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ABSTRACT
Background: Childhood overweight and obesity is a global health problem that
continues to worsen in many low- and middle-income countries. Low-cost mea-
surements for monitoring overweight and relative metabolic risk, such as neck
circumference (NC), should be evaluated in different populations and age groups.
Aim: To test associations of NC and BMI with cardiometabolic parameters in
5-8-year-old Brazilian children.
Methods: This cross-sectional study carried out from 2004–2006 measured
height, weight and NC by anthropometry, and estimated fat and fat-free mass
by bioelectrical impedance. Cardiometabolic risk factors assessed were systolic
and diastolic blood pressure, high- and low-density lipoprotein cholesterol,
triglycerides, and homeostatic model assessment of insulin resistance
(HOMA). Associations of NC and BMI with cardiometabolic risk factors were
tested using multiple regression and precision-recall plot analysis.
Results: Analyses included 371 children (52% female). NC associated positively
with BMI, fat mass, and fat-free mass, and with systolic blood pressure and
HOMA following adjustment for age in sex-stratified multiple regression mod-
els. However, the latter relationships largely disappeared following adjustment
for BMI. Area under the curve for NC or BMI in association with systolic blood
pressure or HOMA >90th percentile was low in the pooled sample, indicating
poor classifier performance.
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Conclusions: NC and BMI demonstrated similar associations with cardiometa-
bolic risk factors, although NC mostly did not correlate with risk factors inde-
pendently of BMI. In contrast to previous studies, NC was a poor classifier of
cardiometabolic risk factors in children. The association of NC with both fat and
fat-free mass may aid in explaining its poor performance.

ARTICLE HISTORY Received 31 October 2019; Accepted 1 March 2020

KEYWORDS Neck circumference; body mass index; childhood obesity; adiposity distribution; precision-
recall plot

Introduction

The prevalence of overweight and obesity in children and adolescents, as
assessed by bodymass index (BMI, kg/m2), has plateaued at high levels in high-
income countries, while continuing to increase in many low- and middle-
income countries (Abarca-Gómez et al. 2017). Excess weight in young people
represents a significant public and global health burden, and is a predictor of
adult obesity (Kelishadi and Heidari-Beni 2019). Obesity, in turn, increases
susceptibility to chronic non-communicable diseases (NCDs) including cardi-
ovascular disease, diabetes, and cancer (Bull and Willumsen 2019). In Brazil,
NCDs were responsible for 72% of deaths in 2007 (Schmidt et al. 2011), and
this figure remained virtually unchanged in 2017, at 73%, or 928,000 deaths
(Riley et al. 2017).

The in utero environment may predispose offspring to later overweight and
obesity (Dabelea and Crume 2011). Monitoring and prevention of excess weight
in childhood and adolescence is therefore crucial for attempting to interrupt
intergenerational obesity trends (Boone-Heinonen et al. 2015). BMI remains
useful for monitoring excess weight, however its limitations as a marker of
chronic disease risk are increasingly recognized. One major shortcoming is that
BMI indexes both fat mass (FM) and fat-free mass (FFM) and, within popula-
tions, the ratio of FM to FFM varies considerably at any given BMI (Wells 2000).
At the same time, BMI cannot reliably index regional body composition
(Neeland and de Lemos 2016), and it is understood that centrally deposited
and visceral FM contributes significantly to variability in metabolic risk
(Tchernof and Després 2013).

The use of imaging methods (e.g. MRI or dual-energy X-ray absorptiome-
try) tomeasure adipose tissue depots is superior (Neeland and de Lemos 2016),
but may be limited by time, cost, and access to equipment. Body composition
proxies that go beyond BMI, but are simple, scalable, and reliably indicative of
relative disease risk, have thus been sought (Wells and Shirley 2016). There is
good evidence that measures including waist circumference (WC), waist-to-
hip ratio (WHR), and waist-to-height ratio (WHtR) fulfill these criteria in both
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adults (Yusuf et al. 2005) and children (Savva et al. 2000), although see
Sardinha et al. (2016) and Li et al. (2020). Neck circumference (NC) has also
received wide interest as a proxy for upper body FM depots, with studies
conducted in children, adolescents, and adults in a range of populations (Nafiu
et al. 2010; Stabe et al. 2013; Katz et al. 2014; Formisano et al. 2016; Castro-
Piñero et al. 2017; Alzeidan et al. 2019; Mastroeni et al. 2019). Across these
studies, NC correlated with other anthropometric parameters (e.g. WC and
BMI), as well as single and clustered cardiometabolic risk factors, and per-
formed well as a tool to identify those with, or at risk of, metabolic syndrome
(Stabe et al. 2013; Formisano et al. 2016; Mastroeni et al. 2019; Alzeidan et al.
2019; Gomez-Arbelaez et al. 2016).

Of several studies conducted in Brazilian children (Silva et al. 2014;
Coutinho et al. 2014; Filgueiras et al. 2019; Mastroeni et al. 2019), none
have examined associations between NC and cardiometabolic risk factors in
children under 10 years of age. To further explore the use of NC as a low-cost
tool for the assessment of cardiometabolic risk, the current study tested
associations of NC with blood pressure, lipid, and glycemic parameters of
5–8-year-old children in Jundiaí city, Brazil.

Methods

This study was approved by the Research Ethics Committee of the School of
Public Health, University of São Paulo. It was conducted as a follow-up to
a cohort study carried out between 1997 and 2000 in the city of Jundiaí,
Southeast Brazil. As described in Rondó et al. (2003), 865 pregnant women
were recruited from health units and public hospitals and followed until the
birth of their babies.

Several years later, 745 of 865 mothers were located, and their children
invited to participate in the current study. Mothers were initially contacted by
phone or visited at home, and a home visit was subsequently carried out for all
potential participants. Study objectives and measurements were explained in
detail, and informed consent was taken from a parent or guardian. Those who
consented on behalf of their children were contacted to schedule a visit to
a health unit for data collection. This phase of the study was conducted from
November 2004 to December 2006, with data collected on children’s anthro-
pometry, body composition, blood pressure, and glycemic and lipid profile.

Data were collected following a 10–12 hour fast. Children’s weight was
measured in duplicate to the nearest 0.1 kg using a Sohnle 7500 electronic scale
(Murrhardt, Germany). Height was measured in duplicate to the nearest
0.1 cm using a SECA stadiometer (Hamburg, Germany), with children stand-
ing and unshod. NC was measured in duplicate to the nearest 0.1 cm with
a SECA 201 non-stretchable measuring tape (Hamburg, Germany) (Callaway
1988). The child stood erect with their head in the horizontal Frankfurt Plane,

CHILD AND ADOLESCENT OBESITY 3



with the tape applied perpendicular to the long axis of the neck, just inferior to
the laryngeal prominence. For height, weight, and NC, the average of repeated
measurements was taken and used in analyses.

FM and FFM were estimated by bioelectrical impedance (BIA) using a BIA
310 Bioimpedance Analyzer (Biodynamics Corp., Seattle, WA, USA). BIA
measures impedance of the body’s tissues to a small electric current, with
adhesive electrodes placed on the wrist/hand and ankle/foot. Data on height
and impedance are used to predict total body water (TBW) (Wells and Fewtrell
2006). Using an assumed hydration constant, TBW is converted to FFM, and
FFM can be subtracted from body mass to obtain FM.

Systolic (SBP) and diastolic blood pressure (DBP) were measured with the
HDI/PulseWave CR-2000 (Hypertension Diagnostics, Inc., Eagan, MN, USA).
Glucose concentration was measured by the glucose hexokinase method using
the Bayer Advia 1200 system (Pittsburgh, PA, USA). Insulin was measured by
chemiluminescence in an Immulite 2000 analyzer using the Immunlite 2000
insulin kit (DPC, Los Angeles, CA, USA). Glucose and insulin were used to
calculate the homeostatic model assessment score (HOMA), which assesses
insulin resistance, with the following formula: HOMA = fasting glucose
(mmol/l) x fasting insulin (μl U ml)/22.5. Total cholesterol, high-density
lipoprotein cholesterol (HDL-c) and triglycerides were assayed by enzymatic
methods using the Bayer Advia 1200 system, and serum low-density lipopro-
tein cholesterol (LDL-c) concentration was calculated with the formula of
Friedewald et al. (1972).

Statistical analysis

All statistical procedures were performed using the R language for statistical
computing (v. 3.6.1) in R studio (v. 1.1.463). Weight-for-age, height-for-age,
and BMI-for-age z-scores were calculated for boys and girls separately using
the WHO AnthroPlus R macro (downloaded from who.int/growthref/tools/
en/), which is based on growth reference data for children and adolescents
aged 5–19 years (de Onis et al. 2007). FFM and FM were normalized for
height in a manner akin to BMI, hence FFM index (FFMI) = FFM/height2,
and FM index (FMI) = FM/height2.

Variables of interest were assessed for normality, missing observations,
and outliers. Due to their skew, descriptive statistics for triglycerides and
HOMA were calculated as Median (IQR); all others were Mean (SD). The
Wilcoxon rank sum test with continuity correction or the Welch two sample
t-test was used to test for sex differences in the case of non-normal or
normally distributed data, respectively. Pearson’s correlations were calcu-
lated for NC with BMI, FFMI, and FMI, stratified by sex.

Two sets of multiple regression models were initially fitted, also stratified
by sex. In the first set of models, a cardiometabolic risk factor was entered
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independently as the outcome, with NC and age as predictors. In the second
set of models, a cardiometabolic risk factor was entered independently as the
outcome, with BMI and age as predictors. Triglycerides and HOMA were
natural log transformed. In a third set of models, each cardiometabolic risk
factor was independently regressed on NC, age, and BMI. Sensitivity analyses
to the inclusion of outliers were performed for all models.

Precision-recall (PR) plots using the R package precrec (Saito and
Rehmsmeier 2017) were employed to test the ability of NC versus BMI to
identify children with SBP or HOMA >90th percentile (see Results: SBP and
HOMA were the only cardiometabolic risk factors to associate significantly
with NC or BMI). So that children could be pooled for these analyses, sex-
and age-specific z-scores were calculated using the LMS method (Cole et al.
1995) (LMS Chartmaker Pro, Medical Research Council, v. 2.54), which
accounts for associations of a given variable with age using median (M)
and variability (S) parameters, and also addresses any skew in the data,
expressed as the power transformation (L) needed for normalization.

Several authors have used Receiver Operating Characteristic (ROC)
curves to assess the diagnostic ability of NC (Nafiu et al. 2010; Katz et al.
2014; Formisano et al. 2016; Mastroeni et al. 2019), however PR plots are
more appropriate for imbalanced data sets where there is a large difference in
positive vs negative outcomes (Saito and Rehmsmeier 2015). PR plots show
precision on the y-axis against recall (sensitivity) on the x-axis. As with ROC
analyses, they provide area under the curve (AUC) for model-wide evalua-
tion. However, the PR baseline is determined by the ratio of positive to
negative outcomes (y = P/P + N), so that a useless test (random classifier) is
not necessarily y = 0.5 (Saito and Rehmsmeier 2015).

Results

All women recruited into the original study were of low socioeconomic status,
with healthcare provided by Brazil’s National Health Service (Rondó et al. 2003).
In the current study, median per capita household income was R$ 264.50 (USD
121.60). Sixty-six percent of the sample had a per capita household income below
the Brazilian minimum wage, which in 2006 was R$ 337.50 (USD 144.60).

Figure 1 is a flow diagram illustrating that of the 745 children initially
located, 371 were included in the analysis (194 girls and 177 boys, or 52%
female). Of the 371, one boy did not have recorded values for SBP and DBP.
Additionally, one observation for height z-score and three observations each
for weight z-score and BMI z-score were removed from the boys’ group after
they were flagged as biologically implausible by WHO software. For the same
reason, one observation each of height z-score, weight z-score, and BMI
z-score was removed from the girls’ group. Extremely low SBP/DBP values
(i.e. 59/20) were considered biologically implausible and removed for one
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5-year-old girl. The following outliers were identified: 2 for HOMA score and
1 for HDL in girls, and 1 for NC, 1 for LDL, and 1 for triglycerides in boys.

The calculation of HOMA scores for 20.5% of the sample (41 boys, 35
girls) was impacted by insulin values being below the measurement instru-
ment’s detection threshold. We therefore used two variables for HOMA in
analyses: HOMA1 was missing the 20.5% of observations where insulin was
below the detection threshold of 2.0 µl U ml, whilst HOMA2 included such
observations, calculated with insulin at the threshold value of 2.0 µl U ml.

Descriptive statistics for the sample are given in Table 1. Girls and boys
had the same average age, with a range of 5.0–8.6 in girls, and 5.1–8.4 in boys.
Mean z-scores for weight, height and BMI in both groups deviated to varying
degrees from zero, thus deviating to some extent from the reference popula-
tion average, although all mean scores were between 0 and 1, and standard
deviations close to 1. Average FFMI was larger in boys, while the opposite
was observed for FMI. Significant sex differences were also found for mea-
sures of NC, SBP, DBP, triglycerides, and HOMA. For these variables, mean
or median values were larger for girls, except for NC, which was larger for
boys. As shown in Table 2, both boys and girls demonstrated relatively strong

Figure 1. Flowchart illustrating losses and the final sample included in analyses. DOB,
date of birth. DOV, date of visit.
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associations between NC and BMI. The same was true for NC with FFMI and
FMI, where values for the former were larger than the latter in both sexes.

Given in Tables 3 and 4 are the results of multiple regression models where
a given cardiometabolic risk factor was independently regressed on either NC
or BMI, with adjustment for age (each table is comprised of the results of 7
separate regression models). Both NC and BMI were associated with SBP and
HOMA, but not DBP, HDL-c, LDL-c, or triglycerides. As reflected by adjusted
R2, in boys, NC models explained 6%, 18%, and 20% of the variability in SBP,
HOMA1, andHOMA2, respectively. In girls, the corresponding numbers were
3%, 13% and 17%. Adjusted R2 values demonstrated the same general pattern
in the BMI models. Age was not significant in any of the models.

Table 1. Characteristics of the sample.
Boys (n = 177) Girls (n = 194)

Sample characteristic n
Mean (SD) or
*Median (IQR) n

Mean (SD) or
*Median (IQR) p value 95% CI

Age (years) 177 6.7 (0.7) 194 6.7 (0.7) 0.75 −0.13, 0.17
Weight for age z-score 174 0.32 (1.2) 193 0.58 (1.1) 0.03 0.02, 0.50
Height for age z-score 176 0.45 (1.1) 193 0.68 (1.1) 0.05 0.00, 0.46
BMI for age z-score 174 0.05 (1.3) 193 0.27 (1.1) 0.10 −0.04, 0.47
FFMI (kg/m2) 177 13.6 (1.5) 194 13.3 (1.2) 0.02 −0.59, −0.04
FMI (kg/m2) 177 2.3 (1.3) 194 2.8 (1.2) <0.001 0.27, 0.80
Neck circumference (cm) 176 27.8 (1.7) 194 27.3 (1.6) 0.002 −0.86, −0.19
SBP (mmHG) 176 108.4 (11.0) 193 112.2 (12.5) 0.002 1.37, 6.19
DBP (mmHG) 176 56.2 (8.1) 193 59.3 (8.9) <0.001 1.30, 4.79
HDL-c (mg/dL) 177 56.2 (9.9) 193 54.6 (11.2) 0.16 −3.68, 0.63
LDL-c (mg/dL) 176 86.3 (24.3) 194 89.8 (23.1) 0.17 −1.43, 8.27
TRG (mg/dL) 176 *60.5 (34.3) 194 *67.5 (40.8) 0.009 1.99, 11.9
HOMA1 136 *0.86 (0.5) 157 *1.01 (0.7) 0.02 0.02, 0.21
HOMA2 177 *0.74 (0.5) 192 *0.86 (0.7) 0.03 0.01, 0.17

SD, standard deviation; IQR, interquartile range; CI, confidence interval; BMI, body mass index, FFMI, fat-
free mass index; FMI, fat mass index, SBP, systolic blood pressure, DBP, diastolic blood pressure, HDL-c,
high-density lipoprotein cholesterol, LDL-c, low-density lipoprotein cholesterol, TRG, triglycerides.

HOMA, homeostatic model assessment of insulin resistance, calculated as fasting glucose (mmol/l)
x fasting insulin (µl U ml)/22.5.

HOMA1 missing 20.5% of observations where insulin was below the detection threshold of 2.0 µl U ml;
HOMA2 includes such observations, calculated with insulin as 2.0 µl U ml.

p values and 95% confidence intervals are for sex differences, using Wilcoxon rank sum test with
continuity correction for TRG, HOMA1, and HOMA2, and Welch two sample t-test for all other variables.

Table 2. Correlation coefficients for neck circumference with BMI and body composition
variables.

Boys (n = 177) Girls (n = 194)

Neck
circumference
(cm) n Pearson’s r p 95% CI n Pearson’s r p 95% CI

BMI (kg/m2) 173 0.62 <0.001 0.52, 0.71 193 0.67 <0.001 0.58, 0.74
FFMI (kg/m2) 177 0.68 <0.001 0.59, 0.75 194 0.63 <0.001 0.53, 0.70
FMI (kg/m2) 177 0.59 <0.001 0.49, 0.68 194 0.54 <0.001 0.44, 0.64

CI, confidence interval; BMI, body mass index; FFMI, fat-free mass index; FMI, fat mass index
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Table 5 shows an additional series of models where a given cardiometabolic
risk factor was independently regressed on NC, with adjustment for both age
and BMI.With BMI included, NC was no longer a significant predictor of SBP
orHOMA1 in boys or girls. NC remained significant in theHOMA2model for
girls, however the beta coefficient decreased by half.

The foregoing results are from analyses performed with outliers
excluded. Sensitivity analysis results are provided in Supplementary
Tables 1–4. Overall, the inclusion of outliers did not appreciably alter
results, however R2 values were attenuated somewhat in multiple regres-
sion models, particularly where HOMA1 or HOMA2 was the dependent
variable. Supplementary Table 4 shows that the inclusion of outliers
rendered NC significant in the boys’ HOMA2 model, controlling for
BMI and age. However, R2 was little changed, and the lower bound of
the 95% CI for NC was consistent with a non-significant effect on
HOMA2.

Figure 2 (panel a) shows PR plots constructed using data pooled for boys
and girls, which tested the ability of NC or BMI to classify children with SBP
or HOMA2 > 90th percentile. The dotted grey line denotes a random classi-
fier, with its location depending on the ratio of positive to negative outcomes.
The area above and below the dotted line indicates good versus poor
performance. A perfect classifier is reflected by a straight line from the top
left corner (0.0, 1.0) to the top right corner (1.0, 1.0), and a second straight
line from the top right corner to the dotted line (1.0, P/(P + N) (Saito and
Rehmsmeier 2015). When two curves are plotted, the curve closer to the top
right corner is relatively better performing. AUC values are given for the
performance of NC and BMI. The closer the AUC value is to 1.0, the better
the performance of the test.

AUC values were similar for BMI in SBP and HOMA plots, while NC
performed better for HOMA than SBP. AUC values were generally low,
however, and no curve appreciably approached the top right corner of the
plot. Supplementary Figure 1 provides a PR plot with the sexes pooled where
the HOMA1 variable was used in place of HOMA2; results were comparable
for the two HOMA variables. Sensitivity analysis to the exclusion of outliers
was not performed for PR plots.

The second panel in Figure 2 (panel b) provides boxplots demonstrating
considerable overlap in NC and BMI distributions for children above or
below the 90th percentile for SBP and HOMA2. This may aid in explaining
the poor classifier performance of NC and BMI for these outcomes.

Discussion

In the current study, NCwas associated with BMI, FMI, and FFMI in 5–8-year-
old Brazilian children. Inmultiple regressionmodels stratified by sex, adjusting
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for age, NC was significantly associated with SBP and HOMA, but not DBP,
HDL-c, LDL-c, or triglycerides. BMI showed similar associations with these
variables after adjustment for age. The percentage of variability in SBP
explained by NC versus BMI models was likewise similar: 6% and 5%, respec-
tively, for boys, and 3% and 4%, respectively, for girls.

NC and BMI were better predictors of HOMA than SBP. In the model
where the HOMA2 variable was regressed on NC and age, 20% of the
outcome was explained in boys, and 17% in girls. In contrast, variation in
BMI and age explained a greater portion of variation in HOMA2 in girls than

Figure 2. NC and BMI as classifiers of children with SBP or HOMA >90th percentile.
Precision-recall plots (panel a) for the performance of NC and BMI in identifying SBP (a1)
or HOMA (a2) >90th percentile, with data for both sexes pooled. Well performing curves
are those approaching the upper right corner of the plot with higher AUC values.
Boxplots (panel b) demonstrate considerable overlap in NC (b1, b2) and BMI (b3, b4)
distributions for children above or below the 90th percentile for SBP and HOMA. AUC,
area under the curve. NC, neck circumference. BMI, body mass index. SBP, systolic blood
pressure. HOMA is HOMA2, including observations calculated with insulin at the instru-
ment detection threshold value of 2.0 µl U ml.
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boys: 18% versus 15% (although adjusted R2 was reduced in girls’ HOMA-
BMI models following sensitivity analyses, see Supplementary Table 3).

With the exception of the girls’ model where HOMA2 was the dependent
variable, however, the relationship of NC with SBP and HOMA disappeared
after controlling for BMI (see Table 5). Overall, this suggests that measures of
NC and BMI contain similar information, and thus may fail to explain
additional variability in the outcome when set as joint, rather than single,
predictors. These results are consistent with studies where NC was able to
classify individuals with elevated BMI (Hatipoglu et al. 2010; Nafiu et al.
2010; Katz et al. 2014; Taheri et al. 2016), although predicting BMI from NC
may be of limited value if the goal is to move beyond BMI to more useful
markers of metabolic risk.

That NC did not associate with SBP or HOMA independently of BMI
(except where HOMA2 was used in the girls’ group) also suggested it was
unlikely to perform better than BMI at identifying individuals with elevated
SBP or HOMA measures.

Indeed, the similar performance of NC and BMI was evident from the
results of PR plot analyses in the pooled sample. AUC values suggested that,
in fact, neither NC nor BMI performed particularly well as tools for identify-
ing elevated SBP or HOMA, defined as >90th percentile following previous
authors (Kuciene et al. 2015; Formisano et al. 2016). We used PR plots rather
than ROC plots (Saito and Rehmsmeier 2015) because there were ultimately
few children identified as having SBP or HOMA >90th percentile, thus the
sample was imbalanced, with many fewer positive than negative values (i.e.
children with SBP or HOMA ≤90th percentile).

The interest in body girth measures has arisen because, despite the utility of
BMI for assessing excess weight in large studies, it suffers from several limita-
tions (Wells 2000; Tchernof and Després 2013; Neeland and de Lemos 2016),
including that it cannot provide information on metabolic risk associated with
fat distribution. Measures indexing fat distribution such as WC, WHR, and
WHtR, in comparison to BMI, were found to associate more strongly with
myocardial infarction in adults (Yusuf et al. 2005), and better predict cardio-
vascular disease risk factors in children (Savva et al. 2000). More recently,
however, an analysis pooling data from five studies reported similar associa-
tions of BMI,WC, andWHtR with clustered cardiometabolic risk outcomes in
children and adolescents (Sardinha et al. 2016).

As a relatively simple anthropometric measurement, NC, like WC, was
proposed as an easy-to-employ proxy for metabolically harmful FM depos-
ited in the upper body (Tchernof and Després 2013). Studies have shown that
NC and WC associate with one another (Hatipoglu et al. 2010; Nafiu et al.
2010; Katz et al. 2014; Hassan et al. 2015; Taheri et al. 2016; Castro-Piñero
et al. 2017), and that their degree of association with outcomes such as
overweight/obesity, HOMA, and SBP is similar (Hatipoglu et al. 2010;
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Androutsos et al. 2012). At the same time, some have argued that NC is
preferable to WC, as the former does not demonstrate pre- versus post-
prandial variation, depend on the consistency of measurements taken at the
end of an expired breath, or necessitate the removal of clothing (Hatipoglu
et al. 2010; Nafiu et al. 2010; Taheri et al. 2016). Of note, recent analyses by
Sardinha et al. (2016) and Li et al. (2020) call into question the precision and
effectiveness of BMI and waist indices for identifying metabolically at-risk
individuals, however these authors did not examine NC.

Of the relatively few studies which have measured NC and cardiometa-
bolic outcomes in children, several have documented the positive associa-
tions we observed for NC with BMI, SBP, and HOMA. However, others have
also identified positive relationships between NC, DBP and triglycerides, and
a negative relationship between NC and HDL cholesterol (Formisano et al.
2016; Castro-Piñero et al. 2017; Kurtoglu et al. 2012; Androutsos et al. 2012).
Differences in methodology, sample size, and population characteristics are
likely to contribute to variation in results. The lack of consistency in variables
used for model adjustment may also complicate comparisons of results
across studies. In testing NC-risk factor relationships, authors have variously
controlled for fat intake and physical activity (Androutsos et al. 2012), BMI
and country of origin (Formisano et al. 2016), or sex and pubertal stage
(Kurtoglu et al. 2012; Castro-Piñero et al. 2017).

In contrast to our findings, significant associations of NC with SBP, HDL-c,
triglycerides, and HOMA remained for both boys and girls when Formisano
et al. (2016) adjustedmodels for BMI. These authors (Formisano et al. 2016) and
others (Gomez-Arbelaez et al. 2016; Castro-Piñero et al. 2017; Mastroeni et al.
2019) have also found evidence that NC performs well in identifying individuals
with elevated metabolic syndrome scores or cardiometabolic risk scores. We
opted not to explore associations with a calculated risk score, owing to the
observed correlation (pre-BMI adjustment) of NC with just SBP and HOMA
in our sample, and its poor performance as a classifier of elevated measures.

The poor classifier performance may result from the fact that NC and BMI
distributions were overlapping for children above and below the 90th per-
centile for SBP and HOMA (see Figure 2, panel b). In other words, children
with high NC and BMI were not necessarily those with elevated SBP and
HOMA. One possible explanation is that BMI inevitably indexes both FM
and FFM. This is also the case for NC, which cannot distinguish FM from
FFM in the underlying tissue. Table 2 shows that NC is associated with FMI
in both boys and girls, but the correlation coefficients are in fact larger for
NC with FFMI in both sexes. Children with greater NCmay have greater FM,
but they may also have greater FFM, the latter which includes organs and
skeletal muscle mass, a metabolically protective tissue (Bayol et al. 2014). The
fact that metabolic risk may ultimately depend on the ratio of FM to FFM,
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and not the absolute size of either compartment, highlights one of the central
limitations of simple girth measurements for metabolic risk assessment.

One limitation of the current study is its small sample size relative to
similar investigations in the literature. The sample of children originally
located was reduced substantially due to dropouts, but also because NC
measurements were added to the protocol once the study was already under-
way. The data were collected cross-sectionally, which precludes any potential
identification of causal links between predictors and outcomes. Additionally,
the data were collected from 2004–2006, and thus may not accurately reflect
the associations one may find in conducting a similar study in 5–8-year-old
children in Jundiaí, Brazil today. With regard to the collection of FM and FFM
data using BIA, the fact that the BIA measurements were not specifically
calibrated to the current population must also be recognized as a limitation.
Finally, we were only able to assess single cardiometabolic risk factors, while
a combined score may better index metabolic risk (Castro-Piñero et al. 2017),
and we were unable to include in our analysis further anthropometric mea-
surements such as WC and WHtR for comparison with NC and BMI. At the
same time, certain potentially confounding variables that have been included
in prior studies were not available for the current sample, including physical
activity, nutrient intake, and pubertal stage.

On the other hand, it has been noted that data on NC, metabolic para-
meters, and associations therein are likely to differ between populations
(Formisano et al. 2016; Castro-Piñero et al. 2017), and it is therefore impor-
tant to collect and report such data for different populations of children.
Here, we have reported results from a low-income population in Southeast
Brazil, which do indeed demonstrate differences to results reported in chil-
dren from other countries. Prior studies in Brazil have examined NC as
a potential proxy for obesity or metabolic risk (Coutinho et al. 2014; Silva
et al. 2014; Filgueiras et al. 2019; Mastroeni et al. 2019), however none to our
knowledge have examined associations between NC and cardiometabolic
risk parameters in children under 10 years of age.

In conclusion, associations of NC or BMI with single cardiometabolic risk
factors after adjustment for age were similar. However, associations observed for
NC with SBP and HOMA disappeared following adjustment for BMI in the
majority of multiple regression models. This suggests that, while NC could
potentially serve as a simple, scalable marker of risk in lieu of BMI, it may not
perform better or add additional information to that achieved with BMI. The
fact that here both NC and BMI performed rather poorly at identifying children
with SBP or HOMA >90th percentile should serve as a reminder that simple
anthropometric measurements cannot distinguish fat from fat-free tissues,
which may diminish their ability as classifiers. Our results, however, stand in
contrast to previous studies where NC performed well as a classifier of metabolic
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risk in children, adolescents, and adults (Formisano et al. 2016; Gomez-Arbelaez
et al. 2016; Alzeidan et al. 2019; Mastroeni et al. 2019).
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