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We introduce a Skyrme type model with the target space being the sphere S3 and with an action
possessing, as usual, quadratic and quartic terms in field derivatives. The novel character of the model
is that the strength of the couplings of those two terms are allowed to depend upon the space-time
coordinates. The model should therefore be interpreted as an effective theory, such that those couplings
correspond in fact to low energy expectation values of fields belonging to a more fundamental theory
at high energies. The theory possesses a self-dual sector that saturates the Bogomolny bound leading
to an energy depending linearly on the topological charge. The self-duality equations are conformally
invariant in three space dimensions leading to a toroidal ansatz and exact self-dual Skyrmion solutions.
Those solutions are labelled by two integers and, despite their toroidal character, the energy density is

spherically symmetric when those integers are equal and oblate or prolate otherwise.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Self-dual field configurations possess very nice physical and
mathematical properties, and they are important in the study of
non-linear aspects of field theories possessing topological soli-
tons. The best known examples are the instanton solutions of the
Yang-Mills theory in four dimensional Euclidean space [1] and
the self-dual Bogomol'nyi-Prasad-Sommerfield (BPS) monopoles in
the 3 + 1 dimensional Yang-Mills-Higgs theory [2,3]. The self-
dual solitons satisfy first order differential equations which yields
the absolute minimum of the energy, and by construction they
are also solutions of the full dynamical system of the field equa-
tions. Another feature of the self-dual field configurations is that
the corresponding topological solitons always saturate the topo-
logical bound, their static energy (or the Euclidean action in the
case of the Yang-Mills instantons) depends linearly on the topolog-
ical charge. Moreover, there are very elegant mathematical meth-
ods of construction of various multi-soliton configurations in these
models, the Nahm equation [4] and the algebraic Atiyah-Hitchin-
Drinfeld-Manin scheme [5].

However the usual Skyrme model [6,7], which can be suggested
as an effective low-energy theory of pions, do not support self-dual
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equations [8], the mass of the soliton solutions for this model, the
Skyrmions, is always above the topological lower bound in a given
topological sector [9]. As a consequence, there is no exact math-
ematical scheme of construction of multi-soliton solutions of the
Skyrme model, the only way to obtain these solutions in any topo-
logical sector, is to implement various numerical methods, some of
them are rather sophisticated, they usually need a large amount of
computational power.

Recently some modification of the Skyrme model was proposed
to construct the soliton solutions which satisfy the first-order
Bogomol'nyi-type equation [10-12]. In the first case the conven-
tional Skyrme model was drastically changed via replacement of
the usual sigma model term and the quartic Skyrme term with a
term sextic in first derivatives and a potential [10,11]. In the sec-
ond case the usual Skyrme model is coupled to the infinite tower
of vector mesons [12]. These self-dual models are directly related
to the usual Skyrme model since they can be considered as sub-
models of a general model of that type. Further, it was shown very
recently that the standard Skyrme model without the potential
term can be expressed as a sum of two BPS submodels with differ-
ent solutions [13]. The corresponding submodels, however, are not
directly related to the generalized Skyrme model of any type.

Another modification of the Skyrme model, which supports
self-dual soltions and has an exact BPS bound, was suggested in
[14]. Similar to the usual Skyrme model, or its generalizations,
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the field of the new model is a map from compactified coordinate
space S3 to the SU(2) group space. The corresponding first order
equations are equivalent to the so-called force free equation well
known in solar and plasma physics, see e.g. [15]. The drawback
of this construction is that, due to an argument by Chandrasekhar
[16], those equations do not possess finite energy solutions on R3,
although it supports regular solutions on three sphere S> [14].

In this paper we propose generalization of the self-dual Skyrme-
type model discussed in [14], which possess the regular solution
on R3. Similar to the usual Skyrme model, we consider a non-
linear scalar sigma-model, parameterized by two complex scalar
fields Z,, a =1, 2, satisfying the constraint Z; Z, = 1. The action
of the model is given by

_ a, (M) 1 2
s_/dx< 5 AM—482(Xp)HW> (1)

with two couplings m(x”) and e(x”), dependent upon the space-
time coordinates, which are of dimension of mass and dimension-
less, respectively. In addition, u, v=0,1,2,3, and

Ay = % (Z29uZa — Za9u2ZF) and  Hpp = 9,A0 — duAu.  (2)

The model (1) is similar to the one considered in [14], with the
main difference being the fact that the coupling constants now are
allowed to depend upon the space-time coordinates. That plays a
crucial role in the properties of the model. In the first place, it
circumvents the famous Chandrasekhar’s argument [16] that pre-
vents the existence of finite energy solutions extending over the
whole R3 space. In addition, as we explain below, it renders the
self-duality equations conformally invariant in the three dimen-
sional space R3. As it is usual in many effective field theories,
coupling constants that depend upon the space-time coordinates
correspond in fact to low energy expectation values of fields be-
longing to a more fundamental theory at higher energies. At the
end of the paper we shall discuss some possibilities for the intro-
duction of a dilation type field that could account for the space-
time dependent coupling constants appearing in (1).

The model that we have proposed opens the way for sev-
eral physical applications, in particular for those ones where the
Skyrme model is treated as a low energy effective theory for nu-
clear physics. Of course, the conformal symmetry has to be broken
for those applications to be implemented, and that can be achieved
by a potential term in the Lagrangian, or by the introduction of
a dilation type field. In addition, the proposed model could also
have applications in solar and plasma physics. Indeed, our self-
duality equations (see (14)) correspond to the so-called force free
equations used in magnetohydrodynamics [15,16], if one interprets
the vector A in those equations as the physical magnetic field.
In fact, our static energy density for self-dual configurations (see
(15)) would then correspond to the square of the magnetic field
multiplied by the square of the space dependent coupling con-
stant e (x*) (or equivalently m (x*)), which perhaps could be inter-
preted as magnetic susceptibility of the medium. The introduction
of those non-constant couplings is one of the main ingredients that
makes it possible the existence of finite energy solutions in the
whole R3. It would be interesting to verify if the introduction of a
space dependent magnetic susceptibility could have a similar role
in circumventing the Chandrasekhar argument [16] in solar and
plasma physics.

We now discuss the properties of the self-dual sector of the
theory (1).

2. The self-duality equations

It will be convenient for our purposes to represent the corre-
sponding static energy functional via the dual of Hjj, defined as

1
Bi= 2 &ijic H .

Then we can write the static energy associated to (1) as

U (e (m2 ) a2+ L g2
E_Z/dx<m(r)A,+e2(F)Bl> (4)

In order to have finite energy solutions the fields Z,, a =1, 2, have
to approach fixed constant values at spatial infinity, and so as long
as topological arguments are concerned, we can compactify the
physical space R3 to S3. Thus the field of the model (1) becomes
a map Z,:S> — S3. The mapping is labeled by the topological
invariant Q = m3(S3), which is the winding number of the field
configuration, and it can be calculated by the following integral

i,j,k=1,2,3 (3)

1
Q=132 /d3X8abcd8zjk Dq 0;Pp 0P Py

1
=m /dBXAiBh (5)

where we have written Z; = ®1 + i®;y, Zy; = ®3 + i P4, and
a,b,c,d=1,2,3,4.

Note that on the right hand side of (5) we have written Q
in terms of the vectors A; and B; defined in (2) and (3), respec-
tively. Evidently, this structure reminds the Hopf invariant used in
the theories with the target space being S, like in the Skyrme-
Faddeev model [17]. However, our target space is still S> and we
are not projecting the map down to S as is the case of the first
Hopf map.

Next we follow the arguments presented in [18]. Let us denote
by X, o =1,2,3, the independent fields of the target space S3.
The topological charge Q given in (5) is invariant under infinites-
imal smooth (homotopic) deformations of the fields §x,, and so,
without the use of the equations of motion, one finds that §Q =0.
Since the variations are arbitrary one gets from (5) that the vectors
A; and B; have to satisfy

S§Aj S§Aj 8B; SBi
Bi— —0j| Bicm—— )|+ Ai— —9j| Ai— ) =0. (6)
Xa 80 Xa S Xa 80j Xo

On the other hand, the static Euler-Lagrange equations associated
to (1) are given by

27y 4. 341 o (2 4 S
m* (r) AI(SX()[ 3j | m* (7) A,(Sajxa
L s (e o
e?(7) "Sxa e (7) "$0ixa )

If one now imposes the self-duality equation

m() Aj =+ — B; (8)
e(r)
one gets that (6) becomes
o 8A; o S§Aj
+m(7) e(r) A; — 9| £m@)e(r) A;
S Xa 53an 9)

N 1 8B; ‘ 1 0B
m@)ed) Sxa °\ m@ed) 89X«

If, in addition, we impose that
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m@) =mo f(F)  e(®) =eo f(F) (10)

with mp and ey being constants, then (9) becomes the same as
(7). The conclusion is that, for the choice (10), the self-duality
equation (8) implies (7), when the identity (6), coming from the
topological charge, is used. Therefore, using (10), the static energy
(4) becomes

E= % /dzx[<mg f2A? + ezlfz Bg)} (11)
0

which can be written as

1 [ 5 1\, mo [ 3
E=— [ &x|mofAiF—B;i) £+ — | d°xA;B; (12)
2 eof eo
Therefore the lower energy bound is
m
E>4m?—= Q| (13)
€o
which is saturated for the solutions of the self-duality equation
moeg f2 Aj = £B; (14)
For such self-dual field configurations we have
E=m? d3xf2A2—l d3xB—i2 (15)
— o i e% fz

Note that if we treat f as an independent field then the static

Euler-Lagrange equation coming from (11) is given by
1 B2

ed f2

which certainly follows from the self-duality equation (14). There-

fore, the first order self-duality equations (14) imply all the static

second order Euler-Lagrange equations associated to the the-

ory (1), when the coupling constants have the form given in (10).

As we shall see, the dilaton function f(r) can regularize solutions

of the self-duality equation providing a way to evade the usual ar-

guments [16,14] that there can be no finite energy solutions of the
force free equation.

2 £2 42
mg f°A; =

(16)

3. Conformal symmetry of the model

Remarkably, the self-dual sector of the model (1) is invariant
under conformal transformations in three space dimensions. In or-
der to see it, we will follow the approach of [19] and consider
a general infinitesimal space transformations of the form éx; = ¢;,
such that

8Z,=0; 80iZq =—0ij0jZq. (17)
Therefore

8Ai=—0i¢jAj  SHij=—0i¢Hkj — 9jGkHik s (18)
and

8B; = —&ij 0jq Hie = —0¢1€ijk Eikm Bm = 04 Bj — 9j¢; B (19)

Let us consider how the self-duality equations (14) change under
such transformations. It is convenient to write them in the form
Ai=Af2A;—Bi=0 A=nmgey n==1, (20)
and so

)
8A,’=27f)\f2/-\,'—aig‘j)\szj—aj{iBj—i-aj{jBi

5 (21)
= [2 i 8ij — (9;¢; 4+ 958 + 315131'1} L f2A;.

Hence, in order to remain invariant with respect to the transforma-
tions (17), the variations of the space coordinates ¢; must satisfy

0i¢j +0j¢i =2D §j; (22)
for some function D. Therefore,

1)
6Ai=[27f+D]Af2Ai (23)

and the self-duality equation (14) remains invariant if

=2 (24)

As is was shown in [19], the transformations satisfying (22) are
actually the conformal transformations. Indeed, we have that the
possibilities are

{i(Pj) —(Pp 5ij

D®) =0 (translations)

g = e R (8 x; — 8jixe) j#k
DRi) — o
(D =@y,
D@ — @

(rotations)

(dilatations)
. ) 1
¢ =@ <Xi Xj— 5"12 51’1’)

D) =g x;  (special conf.) (25)

Therefore the self-duality equations (14) are invariant under con-
formal transformations in three dimensional space. Note that f is
a scalar field under translations and rotations but not under di-
latations and special conformal transformations. Further, one can
check that

8A? =-2DA?; 8B?=-4DB?; 6&(A;B;)=—-3DA;B; (26)
and the volume element transforms as

8(d®x) =3Dd%x (27)
Hence both the static energy functional (11) and the topological
charge (5) are conformally invariant.

4. The toroidal ansatz and exact Skyrmion solutions on R3

Here we again follow the reasonings of [19] to construct an
ansatz for our self-duality equations, which is invariant under the
diagonal subgroup of two commuting U(1)’s in the conformal
group and other two commuting U(1)’s in the internal symme-
try group of the model (1). Note that the model (1) is invariant
under the U(2) global transformations

<2)—>u<2> UeU@) (28)

The Cartan subgroup of the U(2) includes two commuting U (1)
elements, namely

Zi— €Y7y Zy—> 7o (29)
and
1> 21 Zy—eéfz, (30)

In addition we also have, in the conformal group in three dimen-
sions, two commuting U(1) elements, which correspond to the
vector fields V; = ¢; 9; with (see [19])
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3¢EV¢:X23] — X102 (31)
X 1
0 =V = 33 (X101 4+ X202) + 3a (a2 +x3-x3 —x%) 03 (32)

with a being a length scale factor, and where we have introduced
two angles, ¢ and &, such that the vectors fields, V, and V%,
generate rotations along those angular directions. Note, that V),
is the generator of rotations on the plane x; x;. On the other
hand, V is a linear combination of the special conformal generator
V(©) = x3x9; — 1 x? 93, and the translation generator V("3 = 3;
(see (25)). One can easily check that indeed [0y, 0 | = 0. The third
curvilinear coordinate in R® which is orthogonal to ¢ and £ is

L, 402 (x3 +x3)

(X3 + X3 4+ x% +a2)?
One can check that indeed dyz = d:z = 0. It turns out that
(z, &, ) constitute the toroidal coordinates in R> defined as’

X1:%ﬁcos¢; xzzgﬁsin(p; x3:%«/1—zsin§
(34)

(33)

where
p=1—+1—zcosé¢ 0<z<1 0<¢,&<2m (35)

We now want field configurations that are invariant under the di-
agonal subgroup of the tensor product of the internal U(1) defined
in (29) and the external U(1) generated by 9, given in (31). In
addition we want those same field configurations to be invariant
under the diagonal subgroup of the tensor product of the internal
U(1) defined in (30) and the external U(1) generated by 0¢ given
in (32). That brings us to the toroidal ansatz defined by

Zi=VF@e"  Zy=1—Fz)e ™M (36)

where m and n are two integers, to keep the configuration single
valued in R3.

In order to proceed it is convenient to write the self-duality
equation in terms of vector calculus notation, and so we have that
(14) can be written as

VAA=nmoeo f2F)A; n==+1. (37)
Writing A in terms of the unit vectors of the toroidal coordi-
nates as A = X—ZZ e, + Z—f e + Z—;’ €, (see (66)), we have that V, =

% (Z30; Za — 240, Z%), with ¢ =z,&, ¢, and where the scaling fac-
tors h; are defined in (63). Therefore, (37) can be written in com-
ponents as

2 p
V,=— P v
UL 2z(1—z) &%
K fiVe=-2(1-2)pd,V, (38)

K f2Vy=2zp [9;Vs — d:V,]

where we have introduced the dimensionless quantity x =
nmoega, with n = +£1 (see (20)). Substituting the ansatz (36) in
the self-duality equations (38) we get

9:F =0
2
Km
f (1—-F)=-21—-2)no;F (39)
knf?
F=-2zmo,F

1 We have replaced the usual toroidal coordinate n by z, these coordinates are
related as z = tanh? n, with n > 0.

Now we can eliminate the derivative 9, F from this system, it yields
a simple algebraic solution of the self-duality equations (39) for
any values of the integers m and n

2
mz 2 2p |mn |

F=m22+n2(1—z) f zmoeoa [m2z+n2(1 —2)] (40)

where, to keep f real, we had to choose the sign of (mn) to be
related to the sign 7 of the self-duality as n = —sign (mn). Thus,
the explicit form of the solution for the self-dual model (1) on R3
is

m2z :
Zi= | "L ing
! m2z+n2(1-2) ¢
n?2(1—2z2)
m2z+n?(1-2)
f_\/2|mn|(1—\/l—zcos§)

moega[m?z+n%(1—2)]

Zy = e””f (41)

The vector field A takes the following form when evaluated on the
solutions (41)

= p/a - 5
A=—-mn————|e:n/1—z+4+e,m+/z 42
mzz—knz(l—z)[S tey ‘/_] (42)
and so
27,2
A omip P/ (43)

! m2z+n?2(1-2)

Note that A is tangent to the toroidal surfaces defined by z =
constant. On the circle on the x; x; plane defined by z =1 (see
the appendix Appendix A), one has that Acjce = —n _é(p /a. At spa-

tial infinity, where z =0 and & = 0, one has that Ajyfinity = 0. On
the x3-axis, where z=0, one has Ay,-axis = —(m/a)(1 — COS&) E¢.
Evaluating the static energy (15) on the solutions (41), we get

E:m(z)/d3xf2;§2

1

m 1
=4n2—0|mn|m2n2/dz 5 (44)
€o [m?z+n2(1-2)]
Using the fact that
' 1 1
/dz 2 22
s [mz+n2 -] MmN
one gets
m
E=472"2 |mn| (45)

€o

Further, using (14) into the definition of the topological charge (5),
we get that the solutions (41) have topological charges given by

1 mge
Q== fd3xA,-Bi: ”4;20 /d3xf2A$=—mn (46)

where we have used that the sign 1 = 41, in the self-duality equa-
tion (14) is related to mn as n = —sign(mn) (see below (40)).
Thus, these field configurations exactly saturate the topological
bound (13) for any values of n, m.

Note that the solutions (41) are very similar to those exact
solutions constructed in [20], and possessing in fact the same topo-
logical charges. The model in [20] however, is defined on target
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Fig. 1. The function f(r,0) for the solutions (41) of the model (1) at a=1, mp=1,

plot).

space S2 and it does not possess a self-dual sector, even though it
presents conformal symmetry in three space dimensions.

If one of the integers, m or n vanishes, the solutions (41) be-
come trivial with f = 0 everywhere in space. Note that in the
particular case where n = +m the general solution (41) is reduced
to

=ﬁeinw 22=V]—Z€iin£,
2
f:\/moe — (1= V(1 - 2)cos§) (47)

Clearly, the field Z; in (47) resembles the form of the solution
of the model (1) on S3, constructed in [14], however the angular
variables in the latter case are related with the angular coordinates
on the three-sphere and the function f, which is a regulator on
R3, does not appear there.

Remind that in the toroidal coordinates (34) the spacial infinity
corresponds to z=0, £ =0 and the origin corresponds to z =0,
& = m. Evidently, for the solutions (41) we have the asymptotic
behavior

Z1(r—o00)=0 Zy(r— o0) =1, f(r—o00)=0 (48)

and
Z1(r—0)= Zr(r—0)=—
2 m
f(r_>0)=\/ﬁﬁ‘g‘ (49)

which agrees with the topological boundary conditions imposed
on the field Z,. The general solution is axially symmetric, and on
the x3-axis, corresponding to z =0, we have

71(0,0,x*)=0,  Z3(0,0,x°) =e'",
|m|]2(1—cosé&)
O,O,x3 = [— 50
f( e i—— (50)

thus, the solutions are regular everywhere in space.

Q’O"o

# ’h’o,,

ep=1, forn=1, m=1 (left plot), n =1, m =4 (middle plot), and n =4, m =1 (right

R N A

33333

55555
[N
EN PN

Fig. 2. The function f(r,0 = /2) of the self-dual solutions (41) for a few values of
the integers n,m, ata=1,mp=1,e9=1.

In Figs. 1-2 we show the function f in terms of spherical
coordinates r,0. For n =m the solutions possess spherical sym-
metry. For n # m, the configuration becomes axially symmetric, it
is oblate for n > m and it is prolate for n <m.

The solutions (41) can be written in the spherical coordinates
in a more transparent form. Indeed, using the expressions (62), we
can write the energy density of the general solution (41) as

((r/@)* +1)
[4(p/@)*(m? —n?) +n%((r/a)? + 1)2]>

If m? =n?, the configuration becomes spherically symmetric, then

16m0|
T epadd

n|? (51)

16mg n2

" eod® ((r/a) +1)3

Note that in both cases the energy density decays as 1/r% as r —
oco. In addition, it scales as 1/a3, and so, the total energy is scale
invariant and that is a consequence of the conformal invariance of
the model.

(52)
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Fig. 3. The isosurfaces of the energy density of the n =1, m =4 (left plot), n =2, m =2 (middle plot), and n =4, m =1 (right plot) solutions of the model (1) at a=1,

mog=1,ey=1.

In Fig. 3 we display the energy density iso-surfaces (see (51))
for the cases (n=1, m=4), (n=2, m=2),and (n=4, m=1).
Note that all these configurations have the same total energy.

Finally, let us note that the solutions for the Z, fields given
in (41) do not depend on the arbitrary scale parameter a, as one
should expect since they are scalar under conformal transforma-
tions (see (17)). The function f however scales as 1//a, and that
is a consequence of the fact it is not a scalar under dilatations
and special conformal transformations, see (24). Thus, similar to
the self-dual soliton solution of the non-linear O (3) sigma model
in 2 4+ 1 dimensions [21] the instanton solution of the Yang-Mills
theory in Euclidian four-dimensional space [1], and the exact Hop-
fions constructed in [20] those field configurations (except for f)
are scale invariant.

5. Solutions in terms of the SU (2) fields

We have presented the solutions in terms of the complex fields
Z4, a =1, 2, that parameterize the 3-sphere S3. However, we can
write those solutions in terms of the SU(2) group elements as fol-
lows. We parameterize the SU(2) group elements in the spinor
representation as

[ Z2 iZ7 2 2_
U_<iZT Z’;) [Z11°+1Z21°=1 (53)

Then the vector Aj, introduced in (2), can be written as
i
Ai=3Tr (a,-u UT03) (54)

where o3 is the Pauli matrix, i.e. o3 = diag (1, —1). Note that the
global transformations

U>Ug U—er%y (55)

with g € SU(2) leave the vector (2) invariant. Therefore, the model
(1) has the symmetry U(2) = U(1); ® SU(2)g, that corresponds
to the symmetry discussed in (28). So, the fact that only the
o3-component of the Maurer-Cartan form d;U UT enters in the ac-
tion of the model (1), makes the symmetry SU(2); ® SU(2)g, of
the usual Skyrme model, to be broken down to U(1); ® SU(2)R.
Note that the two commuting U(1)’s, introduced in (29) and
(30), and used to build the ansatz (36), correspond to
U—el@0/2y e 1®03/2, and U — e!Po3/2 Yy elfo3/2 (56)

In addition, the boundary conditions (48), (49) and (50) satisfied
by the solutions, imply that

U(r—oo)=1; Ur—0=-1; U(0,O0,x3)=e ™
(57)

Using spherical polar coordinates

X1 =rsinf cosep; Xxp=rsinf sing; Xx3=r cosH (58)

and the results of Appendix A, one can write (for m # 0 and n # 0)
(m?/n?) 4a1? sin*0 .
(r2+ a2)2 — (1 —m2/n2)4a2r? sin® 0 ’
2 2\ i
; r“—ac)+i2ar cosé
et = ( ) (59)
\/(rz + a2)2 —4a2r2sin%0

Therefore, one can express the solutions (41) in terms of the
U-fields. In particular for the case where m = £1, one gets that

F =

(r*—ad®) 1+i2arT

U(i],n) — - (60)
\/(rz +a2)” — (1—1/n2) 4a%r? sin*
with
cos 6 +singel™/ |n|
T= . ; 1
(j:smee‘““f’/lnl —cosf (61)

Note that the multi-Skyrmions solutions we have constructed are
all centered at the origin. If some of those configurations can be
separated into lower charge Skyrmions, they will certainly be sit-
ting on top of each other.

6. Conclusions

The main purpose of this work was to construct exact analyti-
cal and regular self-dual solutions of a Skyrme theory with target
space S3. The crucial ingredient that made that possible was the
conformal symmetry of the self-duality equations in three space
dimensions. On its turn, such symmetry was possible due to the
fact that the strengths of the couplings of the quadratic and quar-
tic terms in the action have a space dependence encoded in a
quantity f. The physical nature of such quantity is still to be
understood, but it is quite natural to relate it to low energy ex-
pectation values of fields of a more fundamental theory in higher
energies that would contain our Skyrme model as a low energy
effective theory. Note from (24) and (26) that the quantity f trans-
forms under the conformal group, in the same way as (A; Bi)!/®,
i.e. a fractional power of the topological charge density. In fact, f
and (A; B;)/® differ by a multiplicative constant, when evaluated
on the solutions (41) for the case m% = n?, i.e. the solutions with
spherically symmetric energy densities. Such a fact could perhaps
be a hint on how one could try to extend our model by a scalar
dilation type field or even vector fields.

Certainly our results open the way for further investigations on
the properties of the proposed Skyrme model, and perhaps on its
possible physical applications. Of course, it would be interesting
to study how the conformal symmetry could be broken leading to
scale dependent solutions and bringing a physical scale to the the-
ory. The introduction of a potential or even of the dilation field
mentioned above are some of the possibilities. It would also be
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important to investigate the rotational modes of the solutions and
their semi-classical quantization. Rotating solutions not only would
break the conformal symmetry but also would split the energy de-
generacies of our self-dual spectrum. We hope to report on those
issues elsewhere.
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Appendix A. Toroidal coordinates

Here we give some useful formulas related to the toroidal co-
ordinates (34), and that are needed for the explicit calculations
leading to the exact solutions (41). Inverting the relations (34) one
gets that

4a? (x3 +x3)

z= ;
(2 + 22+ 22 +a2)
& = ArcTan 20X
(X3 +x3 +x3 —a?)
@ = ArcTan <X—2> (62)
X1

The metric in toroidal coordinates is ds? = h2 dz? + h§ dg? —I—hi de?,
with scaling factors being

a 1 a a
hp=2— =2 V1=z n,=2yz (3)
‘T p2vzd-2 ¢ ) YT

The volume element is then
dx! dx? dx® = 1e dzded (64)
= 2 p3 (p

Note that

, (1+4/1—2zcosé)
(1= 1=z cosé)

Therefore the spatial infinity corresponds to z=0, and &€ =0
(or 27). The x3-axis corresponds to z =0, for 0 < & < 2. The
origin corresponds to z=0, and & = . In addition, z =1 corre-
sponds to the circle x? +x3 =a?, and x3 =0.

The unit vectors are defined as é; = % fi%' for¢=z,¢&, ¢, and
so we have that

22,2 ,2_
rF=x{+x+x5=a

(65)

- 1 -
e, = E[(\/l — Z—cos£)cosg e
+ (V1 —z—cos§)singé; — +/zsing é3]

S 1 .
e = —E[\/Zcosqosméﬁ

+V/zsingsing é; + (V1 —z — cos§) €3] (66)
ey =—singe; + cosg e,

where é;, i =1, 2, 3, are the unit vectors in Cartesian coordinates.
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