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1. Introduction

In his paper, we study the exponential stability of the system governed by the following initial boundary
value problem for the non-homogeneous damped Euler-Bernoulli beam controlled by boundary springs and
dampers:
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p@)ue + p(x)ue + (r(2)taz) p = 0, (2,1) € Qr,
U(LL',O) = UO(I'), ut(x,O) = ’U,l({L‘), T € (076)1
uw(0,t) = uy(0,t) =0, (=7(2)Uaa),_p = kruz(€,t) + kquqe (€, 1),

(= (r(@)uee)y) yep = —kau(l,t) — kyuy(4,t), t € [0,T7,

where Qp = (0,¢) x (0,T), £ > 0 is the length of the beam and 7" > 0 is the final time.

Here and below, u(z,t) is the vertical displacement, r(z) := E(z)I(x) > 0 is the flexural rigidity (or
bending stiffness) of the beam while E(x) > 0 is the elasticity modulus and I(x) > 0 is the moment of inertia
of the cross section. The non-negative coefficient u(x) represents the viscous external damping. Furthermore,
the following variables have engineering meanings: u:(z,t), ug(z,t), Use(2,t), Uge(z,t), — (r(T)us,) and
— (r(z)uss), are the velocity, rotation, angular velocity, curvature, moment and shear force, respectively
[13]. The nonnegative constants k., kq > 0 and kg, k, > 0 represent the boundary springs and dampers,
respectively.

The first boundary condition (—7r(z)uze),_, = kruz(£,t) + kyuge(4,t) at @ = £ means the control re-
sulting from the linear combination of rotation and angular velocity, and the second boundary condition
(= (r(®)usz),)yey = —kau(l,t) — kyui(f,t) means the control resulting from the linear combination of
displacement and velocity. In this context, the above constants k.., kg, k., k, are defined also as the bound-
ary controls. It should be emphasized in almost all flexible structures modeled by the Euler-Bernoulli
equation, one or another special case of these boundary conditions is used (see [1-5,14-16,19,20] and ref-
erences therein). Namely, it is shown in [3] that the generalized eigenvalues of the simplest undamped
Euler-Bernoulli equation us — Uz, = 0 with boundary linear feedback control g, (¢,t) = —kquz: (£, 1),
Upaa (€, 1) = kyue(L,t), form a Riesz basis in the state Hilbert space, which leads to exponential stabil-
ity. Furthermore, for the case when k. = k, = kg = 0 and p(z) = 0, the Riesz basis property and the
stability of the system was studied in [4]. The same issues were studied in [19] for the system (1) with
k. = k, = 0. Other simplified versions of the model governed by (1) have been used for the mast control
system in the Control of Flexible Structures Program of NASA [1,2,15]. In [1], the authors examine and
prove for the first time that there is exponential stability in the situation where only rotational damping
is present at the extreme of a cantilever beam, with applications to long flexible structures that are mod-
eled by the Euler-Bernoulli equation. In [2], the often encountered configuration in engineering practice, in
which there is a finite number of serially connected beams, is analysed. This paper examines the proof of
uniform exponential stability for the case when one damper is positioned at the extremes of the composite
structure, or at some intermediate interconnecting node. This problem is of great interest for structural
engineers.

In all the above cited works, semigroup approach was used to obtain the Riesz basis property of the
eigenfunctions, which is one of the fundamental properties of a linear vibrating system. It is well known
that for such a Riesz system, the stability is usually determined by the spectrum of the associated operator.
However, in the exponential stability estimate £(t) < Me~“*£(0), obtained in the above mentioned studies,
the relationship of the decay rate parameter w > 0 with the physical and geometric parameters of the beam,
including the damping coefficient and the boundary dampers, has not been determined. In addition, it does
not seem possible to obtain this relationship anyway, due to the methods used in these studies.

The method developed in this study can clearly show how the decay rate parameter depends on the
boundary spring and damper constants, as Theorem 1 and Theorem 2 show. As a consequence, the contri-
bution of each constant to this decay can be distinguished.
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2. Energy identity and dissipativity of system (1)
We assume that the inputs in (1) satisfy the following basic conditions:

p, i, € L=°(0,0), € H?(0,/),

ug € H*(0,0), uy € L?(0,7),

0<po<plx)<p, 0<rg<r(z)<ry, (2)
0 < po < p(x) <, x€(0,0),

kv ks i, by > 0.

Following the procedure described in [7,18], one can prove that under conditions (2), there exists a
regular weak solution u € L?(0,T; H*(0,¢)), uy € L*(0,T;V?(0,£)) with uy € L?(0,T; L?(0,)) of problem
(1), where V2(0,¢) := {v € H?(0,¢) : v(0) =v/(0) = 0}.

Proposition 1. Assume that conditions (2) are satisfied. Then the following energy identity holds:

£

//u dexdT

0
t

=£(0) — kq /ui,r(ﬁ, )t — k, /ui(e, T)dr, t € [0,T], (3)
0

0

where

;/Z z)ui (z,t) + r(z)u,(z,t)] do
!
+ ko (e, t)+ kqu?(l,t), t € [0,T), (4)
is the total energy of system (1) and
g
0 =5 [ [p@) @) + 1) (i @)”] da
)
g B (W () + 5 (0 () 5)

is the initial value of the total energy.

Proof. Multiplying both sides of equation (1) by wu;(x,t), integrating it over £, := (0, £) x (0,t), using the
identity

(1(2)Uzz)zotts = [(1(2)Uge) 2t — 7(2)Ugalet]s + % (T(m)uiz)t ) (6)

we obtain the following integral identity:



4 O. Baysal et al. / J. Math. Anal. Appl. 533 (2024) 128031

O//(p(x)uf)dedTJr%O/tj(r(x)ugz)dedT

¢ ¢
+ / ((r(2)th ) sty — 7(2) Uty ) =t dT + //u(:r)uzdxdT =0,
0 00

| =

for all ¢ € (0, T]. Using here the initial and boundary conditions (2), we obtain:

¢
1
5/ x)ui +r(w )um]dx—F kouZ(6,t) + = kdu(ﬁt)
0

t e t t
—|—//,u(m)ufdxd7’+ka/uiT(ﬂ,T)dT—i—k‘v/ui(f,T)dT
00 0 0

14
=5 [ o) 0 @)? +r(0) ()] do = S (wh(8))” = Gk (w(0)* =0,

er—l

for all ¢t € (0, 7). This leads to (3) with (4) and (5). O

Identity (3) shows that the increase in the damping parameters k,, k, > 0 causes the energy £(t) to
decrease. Furthermore, from formula (4) it follows that the increase of the spring parameters k,, kg > 0
causes the energy to increase.

Proposition 2. If conditions (2) are met, the formula below gives the rate at which the total energy decreases.
& /
t
) = —//,L(as)ufd:c koqu?,(€,t) — kyui (£,t), t € (0,T). (7)
0
Proof. In view of formula (4) we have:

4
= / [p(.’l?)ututt + T(l‘)uzzuaxmt] dx
0

+hrtg (6 t)uge (€, 1) + kqu(l, t)ug(¢,t), t € [0,T).

Use here the (formal) identity p(z)uy = —p(z)us — (r(2)tss),, to get

4 Vi Y
%it) - /M(m)u?dz - / (T(x)uxx)m: ug dr + /T(Z)Uxxua:a:t dz
0 0 0
Hhoptg (€, ) uge (6, ) + kqu(l, t)ug(¢,t), t € [0,T). 8)

In the second right hand side integral, we employ the identity

¢ ¢
/ T)Ugg) Ut A = /r Vgrtzrtdr — kqu(l,t)ug(¢,t)
0

0
— ko (£, 1) — kptg (0, t)uge (6, 1) — kou2,(€,1), t € [0,T],
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which holds due to the boundary conditions in (1). Substituting this identity in (8) we arrive at the required
formula (7). O

Corollary 1. Integrating (7) over (0,t), t € (0,T] we obtain the same energy identity (3) rewritten in the
following form:

£(0) =€) =ju(t) +alt) +ju(t), t €[0,T], (9)

where

uZ(¢,7)dr, t €0,T).

I
8N
8

—
~
Ny
U
o
&
—
=
~—
I

7
<

o —

In particular,

E(t) < £(0), te (0,17,
that is, the energy of the system (1) is dissipating with time.

The above formula (7) is a clear expression of the effect of the damping parameters p(z), k, and &, on
the rate of decrease of the total energy. In addition, the energy identity (9) shows the degree of influence
of these damping factors on the difference between the initial value £(0) of the total energy and the value
E(t) of this energy at the time instant ¢ € (0,7, through the integrals j, (t), jo(t) and j,(t) defined in (10).

3. Energy decay estimate for system (1)

Introduce the auxiliary function:

¢ ¢
1
J(t) = /p(x)uutdx—F 3 /u(m)uzdx
0 0
1 2 1 2
+§ kquz(€,t) + 3 kyu=(¢,t), t € [0,T], (11)
containing all damping parameters.
We prove the formula

J ¢

W 2 [ ptayuan —2600), € 0.7, (12)
0

which shows the relationship between the auxiliary function J(¢) and the energy function £(t) introduced
in (4).

Taking the derivative of the function J(¢) with respect to the time variable and using then the (formal)
identity p(x)ue + p(x)us = — (r(2)uss),, as above, we obtain:
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¢ ¢
%it):/p dx—/ um u dx
0 0

+hqug (€, t)ug (€, 1) + kyu(l, t)ug(4,t), t € [0,T).

We employ here the following identity:

¢ ¢
/ T)Uspg),, WdT = —/r(az)uimdaj
0 0

—kgu? (£, 1) — kyu(l, t)us (£, 1) — kpul (£, 1) — kaus (€, )uge (£, 1), t € [0,T).

This yields:

¢

dJ(t)

7—/;) /r Yu2, dx
0

—kgu?(L,t) — kul(L,t), t €[0,T).
With definition (4) this implies the desired formula (12). O

Proposition 3. Under conditions (2), the energy function E(t) introduced in () serves as lower and upper
bounds to the auxiliary function J(t) introduced in (11), that is

—/305(75) < j(t) < 61 E(t), te [OvT]v (13)

where

1 /2 2
=B |1 C ot ik,
A 50[+m<2‘“+€ * ﬂ

go= [

2 To

(14)

Proof. First we estimate the first right hand side integral in (11). To this end, we employ the e-inequality

4 I 4
1
/p a)uuyd /p 2—/p Juld,
0 0 0

l\?l(‘f)

with the inequality

L

/ 5401
/p(m)uzdm < —/r(x)uiwdx,
J 4T0

0

to estimate the second right-hand side integral in above inequality. Choosing then the parameter € > 0 from
the condition /2 = (*p; /(8rge) as
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we obtain the following estimate:

L

¢
/p Juugdz| < —1/'01 /p dac—!—/r( yuZdz| . (15)
0

0

For other right-hand side terms in formula (11) for the auxiliary function [J(t) we use the following

inequalities:

1
3 Eyu?(0,t) < r(z)u?,dx, t € (0,T).

Taking into account (15) and (16) in (11) we arrive at the following estimate

L
0 <5601 [ plajutds
0

¢
2 2
+ [1—!— : H1+ ! kv} /r(m)uigﬂdac )
0

ko +
2y/p17o t\/piro vV P1To
which leads to the upper bound
j(t) S /81 8(t), te [OvT]a /81 > Oa (17)

with 8o, 51 > 0 introduced in (13).
To find the lower bound for the auxiliary function J(t), we use again inequality (15) in (11) to conclude

that

¢
J(t /p d:ch/r( Yul dx p +

0

4

%/,u (z,t)dz + kaui(f,t) + %kvuz(f,t), t€0,T].
0
This leads to
j(t) > _60 g(t)a te [OaT] (18)

Thus, (17) and (18) imply the required lower and upper bounds (14). O

Remark 1. The constants By, 31 > 0 depend only on the geometric and physical parameters of a beam
introduced in (2), as formulas (14) show.
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To establish the uniform energy decay estimate, we introduce the Lyapunov function:
L(t) =&(t) + AT (1), t € [0,T], (19)

where £(t) and J(t) are the energy function and the auxiliary function introduced in (4) and (11), respec-
tively, and A > 0 is the penalty term.

Theorem 1. Assume that conditions (2) are satisfied. Then system (1) is exponentially stable for any nonneg-
ative values of the boundary spring and damper constants k., kq, kq, ky > 0. That is, there are the constants

1+ BiA 2

S e S Y (20)
with
0 <A <min(1/Bo, po/(2p1)), (21)
such that the energy E(t) of system (1) satisfies the following estimate:
E(t) < Mye 7t £(0), t €[0,T], (22)

where po, p1 > 0 and By > 0 are the constants introduced in (2) and (1/), respectively, and £(0) > 0 is the
initial energy defined in (5).

Proof. In view of (14) we have:
(1=ABo) E(t) < L(t) < (1+ A1) E), t € [0,T]. (23)
In such a circumstance, we assume that the penalty term satisfies the following conditions:
0<A<1/By, Bo>0. (24)

Differentiating £(t) with respect to the variable ¢ € (0,7) and taking formulas (7) and (12) into account,
we obtain:

¢
dfl( ) + 2XE(t / —2\p(z)] uZda
0

—kouZ, (1) — kyui(l,t), t €[0,T). (25)

We require that pu(x) —2Ap(x) > 0. Since p(x) — 2 p(x) > po — 2Ap1, the sufficient condition for this is the
condition

A < po/(2p1). (26)
With (24) this implies that the penalty term should satisfy conditions (21). Then from (25) we deduce that

dL(t)

i +2X\E(t) <0, t €[0,T). (27)

With the inequality £(t) > L(t)/ (1 + A1) this yields:
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dc(t)  2x

dt 14612

L(t) <0, te][0,T].
Solving this inequality we find:
L(t) < e 7tL(0), t €[0,T].
This yields the required estimate (22) with the constants Mg, o > 0 introduced in (20). O

Remark 2. In view of formulas (14), the decay rate parameter o > 0 in the energy estimate (22), obtained
for the system governed by (1) and controlled by boundary springs and dampers, clearly shows the degree
of influence of each of the damping parameters p(z), kq, k, > 0 in the dissipative boundary conditions on
the energy decay.

4. Some special cases

Special cases of the general system (1) described above are very common in practical applications of
structures containing beam elements. In this section we deal with systems corresponding to special cases of
the general system (14) to investigate the influence of each damping factor.

4.1. A cantilever beam fized at one end and free at other

Consider the simplest case when k. = k, = kg = k, = 0 of system (1), i.e. without the dissipative
boundary conditions:

p(z)ug + p(x)uy + (r(2)uze),, = 0, (x,t) € Qrp,
u(z,0) = uo(x), w(x,0) =uq(z), z € (0,£),

(28)
u(0,t) = uy(0,t) =0, (=7(x)ups),_p, =0,
(= (r(x)uzz)y),—p = 0, t €[0,T7].
This is an initial boundary value problem for the damped cantilever beam.
The exponential stability result for system (28) directly follows from the results given in (20)-(22),
E(t) < Mpe 20t £(0), t € [0,T],
14+ 612 2A
O T =B T TN
2 €2 (29)
= 1 _— —_
B ﬁo[+4\/p1—ro }50 T07
0<A< min(l/ﬁ()a MO/(2p1))7

assuming k, = k, = 0 in (14), and also k. = kg = 0 in (4). That is, the energy function corresponding to
system (28) is

l\')lr—A

4
/ D0, 1) + (@), (e 1)] de, £ € 0,7]. (30)

Formulas (29) clearly show the nature of the influence of the viscous external damping coefficient p(x),
as a unique damping factor on the energy decay rate.
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4.2. A cantilever beam fized at one end and attached to a spring at other

This case corresponds to the zero values k, = k, = 0 of the boundary damping parameters, and hence
to the linear spring conditions at x = £:

p(x)ug + p(x)uy + (r(2)vee),, =0, (z,t) € Qrp,
u(xz,0) = up(x), u(z,0) =wui(x), z € (0,),
u(0,8) = u(0,8) = 0, (=7(2)thas)p—y = krua (£, 1),
(= (r(@)uaz),) yey = kau(l,t), t € [0, T7.

(31)

As in the previous case, the dissipativity of system (31) is provided only by the viscous external damping
given by the coeflicient u(z) > 0.

The same exponential stability result given in (29) holds for system (31). Furthermore, the energy function
E(t) corresponding to system (31) is given by the same formula (4) which, different from formula (30),
contains also the spring constants k., kg > 0.

4.8. A cantilever beam fized at one end and subjected two dampers at other

Consider the case where both spring parameters in (1) are zero, k, = kq = 0:

p(x)ug + p(x)ue + (1(2)uge) ., = 0, (x,t) € Qr,
u(m,O) = UO(:E)’ ut(x,()) = ul(m)v S (an)a

(32)
U(O’ t) = ua:(o?t) = 07 (_T(x>u$a:>z:[ = kaua:t<£7t);
(= (r(@)uaz)y) yey = —koue(L,t), t €[0,T].
This is a mathematical model for the mast control system. The simplest version
muy + ET ugpre =0, (z,t) € Qr,
u(z,0) = up(x), u(z,0) =ui(x), x € (0,),
(2,0) = uo(z), w(z,0) = u(x) (0,4) (33)

w(0,t) = ug(0,t) =0, (—ETUpg),_p = kquat((,1),
(=BT Ugpa),_y = —kouw (€, 1), t €[0,T7],

of this model for the undamped Euler-Bernoulli equation with constant coefficients was first studied in [1]
within NASA’s Program of Control of Flexible Structures, and then developed in [2].

In this model, the meaning of the boundary conditions at x = ¢ is that the shear force —ET u,,, is
proportional to velocity u;, and the bending moment —ET u,, is negatively proportional to angular velocity
Uzt, while the values of the boundary dampers k,, k, > 0 play the role of the proportionality factors. Thus,
the rate feedback laws at x = £ reflect basic features of mast control systems with bending and torsion rate
control.

The uniform exponential stability result £(t) < Ke #'£(0) for the energy of vibration of the beam
governed by system (33) was proved in [2]. However, the constants K, > 0 are not related to either
physical or boundary damping parameters. Therefore, from this estimate, it is impossible to reveal the
degree of influence of these parameters on energy decay.

The results given in (20)-(22), with the same constants Gy, 51 > 0 introduced in (14), are valid also for
system (32). However, in the case of u(x) = 0, the sufficient condition (26) for ensuring the inequality (27)
cannot be given over the coefficient p(z). As a consequence, the above results can not be used for system
(33) with undamped Euler-Bernoulli equation.
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Theorem 2. Assume that conditions (2) are satisfied and p(x) = 0. Suppose, in addition that
u, (0, t) +ui(l,t) >0, forallt € [0,T). (34)

Then system (33) is exponentially stable:

E(t) < Mye 7" £(0), t €[0,T], (35)
where
1 A 2\
Ve =
B = Bo |:1+\/%<%ka+£kv):|;50:§ %7 (36)
0 ) < min ( 1 info [k2u2,(0,t) + k2u} (£, )] ) |
Bo 2m|‘ut||%°°(0,T;L2(0,l))

Proof. This theorem is proved in the similar way as the previous theorem, one only needs to derive the
similar inequality for the Lyapunov function L£(t), through the boundary damping parameters kg, k, > 0.
To this end, we use the following analogue

l
%it) +2XE(t) = 2Am/u3dx — kqu?,(£,t) — kyu2(0,1), t € [0, (37)
0

of formula (25) of the Lyapunov function, which corresponds to system (33). We require that
¢
2)\m/ufdac — kau2, (0,t) — kyuZ(€,t) <0, t € [0,T]
0

Evidently, for the penalty term A > 0 satisfying the third condition of (36), the above inequality holds for
all t € [0,T]. This implies inequality (27). The uniform exponential decay estimate (35) is obtained from
this inequality in the same way as in the proof of Theorem 1. O

5. Numerical results

In many cases, especially with variable coefficients, it is not easy to obtain an analytical solution for
given problem (1). Since the demand for finding energy function in (4) involves u and its derivatives,
these quantities should be calculated by an efficient numerical technique. In the next part, we first briefly
summarize a robust one which is known the Method of Lines (MOL) approach that has been used successfully
in many previous studies related to Euler-Bernoulli beam equations with the classical boundary conditions
[8-12]. Another efficient alternative approach can be found in [6]. Then we both show the implementation
of this method to the considered problem (1) and demonstrate its high accuracy performance.

5.1. Method of lines approach for the numerical solution of (1)

The MOL approach is based on two-stage decomposition principle for (1); first, a semi-discrete formula
is obtained from the variational formulation by Finite Element Method (FEM) with Hermite cubic shape
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functions, then the full discretization is generated by the second order appropriate time integrators. At the
end of this process an algebraic system is obtained which is simple to solve. This technique is commonly
employed, particularly in the case of dynamical multi-dimensional phenomena.

Assume the finite dimensional space V3, C V2(0,¢) spanned by the Hermite cubic shape functions {1; }?
by uniformly discretizing spatial domain 0 = 1 < 29 < -+ < xpy = £ (where h = ¢/(M —1)). Consider the
following semi-discrete Galerkin approximation of the problem (1).

For allt € (0,T), find up(-,t) € Vi, such that vy, € Vj,

(une (), 0n) + (1 )une (5 1), vn) + alun(:, ), vn) =
—lkaun(l,t) + kyup ¢ (€, 8)|op(€) — [(kr up 2 (€, 1) + kaun 2t (4, 1)])vn o (€), (38)
uh(:z:,()) = 0, uhyt(:zr,()) =0.

Here uy(z,t) is the finite element approximation of the weak solution of (1) and the symmetric bilinear
functional a : H2(0, /) x H?(0,¢) — R is defined by a(w,v) := (r(-)Waz, Vez )

The above second-order system of ODE can be approximately solved by using the following second-order
backward finite difference approximations of up, ¢(x,t;) and up ¢ (x, t;) with uniform temporal discretization.
0=t <ty <---<ty =T (wheredt =T/(N —1)).

_ 3uh(x,tj) - 4uh(x,tj_1) + uh(I,tj_g)

2 hy ’
~ 2up(w,ty) = Sup(w, 1) + dup(@, t;_o) —up(w,t;_3)
= 2

up iz, tj) = 8[Ui(x) :

wp (1, t5) = O Uil (x) -

By substituting these difference quotients for wup(z,t) in the semi-discrete analogy (38), one can get the
following full-discrete algebraic problem of which solution Uj,(z) is the approximate solution of (1) at ¢t = t;
such that Uj =~ u(-, ;).

For each j =1,2,..,N, find U,z € Vy, such that Vv, € Vy,,

{(5§Ui7vh> + (u()0; U, vn) + a(Uj, vp) = )

~[ka UJL(6) + ko0 UL (Do () = [(k U}, () + ka0 Uy ()] )vn e (£)-

In order to compare numerical and exact solution on cartesian coordinates, we define Uj(x) as linear

interpolation of set of all solutions {U ,fb € Vh};\’zl in temporal dimension such that for j =1, ..., N —1,
t—t; g t—tif1, .
Un(@,t)|it;,t,41] = h—jUiL+ (z) - TJU;JI(CE)
t t

In the next section, we will test the success of this MOL technique with a problem for which we know the
exact solution and develop a simple method for approximating the desired energy function.

5.2. First test problem
The numerical studies below allow to analyze graphically the influence of the boundary control parameters

on the stabilization of the beam vibration and on the asymptotic behavior of the energy of the system. We
also illustrate the verification of the theoretical results throughout the paper by this numerical test.
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Fig. 1. Numerical solution Uy, (z,t) and error |Uy(z,t) — u(z,t)|.

g + 2up + (1 + 2)uga),, =0, (,t) € Qp :=(0,1) x (0,1.5],

u(z,0) = 22, u(z,0) = —22%, =z € (0,1),

w(0,t) = uy(0,t) =0, tel0,1.5] (40)
—(1 4 2)uga|e=1 = 6us(1,1) + 3ug(1,1) = —4dexp(—2t), t e [0,1.5]

(14 2)uzz), lo=1 = du(1,t) + 2us(1,t) = 2exp(—2t), te[0,2].

Here boundary spring parameters are k., = 6, kg = 4 and the damper parameters are k, = 3, k, = 2.
The exact solution of (40) and its first partial derivative with respect to = are u(x,t) = x? exp(—2t) and
Uy (z,t) = 22 exp(—2t). Numerical approximation of these functions can be found directly from the MOL
technique in (39) with the ratio of mesh parameters h,/h; = 40. Corresponding approximate results are
quite accurate and illustrated in Fig. 1 and Fig. 2.

The energy function £(t) and auxiliary function J (¢) for the given problem (40) can be found respectively
E(t) = 17.4exp(—4t) and J(t) = 6.8exp(—4t). In order to find their approximations &, and Jj, one needs
to compute wug(x,t) and ug,(z,t). For this, we use centered difference quotient as follows.

Ut(l',tj) ~ 825 Uh(x,tj) = [Uh(x,tj+1) — Uh(l',tj_l)] /2 ht, (41)
um(xi, t) ~ Bm Uh,z(xia t) = [Uhvm(xﬂ_l, t) — Uh@(mi_l, t)] /2 hm

Approximate form of these derivatives 9, Uy (x,t) and 9, Uy o (z,t) are obtained as a result of this centered
difference approach and shown in Fig. 3 and Fig. 4 with their absolute errors. Therefore, by replacing all
of these approximations represented in Figs. 1-4 with corresponding exact quantities in (4) and (11), we
obtain desired approximations &, ~ £(t) = 17.4exp(—4t) and J, ~ J(t) = 6.8 exp(—4t). The accuracy of
these approximations is illustrated in Fig. 5 (right).

The upper bound of J (t) and £(t) are follows from (13) and (35), respectively. Here Sy = 1/2 and 1 = 5,
then

J(t) = 6.8exp(—4t) < B1 E(t) = 8T exp(—4t).

Similarly, A = 1, My € (1,12) and o € (0,1/3) for the considered test problem (40). Therefore,
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E(t) =17.4exp(—4t) < 17.4dexp(—t/3) < Myexp(—ot)E(0).

All these numerical studies related to £(t) and J (¢) verify the theoretical results given in Proposition 3 and
Theorem 1 and are illustrated in Fig. 5 (left).

5.3. Second test problem

The previous test problem is prepared only to illustrate the algorithm performance and verify the the-
oretical inequalities given in (13) and (22). In this section, the effect of internal and external damping
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parameters on the energy quantity is examined with some series of test problems. This analysis is also

performed by using realistic problem parameters suggested in [17].

Let’s consider the damped Euler-Bernoulli equation in (1) on the domain [0,1/2] x [0,1/4] with the

following elasticity modulus

r(z) = —64x% + 32 + 12.

These parameters are chosen in accordance with the choice of £ = 0.502 m and r = 14.41 m*/s2. It should

be noted that 12 < r(z) = —64z? + 32z + 12 < 16 for z € [0,1/2].
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damping term g = 0 and boundary damping terms in different positions (right).

According to the results in Fig. 6-left, the boundary damping effect is more dominant on the energy
function (4) than the viscous damping term. As is well known, four boundary parameters k.., kg, kq, ky > 0
play a role at the right tip of the beam. This first simple analysis does not allow us to make a comparison
in terms of their impact on energy. For this reason, it would be appropriate to make a comparison between
these parameters by using a series of new test problems with fixing y = 0. These parameters k., kq, ko, ko
are selected systematically between 4 and 0 in order to see their individual effects and results are illustrated
in Fig. 6-right. The numerical results obtained here agree the theoretical analyses. For example, k, and k,
are in the damping position in the energy function (4) and this is also seen in this figure.

6. Some preliminary conclusions

In this study we propose an approach which allows to obtain an explicit form of energy decay estimate for
typical systems governed by Euler-Bernoulli beam controlled by boundary springs and dampers. As far as
our knowledge extends, the relationship between the decay rate parameter ¢ > 0 in the exponential stability
estimate £(t) < My e " £(0) and the physical parameters of the problem, including the damping parameters
and the boundary dampers, was established here for the first time in the literature. This achievement was
made possible through the utilization of a mathematical method rooted in the Lyapunov stability approach
[21]. The theoretical results are also supported by numerical test studies. It can be shown that in addition
to the above studied cases, the considered approach is also applicable for cases of pinned-pinned, pinned-
sliding, sliding-pinned, and sliding-sliding boundary conditions, including various types of inputs on the
boundary x = /.
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