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Mobility helps problem-solving systems to avoid groupthink
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Groupthink occurs when everyone in a group starts thinking alike, as when people put unlimited faith
in a leader. Avoiding this phenomenon is a ubiquitous challenge to problem-solving enterprises and typical
countermeasures involve the mobility of group members. Here we use an agent-based model of imitative learning
to study the influence of the mobility of the agents on the time they require to find the global maxima of
NK-fitness landscapes. The agents cooperate by exchanging information on their fitness and use this information
to copy the fittest agent in their influence neighborhoods, which are determined by face-to-face interaction
networks. The influence neighborhoods are variable since the agents perform random walks in a two-dimensional
space. We find that mobility is slightly harmful for solving easy problems, i.e., problems that do not exhibit
suboptimal solutions or local maxima. For difficult problems, however, mobility can prevent the imitative search
being trapped in suboptimal solutions and guarantees a better performance than the independent search for any
system size.
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I. INTRODUCTION

Learning through observation and imitation are central to
the success of the human species as they are key elements to
the construction of culture [1–3]. In the context of collective
intelligence, this significance is neatly summarized in the
following phrase: “Imitative learning acts like a synapse,
allowing information to leap the gap from one creature to
another” [4]. Imitation begets the question of who should
be imitated, a decision that was probably shaped by natural
selection and impacted greatly on the social organization and
behavioral patterns of gregarious animals [5].

It has been hinted that agent-based models of imitative
learning could reproduce some features of the problem-
solving performance of task forces [6,7]. In fact, for a variety
of combinatorial optimization problems, a search procedure
based on imitative learning yields a substantial improvement
on the group performance as compared with the independent
search, where the agents explore the solution space of the
problem independently of each other, provided that the imi-
tation propensity of the agents and the group size are set to
appropriate values. However, if the agents are too willing to
imitate their more successful peers or the group is too large,
then the imitative learning search yields a calamitous perfor-
mance which is reminiscent of the Groupthink phenomenon
of social psychology that occurs when everyone in a group
starts thinking alike [8].

Groupthink and the consequent entrapment in suboptimal
solutions poses a hard challenge to problem-solving enter-
prises in general. In the academic world, for instance, this is-
sue is tackled by either calling for outside experts or allowing
sabbatical leaves to group members. Here we examine if this

remedy to Groupthink, namely, the mobility of agents, works
for the agent-based model of imitative learning too.

More pointedly, we carry out extensive Monte Carlo simu-
lations of systems of mobile agents that use imitative learning
to search for the global maxima of NK-fitness landscapes [9].
The agents exchange information on their fitness and imitate
the fittest agent—the model—in their influence neighbor-
hoods, which are determined by face-to-face interaction net-
works [10]. Data on the physical proximity and face-to-face
contacts of individuals in numerous real-world situations were
recorded by the SocioPatterns collaboration [11] and used to
study general aspects of human behavior [12–14] as well as
the patterns of transmission of infectious diseases in human
populations [15,16]. In face-to-face networks, the agents in-
teract (i.e., imitate the models) if the distance between them is
less than some prespecified threshold. In addition, the agents
move in a square box by performing steps of fixed length in
random directions in the plane.

We find that mobility is slightly detrimental in the case of
easy problems, i.e., additive landscapes with a single maxi-
mum, for which imitation of the model agents is guarantee
of getting closer to the solution of the problem, i.e., the
global maximum. In this case, strengthening the spatial and
fitness correlations of agents in closed gatherings yields the
optimal problem-solving performance. However, for difficult
problems, i.e., rugged landscapes with many local maxima
(suboptimal solutions), mobility can prevent the imitative
search being trapped in the local maxima and guarantees
a better performance than the independent search for any
system size. This finding is all the more remarkable because
mobility does not change the topological properties of the
underlying face-to-face network, such as the typical number
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of agents within an influence neighborhood, and so its benefi-
cial effect on the system performance is purely dynamical and
cannot be achieved through the rewiring of the links between
agents [17].

The effects of mobility have been considered for a va-
riety of collective phenomena such as the synchronization
of chaotic oscillators [18–20], the emergence of cooperation
in evolutionary game theory [21,22], and disease spreading
[23,24], to mention only a few. These works assert that
moderate mobility can promote the emergence of synchro-
nization and cooperation, whereas high mobility can disrupt
those collective behaviors. Moreover, in the context of disease
spreading, mobility can significantly reduce the epidemic
threshold. Hence, here we follow the established practice of
statistical physics and complexity science of studying the
effects of mobility on the emergent and collective properties
of individual-based models by addressing its effects on the
performance of cooperative problem-solving systems.

The rest of this paper is organized as follows. In Sec. II we
outline the NK model of rugged fitness landscapes [9], which
we use to represent the optimization problems the agents must
solve. The random motion in the two-dimensional physical
space where the agents are placed and the imitative search on
the state space of the NK model are explained in Sec. III. In
Sec. IV we present and analyze the results of our simulations,
emphasizing the influence of the mobility of the agents on the
problem-solving performance of the imitative search. Finally,
Sec. V is reserved to our concluding remarks.

II. NK-FITNESS LANDSCAPES

The agents must find the unique global maximum of a
fitness landscape generated using the NK model [9]. Although
this model was originally proposed to explore optimization
principles in population genetics and developmental biology,
its influence has gone far beyond the biological realm [25] and
the NK model is now the paradigm for problem representation
in management research [26–28], as it allows the tuning of the
ruggedness of the fitness landscape and hence of the difficulty
of the problem.

The NK-fitness landscape is defined in the space of binary
strings of length N and so this parameter determines the size
of the solution or state space, namely, 2N . The other param-
eter K = 0, . . . , N − 1 determines the range of the epistatic
interactions among the bits of the binary string and influences
strongly the number of local maxima on the landscape. We
recall that two bits are said to be epistatic whenever the
combined effects of their contributions to the fitness of the
binary string are not merely additive [9]. More pointedly, for
each string x = (x1, x2, . . . , xN ) with xi = 0, 1 we associate a
fitness value

F (x) = 1

N

N∑
i=1

fi(x), (1)

where fi is the contribution of component i to the fitness of
string x. It is assumed that the functions fi are N distinct
real-valued functions on {0, 1}K+1 that depend on the state
xi as well as on the states of the K right neighbors of i, i.e.,
fi = fi(xi, xi+1, . . . , xi+K ) with the arithmetic in the subscripts

done modulo N . As usual, we assign to each fi a uniformly
distributed random number in the unit interval [9]. Because
of the randomness of fi, we can guarantee that F ∈ (0, 1)
has a unique global maximum and that different strings have
different fitness values. We recall that a string is a maximum
if its fitness is greater than the fitness of all its N neighboring
strings (i.e., strings that differ from it at a single bit).

For K = 0 the landscape has a single maximum, which
is easily determined by picking for each component i the
state xi = 0 if fi(0) > fi(1) or the state xi = 1, otherwise. In
addition, this landscape is clearly additive since the fitness of a
string is completely determined by the sum of the components
fi(xi ). The other extreme K = N − 1 results in landscapes in
which the fitness of neighboring strings are uncorrelated and
so, in this case, the NK model reduces to the random energy
model [29]. This uncorrelated landscape has on the average
2N/(N + 1) maxima with respect to single bit flips [9]. We
note that for K > 0 finding the global maximum of the NK
model is an NP-complete problem [30].

Since our goal is to study the effects of the mobility
of the agents on the performance of the imitative search,
we must guarantee that the agents explore the same fitness
landscape. Distinct landscape realizations generated using the
same values of the parameters N and K > 0 may differ greatly
in their numbers of local maxima. Therefore, here we fix the
string length to N = 12 and consider a single realization of a
rugged landscape with degree of epistasis K = 4. This rugged
landscape has 50 maxima. The fitness of the global maximum
is Fgm ≈ 0.783, the average fitness of the local maxima is
F̄lm ≈ 0.682, and the average fitness of the landscape is F̄ ≈
0.508. We consider, in addition, a smooth landscape (K = 0)
that allows us to single out the influence of the local maxima
on the performance of the imitative search. The small size
of the state space (212 = 4096 binary strings of length 12)
enables the full exploration of the space of parameters and,
in particular, the study of the regime where the time required
to find the global maximum is much greater than the size of
the solution space.

III. MODEL

We consider a system of M agents placed in a square box
of linear size L with periodic boundary conditions (i.e., a
torus). In the initial configuration, the coordinates x and y
of each agent are chosen randomly and uniformly over the
length L. The density of agents ρ = M/L2, which we fix to
ρ = 0.0512 throughout the paper, yields the relevant spatial
scale to analyze the motion of the agents on the square box.
In fact, since the effective area of an agent is 1/ρ, the quantity
d0 = 1/

√
ρ can be viewed as the linear size or, for short, the

size of an agent and it will be our standard to measure all dis-
tances in our study. More pointedly, we measure the distance
d within which interactions between agents are allowed in
units of d0, i.e., d = αd0 with α > 0. The set of agents inside
a circle of radius d centered at a particular agent constitutes
the influence neighborhood from where it will select a model
to imitate. This scenario is illustrated in Fig. 1 that shows a
snapshot of a system of M = 100 agents in the square box.
Henceforth, we refer to the network created by the union of
the influence neighborhoods as the influence network. This
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FIG. 1. Snapshot of a system of M = 100 agents and density
ρ = 0.0512. Agents within a distance d = αd0, where d0 = 1/

√
ρ

and α = 1, are connected by a link. The dashed circle of radius d
centered at the target agent determines its influence neighborhood,
which comprises four agents in this example. Links that cross the
square box borders are not shown for sake of clarity.

is the classic random geometric graph originally introduced
to model wireless communication networks [31] and that was
recently used as a face-to-face network in the modeling of the
dynamics of human interactions [14]. We note that the fixed
value of the density ρ is inconsequential, provided we use d0

as the standard for measuring distances in the square box.
Each agent is represented by a binary string of length

N , whose bits are initially drawn at random with equal
probability for 0 and 1. The agents explore the NK-fitness
landscape aiming at finding its global maximum by flipping
bits following the rules of the imitative learning search [7],
which consist basically of copying a bit of the fittest agent in
their influence neighborhoods as will be described in detail
in this section. In addition, the agents move randomly around
the square box, thus changing their influence neighborhoods
and, in principle, affecting the efficiency of the imitative
search. Next we describe the movement in the 2N -dimensional
space of the binary strings and the physical motion on the
square box. Henceforth we will use the terms agent and string
interchangeably.

The dynamics begins with the selection of an agent at ran-
dom, the so-called target agent, at time t = 0 and comprises
two stages. The first stage is the motion on the square box:
An angle θ ∈ [0, 2π ) is chosen randomly to give the direction
of motion and then a fixed step of length δd0 with δ � 0 is
taken on that direction. Once the target agent is at the new
position, a circle of radius d = αd0 is drawn around it so that
its influence neighborhood is determined, as shown in Fig. 1.
Then the second stage, namely, the update of the string of
the target agent (or the target string, for simplicity) sets in.

If the influence neighborhood is empty, i.e., there is no agent
within a distance d from the target agent, or all agents in the
influence neighborhood have fitness lower than or equal to the
fitness of the target agent, then the target agent simply flips a
bit at random. Note that due to the nature of the NK-fitness
landscape, two agents that have the same fitness must be
identical (clones).

A more interesting situation is when there are agents with
fitness higher than the fitness of the target agent in its influence
neighborhood. Then there are two possibilities of action.
The first, which happens with probability 1 − p, consists of
flipping a bit at random of the target string as before. The
second, which happens with probability p, is the imitation of
a model string, which is the string of highest fitness in the
influence neighborhood of the target agent. In this case, the
model and the target strings are compared and the different
bits are singled out. Then the target agent selects at random
one of the distinct bits and flips it so that this bit is now the
same in both strings. Hence, imitation results in the increase of
the similarity between the target and the model agents, which
may not necessarily lead to an increase of the fitness of the
target agent if the landscape is not additive, i.e., for K > 0.

The parameter p ∈ [0, 1] is the imitation probability, which
we assume is the same for all agents (see Ref. [32] for the
relaxation of this assumption). The case p = 0 corresponds
to the baseline situation in which the agents explore the
state space independently of each other and so, in this case,
the motion on the square box has no effect at all on the
performance of the search. The case p = 1 corresponds to
the situation where only the model strings explore the state
space through random bit flips, whereas the other strings sim-
ply follow the models in their influence neighborhoods. The
imitation procedure described above was borrowed from the
incremental assimilation mechanism [33–35] used to study
the influence of external agencies in the celebrated Axelrod’s
model of social influence [36].

After the target agent is updated, which means performing
a step of size δd0 in a random direction and flipping a bit of
its string, we increment the time t by the quantity �t = 1/M.
Then another agent is selected at random and the procedure
described above is repeated. Note that during the increment
from t to t + 1, exactly M moves and string operations are
performed, though not necessarily by M distinct agents. This
asynchronous update seems more appropriate to simulate the
continuous-time motion of the agents, as well as the bit
changes in the strings. Use of an alternative synchronous
update would introduce a global clock that has no counterpart
in the problem we seek to model.

The search ends when one of the agents finds the global
maximum and we denote by t∗ the halting time. The efficiency
of the search is measured by the total number of string
operations necessary to find that maximum, i.e., Mt∗, and so
the computational cost of the search is defined as

C = Mt∗/2N , (2)

where, for convenience, we have rescaled t∗ by the size of
the state space 2N . To aid the understanding of the model, in
the Appendix we offer a probabilistic description of the states
of the agents and derive a master equation for the imitative
search.
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IV. RESULTS

To evaluate the performance of the imitative search we use,
as usual, the mean computational cost 〈C〉, which is obtained
by averaging the computational cost C over 105 searches for
the same landscape realization. Since our main concern here is
the spatial distribution and motion of the agents on the square
box, we will fix the imitation probability to p = 0.5, and focus
on the system size M as well as on the parameters α and δ that
specify the radius of the influence neighborhood and the step
size of the random motion of the agents, respectively.

A. Position-fixed scenario

To better appreciate the influence of the mobility on the
performance of the imitative search, we study first the case
where the agents remain fixed at their (random) positions
specified in the initial set up of the system. This position-fixed
scenario (i.e., δ = 0) is useful for understanding the role of
the parameter α that determines the radius of the influence
neighborhood, d = αd0, where d0 is the linear size of the
agent.

Figure 2 shows that the effect of α on the mean compu-
tational cost depends on the ruggedness of the landscape. As
expected, when α < 1, so that the interaction distance is less
than the size of the agent d0, the agents explore the state space
practically independent of each other and the computational
cost is essentially the same as the cost of the independent
search, which is very little sensitive to changes on M, provided
that M � 2N (see Ref. [7] for the analytical derivation of the
computational cost of the independent search). The parameter
α correlates strongly with the average connectivity 〈k〉 of
the influence network, which is solely determined by the
influence neighborhoods of the agents and by the system size
M, as shown in Fig. 3. This correlation explains the effect
of α on the performance of the search. In fact, since for
the smooth landscape (K = 0) the fitness of the agents offer
reliable information about their distances to the global maxi-
mum, expanding the influence neighborhoods while keeping
M fixed increases the odds of finding a high fitness model
agent, which then boosts the system performance. In this
case, the best performance is achieved by a fully connected
system, which is shown in Fig. 2 as a solid curve for clarity
purposes, although the results were also obtained through
simulations.

The scenario changes drastically for the rugged landscape
(K = 4) due to the presence of local maxima whose main
detrimental effect is to uncouple the fitness of an agent from
its distance to the global maximum. As a result, agents at
local maxima spread unreliable information to their followers
that may trap the entire system in a suboptimal solution.
The catastrophic performance observed in the case of densely
connected networks and large system sizes is akin to the
Groupthink phenomenon [8], when everyone in a group starts
thinking alike, which can occur when people put unlimited
faith in a leader (the model agent). A way of circumventing
Groupthink is to limit or delay the flow of information among
the agents and this can be achieved by reducing their influence
neighborhood or, equivalently, the average connectivity of
the influence network [37] (see Fig. 3). There is, however,
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FIG. 2. Mean computational cost 〈C〉 as function of the system
size M for the position-fixed scenario (δ = 0). The imitation prob-
ability is p = 0.5 and the radius of the influence neighborhood is
d = αd0 with α = 0.25(�), 1(�), 2(�), 5(�), and 10(•). The solid
curve is the result for the fully connected system and the dashed
curve is the analytical result for the independent search [7]. The
upper panel shows the results for the smooth landscape (K = 0) and
the lower panel for the rugged landscape (K = 4).

a tradeoff between avoiding the local maximum traps and
optimizing the search performance. For instance, the choice
α = 1 (see lower panel of Fig. 2) avoids those traps altogether
and always yields a superior performance compared with the
independent search, but it misses the optimal performance that
can be achieved for larger values of α at M ≈ 12. These large
values of α, however, expand the influence neighborhoods
thus making the system much more susceptible to Groupthink
as shown in Fig. 2.

Large systems increase the attractivity of the local maxima,
thus producing the undesired Groupthink, because they allow
the existence of several copies of the model agent in a same
influence neighborhood. Although the model agent can escape
the local maximum by flipping a bit at random according to
the rules of the imitative search, the extra copies will quickly
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FIG. 3. Average connectivity 〈k〉 of the influence network as
function of the system size M for the position-fixed scenario (δ =
0). The radius of the influence neighborhood is d = αd0 with α =
0.25(�), 1(�), 2(�), 5(�), and 10(•). The solid curve is the result
for the fully connected network, 〈k〉 = M − 1. For M → ∞ we have
〈k〉 → πα2.

attract the updated model agent back to the local maximum,
resulting in the very high computational costs shown in Fig. 2
for the rugged landscape. For the smooth landscape, however,
a large system size results in an increased computational cost
(though it is always smaller than the cost of the independent
search) simply because of duplication of work since only M ≈
N = 12 agents are necessary to explore the neighborhood of
the model string and thus to find a fitter string that is closer to
the global maximum.

For small system sizes M and α not too small, the results
of Fig. 3 (and of Fig. 2 as well) show that the system is
fully connected, i.e., 〈k〉 = M − 1. This happens because the
density ρ (and hence d0) is kept constant so that when M
changes, the linear size L of the square box changes too,
while the radius of the interaction neighborhood d = αd0

remains the same. As a result, for small M (and small L) the
interaction neighborhood of an agent is likely to comprise the
entire square box. In the other extreme, M → ∞ (and hence
L → ∞) the agents are uniformly distributed over the square
box and so the average number of agents inside the interaction
neighborhood of area πd2 is simply Mπd2/L2 = πα2, in
agreement with the results of Fig. 3.

B. Mobile-agents scenario

We turn now to the more interesting situation where the
agents move in random directions with a step of fixed length
δd0. The obvious effect of this motion is to make the influence
neighborhood of the agents volatile, but the manner this
volatility influences the performance of the imitative search
is far from obvious as we will see next.

Figure 4 shows the influence of the mobility on the com-
putational cost for our two fitness landscapes. A nonzero step
size δ produces only a mild degradation on the performance of
the search for the smooth landscape (K = 0) and so the effect
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FIG. 4. Mean computational cost 〈C〉 as function of the system
size M for mobile agents with step sizes δ = 0(•), 0.5(�), 1(�),
and 100(�). The imitation probability is p = 0.5 and the radius of
the influence neighborhood is d = αd0 with α = 2. The solid curve
is the result for the fully connected system and the dashed curve is
the analytical result for the independent search [7]. The upper panel
shows the results for the smooth landscape (K = 0) and the lower
panel for the rugged landscape (K = 4).

of the mobility in this case is hardly noticeable. For the rugged
landscape (K = 4), however, the mobility is very effective in
avoiding the traps of the local maxima without the incurred
tradeoff observed in the position-fixed scenario. This is so
because the mobility does not change the average connectivity
of the influence network. In fact, measurement of the mean
degree of the agents by averaging over all the configurations
in a run and then averaging over distinct runs yields the same
results obtained for the position-fixed scenario (see Fig. 3).
Hence, the random motion of the agents does not alter the
nature of the influence network. This observation makes the
results of Fig. 4 even more remarkable since it reveals that
the change in the computational cost is a genuine effect of the
mobility of the agents and not a consequence of changing
the connectivity of the influence network. Of course, if the
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FIG. 5. Mean computational cost 〈C〉 as function of the system
size M for mobile agents with step size δ = 5. The imitation prob-
ability is p = 0.5 and the radius of the influence neighborhood is
d = αd0 with α = 0.25(�), 1(�), 2(�), 5(�), and 10(•). The solid
curve is the result for the fully connected system and the dashed
curve is the analytical result for the independent search [7]. The
parameters of the rugged landscape are N = 12 and K = 4.

system is fully connected, then the mobility will not affect the
performance of the search.

Figure 5 reveals the intricate interplay between the param-
eter δ, which specifies the length of the step δd0, and the
parameter α, which determines the radius of the influence
neighborhood αd0. For large α, the computational cost is little
affected by the mobility of the agents since the odds that an
agent becomes isolated and thus escapes the influence of the
local maxima is negligible in this case. For small α the mobil-
ity is irrelevant too, as the agents remain isolated regardless
of their wanderings on the square box. There is, however, a
range of values of α where the mobility is very influential and
produces antagonistic effects on the computational cost. For
instance, comparison with the lower panel of Fig. 2 indicates
that the mobility increases the cost and hence is detrimental
for α = 1, whereas it decreases the cost and hence is beneficial
for α = 2.

The effect of mobility is more noticeable in Fig. 6 where
we fix the system size to M = 53, which corresponds to
the maximum of the computational cost in the lower panel
of Fig. 4, and vary the step size δ over several orders of
magnitude. Since for this system size the trapping effects of
the local maxima are maximized, moving the model agents
far away from their clones is an efficient way to mitigate
the influence of those maxima, as seen in the case α = 2.
When the influence of the local maxima is already reduced
due to the small influence neighborhoods of the agents, as
in the case of α = 1.5, the mobility can actually help their
dissemination over the square box, resulting in the increase
of the computational cost. In any event, a large step size δ

guarantees that the imitative search always outperforms the
independent search.

To verify the soundness of our claim that the high compu-
tational cost is caused by the loss of diversity of the system
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FIG. 6. Mean computational cost 〈C〉 as function of the step size
δ for a system of size M = 53. The imitation probability is p = 0.5
and the radius of the influence neighborhood is d = αd0 with α =
1.5(�), 1.8(�), 1.9(�), and 2(•). The horizontal dashed line is the
result for the independent search 〈C〉 ≈ 1.12. The parameters of the
rugged landscape are N = 12 and K = 4.

when the search is trapped in the local maxima, we consider
the time-dependence of the mean pairwise distance between
the M strings in the system

H̄ = 2

M(M − 1)

M−1∑
k=1

M∑
l=k+1

h(xk, xl ), (3)

where

h(xk, xl ) = 1

2
− 1

2N

N∑
i=1

(
1 − 2xk

i

)(
1 − 2xl

i

)
(4)

is the normalized Hamming distance between the bit strings
xk and xl [38]. The quantity H̄ can be interpreted as follows:
If we pick two strings at random, then they will differ by NH̄
bits on average, and so H̄ measures the diversity of the strings
in the system. Figure 7 shows the effect of the step size δ

on the time evolution of H̄ for single runs of the imitative
search. The panels show the results for two values of the
radius of influence of the agents αd0, viz., α = 2 and α = 4.
Since the initial strings are chosen randomly, one has H̄ = 0.5
at t = 0, which corresponds to the maximum diversity. For
α = 2, highly mobile agents can maintain the high diversity
of the system during the entire search, thus indicating that
the local maxima have little influence on the computational
cost in accord with Fig. 4. In the case of motionless agents
(δ = 0), however, the diversity decreases somewhat abruptly
in the first half of the search, resulting in a situation where the
strings differ from each other by 2.5 to 3.5 bits on average,
which hints that the search is stuck in local maxima. In
the second half of the search, the diversity increases slowly,
suggesting that a fraction of the agents managed to escape
the local maximum traps and found their way to the global
maximum. For α = 4, the trapping effects of the local maxima
are greatly enhanced, as expected. Although highly mobile
agents can delay the fall into those traps, the search eventually
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FIG. 7. Time evolution of the mean pairwise Hamming distance
H̄ for single runs of a system of size M = 53 and step sizes δ = 0,
δ = 10, and δ = 100 as indicated. The time t is scaled by the halting
time t∗ of each search. The imitation probability is p = 0.5 and
the radius of the influence neighborhood is d = αd0 with α = 2
(upper panel) and α = 4 (lower panel). The parameters of the rugged
landscape are N = 12 and K = 4.

gets stuck resulting in the confinement of a substantial fraction
of the agents in the neighborhoods of the local maxima. These
results thus support our claim that the loss of diversity (i.e.,
Groupthink) due to the trapping effects of the local maxima
is the ultimate culprit for the high computational cost of the
imitative search.

In our model, the exploration of the state space of the NK-
fitness landscape halts at t∗ when one of the agents reaches
the global maximum. If, however, the search is allowed to
continue, then the agent that first found the global maximum
will quickly attract the rest of the group to its neighborhood,
similarly to what happens for the local maxima. The strength
of the attraction decreases with increasing mobility as shown
in the lower panel of Fig. 7. Hence, a considerable number
of agents will be at or in the close vicinity of the global
maximum after t∗, so a more stringent halting criterion will
not significantly affect the computational cost.

A word is in order about an intriguing feature of the
imitative search manifested in Figs. 2 and 4 for the rugged
landscape (K = 4), namely, the appearance of a shallower
minimum of the computational cost for M ≈ 300 and not too
large step sizes. The explanation has to do with the antag-
onistic effects of varying the system size. On the one hand,
increasing M beyond the optimal size (M ≈ 12) allows the
appearance of clones of the model string, which strengthens
the attractivity of the local maxima and leads to the sharp
increase of the computational cost shown in those figures.
On the other hand, increasing M makes the network sparser
and delays the flow of information over it, which reduces
the influence of the local maxima. To see this we calculate
the average path length l̄ of the influence networks, defined
as the average number of steps along the shortest paths for
all possible pairs of network nodes [39]. This calculation is
done for systems with α � 2 only, for which the shallower
minimum appears (see Fig. 2) and whose influence networks
have a high average connectivity 〈k〉 > 12 (see Fig. 3) so we
can guarantee that they are connected. For the (connected)
influence networks with fixed d = αd0 we find that l̄ increases
with M0.47 as in the regular square lattice [40] (it increases
with ln M for Erdős-Rényi graphs [41]), which justifies our
claim that information flows slower for large M. It is this
weakening of the influence of the local maxima that leads to
the shallower minimum of the computational cost exhibited in
Figs. 2 and 4. Last, further increase of M leads to performance
degradation due to the duplication of work as in the case of the
smooth landscape.

The antagonistic effects of increasing the system size on
the dynamics of the search (creation of clones boosts the
attractivity of the local maxima) and on the topology of the
influence network (slow down of the flow of information in
the system) are behind the nontrivial outcomes discussed in
this section. In addition, the position-fixed scenario (δ = 0)
yields the best performance for the second-best system size
because for sparse networks (see, e.g., the results for α = 1.5
in Fig. 6) the mobility speeds up the dissemination of the local
maxima over the square box.

Finally, we mention that we also considered different
realizations of rugged landscapes with K = 4, as well as
landscapes with distinct degrees of epistasis, and found that
the same qualitative conclusions regarding the roles of the
parameters α and δ hold true for every landscape realization.

V. DISCUSSION

It has long been known that patterns of communication,
i.e., who can communicate with whom, have a strong influ-
ence on the problem-solving efficiency of groups [42,43] (see
Refs. [44,45] for more recent contributions). These studies
focused on imposed or fixed communication patterns, which
is typical of the military and industrial organizations, thus
excluding a priori the possibility of self-organization of the
group members. A simple way to introduce flexibility on the
patterns of communication is to allow the agents to roam
around an arena where they can interact with each other if
the distance between them is less than a prespecified thresh-
old. Within this roaming scenario, we study the performance
of cooperative problem-solving systems that use imitative
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learning [6] as the search strategy to find the global maxima
of NK-fitness landscapes.

We find that for smooth landscapes, i.e., landscapes with
a single maximum, mobility is always slightly detrimental
to the imitative search performance. Hence, in the case the
information exchanged among the agents (i.e., their fitness
values) correlates strongly with their distances to the global
maximum, the best strategy is to maintain and strengthen the
local spatial correlations between the agents by keeping them
fixed at their initial positions. However, for rugged landscapes,
where the presence of local maxima uncouples the fitness
values from the distances to the global maximum, imitation
of high fitness agents may lead to entrapment in the local
maxima. In this case, mobility offers a mechanism to circum-
vent those traps with the guarantee of always outperforming
the independent search and reproducing the overall optimal
performance achieved by fully connected small systems.

We stress that our study of the imitative search does not
seek to offer an alternative heuristic to tackle optimization
problems. Rather, it seeks to assess quantitatively the potential
of imitative learning as the underlying cooperative mechanism
of task-oriented groups. In fact, since finding the global
maxima of NK landscapes with K > 0 is an NP-Complete
problem [30], we do not expect that the imitative search (or,
for that matter, any other search strategy) will reach those
maxima much more rapidly than the independent search.
However, finding the solution much more slowly than the in-
dependent search, as observed for certain values of the group
size M (see, e.g., Fig. 5), is a bad omen for a search strategy.
But this negative outcome is actually the main thrust of the
imitative search since it is akin to a well-known maladaptive
behavior associated to social learning, namely, the Groupthink
phenomenon that occurs when everyone in a group starts
thinking alike [8].

Nevertheless, it is instructive to compare the imitative
search with the evolutionary algorithms [46] as there are
clear similarities between those two heuristics. In particular,
flipping a randomly chosen bit of the target string resembles
the mutation operator of the evolutionary algorithms, except
that in those algorithms mutation is an error of the reproduc-
tion process, whereas in the imitative search flipping a bit at
random and imitating the model string are mutually exclu-
sive processes. In addition, imitation resembles the crossover
process of genetic algorithms, with the caveat that the model
agent is a mandatory parent in all mates but it contributes
only a single bit to the offspring, which then replaces the
other parent, namely, the target agent. More importantly, the
bit passed to the offspring is not random since it must be
absent in the target string. This aspect highlights the fact
that the imitative search models cultural, rather than genetic,
inheritance.

An appealing feature of the imitative search strategy as
a model of human cooperation in problem solving is the
emergence of Groupthink. Real-life remedies for this issue
include the call for outside experts to share their viewpoints
with the group members and the leave of members to facilitate
exposure to fresh ideas outside the influence of the group.
Both ventures involve the notion of mobility, hence our in-
terest in finding out whether mobility has similar beneficial
effects on the imitative learning search too. However, the way

we introduce mobility in the search, such that all members
of the group can move thus allowing a group to break apart
due to the motion of its members, does not tally with the
aforementioned remedies. A metapopulation approach where
the group is composed of stable subgroups and the agents can
migrate between them seems to offer a more suitable scenario
to describe those situations. Nevertheless, our scenario offers
a first step in the study of the effects of the flexibility on the
patterns of communication and our finding that the random
motion of agents can avoid Groupthink supports the common
sense view that some kind of mobility is beneficial to group
problem solving.
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APPENDIX

In this Appendix we sketch a probabilistic description
of the states of the agents evolving under the rules of the
imitative search described in Sec. III. We begin by introducing
some notation. The state of agent k is represented by the
binary string xk = (xk

1, . . . , xk
N ) with xk

i = 0, 1; i = 1, . . . , N
and k = 1, . . . , M. The set of agents, including agent k, in
the influence neighborhood of agent k is denoted by �k . At
time t , the model agent m in �k is represented by the string
xm so that F (xm) � F (xl ) for all l ∈ �k . In addition, we let
x̃ki = (xk

1, . . . , xk
i−1, 1 − xk

i , xk
i+1, . . . , xk

N ) represent the state
of agent k that differs from xk solely at bit i.

Since in the elemental time interval �t = 1/M application
of the update rules results always in the flipping of one bit of
the target agent, the state of agent k will only change when it
is chosen as the target agent, which happens with probability
1/M. The probability Pt+�t (xk ) that agent k is represented by
the string xk at time t + �t is then written as

Pt+�t (xk ) = 1

M
(1 − p)

1

N

N∑
i

Pt (x̃ki )

+ 1

M
p

1

N

N∑
i

Pt (x̃ki )δ(x̃ki , xm)

+ 1

M
p

1

N

N∑
i

Pt (x̃ki )	(xk, x̃ki , xm)

+
(

1 − 1

M

)
Pt

(
xk

)
, (A1)
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where

	(xk, x̃ki , xm) = [1 − δ(x̃ki , xm)]δ
(
xk

i , xm
i

)
∑N

j

[
1 − δ

(
x̃ki

j , xm
j

)] , (A2)

with δ(x, y) = 1 if the binary strings x and y are identical and
δ(x, y) = 0, otherwise. We have also used the scalar version
of this function, namely, the Kronecker δ, δ(x, y) = 1 if x = y
and 0, otherwise.

The first term on the LHS of Eq. (A1) describes the random
flipping of a bit, which occurs with probability 1 − p, and
accounts for the possibility that at time t the state of agent
k is x̃ki and that bit i is flipped. The second term on the LHS
of Eq. (A1) describes the imitation procedure, which happens
with probability p, for the special situation where agent k,
whose state is x̃ki , is the model agent at time t . We recall that
in this case, the target agent flips a bit at random. The third
term on the left-hand side of Eq. (A1) describes the general
imitation process when the target string differs from the model
string. As before, the state of agent k at time t is x̃ki , but now
bit i must be copied from the model string. The probability of
this event is given by the reciprocal of the number of different
bits in strings x̃ki and xm, i.e., the reciprocal of the Hamming
distance between these two strings. We note that x̃ki and xm

differ by one bit at least, namely, bit i, so the denominator
in Eq. (A2) never vanishes. Finally, the fourth term on the
left-hand side of Eq. (A1) accounts for the case that the state

of agent k at time t is xk and that this agent is not chosen as
the target agent.

Using �t = 1/M we can rewrite Eq. (A1) as

�Pt (xk )

�t
= −Pt (xk ) + 1 − p

N

N∑
i

Pt (x̃ki )

+ p

N

N∑
i

Pt (x̃ki )δ(x̃ki , xm)

+ p

N

N∑
i

Pt (x̃ki )	(xk, x̃ki , xm), (A3)

where �Pt (xk ) = Pt+�t (xk ) − Pt (xk ). Hence, the continuous-
time limit is obtained for M → ∞. To take into account the
fact that the search stops at the global maximum xg, we need
only to add the proviso that xg does not appear in the argument
of Pt on the LHS of Eq. (A3), i.e., xg is a perfect trap. In
addition to the high dimensionality of the state variables, the
difficulty to iterate Eq. (A3) is due to the determination of
the model string xm, which is actually the term that couples
the M agents in the system. In particular, xm is the string
that maximizes F (xl ) for l ∈ �k with the constraints that
Pt (xm) > 0 and xm �= xg, since the global maximum is never a
model string in the imitative search. Finally, we note that in the
case of mobile agents we need to include a time dependence
on the influence neighborhoods �k and specify how they
change with time.
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