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In this work, we will show how the topological order of the Toric Code appears when the
lattice on which it is defined discretizes a three-dimensional torus. In order to do this, we
will present a pedagogical review of the traditional two-dimensional Toric Code, with an
emphasis on how its quasiparticles are conceived and transported. With that, we want
to make clear not only how all these same quasiparticle conception and transportation
fit into this three-dimensional model, but to make it clear how topology controls the
degeneracy of ground state in this new situation.
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1. Introduction

According to the literature, many things can be said about the Toric Code (TC),
as (i) it is a toy model interpreted as a quantum error correcting code as well as
an example of a stabilizer code [1], (ii) in which, although it is a self-dual model,
its thermal fragility [2] is one of the main problems for its physical realization etc.
However, despite these “problems for its physical realization”, one of the reasons
why many researchers turn their attention to this model and one of its general-
izations, the so-called Quantum Double Models (QDM), is the fact that all these
models have topological order [3| |4].

Although many experimentalists are accustomed to employing the term “topo-
logical order” when they encounter two-dimensional physical systems that, for
instance, exhibit a ground state degeneracy and fractional statistics quasiparti-
cles, we must remember that the term “topological” is of mathematical origin [5].
As a deduction we can affirm that, by theoretical point of view, this means that
all these experimental properties are determined, in some way, by the topology of
the two-dimensional manifold where these systems are defined. By the way, this is
exactly what happens with the TC and the QDM.
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Based on this statement, the purpose of this paper is to present a pedagogical
text where, in addition to showing how the topology determines the properties
mentioned above in the TC, we construct one three-dimensional generalization of
this model that overcomes this two-dimensional limitation so that it is possible to
evaluate the foundations of its topological order. In order to do this, the next section
will show a “brief” and judicious review of the two-dimensional TC, and in Sec.
we present the main considerations that allow us to define three-dimensional code
models. Only in Sec.[4} do we present a three-dimensional generalization of this TC
by using the discretization of a three-dimensional torus and, lastly, in Sec. |5 we
present some final remarks.

2. General Properties of the Toric Code

Roughly speaking, we can say that the TC is a model whose construction is based
on at least two ingredients: (i) a lattice Lo (usually square) that discretizes a two-
dimensional torus Ts; and (ii) vectors of a two-dimensional Hilbert space )2, which
is associated with the jth edge of Lo, whose basis is {|g) : g € Z2}. As these vectors
can be interpreted as a generalization of classical bits, they are called quantum bits
(qubits) [6].
One of the consequences of this association scheme is that, by supposing that
this lattice is formed by N, edges,
Hrc =HY =H2 @ @ Ny (2.1)
N, times
is the total Hilbert space associated with Lo, as long as each lattice edge corresponds
to only one $)5. In this fashion, by noting that the computational proposal behind
the TC allows us to interpret it as a model that pretends to be physical, one of
its main characteristics becomes apparent: all its “physical operators”® that act on
$Hrc must be Hermitian |7, 8]. One of these “physical operators” is the Hamiltonian

Hrc=-Y A,— Y By, (2.2)
v f
which is given by the linear superposition of the operators

Ay =[] oF and By=[] o} (2.3)

JESy JESY

operator [3]

such that:

e S, and Sy are two subsets containing edges that, as shown in Fig. |I|, give structure
to the vth vertex and the fth face of L, respectively; and
e the Hermitian operator |9

g;ﬂ,yyz =0L® LRV RILRQ QI (2.4)
-~ ~—
(7—1) times (Ne—j) times

2That is, all its operators that can measure some “physical” property of this toy model.
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Fig. 1. (Color online) The piece of a square lattice Lo where we see (i) the baby blue-colored
sector centered by the vth vertex of this lattice, whereas (ii) the rose-colored sector refers to the
fth face whose centroid can be interpreted as one of the vertices of a dual lattice £3 (dashed).
Here, the highlighted edges (in black) define the subsets S, and Sj.

acts not identically only on the subspace assigned to the jth edge due to its
composition as a tensor product involving a single Pauli operator %% : $5 — 99
and other N, — 1 identity operators.

As a matter of fact, it is good to remember that, when we say that an operator is
a Hamiltonian, this operator must be able to measure the total energy of the system
it represents. And the best way to understand how Hrc measures the TC energy is
by analyzing the behavior of operators that define it, more specifically when
these operators act on one of the 2V¢ elements

lp1) @ - @ |pN,) (2.5)

of a basis of $HT¢. After all, since Hilbert spaces are examples of vector spaces, if we
understand this action we will understand what appears from the action of these
operators on any element of $H ¢ . By the way, as is a tensor product of
the N, elements |0) and |1),> an interesting conclusion arises: the vertex (4,) and
face (By) operators defined in commute.

bElements which can be interpreted as the eigenvectors of the Pauli operator o% in a matrix
representation

s (0 1 y_ (0 —i . (1 0
g —(1 0)7 o _(i O) and o _(O _1). (2.6)

that rests on a basis {|0), |1)} where
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Although the main result that help us to understand the behavior of the Hamil-
tonian (2.2) as an “energy meter” is

(Av)2 — (Bf)2 =L --@L=1,,

N, times

(because it shows us that the eigenvalues of A, and By are only equal to 1 and
—1), the commutativity among these vertex and face operators has great relevance
for this understanding. After all, as

e the measurement performed by A, does not interfere in the measurement per-
formed by By and vice versa, and
o the smallest energy Ey = —(N, + Ny) associated with this system occurs when

Ayléo) = |€0) and  Bgléo) = [&o) (2.7)
is satisfied for all IV, vertices and Ny faces that structure Lo,

this commutative property allows to conclude that [12]

my - 1
[ >—ﬁ101<nv+Av)|o>® ® 0) (2.8)

N, times
is an eigenstate that satisfies (2.7)); in other words, (2.8 is one of the TC vacuum
states.

2.1. About the ground state

Evidently, there is a good reason we say that is just one of the vacuum states:
there are others. Nevertheless, before we present these other vacuum states, we
think it is more pedagogical to show to the reader how it is possible to withdraw the
system from any of its vacuum states. After all, as this will allow us to understand
gradually how the entire TC energy spectrum is built, it will make us understand
how the topology controls the non-univocity of the ground state.

2.1.1. First excitations

In order to understand the TC energy spectrum, let us consider a state

€y = ot |est). (2.9)

By considering that a and g are any of the super indexes z, y and z, as the
commuting properties between Pauli operators o® and ¢” lead us to

a B _
U-O(Tk—

J (2.10)

a,f oof, otherwise,

{—Ufoaf, ifa# 8 and j=k, and
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this allows to note that

Bple'y = | [ o7 | ootle”) = oo | T] ozl&) | = —ot|&l”) = —I¢)

jGSf/ jGSf/
(2.11)

when the kth lattice edge belongs to Sy; that is, |{') does not satisty at least one
of the conditions listed in and, therefore, cannot be considered as a vacuum
state. Furthermore, as Lo discretizes the surface of a two-dimensional torus and,
then, also applies to a fth face such that k = Sy N Sy, the energy related

to non-vacuum is
E,=FEy+4
because, for N, vertices and other Ny — 2 faces that complete L2, we have
Aylg') =€) and Byl¢') =[¢).
An entirely analogous comment also applies to state
") = of[es”) (2.12)

where the kth lattice edge belongs to S, NS,~. In this new case, as (2.10]) implies
not only that

Ay |§") = Av|§") = ("),

but also ensures that

A,[¢") =1€") and  Byl¢") = [¢")

are still valid for the remaining N, — 2 vertices and Ny faces that complete Lo,
we can conclude that the energy of also is F7 because the same number of
constraints that defines the ground state was again violated.

According to all that we have just presented, it is immediate to conclude that
these vertex and face operators are unable to change any of 7 or :
the only thing that these operators actually do is check whether these states can
be identified locally as a vacuum or not, further reinforcing the counting scheme
performed by the Hamiltonian . Anyhow, due to the capacity that A, and By
have to localize excitations on the vertices and faces of L5, we need to clarify two
statements.

The first one is that, as illustrated in Fig. [2] all these local elevations of energy
can be realized as quasiparticles:

e in the case related to eigenstate , for instance, we can associate this non-
vacuum (which is signalled only on two neighboring faces f’ and f”) to the
existence of two quasiparticles (one on each of these faces);

e in the case of the eigenstate (2.12)), this quasiparticle association is due to the
signalization of non-vacuum only on two neighboring vertices v" and v (scilicet,
one excitation on each vertex).
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Fig. 2. (Color online) The piece of L2 where: two quasiparticles (in red) were created, in two
neighboring vertices (baby blue-colored sector), due to the action of the operator o7; and two
quasiparticles (in blue) were created, in two neighboring faces (rose-colored sector), due to the
action of the operator cf;.”.

The second statement that we must clarify here is a consequence of this quasi-
particle realization. After all, although the quasiparticles associated to and
have the same energy, we cannot prove they are the same because they are
detected by operators which act effectively in different lattice sectors. In spite of
this distinct argument is perfectly correct, it may be weaker than another we will
give soon. However, as these quasiparticles may really be different from each other,
from now on we will denote those that are detectable by the vertex operators as type
e, whereas those that are detectable by the face operators are denoted as type m.

2.1.2. The transport of quasiparticles

Due to what we have seen so far, it is not hard to conclude that and
are not the unique non-vacuum states of the TC, nor is it difficult to conclude that
the energies associated with all these possible non-vacuums can assume only values
E,, = Eg + 4n, where n is a non-null natural number. Yet, in order to understand
the properties of the quasiparticles associated with these possible non-vacuums,
instead of “going crazy” trying to list all them, we can make a simpler and more
general analysis by using states such as

&) = oflés"). (2.13)
And the property that will be most useful for this analysis is
(09)* =1, (2.14)

By the way, something that is clear of (2.14)) is that, as the action of of on the
|€) causes the system to return to the vacuum condition (2.8]), all quasiparticles
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created by this operator can be interpreted as their own anti-quasiparticles: when
an operator

o = o9 oof (2.15)

acts on 7 it annihilates a quasiparticle pair in the vicinity of a kth edge at
the same time that it will create another (with the same properties as the one
who was annihilated) in the adjacencies of the jth edge. In this fashion, one of
the more natural interpretations that emerges is that can be seen as a kind
of “quasiparticle pair teleport operator”; strictly speaking, it is an operator that
causes a quasiparticle pair, which was in the vicinity of a kth edge, to reappear
around a jth edge that may be completely arbitrary.

Although the term “teleportation” always raises interesting ideas, even more
interesting is the what arises from the action of a single O7; on when j and
k are indexing two distinct edges that belong to the same S,. After all, since (i)
these two lattice edges share a same vertex v and (ii) the superposition of two
quasiparticles e at any vertex is identified as a local vacuum, the number of quasi-
particles associated with the system after the action of O, remains intact. Thus, if
we analyse the action of this operator in the “disassembled way” that, for instance,
is shown in Fig. [3] it is possible to interpret the disappearance of the quasiparticle
e (which was in the vth vertex) as its transport to one of the neighboring vertices

L 4 L 4 . 4 . 4
O ®) @) ®)

L 4 L 4 @
O O O O

\ 4 4 4 \ 4 O 4

Fig. 3. (Color online) On the left, we have two quasiparticles e (in red, in two vertices of L2) due
to the action of a single operator of where before it was a vacuum. On the right, we have same
lattice region in the posterior time, where only one of these quasiparticles was annihilated by the
action of sz. because j and k are indexing adjacent edges. In this last case, as such annihilation
was accompanied by the creation of a new quasiparticle over a third vertex, we can interpret
this process as a quasiparticle transport over L. Note that the other two vertices (highlighted in
cyan, which also belong to the unit circle centered in the green point) correspond to the other two
positions to which this quasiparticle e could have been carried by an operator O'JZ.,.
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which belong to unit circle in a Tazicab Geometry |13]. Moreover, by the same
reasoning (which leads to Ofk) also leads us to a more general transport operator

0: =[] (2.16)
JeY
where « is a path consisting of a greater number of edges two to two neighbors,
when we consider « as closed another interesting result becomes evident: as for this
closed path there is no quasiparticle associated,

€Y = 0z [€lV) (2.17)

is also a vacuum state of the TC.
Obviously this same transport interpretation also extends to an operator

or. =] oF (2.18)

that uses a path v* composed of edges that are two to two neighbors by the point
of view of the dual lattice £3, such as shown in Fig. [d] as well as this vacuum
interpretation also extends, for instance, to the other eigenstates

Y = 02,16y and €M) = 0% 0 02 ¢SV (2.19)

if v* is also a closed path. However, it is precisely in the light of these (2.8)),
and vacuum states that we need to make an important observation, which
is specifically related to the fact that the TC is defined on a two-dimensional torus
discretization.

2.1.3. The degeneracy of the ground state

When we take a lattice such as Lo, it is not difficult to realize the large number
of closed paths 4 and ~4* that can be defined by using its edges, provided that
this lattice discretizes a manifold with a good resolution. Yet, as Lo discretizes a
two-dimensional torus, it is important to note that some of these closed paths have
a specific property: they are non-contractile.

Despite the concept of contraction is better understood for closed curves in a
manifold (provided there are continuous applications which shrinking these closed
curves to a single point [14]), the characterization of a contractile path on £, is due

to the possibility of reducing any (2.17)) or (2.19) to the first vacuum state (2.8)). In

order to understand how all this works in the TC, it is interesting to note that, as

e the set Sy is composed by all the edges that belong to the boundary of the fth
face of Lo, whereas

e each of the edges of S, intersects only one of the dual edges that complete the
vth face of L3 (or, equivalently, the vth dual face of L),

A, and By cannot transport a quasiparticle to a position other than the one it
occupies: as illustrated in Fig. [5] due to (2.14]) these operators can only deform
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Fig. 4. (Color online) In the top figure, one pair of quasiparticles m (in blue) was created due
to the action of operators a;” on the subspace associated with the highlighted lattice edges (in
black). In the bottom figure, we have the same situation seen from the point of view of the dual
lattice £3: that is, this same quasiparticle pair was created by action of the same operators U;-E on
the dual lattice edges (highlighted in dashed black) that are two to two neighbors.

the (closed) paths in which they act. In this way, when we consider that F4 and
Fp are two applications composed by a finite number of vertex and face operators
respectively, since

FAOO,J;*:O:*OFA:]ITC and FBOO,ZYZOLZYOFBZ]ITC (220)

are valid only if v* and ~ correspond to the discretization of contractile paths whose
interiors contain the vertices and faces on which F4 and Fp act, respectively, we
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Fig. 5. (Color online) On the left, we have a pair of quasiparticles e that was created by the
action of an operator OF on the path ~' of the edges highlighted (in black). On the right, we see
the deformation of this same path after the action of a single By, on one of the faces (rose-colored
sector) that share edges with v due to property .

conclude that the non-contractility of some path (whether dual or not) is defined
via the non-verification of some equality in .

Indeed, the simple fact that Lo discretizes a two-dimensional torus implies the
existence of non-contractile closed paths 4 and 4*, as shown in Fig.[6] And the main
consequence of this is that, unlike vacuum states and are reducible to

Fig. 6. (Color online) Here we have a torus 72 discretized by the square lattice L2. Note that,
although it is possible to define contractile paths in L2, two curves deserve attention: one 4, (in
red) that contour the 73 loop, and another 44 (in blue) that contour the hole that characterizes
T2 as a torus with genus one. These two closed paths, as well as all their possible deformations,
are examples of non-contractile paths in Lo, which should be interpreted as the discretization of
the curves that generate the fundamental group of T2 (i.e. the first homotopy group =1 (72)).
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the first , the states
67y =0z le”), 1&”) =0 [&") and |&7) =05, 0 O, |&7),

which are defined by using curves that are non-contractile in distinct directions,
do not seem to be reducible to neither or to each other. Here, the symbol C
should be interpreted as either: the non-contractile 7, if the indices o and [ are
equal to z; or the non-contractile 4, if these indices are equal to z.

In spite of this observation of non-reducibility makes perfect sense, we need to
elucidate why we said “seem” in the last paragraph. And the reason we use this
term is very simple: as ¢* is completely unable to make any change

|0) < |1), (2.21)

0% is also completely unable to change the encoding that defines any TC state. In
other words, despite all the non-contractility of 4, an eigenstate such as

2 2101
&) = 031&") (2.:22)
does not define a new eigenstate that is fundamentally independent of (2.8]): only
(2)\ _ z |1 (3)\ _ =
|50 )= 03160 ) |50 )= 03;

o)) and [g") =05 005:16")  (2.23)

correspond to vacuum states independent of each other and with respect to the
first because their constructions rest on exchanges . Another way of
understanding this point is by noting that every face operator is a local “holonomy
meter”: thus, as the fact that By and ¢ commute can be interpreted as the inability
of 0% to deform the manifold that £, discretizes, really does not define a new
vacuum state by the topological point of view.

As the matter of fact, it is this four-fold degeneracy of the ground state that
makes clear one part of the topological aspect behind this model. After all, when we
analyze by using a physical point of view, all this non-contractility of closed
paths can be associated with four physical quantities that are conserved, i.e. four
physical quantities which cannot be exterminated by the action of vertex or/and
face operators. By the way, as these four conserved quantities correspond to four
different topological sectors, whose existence can only be detected by the action of
the operators

z z
Oﬁ1 and 0;12,

each of these sectors ends up being connected to one of the vacuum states in
and . Therefore, if we consider a situation of very low temperatures, for exam-
ple, we can give a physical interpretation to this four-fold degeneracy by associating
it with four different phases (coexisting in the same temperature regime) which
exist only due to the topology of the manifold where this system is defined [15],
what reinforces the comment made at the end of the last paragraph.
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2.2. A new quasiparticle

Just to complete all comments that may be related to the creation and transport of
quasiparticles, it is worth mentioning that, albeit we have already presented o} and

o5 as active agents in all these processes, nothing has been said about a;ﬂ whose

definition has already been given in (2.4).
In order to try to redeem ourselves and justify all this apparent omission, it is
essential to begin by noting that, if we consider

€y = o¥|esH) (2.24)
as a third example of non-vacuum state, the relations lead us to
A€y = —IE"),  AvlE") = -I€"),
Byl€") = —[¢") and By |") = —[¢"),

where a = S, NS,y NSNS, is indexing the single edge on which ¥ acts effectively.
Scilicet, ij creates alone four excitations: one in each of the vertices that enclose
this edge, one in each of the faces that share this edge, which raise the energy of
this lattice system to

Ey = Ey + 8.

Although (2.24) seems to behave as a non-vacuum state, there are at least two
peculiarities related to this joint excitation that deserves our full attention, and the
first of them refers to its transport.

2.2.1. First peculiarity

In an attempt to extend the transport mechanism presented above to the excitations
created by 0‘;—1, it is quite natural to take an operator

O}, =ojoadl. (2.25)

After all, as the action of this operator on would annihilate one quadruple
excitation of the ath edge adjacencies and would create another, with the same
properties, around the bth edge, it would be very comfortable if the only purpose
was to keep the system with the same energy. However, if we remember that the
possibility of transport excitations by operators which do not identify themselves
as a “teleportation” is real, it is also natural to make this transport using
operators such as

0y = H of or/and Of. = H of. (2.26)
JeY Jev*
By considering this latter possibility, it is perfectly reasonable to consider O%
as the simplest transport operators, where - is a path formed only by the bth edge

such that {a,b} € S,. Just as it is not difficult to observe that the number of
excitations detectable by vertex operators will be conserved along this transport,
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Fig. 7. (Color online) On the left, we see a single compound excitation, which is generated by
the action of a single oZ. On the right, we see exactly the same lattice region where, after the
action of the operator o7 on one of the neighboring edges of a, a single vertex excitation was
transported. Note that, in this transportation, the total energy of the system is not conserved.

it is also not difficult to note that the same thing cannot necessarily be said about
the excitations detectable by face operators. After all, as shown in Fig. [7] if these
two edges are such that

a€S;nS, and (b¢ Sp)V(b¢Sy),

the number of excitations detectable by the face operators will increase: this increas-
ing of energy does not happen only when

a€S;nS, and beS;US, US,US,. (2.27)

In this fashion, it is clear that, in the more general case where ~ is structured by
a greater number of edges two to two adjacent, the transport of these excitations
without any addition of energy is possible only if is satisfied for each pair of
edges that composes ~.

2.2.2. Second peculiarity

Although an analogous conclusion also follows for the action of a OE’Y* on , it
is interesting to explore the second peculiarity which we have suggested to exist.
And to understand this second peculiarity, we need to turn our attention to the
non-vacuum states

&y = O'; o O';J|£(()1)> and [¢"") = O']Z- o Uﬂéél)y (2.28)
After all, as (2.10]) also imply that
A€y = —|€"") and  Byl¢"") =€),

2030002-13



Rev. Math. Phys. 2020.32. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 12/23/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

M. F. Araujo de Resende

it becomes clear that, if this jth edge belongs to S, NSy, the operator o7 o a;’ can
be effectively interpreted as the same o7 that is capable of creating only quasipar-
ticles e.

Analogously, since also allows to observe that

_ ‘5/”//> 7
Y

o5 o0 can also be effectively seen as o} because both can create only quasiparticles

A |€/I///> — |€/////> and Bf |£/////> —

with properties similar to those of type m. In this way, in view of

e the fact that this new operator J? could create a pair of independent excitations
of the previous ones, and

e the desire to construct the TC as a model whose excitations can be transportable
without any addition of energy,

this effectivity leads us to the definition of an operator

cco_y»

_ T z _ _z x
;) =0j00; =0;00], (2.29)

that has nothing new. The only novelty here is that, as 1; and “cr?” are the two
elements that allow us to identify
{1,067, %%, 05} (2.30)

as an Abelian group, “c¥”

;" should be interpreted as the creator of a new excitation
defined as the union of a quasiparticle e with another of type m in the adjacencies
of a single edge, as shown in Fig. |8] This new quasiparticle, which we will label as

type ¢, it is recognized as a dyon.

Fig. 8. (Color online) Schematic drawing where we can identify one dyon (in yellow) as a pair of
quasiparticles (one type e and another type m) in the vicinity of a single edge.

2030002-14



Rev. Math. Phys. 2020.32. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 12/23/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

2D and 3D Toric Codes and the origin of their topological orders

2.2.3. A small parenthesis

Anyhow, it is important to take the opportunity provided by to look at
what looks like the third peculiarity related to this joint excitation that we have
just defined as a dyon: this € is created via the same operators that define the
Hamiltonian . In this fashion, by noting that all the quasiparticles e and m are
created by these same operators, we arrive at the following conclusion: as well as
in QFT, where Hamiltonians can be expressed in the Fock representation by using
the creation a' and annihilation a operators [16], the entire TC energy spectrum
can also be well understood from

e the knowledge of the ground state of this model, and
e the excitations created by the action of the operators that compose its Hamilto-
nian (2.2)) on this ground state.

As the matter of fact, if we note that these two operators a! and a need satisfy
the relationship

aa’ 4+ a'a = 1rc, (2.31)
in the TC and, so, they are such that
a'|0y = (1), all)=10) and af|]1) =al0)=0-]0)+0-]1), (2.32)

it becomes clear that all the operators defining the Hamiltonian (2.2)) can also be
expressed in terms of at and a: since the expression of these two operators (in terms
of the same basis chosen on page |3) is

i 0 O 01
a' = and a =
1 0 0 0

and this implies, for instance, that

+ 0 0 ; 10
n=a'a= and h=uaa' = ,
0 1 0 0

o®=a'+a and o°=ad’ —dla, (2.33)

we see that

further reinforcing the counting capacity of vertex and face operators, because QFT
considers itself n as a count operator (i.e. n counts how many particles are present
in a given physical state).

2.2.4. Fusion rules

When we analyze the identity operator 1; by the same perspective
]]-j = ]lj o ]lj (234)
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that , it is easy to conclude that all this scheme of quasiparticle pair creation
also extends to it. The only difference here is that the quasiparticle pair associated
with it must be composed of two vacuum quasiparticles which, whenever necessary,
will be denoted as type 1. This is what happens when, for instance, we need to list
the so-called fusion rules between the quasiparticles that belong to {1,e,m,e} in
the vicinity of a single edge. By according to what we have seen so far, the fusion
rules related to these elementary quasiparticles are given by

Ixl=exe=mxm=exe=1,

lxe=exl=mxe=e¢xm=e,
(2.35)
Ixm=mxl=exe=exe=m, and

lxe=exl=exm=mXxXe=c¢,

characterizing the Abelian behavior that was imposed on the group (2.30)).

2.2.5. Statistical description

In view of these quasiparticles are transportable without increasing the system
energy, before we finally close this section it is interesting to evaluate the statistics
of these quasiparticles. And the most effective way to do this is by analyzing what
happens when one of these quasiparticles spin around another.

By the way, one of the first things we can use for this evaluation is the fact that

where v7, v5, v, and =, are arbitrary paths. After all, if we consider an initial
state where a pair of quasiparticles e arises by the action of Of/T on any vacuum
state, and consider that one of them revolves around the other via a contractile
75, we can conclude that these quasiparticles behave like bosons among themselves
because implies that the state obtained at the end of this process is exactly
the same as the initial one.

Of course, this bosonic conclusion also extends to the situation where only two
quasiparticles m appear. Yet, as when one path 45 intercepts another «3 in a single
point we have

03003 =-05 00, (2.37)

it is immediate to conclude that a non-bosonic interpretation arises when a quasi-
particle e revolves around another one of type m via the shortest path and vice
versa. In order to understand this non-bosonic behavior, just take

|Einitial) = O+ © OF [&o) (2.38)

as an initial physical state where we have only two quasiparticle pairs due to the
action of Ofi; and O,Z73 in any vacuum states. After all, when a single quasiparticle e
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rotates around a single of type m via a contractile 7,, we have
|final) = OF, [initial)
= 024 o (szg o O§3)|§0> = (0574 o 0,7;3) o O§3|§0>
=— O,”f/g o (O;fy4 o O§3)|§0> = —Of”yg o Ofys o (O§4|§0>).
Thus, as and the contractility of 4, allows to recognize that

[IBso0z, =0z o [[ Bf =1rc =0z, =[] By

pEfy pEfy pEfy
(where f4 is the mazimal set containing the faces that are enclosed by ,), it is
clear that, thanks to (2.7), we have

|hinat) = =05 0 O3 0 (03, [€0)) = —O3; 0 OF |€0) = —&inivia);  (2-39)

i.e. a quasiparticle e, when revolving around another type m and vice versa, cannot
be interpreted as bosonic.

In reason of the minus sign in , two important comments can be made,
and the first one follows when we take the case where two quasiparticles form a
single dyon: after all, because 4, can be seen as the boundary of a single face, the
rotation of these two quasiparticles around each other can be interpreted as the
rotation of this dyon around itself. Thus, this minus sign in implies that a
dyon is a fermion [4].

The second comment is due to the fact that the rotation of a quasiparticle
around another is equivalent to a double exchange operation; in plain English, this
rotation is equivalent to an operation in which these quasiparticles change places
with each other and then return to their original positions due to a new exchange.
Therefore, as in the more general case (where these two quasiparticles do not define
a dyon) this minus sign in associates the statistic of these quasiparticles with
a phase ¢™/2 that does not identify either with 0 (bosons) or 1 (fermions), we can
conclude that quasiparticles e and m behave like anyons (spin-1/4) in relative to
each other.

2.2.6. One additional comment

Once it is possible to transport and, therefore, cause one quasiparticle to rotate
around another, one thing is certain: a quasiparticle e will never collide with another
of type m, and it is by cause this observation that the great argument arises in
favor of a distinction between two types (e and m) of quasiparticles.

However, as the minimum distance that can exist between them occurs when
both define a single dyon, it is at this point that we need to clarify the reasons
that led to their nomenclatures: after all, as the concept of anyon arose from the
advent of the Aharonov-Bohm Effect |17] (because it is possible to realize such any-
onic statistics for systems where one electric particle rotates around one punctual
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magnetic field on a two-dimensional surface [18]), it was possible to baptize the
quasiparticles which are detectable in the vertices as type e (electric), while those
that are detectable in the faces ended up being denoted as type m (magnetic).

3. Three-Dimensional Considerations

Although there are already some generalizations of the TC (as is the case of Quan-
tum Double Models (QDM)), the presentation we have made so far allows us to
construct others, quite simple, which clearly bring the TC as one of their particular
cases. One of these generalizations occurs, for instance, when we use the same TC
encoding in a model that uses a three-dimensional lattice L3: scilicet, by

e associating a single qubit with each one of the £3 edges, and
e defining physical operators capable of measuring the properties of this new model.

Of course, it is very comfortable to think that £3 can discretize a manifold M3
that, for instance, is identifiable as a three-dimensional torus 73; and, in fact, this
will be exactly one of the things we will do throughout this section, since, for conve-
nience, the manifold discretization we will adopt here will be cubic. However, before
attempting to understand a model defined on the discretization of T3 (or of any
other three-dimensional manifold), it is essential to understand what characteristics
are common to all these models.

3.1. Similarities and differences

In spite of there are several possibilities for defining this new model on L3, one thing
is certain here: if we use the same logic that is used for defining the TC, it becomes
very natural to assume that the Hamiltonian operator of this new three-dimensional
code (3DC) is given by

Hspe =—» Ay, — Y By, (3.1)
v !

where

A, = H of and By = H o5 (3.2)
FES, JESy
This natural assumption can be interpreted as a correspondence principle that
must be imposed between the TC and 3DC, “analogous” to that imposed between
Newtonian and Quantum Mechanics, for instance.

As a matter of fact, despite the undeniable similarity between this Hspg and the
Hamiltonian , it is important to note that there is a difference between them
that, although quite subtle, has a great influence on the behavior of excitations
that are measurable in the 3DC. After all, whereas the operators that make up
always act effectively on four Lo edges, in the 3DC this does not necessarily
happen. The reason for this is that, regardless of the boundary conditions of L3,
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each face and each vertex that make up the interior of this lattice are structured
by four and sixz edges, respectively.

3.1.1. The vertex excitations

Before we explore the consequences of this last observation, it is also important to
note that, when we restrict ourselves to a 3DC where

dimS; =4 and dimS, =6, (3.3)

some of the main TC characteristics remain preserved, among which we can high-
light:

(i) the commutativity among these vertex and face operators (3.2)), as well as their
counting properties;
(ii) the expression of the ground state energy as

EO = _(NU+Nf)7

where IV, and Ny are the respective quantities of vertices and faces that define

L3; and
(iii) the fact that one of its vacuum states has exactly the same expression
(1
&”) = an +4,)[0)© - ®10) (3.4)
—_———
N, times

of the TC, where N, refers to the number of edges that define L3.

Another familiar characteristic of this 3DC is associated with the most elemen-
tary vertex excitations. After all, since a vacuum state

[€") = ofle”) (35)
does not satisfy two of the constraints
Auléo) = [§0) and  Byl&o) = |€o) (3.6)

that need to be satisfied by a vacuum state |y), it is become clear that the energy
of will also be equal to
Ey = Eg + 4,
such as already happens in . Therefore, when we note that
e o} can still create detectable excitations on the two vertices that enclose a kth

edge of L3 and, thence,
e these excitations are transportable only by the same operators already defined

in (216).

we can conclude not only that these excitations are bosons: we can also conclude
that these excitations are exactly the same quasiparticles e already related to the
TC.

2030002-19



Rev. Math. Phys. 2020.32. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 12/23/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

M. F. Araujo de Resende

3.1.2. The face excitations

However, when we look to another non-vacuum state

€)= o7 le5?) (3.7)
something a little different happens, because we are restricted to a region where
is valid and it implies that all the L3 edges belong to the intersection of
four faces. Thus, as the number of vacuum constraints that are violated by
becomes equal to four, we conclude that, unlike what happens in the TC, the action
of a single o}/ on the vacuum eigenstate creates four simultaneous excitations
around the kth edge, as shown in Fig. [0

Moreover, due to this simultaneous creation of four excitations around a single
edge, it is important to note that, in addition to eigenstate has an eigenenergy

Ey=FEy+8

that is clearly greater than F7, both transport and annihilation of these 3DC exci-
tations need to be done in a slightly different way than the previous one. Of course,
as o is defined in the same way as 7 it is good to note that these four excita-
tions can be perfectly annihilated all together: this happens when o} acts on [{’),
because

- - . 1 - . 1 1
otle) = ot o (o|&")) = (o 0 o) [&5”) = [&57)-
Anyhow, if we wish to transport the excitations of (3.7) by using an operator
that does not identify with any “teleport”

xr __ T T
gk = 05 ° k>

this must be done in a way that is no longer as simple as previous ones. And in
order to understand this, we should note that, when the jth edge of L3 belongs

Fig. 9. (Color online) A piece of the cubic lattice £3 that supports the 3DC illustrating the
presence of four face excitations (rose-colored sectors around a single edge) due to the action of a
single o on a vacuum state.
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Fig. 10. (Color online) Considering that the situation shown in Fig. [J] is associated with time
to, the actuation of a single o;” at one of the lattice edges at time ¢t > t¢ is not able to transport
any face excitation in the same way as occurs in the TC. After all, in addition to just one face
excitation being transported by this operator, two more arise increasing the energy of the system.

to any face that contains the kth edge, only one of the four excitations created by
a o7 will be able to annihilate a single one that was previously created by oy. As
illustrated in Fig. this annihilation will occur precisely on the face (partially)
bounded by these two edges. Thus, since, in general, the action of

t=1l7 (3.8)
JET

on the eigenstate is not able to preserve the number of excitations associated
with the set T (which consist of edges that, two to two, belong to a single face),
if we wish to transport these excitations through this lattice £3 without increasing
the system energy, this should be done in a smarter way.

3.1.3. A joint transport

Albeit is not ideal to perform this transport, an interesting observation can
already be made from it, provide as, instead of a S, we take a set S, containing
only four of the edges which define a vth vertex. In order to understand this, it
is enough to consider the case in which the kth edge excited in belongs to
Sy\Sy. After all, as

0% |€") = 0% oot e (3.9)

will no longer violate the same four vacuum constraints as (3.7)) (but it will continue
to violate the other four new vacuum constraints which are now related to the four
faces that share the edge j = S,\(kUS,)), it is immediate to conclude from

Og,00) =070 A,
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Fig. 11. (Color online) Considering that the situation exposed in Fig. EI is also associated with
an instant to where we have four excitations on the faces that share a kth edge (on left), the
action of a single O’”U, at the same time ¢t > tg, on four edges that are complementary to the first
(according to a vertex v) is able to carry all the excitations to edge j = Sy \(k U Sy) (on right).

that all four previous face excitations were carried by OF to the adjacencies of the
jth edge, as shown in Fig.

In this fashion, since it is possible to transport these four face excitations by
means of Og without increasing the system energy, it becomes possible to interpret
this set of excitations as the three-dimensional generalization of a quasiparticle m.
Indeed, due to the fact that these four excitations are allocated on the four vertices

1 1 1
1 1 @—
1 1 1
< === === ==" -
R S ”I
P | PO PN
. 1 ¢ 1 o & 1 o
4 1 4 1 * 1
o 1 ‘ 1 ¢ 1
1 1 1
1 1 e 1
1 1 1
> -——— PR I E R ER )
, , ,
. ’ .
. ’ .
’ . ’
4 4 4
4 4 4

Fig. 12. (Color online) On the left, we have the usual situation of the previous illustrations,
where, around a single point, four simultaneous excitations were created by the action of a single
cf}”. On the right, we have a new idealization where a yellow plaque (which is crossed by the jth
edge) represents this same set of excitations.
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that delimit one face on L3, it becomes natural to idealize this joint excitation as
a kind of “quasiplaque”, as illustrated in Fig. As we shall see later, besides this
“quasiplaque” realization be quite useful for the understanding of the creation and
transportation of these excitations, this realization also allows us to understand (in
a much more comfortable way) how it is possible to conceive a dyon in the 3DC.

3.2. Three-dimensional dyons

Before looking at the details of this three-dimensional dyon, it is essential to turn
our attention to something that has great value to its conception: the operators
0;=[]o; and 0z =[] O, (3.10)
Jjey vey’

can transport quasiparticles e and “quasiplaques” m, respectively. Here, v and +'
are the two paths that, also respectively, are composed of edges and vertices of L3
which are two to two neighbors.

In view of the observations made in the previous section, we do not need to give
details of a vacuum eigenstate

&) = 021

that, for instance, arises when an operator O acts on a closed and contractile path
~. The only thing we need to do here is to evaluate an eigenstate such as

€y = 0%, &™), (3.11)

which, owing to the action of OF, on an arbitrary closed path ~', comprises a

vacuum structure that is identifiable as a closed tube discretization, as shown in
Fig. [[3] But, as behind this contractility, there is also the fact that
oy =110z =11 [To7=114
ve~y’ veEY' JES, ve~y’
is always valid, we see that there is nothing very new here: the action of A, continues
to be interpreted as a mere gauge transformation which, by connecting (3.4]) to
and vice versa, makes it clear that these two eigenstates are modeling the
same vacuum.
Of course, the 3DC that we have been considering so far is too simplistic, since,
for example, it does not contain vacuum eigenstates that are distinct from ,
which arise from the action of the operators (3.10) in three-dimensional lattices
with more diversified boundary conditions. Yet, the expressions show us, for
instance, how it is possible to conceive a dyon in the 3DC, because they show how
it is possible to define compound operators
05005 and OF00;.
After all, if we remember that one of the ways to create a dyon pair is via the action
of a single
ijf 003, (3.12)
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/7 /

Fig. 13. (Color online) Here, we have an example of a closed tube that can be formed by “quasi-
plaques”, provided that O'_’;, only acts on four edges (in black) that define all the vertices that are

points of a closed path v4’. Note that some of these edges do not appear in the figure: four of them
cross the four central “quasiplaques” (in gold), whereas the others are the ones that define ~v'.

on the vacuum eigenstate (2.8)) where 47 and «; are two open paths whose ends
coincide, it is immediate to conclude that this creation must be done by an operator

Oiﬁ ° (); (3.13)

acting on a 3DC vacuum eigenstate.

However, in spite of this last operator creates two excitations which will denote
by €', we still need to be careful before claiming that this pair of excitations actually
matches a dyon pair in this three-dimensional model. After all, although
really indicates that the simplest way to project a dyon pair on a TC (constrained
to a Lo embedded in L£3) is by means of a single operator

ojoa; (3.14)

acting on the same edge of , it is enough to see that, if we assume that a
coupled excitation® summarized in a single ¢’ must be interpreted as a single dyon,
it is immediate to realize that does not create a dyon pair in the 3DC: what
it does is just create one dyon plus one quasiparticle e.

Despite this seems to ruin any chance of the 3DC to correspond to the TC
through a dimensional reduction procedure, an interesting result appears when we
turn our attention to an operator

0i00&, (3.15)

¢Consisting of a pair composed by one quasiparticle e and one “quasiplaque” m which, in addition
to being arranged as short as possible, are transportable without increasing the system energy.
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whose jth edge belongs to S, but does not belong to the set S, that is composed
of four coplanar edges. After all, as

03 oA, =0jo0y
shows us that

Ofév ‘f(()l)> = f,i:v o Av|§(()1)> = O’;—C o aﬂgél)>

where j and k are indexing two opposite edges of a face, this result tells us that
O% is an operator that can create one “quasiplaque” pair and, so, the operator
(3.15]) can create one pair of €.

3.2.1. A statistical comment

Albeit this conclusion indicates that a correspondence principle exists between the
TC and 3DC if € is actually a dyon, we must note two important things here.
And the first one concerns to a statistical ambiguity that seems to be related to €
components: after all, rotate one quasiparticle e around a “quasiplaque” m seems
to imply that both are

e anyons with spin-1/4, if the path chosen for this rotation cross the “quasiplaque”
m, and
e bosons, otherwise.

However, as this supposed dyon € needs to keep it intact under any transportation,
all this apparent ambiguity does not matter for its definition because the quasipar-
ticle e that makes up ¢’ always needs to cross a “quasiplaque” m an odd number of
times to complete any trajectory. In other words, as with the dyons associated to
the TC, €' also behaves like a fermion in relation to another ¢ and its fermionicity
is a feature that is not shared by the other 3DC quasiparticles e and m.

In view this, the second observation comes in the form of a questioning: if quasi-
particles e and m cannot cross each other in the TC, why is it reasonable to assume
that this happens in the 3DC? And the best answer we can give to this questioning
is that a dyon is a quasiparticle that “happens by chance” in these models. That is,
despite € has the status of a quasiparticle that is independent of the others in the
two-dimensional TC (because it corresponds effectively to the quasiparticle that
would be created by a;-/), nothing obliges the quasiparticles e and m to structure a
dyon forever. Therefore, as the operator (which is the three-dimensional gen-
eralization of ) creates a fermionic pair whose quasiparticles structuring these
fermions can also be transported individually, it is valid to conclude that there is
no statistical ambiguity related to €, and so that this quasiparticle is a 3DC dyon.

3.2.2. An interesting comment

Although this does not seem to be the case in the TC, all these crossings are
already common in this two-dimensional model. And in order to understand this,
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it is enough to analyze the case where, for example, a quasiparticle e needs to be
transported through some edge whose adjacent faces already have two quasiparti-
cles m. After all, despite the two-dimensionality of L, prevents us from realizing
the excitations created by o7 as the “quasiplaque” that, for instance, is shown in
Fig. it is not absurd to realize the transport of e in terms of the crossing that
this quasiparticle needs to make in the one-dimensional “quasiplaque” previously
created by o7.

By virtue of this “quasiplaque” realization, it becomes clear why the quasipar-

ticles m are free in the TC but confined in the 3DC, because,

e whereas the situation illustrated in Fig. [14]shows that the transport of the quasi-
particles m along a dual path v* in L3 (highlighted in dashed blue) display a
perimeter law for their energies (i.e. the energy of this transport is identified by

—— Q@
* *
* *
> >
BN S & '
4 >
* *
* *

Fig. 14. (Color online) The “quasiplaque” juxtaposition scheme that allows us to illustrate the
perimeter law. After all, while in the figure above we have a single “quasiplaque” with an energy
equal to 4, in the figure below we have two juxtaposed “quasiplaques” with an energy equal to 6:
i.e. the total energy in both cases (as in all other cases) is exactly equal to the perimeter (number
of edges) of the closed path that delimits this juxtaposition.
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4ot o---f---0

Fig. 15. (Color online) On the left, we use the same illustration used in Fig. to present a
“quasiplaque” but highlighting the intersection between it, which was created due to action of o';-”
on the jth edge, and the cutout of the horizontal plane that supports this edge. On right we see
only the same cutout of this horizontal plane where two excitations that define a “quasiplaque” are
present, the only ones that exist in this two-dimensional environment. Note that all the excitations
created by a single 0% in the two-dimensional model (which is obtained by a cut or a contraction
of all planes parallel to a single plane discretizable by L2 C L3) are fully equivalent to the TC
quasiparticles m, which are transportable at no cost to the energy.

the amount of dual edges enclosing the union of “quasiplaques” that arise along
),

e this same law does not apply to a model that is restricted to sublattice Lo C L3
that discretizes, for example, a submanifold My C Ms3.

In other words, this non-validity of the perimeter law can be understood in a
very simple way, provided we observe that Lo C L3. After all, if we consider the
situation of the transport of quasiparticles m from the perspective of L3, this same
transport, when restricted to the two-dimensional lattice L2, can be realized in
terms of cut (or projection) that is shown in Fig. that is, the transport situation
of the quasiparticles m, which, for instance, are associated with a model such as
TC, can be achieved by restricting vertex and face operators to act only on
Lo C L3.

4. The Three-Dimensional Toric Code

Due to these positive aspects, and especially remembering that the definition of
a dyon in the TC was made so that it was possible to define a model where all
its quasiparticles could be transported without any addition of energy, it is more
than convenient to declare that we will do exactly the same with respect to 3DC:
in plain English, we will declare that € actually corresponds to a dyon e, since
the quasiparticle e and the “quasiplaque” m that define it can also be transported
without increasing the system energy.
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However, one thing that is very important to note here is that, in addition to the
fusion rules related to all these quasiparticles e and “quasiplaques” m are exactly
the same as the TC (because they are created by the same operators), all results
so far we have referred to the particular case of a 3DC that satisfies . And a
good way of thinking about this is, for example, interpreting the 3DC as a model
defined in a cubic lattice that (i) can be infinite or (ii) not infinite with periodic
boundary conditions in all three directions. If this is indeed the case, the only thing
we need to keep in mind is that

e whereas a 3DC constructed in the first lattice (which is infinite) has a unique
vacuum state given by ,

e for the second lattice (which is not infinite but periodic), the degeneracy of the
ground state is likely to be greater because this case is analogous to that of
the TC, since any cubic lattice with periodic boundary conditions in all three
directions can be perfectly identified, by construction, as the cubic discretization
of a three-dimensional torus 75 (see Fig. [16)).

Indeed, by remembering that the TC degeneracy is directly related to the exis-
tence of non-contractile curves in 7, if we really want to understand how the ground
state degeneracy of a new three-dimensional Toric Code (3TC) works, we need to
understand the non-contractility that is related to 73. And certainly one of the
things we could use for this purpose is the simple fact that the equivalence classes
that define 71 (73) is equal to three: after all, in the same way that happens in the
TC, the non-contractility of the curves which belong to each of these classes could
lead us to new vacuum states independent of .

Fig. 16. In the same way that a two-dimensional torus can be constructed by gluing the opposite
edges of the square, it is perfectly possible to design a three-dimensional torus by an analogous
gluing procedure. Despite the practical impossibility of visualizing the result of this construction,
it is sufficient to take a three-dimensional cube and to glue its opposite faces. Note that, here (and
here only), the letters in the figure do not refer to any of the operators mentioned in these notes:
these letters serve only as indexes that highlight the faces that, “two by two”, need to be glued
together.
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But, as we emphasize in this last statement, “could”. Because, as the action of

0%, = ’H of
JEY*

no longer corresponds to vacuum when done along any closed path 4*, the elements
of the fundamental group 71(73) cannot moderate any vacuum state of the 3TC.
Yet, since we are dealing with a three-dimensional torus, there is still a topological
aspect that can be explored to assess the ground state degeneracy of this 3TC: this
aspect is the order of the homology groups Hy(T3), since each of them measures
the amount of k-cycles of 73 that cannot be considered as k-boundaries, where
0 <k <3[19). After all, just as it is not difficult to demonstrate that there are n
classes of non-contractile closed curves that provide structure to the fundamental
group of an n-dimensional torus 7,, it is also not difficult to see, for instance, that
there are non-contractile tori 7, embedded in 7,,.

Although all this seems to be quite different from what is involved in two-
dimensional tori, if we look closely at the non-contractile closed curves that can
be defined in 75, this “bad impression” begins to undo quickly: as these curves
have periodic boundary conditions, they must be seen as the 1-cycles that are not
boundaries of this two-dimensional torus and, therefore, they can be seen as the
one-dimensional tori 77 embedded in 75. In this way, we can affirm that all these
“new” surfaces Ty are no more than simple generalizations of curves 4 = 77 on 73,4
because there is a greater freedom to define them which depends even on the fact
that n is a number greater than two.®

By effect of this observation, three other vacuum states become evident in this
3TC:

€5) = 07 |&), (4.1)
where d = 1,2,3 and
0f =1][ o7 (4.2)
JLTa

is such that each o7 acts on the jth edge which is perpendicular to the discretization
of a two-dimensional torus 73 C 7T3; this discretization occurs by fixing the faces
that are normal to one of the three possible directions d. Of course, as well as with
, these are not the only additional vacuum states related to the model: as
there are four possible combinations

OF 00F, OFcOf, OFfoOf and OF 0 Of oOf (4.3)

2

which can be done by using the operators (4.2)), there are also four new vacuum
states which make it very clear that we are dealing with a model whose ground

dThat is, they are the k-cycles we said above, which are contained in 7; and cannot be seen as
k-boundaries.

¢Note that T2 can also be seen, for instance, as a non-contractile toroidal surface that is embedded
in itself.
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state is eight-fold degenerated. This eight-fold degeneracy fully agrees with the fact
that the second homology group of 73 is

Ho(T3) =Z DT D L.

After all, since the first H1(73) and the second Hz(73) homology groups of a three-
dimensional torus are equal, by noting the Hurewicz Theorem shows us that H1(73)
can be obtained through an abelianization of a m1(73) [14] that is composed of
etght homotopy classes, we can use this vision to make the following statement:
in the same way that #;(73) allows us to identify the three generators that lead
to the eight distinct homotopy classes defining 71 (73), we can associate each one
of the three elements of Hy(73) with the generators that lead to the eight distinct
homotopy classes that define the second homotopy group, m2(73). Thus, as the
eight combinations of the non-contractile closed surfaces mentioned above, which
index the eight vacuum states of the 3TC, correspond exactly to these eight distinct
homotopy classes of m3(73), we can affirm that this three-dimensional Toric Code
has topological order.

5. Final Remarks

According to all that we have just presented, what justifies the topological order
in the TC is the fact that this model is defined in a two-dimensional torus 75. The
fact that its vacuum state is not unique, for instance, is associated with the one-
to-one relationship that exists among these vacuum states and the combinations
that can be made using the generators of the fundamental group of 73. The fact
that the statistics (of some) of their quasiparticles do not correspond to bosons
or fermions is related to this two-dimensionality: besides these excitations do not
have the same transport freedom which they would have in a three-dimensional
manifold, it is worth to emphasize that particle systems on compact surfaces (such
as a two-dimensional torus) actually present rational statistics as mentioned in [18].

Of course, since free particles in a three-dimensional manifold have greater free-
dom of transit than in a two-dimensional manifold, it was to be expected that all
conceivable excitations in the 3T C would be identified only either bosons or fermions
[20]. Yet, although a different statistic is non-explicit in this three-dimensional gen-
eralization, a topological order is still present: the degeneracy degree of the 3TC
ground state is equal to the number of homotopy classes in m2(73); i.e. we have a
degeneracy that, because it is topological, allows us to affirm that the Toric Code
also has a topological order in the three-dimensional case.

Lastly, it is worth noting that the statistics of any particle can only be obtained,
for example, in a situation where it is possible to exchange particles by keeping
the system energy as a constant. And this is what justifies the definition that we
give for one of the 3DC quasiparticles, the “quasiplaque”, as a combination of four
elementary excitations that are identifiable as the same magnetic quasiparticles m
of the TC: if this definition were not made in this way, the energy of the system
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would increase in a manner similar to that of a quark when removed from another.
In any case, this energy increase in our model follows the same perimeter law that,
for example, has already been observed in models similar to the two-dimensional
TC, as in the lattice gauge theories mentioned in [21], and in the models that we
are developing by using one generalization of the QDM, which will be the central
theme of our next paper, suggesting that there is a connection among all these
models.
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