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Resumo 
 

A evolução da tecnologia e industrialização das estruturas de madeira, incluindo técnicas 

de fabricação de peças compostas e de reforço estrutural, tem possibilitado diversos 

avanços na capacidade resistente dessas estruturas, como o emprego de elementos com 

maior esbeltez.  Esses elementos mais flexíveis possibilitam ganhos de economia e 

otimização do material, contudo, podem sofrer grandes deslocamentos, não sendo 

aceitável a análise de seu equilíbrio na posição inicial apenas. Dessa forma, neste trabalho 

apresenta-se uma metodologia para análise não linear geométrica de sistemas treliçados 

planos de madeira, a partir de uma formulação posicional do método dos elementos 

finitos, para avaliar o comportamento de dois modelos de treliça.  Madeiras folhosas com 

classe de resistência C60 são consideradas para composição das barras. A formulação do 

elemento finito é realizada a partir da minimização da energia potencial total, cujo sistema 

de equações é não linear em relação às posições nodais da estrutura e sua resolução é 

alcançada empregando o método de Newton-Raphson. Os resultados obtidos são 

comparados aos de uma análise linear geométrica para cada modelo, sendo possível 

observar que esta análise (linear) pode conduzir a valores inferiores de esforços internos 

e deslocamentos, o que influencia a etapa de dimensionamento e eventualmente pode 

oferecer riscos à segurança estrutural. Conclui-se que o emprego de análise não linear 

geométrica deve ser priorizado no projeto de estruturas de madeira, mesmo que isto 

implique em maior custo computacional e complexidade envolvida no procedimento de 

análise. 

 

Palavras-chave: Estruturas de madeira. Análise não linear geométrica. Método dos 

elementos finitos. Formulação posicional. 

 

Abstract 
 

The evolution of timber structures technology and industrialization, including fabrication 

techniques of composite and structural reinforcement, has enabled several advances in 

these structures strength, such as the use of elements with greater slenderness. These 

flexible structural elements allow savings in material and optimization, however, they 

may suffer large displacements, and is not acceptable the analysis of their equilibrium in 

the initial configuration only. Thus, this work presents a methodology for geometric 

nonlinear analysis of timber plane truss, based on a positional formulation of the finite 
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element method, to evaluate the behavior of two truss models. Hardwoods with strength 

class C60 are considered in the elements. The finite element formulation is performed 

from the minimization of the total potential energy, whose nonlinear system of equations 

in relation to the nodal positions of the structure and its resolution is achieved using the 

Newton-Raphson method. The results obtained are compared to those of a linear 

geometric analysis for each model, and it can be observed that this linear analysis can 

lead to internal forces and displacements with lower values, which influences the design 

and may eventually offer structural safety risks. It is possible to conclude that the use of 

geometric nonlinear analysis should be prioritized in the design of timber structures, even 

if this implies in a higher computational cost and complexity involved in the analysis 

procedure. 

 

Keywords: Timber structures. Geometric nonlinear analysis. Finite element method. 

Positional formulation. 

 

1 Introdução 
 

Diversos avanços relacionados à capacidade resistente de estruturas de madeira têm sido 

observados nas últimas décadas, incluindo a industrialização de peças compostas e 

diversos tipos de reforço estrutural, que contribuem para o emprego de elementos mais 

esbeltos. Esses elementos possibilitam ganhos de economia e otimização do material, 

sendo utilizados em diversas aplicações na construção civil, principalmente em sistemas 

estruturais de edifícios, coberturas, torres e pontes (CALIL JUNIOR; LAHR; DIAS, 

2003). Na Figura 1 é ilustrada uma passarela com sistema em arco de madeira, onde é 

possível observar a esbeltez dos elementos em relação ao vão vencido. 

 

Figura 1 – Passarela com sistema em arco de madeira em Portland (EUA)

 
Fonte: Western Wood Structures (2019). Disponível em:  

< https://www.westernwoodstructures.com/projects  >. Acesso em: 03 nov. 2019 

 

Apesar das vantagens possibilitadas por elementos esbeltos e mais flexíveis, é evidente 

que a estrutura pode sofrer grandes deslocamentos e instabilidade dependendo de suas 

propriedades físicas e geométricas, não sendo aceitável a análise de seu equilíbrio na 

configuração indeformada. Assim, uma formulação que permita a análise não linear 

geométrica da estrutura deve ser priorizada, devido à necessidade de avaliar seu 

comportamento conforme a deformação. A formulação posicional baseada no Método dos 

Elementos Finitos, concebida por Coda (2003) e colaboradores, tem se mostrado como 

uma opção interessante devido à simplicidade de sua abordagem e precisão dos resultados 

https://www.westernwoodstructures.com/projects
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possibilitados. 

 

Dessa forma, neste trabalho utiliza-se uma metodologia de análise não linear geométrica 

obtida a partir da formulação posicional do método dos elementos finitos, para avaliar o 

comportamento de treliças planas de madeira.  São testados dois modelos de treliça plana, 

com dimensões tipicamente empregadas na construção civil nacional, considerando 

madeiras folhosas com classe de resistência C60 segundo a norma brasileira ABNT NBR 

7190:1997. A formulação do elemento finito é realizada a partir da minimização da 

energia potencial total, sendo as posições nodais da estrutura adotadas como variáveis 

principais. O sistema de equações gerado é não linear em relação essas posições, sendo 

empregado o método de Newton-Raphson para resolução. Nos casos estudados, busca-se 

verificar a variação dos deslocamentos e esforços internos nas barras, comparando os 

valores obtidos segundo as análises geometricamente linear e não linear. 

 

2 Revisão de literatura 
 

Uma breve revisão sobre a análise não linear geométrica de estruturas de madeira e do 

método dos elementos finitos posicional é apresentada nesta seção, buscando 

contextualizar o tema estudado. 

 

2.1 Análise não linear geométrica de estruturas de madeira 

 

Em geral, pode-se notar que não há ampla discussão sobre a análise não linear geométrica 

de estruturas de madeira no Brasil. A escassez de trabalhos voltados especificamente a 

estruturas de madeira, e a ausência de diretrizes da norma brasileira relacionadas ao 

assunto, podem ter contribuído para esse cenário.  

 

Por um lado, as normas de dimensionamento de estruturas de aço (ABNT NBR 

8800:2008) e de concreto armado e protendido (ABNT NBR 6118:2014) mencionam a 

necessidade de empregar análise não linear geométrica de acordo com a deslocabilidade 

da estrutura. Além disso, nessas normas, são propostos métodos aproximados para prever 

o comportamento não linear geométrico de estruturas com certos limites de esbeltez, 

como o método da amplificação dos esforços (no caso das estruturas de aço) e o método 

γz (no caso das estruturas de concreto).  

 

Por outro lado, a norma brasileira de dimensionamento de estruturas de madeiras, ABNT 

NBR 7190:1997, não faz menção a possíveis análises fisicamente ou geometricamente 

não lineares. Dessa forma, o procedimento considerando na NBR 7190 prevê que a 

estrutura trabalhará a pequenos níveis de deslocamento e deformação (em relação à 

geometria original), o que pode não corresponder ao comportamento real e limitar suas 

possíveis aplicações. 

 

2.2 Sobre o método dos elementos finitos posicional 

 

A formulação posicional do Método dos Elementos Finitos voltada à análise não linear 

geométrica foi proposta originalmente por Coda (2003). Diversos trabalhos seguintes 

deram continuidade e estenderam o alcance de aplicações do MEF posicional, sendo dois 
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trabalhos particularmente importantes no contexto de sua formulação voltada à análise 

não linear geométrica de estruturas reticuladas: os trabalhos de Coda e Greco (2004) e 

Greco et al. (2006). 

 

Coda e Greco (2004) desenvolveram a formulação posicional do MEF voltada à análise 

não linear de pórticos planos, utilizando polinômio de aproximação cúbica. A 

objetividade da metodologia proposta também foi demonstrada. Os resultados obtidos 

foram comparados aos da literatura e do programa ADINA, tendo sido observada notável 

precisão. 

 

Greco et al. (2006) apresentaram a formulação posicional do MEF para análise não linear 

de treliças especiais. Exemplos da literatura foram empregados para validar a 

metodologia proposta, assim como simulações no programa ANSYS. Os resultados 

também se mostraram satisfatoriamente precisos em relação às simulações efetuadas e à 

literatura. 

 

A formulação empregada no presente trabalho, adaptada para treliças planas de madeira, 

foi baseada nas publicações mencionadas. Ela será descrita de forma detalhada na 

próxima seção. 

 

3 Materiais e métodos 
 

3.1 Procedimento de análise 

 

Dois modelos de treliça são propostos para análise, sendo uma treliça tipo torre e um arco 

treliçado. Em todos os casos, considera-se que a madeira empregada na estrutura pertence 

à classe de resistência C60 das madeiras folhosas. Admite-se que o valor médio do 

módulo de elasticidade paralelo às fibras da madeira seja E0 = 24500 MPa, tanto à tração 

quanto à compressão, de acordo com a ABNT NBR 7190:1997. Além disso, considera-se 

que as barras das treliças são dispostas de tal forma que a força interna atua na direção 

paralela às fibras da madeira, e que os nós da treliça são considerados como articulações 

perfeitas. 

 

Nos dois exemplos de validação, a análise não linear geométrica realizada a partir do 

Métodos dos Elementos Finitos Posicional foi comparada a uma análise linear de primeira 

ordem. Um código em linguagem MATLAB foi utilizado para a implementação 

computacional da análise proposta. A formulação do elemento finito de treliça é descrita 

na subseção seguinte. 

 

3.2 Método dos elementos finitos posicional 

 

O princípio da mínima energia potencial total é empregado para formulação do elemento 

finito de treliça voltado para análise não linear geométrica. A energia potencial total de 

um corpo em equilíbrio estático é definida na Equação 1, em função da energia de 

deformação (U) e da energia potencial das forças externas (W).  
 

U W= −  (1) 
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A energia total de deformação é obtida em função do volume da barra (V), conforme 

Equação 2. Nessa expressão, a tensão normal é representada por σ e a deformação de 

engenharia é indicada por ε. 

 

1
²

2V V V
U u dV d dV E dV


  = = =      (2) 

 

A energia de deformação das forças aplicadas é apresentada na Equação 3, onde F 

representa o conjunto de forças aplicadas e Y o conjunto de posições independentes que 

podem ser ocupados por um ponto do elemento. 

 

W F Y=   (3) 

 

A energia potencial total, portanto, pode ser reescrita na Equação 4, substituindo a energia 

de deformação e o potencial das forças externas pelos termos indicados nas equações 

anteriores. 

 

²
2 V

E
dV F Y = −    (4) 

 

O equilíbrio da estrutura é admitido quando a variação da energia potencial total em 

relação às coordenadas nodais é nula (condição estacionária), ou seja, quando as 

derivadas da energia potencial em relação às posições nodais são nulas. Isso também 

significa que a força interna em um nó deve ser igual à força externa aplicada sobre ele, 

o que caracteriza o equilíbrio, conforme Equação 5.  

 

int ext0 F F
Y


=  =


 (5) 

 

Na formulação posicional do elemento de treliça plana, admite-se que o elemento sofre 

deformação uniaxial constante, com variação nula da seção transversal. Admite-se que as 

seções permanecem planas após a deformação (hipótese de Euler-Bernoulli). 

 

Um elemento com coordenadas iniciais dos nós sendo Y0 = [x1, y1, x2, y2], é ilustrado na 

Figura 2. Após a deformação, assume-se que os nós do elemento passam a ocupar as 

coordenadas Y = [X1, Y1, X2, Y2]. 

 

A deformação longitudinal infinitesimal do elemento é definida na Equação 6, onde ds0 é 

o comprimento inicial do elemento e ds é o comprimento após deformação. Como a 

referência é o comprimento original do elemento, a formulação é classificada como 

Lagrangiana. Caso a referência fosse adotada uma medida de deformação em que a 

referência fosse o comprimento atual, a formulação seria denominada Euleriana (CODA, 

2018). 

 

0

0 0

1
ds ds ds

ds ds


−
= = −  (6) 
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Figura 2 – Elemento finito de treliça plana 

 
Fonte: Autores (2019). 

 

A partir da expressão anterior, a configuração inicial é definida pela Equação 7, sendo L0 

o comprimento original do elemento. 

 

( ) ( )
2 22 2

0 2 1 2 1 0ds dx dy x x y y L= + = − + − =  (7) 

 

De forma semelhante, a configuração geral é dada pela Equação 8. O comprimento após 

deformação do elemento é representado por L. 

 

( ) ( )
2 22 2

2 1 2 1ds dx dy X X Y Y L= + = − + − =  (8) 

 

A partir da Equação 2 e das expressões anteriores, a energia de deformação do elemento 

pode ser reescrita na Equação 9, admitindo que a área de seção transversal (A) e o módulo 

de elasticidade longitudinal (E) do elemento sejam constantes. O termo ut representa a 

energia específica de deformação do elemento. 

 

2

0 0

1 1
²

2 2
t

V
U E dV E A L L u =  =     =   (9) 

 

A energia potencial total do elemento de treliça plana é então fornecida na Equação 10, 

onde (X1, Y1, X2, Y2) são as posições nodais e (FX1, FY1, FX2, FY2) são as respectivas forças 

externas dos nós.  

 

0 1 1 1 1 2 2 2 2t X Y X YL u F X F Y F X F Y =  −  −  −  −   (10) 

 

A variação da energia potencial total é representada na Equação 11, sendo dada pela 

primeira derivada parcial em relação às posições nodais. Como são considerados dois 

graus de liberdade por nó, tem-se i = 1–4. As posições nodais (X1, Y1, X2, Y2) podem ser 

representadas pelo índice i que varia de um a quatro, ou seja, na forma (1, 2, 3, 4). 
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0 0t
i

i i

u
L F

Y Y


= − =

 
 (11) 

 

O sistema de equações gerado é não linear quanto às posições nodais, e pode ser 

representado de forma genérica na Equação 12. 

 

1 1 1 2 2 1 1 1 2 2 1

2 1 1 2 2 2 1 1 2 2 1

3 1 1 2 2 3 1 1 2 2 2

4 1 1 2 2 4 1 1 2 2 2

( , , , ) ( , , , ) 0

( , , , ) ( , , , ) 0

( , , , ) ( , , , ) 0

( , , , ) ( , , , ) 0

X

Y

X

Y

g X Y X Y f X Y X Y F

g X Y X Y f X Y X Y F

g X Y X Y f X Y X Y F

g X Y X Y f X Y X Y F

= − =

= − =

= − =

= − =

 (12) 

 

O sistema de equações da Equação 12 também pode ser escrito com auxílio de notação 

indicial, segundo a Equação 13. Nesta expressão, o índice j varia de um a quatro para 

cada valor do índice i.  

 

( , ) ( ) 0i j i i j i

i

g Y F f Y F
Y


= = − =


 (13) 

 

Para resolução do sistema não linear de equações, pode-se utilizar o Método de Newton-

Raphson conforme Equação 14, e adotar uma estratégia matricial. 

 

0 0( ) ( ) ( ) 0g Y g Y g Y Y= +  
 (14) 

 

Na Equação 14, as posições nodais iniciais são representadas pelo vetor Y0, enquanto Y é 

o vetor de posições nodais atuais e ΔY é o vetor de correção das posições nodais. O termo 

g(Y0) representa o vetor de resíduos, e ∇g é a matriz Hessiana. O vetor de resíduos é 

determinado de acordo com a primeira derivada parcial da energia potencial total em 

relação às posições nodais, enquanto a matriz Hessiana é obtida pela segunda derivada 

parcial em relação a essas mesmas posições.  

 

Em síntese, os procedimentos indicados a seguir descrevem o funcionamento do Método 

de Newton-Raphson aplicado à análise não linear geométrica: 

1. Definir Y0 como a posição inicial dos nós, e calcular o vetor de resíduos g(Y0).  

2. Determinar a matriz Hessiana ∇g. 

3. Resolver o sistema de equações a partir da Equação 14 e calcular o vetor de 

correção das posições nodais ΔY. 

4. Atualizar o vetor de posições Y0 considerando Y0 = Y0 + ΔY. 

5. Retornar à etapa 1 até que o vetor ΔY ou sua norma seja suficientemente pequeno, 

de forma que seja menor ou igual à tolerância adotada. 
 

Para que o processo seja considerado iterativo-incremental, o carregamento total é 

dividido em incrementos cumulativos, os quais são aplicados gradualmente à estrutura. 
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Para o sistema estrutural, a montagem do conjunto de equações é realizada de forma 

semelhante ao que é feito nas análises convencionais do MEF. Contudo, não é necessário 

introduzir transformações de coordenadas na formulação posicional, o que reduz o 

trabalho algébrico do problema. Esta é uma vantagem notável da formulação posicional. 

 

4 Resultados e discussão 

 

Dois modelos de treliças planas de madeira foram estudados, sendo comparada a 

influência das análises linear e não linear geométrica na variação do deslocamento dos 

nós e do esforço normal nas barras conforme o aumento das solicitações. 

 

Na análise não linear geométrica, como critério de parada foi considerada uma tolerância 

de 10-7 para a norma do vetor ΔY determinado segundo a resolução do sistema de 

equações não lineares pelo Método de Newton-Raphson, para cada incremento de força. 

Ao todo, foram considerados 50 incrementos de força para cada modelo de treliça. 

 

4.1 Treliça tipo torre 

 

A primeira treliça analisada é do tipo torre (Figura 3), que possui comprimento total de 

16 m e é birrotulada em sua base. Considera-se a ação de uma força vertical P aplicada 

ao nó localizado na extremidade livre da treliça, conforme representado na Figura 3. 

Outras propriedades da treliça são indicadas nessa mesma figura. De um modo geral, a 

força P tende a comprimir a treliça.  

 

Figura 3 – Torre treliçada 

 
Fonte: Autores (2019). 
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O deslocamento do nó localizado na extremidade livre é relacionado com a intensidade 

da força P na Figura 4. Percebe-se que o deslocamento aumenta significantemente quando 

P > 600 kN, uma vez que a partir dessa solicitação, a variação entre os valores do 

deslocamento obtidos a partir das duas análises supera 50%. O deslocamento cresce de 

maneira ainda mais acentuada entre 900 kN e 1100 kN, considerando os valores obtidos 

pela análise não linear, e continua aumentando desproporcionalmente até a iminência da 

instabilidade da treliça.  

 

Figura 4 – Gráfico força-deslocamento (torre treliçada) 

 
Fonte: Autores (2019). 

 

Na Figura 5, o gráfico ilustra a variação do esforço normal na barra mais solicitada da 

treliça conforme o aumento da força P.  

 

Figura 5 – Variação do esforço normal na barra mais solicitada (torre treliçada) 

 
Fonte: Autores (2019). 
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Até alcançar uma força próxima de 700 kN, ambas as análises fornecem resultados 

semelhantes para o esforço normal. Assim, como essa solicitação possivelmente não seria 

obtida em serviço, pois a ruptura da madeira provavelmente ocorreria primeiro, o valor 

do esforço normal obtido pela análise linear não ofereceria riscos se fosse adotado no 

dimensionamento. 

 

4.2 Arco treliçado 

 

O segundo sistema analisado é um arco treliçado biarticulado de madeira (Figura 6), com 

vão de 27 m e altura total de 5,5 m. Esse sistema é uma opção eficiente para utilização 

como estrutura de coberturas de madeira de médio e longos vãos, acima de 25 m, 

conforme discutido por Lahr (1978). Para análise não linear geométrica, devido à simetria 

do arco e das áreas de influência, considera-se que uma força vertical P é aplicada aos 

nós internos do banzo superior do arco, enquanto os nós de extremidade desse mesmo 

banzo estão sujeitos a apenas metade da força P. As barras mais solicitadas localizam-se 

no banzo inferior do arco, próximas aos apoios.  

 

Figura 6 – Arco treliçado 

 
Fonte: Autores (2019). 

 

O gráfico que relaciona o deslocamento do nó central do banzo superior e a intensidade 

de P é indicado na Figura 7. Considerando a curva obtida pela análise não linear 

geométrica, nota-se maior variação do deslocamento quando P supera 400 kN, em que há 

uma diferença percentual de 15% entre as duas análises. Quando P > 800 kN, o 

deslocamento aumenta de forma significante em relação ao acréscimo de força, até que a 

iminência da instabilidade do arco seja alcançada. 
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Figura 7 – Gráfico força-deslocamento (arco treliçado) 

 
Fonte: Autores (2019). 

 

Na Figura 8 apresenta-se outro gráfico, que relaciona o esforço normal na barra mais 

solicitada (N) do arco com a intensidade da força P. Observa-se que o esforço normal 

obtido pela análise não linear geométrica é maior quando P > 200 kN. Apesar de ser uma 

intensidade notável considerando a área da seção transversal dos elementos (A = 0,0096 

m²), é possível que tal carregamento seja alcançado em serviço antes que ocorra ruptura 

da madeira, logo é imprescindível que os valores obtidos a partir da análise não linear 

sejam considerados no dimensionamento deste arco.  

 

Figura 8 – Variação do esforço normal na barra mais solicitada (arco treliçado) 

 
Fonte: Autores (2019). 

 

5 Considerações finais 
 

Neste trabalho foi apresentada uma formulação Lagrangiana posicional do Método dos 

Elementos Finitos para análise não linear geométrica de dois modelos de treliças planas 

de madeira.  
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A influência da análise não linear geométrica foi mais perceptível no caso do arco 

treliçado. De um modo geral, foi possível observar que a análise linear pode, dependendo 

da solicitação e da flexibilidade da estrutura, conduzir a valores inferiores de esforços 

internos e deslocamentos. Essa variação influencia a etapa de dimensionamento e 

eventualmente pode oferecer riscos à segurança da estrutura. Logo, o emprego de análise 

não linear geométrica deve ser priorizado no projeto de treliças de madeira, mesmo que 

isto implique em maior custo computacional e complexidade envolvida no procedimento 

de análise.  

 

Sugere-se, para trabalhos futuros, que a formulação posicional seja adaptada e estendida 

à análise não linear geométrica de outros elementos e sistemas estruturais de madeira, 

como pórticos e elementos bidimensionais. 
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