
reinforcement is embedded without increasing the total degrees of freedom number. The embedding
method is capable of modelling the phase’s direction as well as its placement, thus better representing
the problem in comparison with other homogenization methods. It’s also possible to make use of non-
linear conductive parameters to model non-linear thermal problems.
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2. FORMULATION
A heat transfer conduction problem on a solid could be stated as [6]:

f 86 :k;;0;d0 + f 80pc.0dn = f 86n;q;drr (1)
) ko) r

where k;; is the thermal conductivity, p is the material density, c, is the specific heat, n;q; is the heat
flux normal to the surface I" and 6 is the temperature.

The first term on Eq. (1) is the total thermal conductivity on a solid. It is also assumed, for the
case of a composite material, that the solid’s total thermal conductivity is the sum of its matrix, fibers
and particles phases: Ktotal = gmatrix 4 gfibers 4 gparticles Eipers and particles are henceforth
called inclusions. Thermal conductivity parcel of the inclusions (K™ct4siony js discretized by finite
elements as:
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where ¢ and ¢, are the shape functions from nodes s and z of the inclusion finite element. 6, and
6, are the temperature values from nodes s and z. 1, and 1, are the integrations points for the
numerical integration on the inclusion domain w. By; is a matrix formed by the derivatives of the
inclusion’s shape functions and K¢S js the thermal conductivity matrix of the inclusion finite
element.

The equality 85 = ¢44(£2)04 is used to rewrite the temperature from a node s of the inclusion
finite element in terms of the matrix finite element temperature and shape functions from nodes q. &5
is the adimensional coordinate from the matrix finite element domain that corresponds to the position

of the node s. As such, the information pertaining to the inclusion’s element conductivity can be
simply added to the matrix thermal conductivity matrix. The inclusion’s element thermal conductivity
matrix then becomes:

jgesBsikii}r‘wluSionszezdw = ¢sq(‘fé)59q stikf?CluSionszdw ¢zr($§)9r
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where ¢, (§5) a matrix responsible for the expansion of the original conductivity matrix into another
with degrees of freedom compatible with the composite matrix finite elements.

With the adoption of convenient degrees of freedom arrangement, this spread matrix can be
constructed as a concatenation of the composite matrix shape functions evaluated at the integration
points related to the location of the nodes from the inclusion finite elements:
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where &Y is the adimensional coordinate on the matrix element that corresponds to the inclusion
element node ¥ and ¢ is the shape function from matrix element node N.

Finally, the resulting conductivity matrix for the expanded inclusion finite element (Eq. (5))
can be added directly to the global solid’s thermal conductivity matrix, according to its degrees of
freedom. As such, this embedding technique doesn’t promote an increase on the total number of
degrees of freedom.

[Kinclusion]global — [qb]T[Kinclusion] [¢] (5)

3. NUMERICAL EXAMPLES

Some numerical examples are presented to show the embedding technique capability.

3.1. Single fiber reinforcement

The first example shows the inclusion of a single long fiber through a plate. The numerical
results are compared with those obtained from software ABAQUS. The matrix is modeled by 244
triangular finite elements with cubic approximation. The embedded fiber is modeled by 20 linear
elements with linear approximation. Boundary conditions and employed mesh are shown on Fig. 1.
Notice that the nodes from the meshes of both matrix and fiber don’t need to be coincident, as seen on
Fig. 1b. Also, the inclusion of the fiber mesh doesn’t increase the total degree of freedom number. The
following properties are adopted: k™%X =2 75W /m°C, kST =55W /m°C and
Area’™e” = 0.01m?.
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Figure 1 — (a) Boundary conditions for the problem. (b) Mesh employed for the matrix and fiber.
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Figure 2 shows the resulting thermal distribution, while Fig. 3 represents the temperature on
the right border. Good agreement between both results is found.
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Figure 2 — Temperature distribution of plate reinforced with one horizontal fiber. () ABAQUS. (b) Proposed
technique.
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Figure 3 — Temperature distribution on the plate right edge.
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3.2. Internal defect

In this second example, a concrete block with an internal defect is subjected to thermal loads,
as shown in Fig. 4a, based in [7]. Fig. 4a also shows its boundary condition and dimensions. This
problem was modeled as the composition of a matrix and a particle mesh of negative conductive
parameter to account for the internal defect. For reference, the problem is also modeled by complete
discretization of its phases, as shown in Fig. 4b.

The following properties were used: k™aTX =2 75W /m°C, kdefect =
0.6875 W /m°C, kParticles — —_2 0625 W /m°C, h = 13.95 W /m?°C and 6., = 0.0 °C.
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Figure 4 — Problem definition and finite element meshes (a) Problem definition; (b) FEM mesh for the reference;
(c) FEM mesh for the embedded model.

Figure 5 shows the thermal distribution of both reference (Fig. 5a) and particle (Fig. 5b) mesh.
It’s possible to note the good agreement on the temperature results:
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Figure 5 — Temperature field obtained (a) reference problem; (b) embedded model.

Figure 6 shows the temperature on the right border. Again, it’s possible to note very good
agreement between the reference and embedded mesh results.
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Figure 6 — Temperature along the plate’s high for the right most edge.
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3.3. Nonlinear fiber reinforced material

In this third example, we show that it is also possible to model nonlinear materials. This
example considers two cases (with and without fiber reinforcement) as shown on Fig. 7a and 7b,
where the corresponding dimensions and boundary conditions are also shown. Figures 7c and 7d show
the respective meshes for the matrix and the fibers. 126 triangular elements with cubic approximation
have been used to model the matrix, and 20 fibers, each one made of 10 linear elements, have been
employed to model the reinforcement. The following thermal properties are: k/¢" = 55 W /m°C,

Area’™e” = 0.0005 m? and k™T*(9) = 2.75 — 0.20 W /m°C.
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Figure 7 — (a) Boundary conditions and dimensions for the case without fiber reinforcement. (b) Boundary
conditions and dimensions for the case with reinforcement (c) Mesh for the matrix (d) Mesh for the matrix and
fibers from the reinforcement.

Figure 8 shows the temperature along a line segment defined by points A-B, see Fig. 7a.
Notice that the model is capable of capturing the non-linear behavior of the matrix material.
Considering only the nonlinear matrix material case (Fig. 8c), it’s also possible to note that the model
can capture the reinforcement effect on the composite.
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Figure 8 — Temperature distribution along the line segment A-B. (a) Linear and nonlinear results for the fiberless
case. (b) Linear and nonlinear results for the cases with fibers. (¢) Comparisons between the nonlinear cases.
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4. CONCLUSION

The proposed embedding technique to model composite materials for thermal problems has
significant advantages relative to other model strategies. The total number of degrees of freedom
remain constant irrespective to the number of inclusions and both inclusion and matrix meshes are
independent. It is also possible to make use of nonlinear conductive materials without any change to
the model strategy. Coupled with a mechanical model that makes use of the same embedding
technique, it’s possible to solve thermomechanical problems without incurring in accuracy loss from
information transfer between the mechanical and thermal fields.
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