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We consider the collider signals of spin-one resonances present in full-hierarchy quiver theories of
electroweak symmetry breaking. These four-dimensional theories result from the deconstruction of
warped extra dimensional models and have very distinct phenomenological features when the number
of sites is small. We study a class of generic scenarios in these theories where the color gauge group, as
well as the electroweak sector, propagates in the quiver diagram. These scenarios correspond to various
specific models of electroweak symmetry breaking and fermion masses. We focus on the minimum
resonant content and its main features: the presence of heavy and narrow spin-one resonances. We derive
bounds from the LHC data on the color-octet and color-singlet excited gauge bosons from their decays to
jets and top pairs, and show their dependence on the number of sites in the quiver. We also compare them

with the bounds derived from flavor violation.
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L. INTRODUCTION

The electroweak standard model (SM) describes satis-
factorily all available data to date [1]. Since it is a renor-
malizable theory, this implies that its cutoff A—the scale
of new physics—is far above the weak scale v =~ 246 GeV.
This has been most recently confirmed by the apparent
discovery of a light Higgs boson with m;, =~ 126 GeV [2],
which is compatible with the renormalizable SM Higgs
sector. On the other hand, the resolution of the hierarchy
problem requires that new physics beyond the SM appear
at scales not too far above the TeV. This little hierarchy
problem points to the need to have a parametric separation
of the weak scale and the new physics scale. In nonsuper-
symmetric theories the Higgs must be a remnant pseudo-
Nambu Goldstone boson (pNGB) from the spontaneous
breaking of a global symmetry [3]. The resonances will
then have higher masses as dictated by the gap between
the pNGBs and the resonant sector in analogy with the
m, — m, mass gap. There are several scenarios beyond the
SM with a pNGB Higgs. These include the little Higgs [4]
and the twin Higgs [5], as well as extra-dimensional mod-
els where the Higgs is obtained from a bulk gauge field in
what is sometimes called Gauge-Higgs unification, par-
ticularly in AdSs backgrounds [6]. In all cases, there will
be a large global symmetry spontaneously broken giving
rise to NGBs. Part of this global symmetry is gauged and
therefore explicitly broken. This allows for a partial Higgs
mechanism eliminating some of the NGBs to give masses
to the gauge bosons associated with broken generators and,
at the same time, leads to a potential for the Higgs and its
small mass. For the model to be successful, there must be a
set of NGBs left out of the spectrum forming a doublet of
SU(2), that can be identified with the Higgs field respon-
sible for electroweak symmetry breaking (EWSB).

The gap between m; and the resonant masses is a
generic feature of all these scenarios. The telltale sign of
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the details of the underlying dynamics is in the resonant
spectrum and couplings. It is possible to parametrize these
dynamics in an effective field theory framework of the low
energy symmetries of the SM. This has been done in
several papers [7].

In this paper we will commit to a more specific set of
models including a pNGB Higgs. These theories can be
represented by quiver (or moose) diagrams [8,9] (see next
section) and are cousins of AdS; models since there is a
limit in which the two are essentially identical. In this limit,
the quiver theories are obtained from the deconstruction
[10,11] of AdSs theories. However, far from this contin-
uum limit, in what we call the coarse limit, quiver theories
are four dimensional and quantitatively very different from
the AdSs ones. In particular, the spectrum and couplings of
the resonant state—both bosonic and fermionic—will be
significantly different than for the continuum case and, in
general, dependent upon the number of gauge groups (or
““sites” in the quiver diagram), as well as the group struc-
ture and matter representation chosen. Then, in the coarse
deconstruction limit, quiver theories will have a very dis-
tinctive phenomenology at the LHC. We will begin explor-
ing this phenomenology in vanilla quiver models as the
ones presented in Refs. [8,9]. We will concentrate on the
production of vector resonances decaying into quarks giv-
ing jets and 7 pairs, as this should be the first signal for
these models at the LHC (as we show below).

The phenomenology of quiver or moose theories has
been studied in many other papers but in different setups.
For instance, in Ref. [12] a three-site electroweak model
without a Higgs is built, and its phenomenology is studied
in [13]. Its generalization to allow for a light Higgs is
presented in Ref. [14]. This “221” model is a very specific
quiver theory, and although there are quite a few common
points with our work, we will always consider larger gauge
groups as a set of ordered vacua. In Ref. [15] a two-site
quiver is proposed, and its phenomenology of the extended
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gauge sector is studied in Ref. [16]. A three-site construction
more similar to ours is that of Ref. [17]. Our approach
already differs from all these previous contributions in one
way or another at the model building stage. We are consid-
ering generic coarse deconstruction models with a very high
ultraviolet cutoff. Our studies allow us to consider the
number of sites as a variable. Our aim is to start a systematic
study of the phenomenology of quiver theories by pointing
out their main common features: narrow resonances as a
result of weak coupling, compatibility with flavor physics
resulting in specific decay channels, and a Higgs sector
compatible with a pNGB light Higgs. It is possible that
some of our results can be partially applied to the models
mentioned above.

In the next section, we present the general framework for
quiver theories, and we specify one model to study its
phenomenology. In Sec. III, we obtain the couplings of
vector resonances to SM fields and, in particular, to SM
quarks. We also obtain the resonance widths. These results
are used in Sec. IV to extract the current bounds on the
model spectrum from dijet and #7 resonance searches at
ATLAS and CMS. We give our conclusions and outlook in
Sec. V.

II. THE MODEL FRAMEWORK

We begin this section by reviewing the basics of quiver
theories (QT). Let us consider the product gauge group
Gy X Gy X+-Gj X Gjyy -+ Gy. In addition, we have a
set of scalar link fields ®;, with j = 1 to N, transforming
as bifundamentals under G;_; X G;. The action for the
theory is

( q2 _q2 0
_q2 qZ + q4 _q4
0 -¢* q¢*+gq
M§ = 22
0 0 0
\ 0 0 0

in the basis (A, A, ..., Ay) and in the unitary gauge. We
diagonalize M, by the orthonormal rotation

N
Al = fi.AY, 6)
n=0

v; =vq’ (3)
Wﬁ<>ﬂﬂ ____________ C}%{)

FIG. 1. Quiver diagram for the theory described by Eq. (1).
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where the traces are over the groups’ generators; the dots at
the end correspond to terms involving fermions, and they
will be discussed in the next section. We assume that the
potentials for the link fields give each of them a vacuum
expectation value (VEV) which breaks G;_; X G; down to
the diagonal group and result in nonlinear sigma models
for the ®’s,

@) =L, )
where the 7’s are the broken generators, the 77;’ the NGB,
and v; are the VEVs of the link fields. We will consider
here the situation where the VEVs are ordered in such a
way that v; >v,... >v;...>vy. We parametrize the
ordering by defining the VEVs as

v; = vg) (3)
where 0 < g <1 is a dimensionless constant, and v is a
UV mass scale that can be regarded as the UV cutoff. We
will also assume for the moment that all the gauge groups
are identical and that their gauge couplings satisfy

go(w) =g(v) =---= gj(vj) = gj+1(vj+1) =" =4

“4)

The model can be illustrated by the quiver diagram of
Fig. 1. The gauge boson mass matrix squared is given by

0 - 0 0 \
0 0 0
—gb 0 0
o)
0 - gD 4 2N 2N
0 .- — gV N

where the {Aﬁf)} are the mass eigenstates. The zero-mode
gauge boson AES) has a “flat profile” in the quiver diagram,
meaning that for all j, f;o = 1/+/N + 1. This is not the
case for the massive modes, for which f jn can be obtained
from the diagonalization procedure. In order to address the
hierarchy problem, we will need the first gauge excitation
to be vy =~ O(1) TeV. Furthermore, if we use these models
to address the full hierarchy between the Planck and the
electroweak scales, then v =< Mp. Thus, the values of the
model parameter ¢ and the number of gauge groups N
would be related by
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g = 10710/N, (7)

The Higgs field will need to have a profile highly localized
towards the site N, in order for the corrections to its mass to
be no larger than of order of the electroweak scale. In a full
model this can be done dynamically by extracting the
Higgs doublet from a NGB that stays in the spectrum [9].
Here, we will make the simplification of assuming that the
Higgs doublet only transforms under the weak gauge group
of site N, i.e., that it is completely ‘“‘localized” on the site
N. This simplifying assumption will have little impact on
the rest of the paper.

In the limit of large N, and ¢ — 1_, these models can be
described by the deconstruction [18] of theories with
one compact extra dimension in an AdS background,
AdSs [19]. The deconstruction of AdSs was studied in
Refs. [11,18,20]. This continuum limit, in which the
four-dimensional theory described above and the AdS;
theories are equivalent, is obtained when the UV scale of
the 4D theory, which is approximately v, is larger than the
curvature k of the 5D AdS space: k < v. In fact, in the
language of the deconstructed theory obtained by discretiz-
ing AdSs, v corresponds to the inverse of the discretization
interval a. Using Eq. (7) and the identification ¢ < ¢ */gv
[8,10,11] necessary for matching both theories, we see that
for N = 36 the quiver theories would be essentially iden-
tical to the extra-dimensional theory in AdSs. On the other
hand, for smaller values of N the 4D theories cannot be
interpreted as AdSs ones and should be studied separately.

The introduction of fermions in these models was ex-
tensively studied in Refs. [8,11]. The fermion action is
given by

N . R . .
s, - f d'x Y {W]iBw] + WhiBivk ()
j=0

— ()b + Mg '@, + He)), ©)
where the u; are vectorlike masses and the Yukawa cou-
plings are chosen in such a way so as to only result in one
zero-mode fermion [11]. For a left-handed zero mode, the

“boundary condition” must be chosen such that 3 =
Conversely, to obtain a right-handed zero-mode fermion,
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FIG. 2. Quiver diagram for the theory described by Eq. (9),
with a left-handed zero-mode fermion.
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the condition is 7 = 0. A schematic diagram of the
fermionic action is shown in Fig. 2 for a left-handed zero
mode. By using Eq. (2), we can obtain the fermion mass
matrix, which, just as for the case of gauge bosons, is not
diagonal due to the mixing induced by the VEVs of the
link fields @;. The rotation to a mass-eigenstate basis is
defined as

N
Wia= > h’exik (10)
n=0

where the X(L’f;e are the mass eigenstates. We are interested

in the coefficients hfge corresponding to the zero-mode
localization in the quiver diagram. They can be chosen so
as to obtain the correct fermion masses and mixings, con-
sidering that the Higgs is highly localized close to the site
N. For instance, the situation with the Higgs localized at
site N was studied in Ref. [8] for the quark sector. From the
equations of motion it is possible to obtain relations among
the zero-mode coefficients. In general, the zero-mode
coefficients for the left- and right-handed cases satisfy

' YA
N d R o L A (11)
vAji hy?
i—1,0
Mo ihk
\/EU)\j q W (12)

The choice of fermion localization can then be parame-
trized in order to get the desired ratios in Egs. (11) and (12)
. For instance, we choose the parametrizations

J,0
hg

it 10
L o — q_(CR+1/2), (13)

— ,c—1/2
J,0 ’ J=
hL hR

which in the continuum limit would result in fermion zero-
mode wave functions parametrized by c¢; and cp as defined
in [19]. As mentioned above, the localization parameters
¢, and cy are chosen so as to obtain the observed pattern of
fermion masses and mixings for a given Higgs localization
model. This can be a simple N-localized Higgs as in
Ref. [8] or a dynamically localized pNGB as in Ref. [9].

In the next section we will obtain the couplings of
zero-mode fermions (the SM fermions) to the first excita-
tion of gauge bosons so we can study their phenomenology
at the LHC.

III. RESONANCES IN QUIVER THEORIES

We are interested in obtaining the couplings of the
massive gauge boson resonances to the SM fermions. We
closely follow Ref. [8]. The couplings are defined by

SRR ERY AL X (14)
where we assumed that the group generators are absorbed
in the definition of the gauge fields. The wave function of a
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zero-mode fermion can be written in terms of the quiver
fermions as

N
0 *7,0 j
Xr =D KW & (15)
j=0

In the same way, and assuming a generic gauge group in
the sites of the quiver diagram, the mass eigenstates of the
gauge bosons can be written in terms of the quiver gauge
bosons as

N .
AL =S £ AL (16)
j=0

with f;, the coefficient linking the gauge boson in site j
with the mass eigenstate n in the rotation to mass eigen-
states. Therefore, the coupling of the n = 1 massive gauge
boson to the zero-mode fermions is

N
0
g% = gilh %l fin a7
j=0

where g; are the gauge couplings associated with the group
Gj in the quiver, and as mentioned before, we assume g =
g for all j in the manner defined by Eq. (4). The coefficients
fj1 can be obtained by diagonalizing the gauge boson mass
matrix [11,20] for a given N. Then, we can obtain the
couplings of zero-mode fermions to the first excited state
of the gauge bosons, normalized by the gauge coupling g.

In Fig. 3 we show the couplings of the left-handed zero-
mode fermions to the first excited gauge boson state, g§;,
normalized to the zero-mode gauge coupling and for
N = 4,9 and 15, as a function of the fermion localization
parameter c; defined by Eqgs. (13). In varying N, we have

- _|

-25 -2. -15 -1. =05 &___Il. _____ 1.5 ... 2. ..., 2.5
-0.5+

FIG. 3. The couplings of left-handed zero-mode fermions to
the first excited gauge bosons as a function of the fermion
localization parameter c;, for N = 4 (solid line), N = 9 (dashed
line), and N = 15 (dotted line). The dots correspond to the
localizations for a solution for the N = 4 case and are shown
as an illustration.
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kept fixed the ratio of UV to IR scales. Then, for each
choice of N, the parameter ¢ is adjusted according to the
relation (7).

The values of the localization parameter above ¢; = 0.5
correspond to “UV” zero-mode localization: most of the
zero-mode wave function comes from fermions transform-
ing under gauge groups that are associated with larger
VEVs. Conversely, for ¢; < 0.5 the zero-mode fermion
wave function is mostly coming from fermions transform-
ing under gauge groups associated with smaller VEVs. We
refer to the latter as “IR” localization.

Similarly, in Figs. 4 and 5 we show the couplings of up
and down right-handed zero-mode fermions to the first
gauge boson excitation, as a function of the respective cp
localization parameters. In these cases, localization
parameters with values ¢z < —0.5 correspond to “UV”

-‘\N;
o\
T

=
T

FIG. 4. The couplings of up-type right-handed zero-mode fer-
mions to the first excited gauge bosons as a function of the
fermion localization parameter cg, for N = 4 (solid line), N = 9
(dashed line), and N = 15 (dotted line).

dR
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FIG. 5. The couplings of down-type right-handed zero-mode
fermions to the first excited gauge bosons as a function of the
fermion localization parameter cg, for N = 4 (solid line), N = 9
(dashed line), and N = 15 (dotted line).
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localization in the quiver, whereas for cp > —0.5, most of
the zero-mode wave function comes from fermions trans-
forming under “IR” gauge groups. The localizations illus-
trated by three points in Figs. 3-5 correspond to a given
solution for the localizations of the zero-mode quarks for
N = 4. This solution is consistent with the quark mass
spectrum and the CKM matrix elements and has minimal
flavor-changing neutral current effects [8]. Similar solu-
tions can be found for the other values of N.

As it can be seen in Figs. 3-5, the couplings of
IR-localized zero-mode fermions increase with N, whereas
the ones corresponding to UV-localized fermions decrease.
In the continuum limit, which as we noted in the previous
section is reached for N = 36, the couplings will behave
exactly as those in AdSs bulk models [19]. However,
and as it was shown in Ref. [8], for coarse deconstruction
(N < 36), the resulting models have a different quantitative
behavior. For instance, flavor violation can be easily
accommodated with mass scales above just a few TeV
(specifically, M; > 3 TeV for N = 4, with M; the mass
of the first excitation of the gluon), whereas the continuum
requires typically higher mass scales for the Kaluza-Klein
states.

We can also see that the widths of the first excitations of
gauge bosons will not be as dominated by third generation
channels as in the continuum case. On one hand, the light
UV-localized quarks leading to jets have couplings to the
excitation that are not as suppressed as in the continuum
case. Furthermore, the third generation couplings are not
as large. In addition, the overall values of the couplings are
smaller, leading to significantly smaller total widths.
Typical widths for the first gauge excitations are I'/M =~
0.05. These facts result in a distinct phenomenology for
resonance production and decay when compared with the
AdSs case. For quiver theories, resonances will be narrow
and have significant dijet signals. There will still be im-
portant contributions to the bb and ¢7 channels. The latter
might even dominate the bounds in some cases, as we will
see below.

In the next section, we use the couplings computed here
to obtain the s-channel production of the first excited states
of the gauge bosons at the LHC into jets and ¢7 final states.

IV. RESONANCES FROM QUIVER
THEORIES AT THE LHC

In this section we study the production of the first
excited state of the gauge bosons from full-hierarchy
quiver theories at the LHC. We will consider two cases
of particular interest.

The first case corresponds to the quiver gauge group with
G = SU(3)N*!, broken down to the QCD gauge group,
G — SU(3),. The zero-mode gauge boson is the SM gluon,
and the tower of excited states includes massive color-octet
spin-one resonances. This can be seen as the coarse decon-
struction of bulk QCD in AdSs. The reason to study this
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case is partly phenomenological: since they are color-octet
states they will have larger production cross sections. It also
serves as a comparison with the extra-dimensional case in
AdSs models with bulk SU(3), gauge fields. However,
unlike in the AdSs case, it is not necessary for SU(3), to
“propagate” in the quiver. It is entirely possible to obtain a
quiver model of EWSB and fermion masses with a pNGB
Higgs boson without a color-octet tower.

The second case corresponds to having the quiver gauge
group G = (SU(2);, X U(1)y)N*! broken to the electro-
weak SM gauge group: G — SU(2);, X U(1)y. The zero-
mode gauge bosons in this case are the electroweak gauge
bosons before EWSB, replicated in the tower of excited
states. The interest in this second case resides in the fact
that, although in quiver models where the Higgs is a pNGB
[9] the quiver gauge groups must be larger than the SM
gauge group in order to extract the Higgs from uneaten
NGBs, the massive states will contain these as a subset.
Thus, studying the phenomenology of these massive states
is independent of the particular model chosen for the
electroweak quiver.

We will compute the cross section for production and
decay to a given channel for the color-octet and electro-
weak first vector resonances at the LHC with /s = 8 TeV,
for various values of the number of sites, N. We concen-
trate on channels with quarks in the final state, leading to
light jets and ¢7 final states. We leave out, for now, bb final
states since they will be less constraining. In each case the
couplings to the SM quarks, the zero-mode quarks in the
model presented above, are computed assuming a quark
localization in the quiver consistent with the correct mass
matrix and CKM mixing. These solutions for each value of
N are then consistent with all flavor phenomenology.

The resonance widths are quite small in all cases. This is
to be compared to the AdSs situation where typical widths
for the Kaluza-Klein gluon are well above the typical reso-
lution [21]. We start with the color-octet excited states. The
production cross section times the branching ratio into jets
is shown in Fig. 6, for three choices of the number of gauge
groups in the quiver: N = 4 (5 gauge groups), N = 9, and
N = 15. The corresponding plots for the color-octet pro-
duction decaying into a ¢ pair are shown in Fig. 7. In all
cases we use the MSTW parton distribution functions [22].

We also consider color-singlet states, as mentioned ear-
lier, as a combination of the first excitation of the photon
and the Z, (Z' + y"), since these are likely to be close in
mass. In Fig. 8, we show the production times branching
ratios for (Z' + ') decaying to dijets for several choices of
N. A similar plot for the decays of the color singlet into top
pairs is shown in Fig. 9.

In the case of the dijet decay channels, both for the color
octet and for the color singlet, we can see that as the
number of sites in the quiver diagram (N) grows, the o X
BR falls (Figs. 6 and 8). This is to be expected, since as N
grows and we approach the continuum AdSs limit, the size
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FIG. 6. The dijet production cross section times branching
ratio for \/E = 8 TeV, as a function of the color-octet mass
for N =4 (solid line), N =9 (dashed line), and N =15
(dotted line).
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FIG. 7. The tf production cross section times branching ratio

for /s = 8 TeV, as a function of the color-octet mass for N = 4
(solid line), N = 9 (dashed line), and N = 15 (dotted line).
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FIG. 8. The dijet production cross section times branching
ratio for /s = 8 TeV, as a function of the (Z’ + ') mass for
N =4 (solid line)y, N =9 (dashed line, and N =15
(dotted line).
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FIG. 9. The 7 production cross section times branching ratio
s =8 TeV, as a function of the (Z’' + ') mass for N =4
(solid line), N = 9 (dashed line), and N = 15 (dotted line).

of the light quark couplings to the first gauge excitation
diminishes. On the other hand, the corresponding ¢f decay
channels are much more degenerate, as can be seen in
Figs. 7 and 9. This is due to the fact that the top couplings
to the first gauge excitation grow with N, which almost
exactly compensates the reduction in the production cross
section coming from smaller light-quark couplings.

We derive bounds from the LHC data accumulated with
/s = 8 TeV. In particular, we use the CMS bounds on
dijet resonances of Ref. [23], which uses 19.6 fb~! of
integrated luminosity, whereas we use the bounds obtained
by ATLAS on #f resonances [24] with an integrated lumi-
nosity of 14.5 fb~!. Since the quiver resonances are nar-
row, interference effects can be neglected. Moreover, in
order to compare with the experimental limits we must
only consider the resonance region since the bounds are
obtained by “‘bump searches.” Table I shows the direct
bounds from LHC on the color-octet mass. These are
obtained from the CMS constraints on dijet resonances in
Ref. [23], and from the ATLAS bounds on ¢f resonances of
Ref. [24]. We see that, unlike for the Kaluza-Klein gluon in
AdSs models, the dijet bounds are competitive, with the
best limit being in the N = 4 case. As mentioned above,
the bounds coming from #7 are not really sensitive to N. All
of the bounds on quiver resonances from Table I are similar
to the flavor and electroweak precision bounds obtained in
Ref. [8], which were typically ~3 TeV.

We also consider the bounds on the first electroweak
gauge boson excitations. As mentioned above, this sector
typically contains at least an excitation of the Z (Z’) and

TABLE I. Bounds on the color-octet mass (TeV).
N Dijet [23] tf [24]
4 3.0 2.7
9 1.6 2.6
15 - 2.5
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TABLE II. Bounds on the (Z' + ') mass (TeV).
N Dijet [23] tf [24]
4 1.7 2.1
9 - 2.0
15 - 1.8

one of the photon ('), in addition to other weakly coupled
first excitations not corresponding to any SM zero mode.
Here we study the bounds on this minimum electroweak set
of excitations, Z' and y’. Furthermore, we will assume that
their masses are close enough to appear degenerate at the
LHC, at least in the search stages. As a consequence, we
will obtain bounds on the (Z' + 7') combination. In
Table II we show the bounds on the (Z’ + ') combination
from dijets from CMS [23] and from top pairs from
ATLAS [24]. Once again, the dijet channel is competitive
for low values of the number of sites, but ¢ is most
constraining in general. The entries without a bound,
both in Table IT and in Table I, correspond to bounds that
are too low for them to be consistent with flavor and
electroweak limits, as well as other direct bounds.
Additional bounds on the (Z’' + ) combination will arise
from considering their decays to leptons. However, these
will strongly depend on the modeling of the lepton sector
of these theories, which is only now being considered. The
bounds above are independent of the details of the lepton
sector model building, which includes the various choices
for representation of leptons and the localization of lepton
zero modes in the quiver [25].

We observe that the bounds obtained in Tables I and II
are still below what is needed to pass flavor-violation
bounds in most of these models (=3 TeV). This mass
range will be probed by the next stage of the LHC, with
higher energy and luminosity.

V. OUTLOOK AND CONCLUSIONS

We have considered the phenomenology of a class of
four-dimensional quiver theories [8], related to AdS5 bulk
models [19] by coarse deconstruction. In particular, we
have studied the current bounds on gauge excitations in
these theories imposed by using the current LHC data. To
be as general as possible, we considered two kinds of
resonances. First, we studied a color-octet excitation which
corresponds to the propagation of color SU(3) in the
quiver. Unlike in the extra-dimensional formulation, this
propagation is not necessary. However, we considered this
case for completeness and for comparison to the AdSs
case. Second, we studied the bounds on the minimal elec-
troweak excitations of these models, namely, a Z and
photon excitations. For simplicity, we assumed that these
two are nearly degenerate, whereas their common mass
need not be the same as that of the color-octet state. The
rationale for this split in the spectrum is that corrections to
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the color-octet mass should, in general, be different and
probably larger than the ones affecting the colorless states.
This allows for the possibility that the color-octet state,
which drives the flavor bounds [8], is heavier than the
electroweak excitations.

We treated the number of sites N as a free parameter, as
long as it satisfies coarseness, i.e. N = 36. In this way, the
phenomenology of these spin-one resonances is guaranteed
to be qualitatively different from that of AdS; Kaluza-
Klein states. The bounds obtained for the color-octet state
and the weakly coupled combination (Z' + ') depend on
the parameter N, and they appear in Tables I and II. We see
that in both cases the #f constraints are still consistently
dominant. However, the dijet bounds can be competitive
for a lower number of sites, for which the light quark
couplings are not as suppressed. For instance, for N = 4
(5 sites), the most stringent bound comes from the dijet
channel of the color octet. Still, in this case, we see that the
bounds are not yet above the mass scale needed to suppress
flavor changing neutral currents, typically = 3 TeV [8].

For the colorless states the bounds obtained are some-
what smaller, as shown in Table II. Although in principle
these bounds are consistent with flavor violation in the
quark sector, the most important flavor-violation con-
straints on these states will probably come from the lepton
sector. However, these are not yet available for quiver
theories, as their lepton sector is only now beginning to
be considered in the literature [25].

In order for direct searches to compete with the flavor
bounds of Ref. [8], it would be necessary to probe above
the mass scale of about 3 TeV. We conclude that to do this
decisively, the higher energy run at the LHC will be
necessary. To illustrate this point we show the cross sec-
tions for the production of the color-octet and color-singlet
states studied in this paper, at /s = 14 TeV, for the dijet
and 7 channels. In Fig. 10 we show the color-octet
production cross sections times branching fractions into
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FIG. 10. The color-octet production cross section times
branching ratio as a function of the color-octet mass into dijets
for N =4 (solid line) and N = 15 (dotted line); and into top
pairs for N = 4 (dashed line) and N = 15 (dot-dashed line), all
for /s = 14 TeV.
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FIG. 11. The color-singlet production cross section times

branching ratio as a function of the color-singlet mass into dijets
for N = 4 (solid line) and N = 15 (dotted line); and into top
pairs for N = 4 (dashed line) and N = 15 (dot-dashed line), all
for \/s = 14 TeV.

dijets for N = 4 (solid line) and N = 15 (dotted line), as
well as the ones into ¢7 for N = 4 (dashed line) and N = 15
(dot-dashed line). Although a careful study is necessary to
know the reach of the LHC at /s = 14 TeV for a given
luminosity, we can see that the reach in the color-octet
mass will be much above 3 TeV, perhaps as much as 5 TeV
with a few hundred fb~! of accumulated luminosity.
Similarly, cross sections times branching fractions for the
electroweak states (Z' + '), for \/E = 14 TeV, are shown
in Fig. 11.
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We have seen that the quiver theories studied here are
phenomenologically distinct from AdS; models. In par-
ticular, the existence of rather narrow resonances even in
the color-octet case would point to states that are very
different from a Kaluza-Klein gluon. Quiver theories gen-
eralize the model building philosophy of AdSs5 models of
electroweak symmetry breaking and fermion masses. The
spin-one resonances studied here should be among the first
signals for this kind of physics. Other signals, parametrized
by the number of sites, N, would follow. Their study would
depend on details of the models, such as fermion repre-
sentations chosen, and the model building of the lepton
sector [25] and the Higgs sector [9], just to mention a few.
Ultimately, quiver theories form a class of theories beyond
the SM which includes AdSs as the continuum limit.
Thus, their phenomenology at the LHC should be treated
together. For instance, the presence of a set of signals for
new physics could determine the value of N (if any) con-
sistent with all of them. The theoretical interpretation of
this value, whether indicating a continuum theory or a
coarse quiver one, would be an important step in determin-
ing the road to build the right theory of the TeV scale.
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