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In this paper, the vibration model of an elastic beam, governed by the damped 
Euler-Bernoulli equation ρ(x)utt+μ(x)ut+ (r(x)uxx)xx = 0, subject to the clamped 
boundary conditions u(0, t) = ux(0, t) = 0 at x = 0, and the boundary conditions 
(−r(x)uxx)x=� = krux(�, t) +kauxt(�, t), 

(
− (r(x)uxx)x

)
x=�

= −kdu(�, t) −kvut(�, t)
at x = �, is analyzed. The boundary conditions at x = � correspond to linear 
combinations of damping moments caused by rotation and angular velocity and 
also, of forces caused by displacement and velocity, respectively. The system 
stability analysis based on well-known Lyapunov approach is developed. Under the 
natural assumptions guaranteeing the existence of a regular weak solution, uniform 
exponential decay estimate for the energy of the system is derived. The decay rate 
constant in this estimate depends only on the physical and geometric parameters 
of the beam, including the viscous external damping coefficient μ(x) ≥ 0, and the 
boundary springs kr , kd ≥ 0 and dampers ka, kv ≥ 0. Some numerical examples are 
given to illustrate the role of the damping coefficient and the boundary dampers.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In his paper, we study the exponential stability of the system governed by the following initial boundary 
value problem for the non-homogeneous damped Euler-Bernoulli beam controlled by boundary springs and 
dampers:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ(x)utt + μ(x)ut + (r(x)uxx)xx = 0, (x, t) ∈ ΩT ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, �),

u(0, t) = ux(0, t) = 0, (−r(x)uxx)x=� = krux(�, t) + kauxt(�, t),

(− (r(x)uxx)x)x=� = −kd u(�, t) − kvut(�, t), t ∈ [0, T ],

(1)

where ΩT = (0, �) × (0, T ), � > 0 is the length of the beam and T > 0 is the final time.
Here and below, u(x, t) is the vertical displacement, r(x) := E(x)I(x) > 0 is the flexural rigidity (or 

bending stiffness) of the beam while E(x) > 0 is the elasticity modulus and I(x) > 0 is the moment of inertia 
of the cross section. The non-negative coefficient μ(x) represents the viscous external damping. Furthermore, 
the following variables have engineering meanings: ut(x, t), ux(x, t), uxt(x, t), uxx(x, t), − (r(x)uxx) and 
− (r(x)uxx)x are the velocity, rotation, angular velocity, curvature, moment and shear force, respectively 
[13]. The nonnegative constants kr, kd ≥ 0 and ka, kv ≥ 0 represent the boundary springs and dampers, 
respectively.

The first boundary condition (−r(x)uxx)x=� = krux(�, t) + kvuxt(�, t) at x = � means the control re-
sulting from the linear combination of rotation and angular velocity, and the second boundary condition 
(− (r(x)uxx)x)x=�

= −kd u(�, t) − kvut(�, t) means the control resulting from the linear combination of 
displacement and velocity. In this context, the above constants kr, kd, ka, kv are defined also as the bound-
ary controls. It should be emphasized in almost all flexible structures modeled by the Euler-Bernoulli 
equation, one or another special case of these boundary conditions is used (see [1–5,14–16,19,20] and ref-
erences therein). Namely, it is shown in [3] that the generalized eigenvalues of the simplest undamped 
Euler-Bernoulli equation utt − uxxxx = 0 with boundary linear feedback control uxx(�, t) = −kauxt(�, t), 
uxxx(�, t) = kvut(�, t), form a Riesz basis in the state Hilbert space, which leads to exponential stabil-
ity. Furthermore, for the case when kr = ka = kd = 0 and μ(x) = 0, the Riesz basis property and the 
stability of the system was studied in [4]. The same issues were studied in [19] for the system (1) with 
kr = ka = 0. Other simplified versions of the model governed by (1) have been used for the mast control 
system in the Control of Flexible Structures Program of NASA [1,2,15]. In [1], the authors examine and 
prove for the first time that there is exponential stability in the situation where only rotational damping 
is present at the extreme of a cantilever beam, with applications to long flexible structures that are mod-
eled by the Euler-Bernoulli equation. In [2], the often encountered configuration in engineering practice, in 
which there is a finite number of serially connected beams, is analysed. This paper examines the proof of 
uniform exponential stability for the case when one damper is positioned at the extremes of the composite 
structure, or at some intermediate interconnecting node. This problem is of great interest for structural 
engineers.

In all the above cited works, semigroup approach was used to obtain the Riesz basis property of the 
eigenfunctions, which is one of the fundamental properties of a linear vibrating system. It is well known 
that for such a Riesz system, the stability is usually determined by the spectrum of the associated operator. 
However, in the exponential stability estimate E(t) ≤ Me−ωtE(0), obtained in the above mentioned studies, 
the relationship of the decay rate parameter ω > 0 with the physical and geometric parameters of the beam, 
including the damping coefficient and the boundary dampers, has not been determined. In addition, it does 
not seem possible to obtain this relationship anyway, due to the methods used in these studies.

The method developed in this study can clearly show how the decay rate parameter depends on the 
boundary spring and damper constants, as Theorem 1 and Theorem 2 show. As a consequence, the contri-
bution of each constant to this decay can be distinguished.
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2. Energy identity and dissipativity of system (1)

We assume that the inputs in (1) satisfy the following basic conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ, μ,∈ L∞(0, �), r ∈ H2(0, �),
u0 ∈ H2(0, �), u1 ∈ L2(0, �),
0 < ρ0 ≤ ρ(x) ≤ ρ1, 0 < r0 ≤ r(x) ≤ r1,

0 ≤ μ0 ≤ μ(x) ≤ μ1, x ∈ (0, �),
kr, ka, kd, kv ≥ 0.

(2)

Following the procedure described in [7,18], one can prove that under conditions (2), there exists a 
regular weak solution u ∈ L2(0, T ; H4(0, �)), ut ∈ L2(0, T ; V2(0, �)) with utt ∈ L2(0, T ; L2(0, �)) of problem 
(1), where V2(0, �) := {v ∈ H2(0, �) : v(0) = v′(0) = 0}.

Proposition 1. Assume that conditions (2) are satisfied. Then the following energy identity holds:

E(t) +
t∫

0

�∫
0

μ(x)u2
τ (x, τ)dxdτ

= E(0) − ka

t∫
0

u2
xτ (�, τ)dτ − kv

t∫
0

u2
τ (�, τ)dτ, t ∈ [0, T ], (3)

where

E(t) = 1
2

�∫
0

[
ρ(x)u2

t (x, t) + r(x)u2
xx(x, t)

]
dx

+1
2 kru

2
x(�, t) + 1

2 kd u
2(�, t), t ∈ [0, T ], (4)

is the total energy of system (1) and

E(0) = 1
2

�∫
0

[
ρ(x) (u1(x))2 + r(x) (u′′

0(x))2
]
dx

+1
2 kr (u′

0(�))
2 + 1

2 kd (u0(�))2 (5)

is the initial value of the total energy.

Proof. Multiplying both sides of equation (1) by ut(x, t), integrating it over Ωt := (0, �) × (0, t), using the 
identity

(r(x)uxx)xxut = [(r(x)uxx)xut − r(x)uxxuxt]x + 1
2
(
r(x)u2

xx

)
t
, (6)

we obtain the following integral identity:
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1
2

t∫
0

�∫
0

(
ρ(x)u2

τ

)
τ
dx dτ + 1

2

t∫
0

�∫
0

(
r(x)u2

xx

)
τ
dx dτ

+
t∫

0

((r(x)uxx)xuτ − r(x)uxxuxτ )x=�
x=0 dτ +

t∫
0

�∫
0

μ(x)u2
τdxdτ = 0,

for all t ∈ (0, T ]. Using here the initial and boundary conditions (2), we obtain:

1
2

�∫
0

[
ρ(x)u2

t + r(x)uxx

]
dx + 1

2 kru
2
x(�, t) + 1

2 kd u
2(�, t)

+
t∫

0

�∫
0

μ(x)u2
τdxdτ + ka

t∫
0

u2
xτ (�, τ)dτ + kv

t∫
0

u2
τ (�, τ)dτ

−1
2

�∫
0

[
ρ(x) (u1(x))2 + r(x) (u′′

0(x))2
]
dx− 1

2kr (u′
0(�))

2 − 1
2kd (u0(�))2 = 0,

for all t ∈ (0, T ]. This leads to (3) with (4) and (5). �
Identity (3) shows that the increase in the damping parameters ka, kv ≥ 0 causes the energy E(t) to 

decrease. Furthermore, from formula (4) it follows that the increase of the spring parameters kr, kd ≥ 0
causes the energy to increase.

Proposition 2. If conditions (2) are met, the formula below gives the rate at which the total energy decreases.

dE(t)
dt

= −
�∫

0

μ(x)u2
tdx− kau

2
xt(�, t) − kvu

2
t (�, t), t ∈ (0, T ). (7)

Proof. In view of formula (4) we have:

dE(t)
dt

=
�∫

0

[ρ(x)ututt + r(x)uxxuxxt] dx

+krux(�, t)uxt(�, t) + kdu(�, t)ut(�, t), t ∈ [0, T ].

Use here the (formal) identity ρ(x)utt = −μ(x)ut − (r(x)uxx)xx to get

dE(t)
dt

= −
�∫

0

μ(x)u2
tdx−

�∫
0

(r(x)uxx)xx ut dx +
�∫

0

r(x)uxxuxxt dx

+krux(�, t)uxt(�, t) + kdu(�, t)ut(�, t), t ∈ [0, T ]. (8)

In the second right hand side integral, we employ the identity

−
�∫

0

(r(x)uxx)xx ut dx = −
�∫

0

r(x)uxxuxxtdx− kd u(�, t)ut(�, t)

−kvu
2
t (�, t) − krux(�, t)uxt(�, t) − kau

2
xt(�, t), t ∈ [0, T ],
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which holds due to the boundary conditions in (1). Substituting this identity in (8) we arrive at the required 
formula (7). �
Corollary 1. Integrating (7) over (0, t), t ∈ (0, T ] we obtain the same energy identity (3) rewritten in the 
following form:

E(0) − E(t) = jμ(t) + ja(t) + jv(t), t ∈ [0, T ], (9)

where

jμ(t) :=
t∫

0

�∫
0

μ(x)u2
τ (x, τ)dxdτ,

ja(t) := ka

t∫
0

u2
xτ (�, τ)dτ, jv(t) := kv

t∫
0

u2
τ (�, τ)dτ, t ∈ [0, T ].

(10)

In particular,

E(t) ≤ E(0), t ∈ [0, T ],

that is, the energy of the system (1) is dissipating with time.

The above formula (7) is a clear expression of the effect of the damping parameters μ(x), ka and kv on 
the rate of decrease of the total energy. In addition, the energy identity (9) shows the degree of influence 
of these damping factors on the difference between the initial value E(0) of the total energy and the value 
E(t) of this energy at the time instant t ∈ (0, T ], through the integrals jμ(t), ja(t) and jv(t) defined in (10).

3. Energy decay estimate for system (1)

Introduce the auxiliary function:

J (t) =
�∫

0

ρ(x)uutdx + 1
2

�∫
0

μ(x)u2dx

+1
2 kau

2
x(�, t) + 1

2 kvu
2(�, t), t ∈ [0, T ], (11)

containing all damping parameters.
We prove the formula

dJ (t)
dt

= 2
�∫

0

ρ(x)u2
tdx− 2E(t), t ∈ [0, T ], (12)

which shows the relationship between the auxiliary function J (t) and the energy function E(t) introduced 
in (4).

Taking the derivative of the function J (t) with respect to the time variable and using then the (formal) 
identity ρ(x)utt + μ(x)ut = − (r(x)uxx) as above, we obtain:
xx
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dJ (t)
dt

=
�∫

0

ρ(x)u2
tdx−

�∫
0

(r(x)uxx)xx u dx

+kaux(�, t)uxt(�, t) + kvu(�, t)ut(�, t), t ∈ [0, T ].

We employ here the following identity:

−
�∫

0

(r(x)uxx)xx u dx = −
�∫

0

r(x)u2
xxdx

−kdu
2(�, t) − kvu(�, t)ut(�, t) − kru

2
x(�, t) − kaux(�, t)uxt(�, t), t ∈ [0, T ].

This yields:

dJ (t)
dt

=
�∫

0

ρ(x)u2
tdx−

�∫
0

r(x)u2
xxdx

−kd u
2(�, t) − kru

2
x(�, t), t ∈ [0, T ].

With definition (4) this implies the desired formula (12). �
Proposition 3. Under conditions (2), the energy function E(t) introduced in (4) serves as lower and upper 
bounds to the auxiliary function J (t) introduced in (11), that is

−β0 E(t) ≤ J (t) ≤ β1 E(t), t ∈ [0, T ], (13)

where

β1 = β0

[
1 + 1

√
ρ1r0

(
�2

2 μ1 + 2
�
ka + � kv

)]
,

β0 = �2

2

√
ρ1

r0
.

(14)

Proof. First we estimate the first right hand side integral in (11). To this end, we employ the ε-inequality

∣∣∣∣∣∣
�∫

0

ρ(x)uutdx

∣∣∣∣∣∣ ≤
ε

2

�∫
0

ρ(x)u2
tdx + 1

2ε

�∫
0

ρ(x)u2dx,

with the inequality

�∫
0

ρ(x)u2dx ≤ �4ρ1

4r0

�∫
0

r(x)u2
xxdx,

to estimate the second right-hand side integral in above inequality. Choosing then the parameter ε > 0 from 
the condition ε/2 = �4ρ1/(8r0 ε) as

ε = �2
√

ρ1
,
2 r0
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we obtain the following estimate:
∣∣∣∣∣∣

�∫
0

ρ(x)uutdx

∣∣∣∣∣∣ ≤
�2

4

√
ρ1

r0

⎡
⎣ �∫

0

ρ(x)u2
tdx +

�∫
0

r(x)u2
xxdx

⎤
⎦ . (15)

For other right-hand side terms in formula (11) for the auxiliary function J (t) we use the following 
inequalities:

1
2

�∫
0

μ(x)u2(x, t)dx ≤ �4μ1

16r0

�∫
0

r(x)u2
xxdx,

1
2 kau

2
x(�, t) ≤ � ka

2r0

�∫
0

r(x)u2
xxdx,

1
2 kvu

2(�, t) ≤ �3kv
4r0

�∫
0

r(x)u2
xxdx, t ∈ (0, T ).

(16)

Taking into account (15) and (16) in (11) we arrive at the following estimate

J (t) ≤ 1
2 β0

⎧⎨
⎩

�∫
0

ρ(x)u2
tdx

+
[
1 + �2

2√ρ1r0
μ1 + 2

�
√
ρ1r0

ka + �
√
ρ1r0

kv

] �∫
0

r(x)u2
xxdx

⎫⎬
⎭ ,

which leads to the upper bound

J (t) ≤ β1 E(t), t ∈ [0, T ], β1 > 0, (17)

with β0, β1 > 0 introduced in (13).
To find the lower bound for the auxiliary function J (t), we use again inequality (15) in (11) to conclude 

that

J (t) ≥ −1
2 β0

⎧⎨
⎩

�∫
0

ρ(x)u2
tdx +

�∫
0

r(x)u2
xxdx

⎫⎬
⎭ +

1
2

�∫
0

μ(x)u2(x, t)dx + 1
2 kau

2
x(�, t) + 1

2 kvu
2(�, t), t ∈ [0, T ].

This leads to

J (t) ≥ −β0 E(t), t ∈ [0, T ]. (18)

Thus, (17) and (18) imply the required lower and upper bounds (14). �
Remark 1. The constants β0, β1 > 0 depend only on the geometric and physical parameters of a beam 
introduced in (2), as formulas (14) show.
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To establish the uniform energy decay estimate, we introduce the Lyapunov function:

L(t) = E(t) + λJ (t), t ∈ [0, T ], (19)

where E(t) and J (t) are the energy function and the auxiliary function introduced in (4) and (11), respec-
tively, and λ > 0 is the penalty term.

Theorem 1. Assume that conditions (2) are satisfied. Then system (1) is exponentially stable for any nonneg-
ative values of the boundary spring and damper constants kr, kd, ka, kv ≥ 0. That is, there are the constants

Md = 1 + β1λ

1 − β0λ
, σ = 2λ

1 + β1λ
, (20)

with

0 < λ < min(1/β0, μ0/(2ρ1)), (21)

such that the energy E(t) of system (1) satisfies the following estimate:

E(t) ≤ Md e
−σt E(0), t ∈ [0, T ], (22)

where μ0, ρ1 > 0 and β0 > 0 are the constants introduced in (2) and (14), respectively, and E(0) > 0 is the 
initial energy defined in (5).

Proof. In view of (14) we have:

(1 − λβ0) E(t) ≤ L(t) ≤ (1 + λβ1) E(t), t ∈ [0, T ]. (23)

In such a circumstance, we assume that the penalty term satisfies the following conditions:

0 < λ < 1/β0, β0 > 0. (24)

Differentiating L(t) with respect to the variable t ∈ (0, T ) and taking formulas (7) and (12) into account, 
we obtain:

dL(t)
dt

+ 2λE(t) = −
�∫

0

[μ(x) − 2λρ(x)]u2
tdx

−kau
2
xt(�, t) − kvu

2
t (�, t), t ∈ [0, T ]. (25)

We require that μ(x) − 2λρ(x) > 0. Since μ(x) − 2λρ(x) ≥ μ0 − 2λρ1, the sufficient condition for this is the 
condition

λ < μ0/(2ρ1). (26)

With (24) this implies that the penalty term should satisfy conditions (21). Then from (25) we deduce that

dL(t)
dt

+ 2λE(t) < 0, t ∈ [0, T ]. (27)

With the inequality E(t) ≥ L(t)/ (1 + λβ1) this yields:
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dL(t)
dt

+ 2λ
1 + β1λ

L(t) < 0, t ∈ [0, T ].

Solving this inequality we find:

L(t) ≤ e−σtL(0), t ∈ [0, T ].

This yields the required estimate (22) with the constants Md, σ > 0 introduced in (20). �
Remark 2. In view of formulas (14), the decay rate parameter σ > 0 in the energy estimate (22), obtained 
for the system governed by (1) and controlled by boundary springs and dampers, clearly shows the degree 
of influence of each of the damping parameters μ(x), ka, kv ≥ 0 in the dissipative boundary conditions on 
the energy decay.

4. Some special cases

Special cases of the general system (1) described above are very common in practical applications of 
structures containing beam elements. In this section we deal with systems corresponding to special cases of 
the general system (14) to investigate the influence of each damping factor.

4.1. A cantilever beam fixed at one end and free at other

Consider the simplest case when kr = ka = kd = kv = 0 of system (1), i.e. without the dissipative 
boundary conditions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ(x)utt + μ(x)ut + (r(x)uxx)xx = 0, (x, t) ∈ ΩT ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, �),

u(0, t) = ux(0, t) = 0, (−r(x)uxx)x=� = 0,

(− (r(x)uxx)x)x=� = 0, t ∈ [0, T ].

(28)

This is an initial boundary value problem for the damped cantilever beam.
The exponential stability result for system (28) directly follows from the results given in (20)-(22),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(t) ≤ M0 e
−σ0t E(0), t ∈ [0, T ],

M0 = 1 + β1λ

1 − β0λ
, σ0 = 2λ

1 + β1λ
,

β1 = β0

[
1 + �2

4√ρ1r0
μ1

]
, β0 = �2

2

√
ρ1

r0
,

0 < λ < min(1/β0, μ0/(2ρ1)),

(29)

assuming ka = kv = 0 in (14), and also kr = kd = 0 in (4). That is, the energy function corresponding to 
system (28) is

E(t) = 1
2

�∫
0

[
ρ(x)u2

t (x, t) + r(x)u2
xx(x, t)

]
dx, t ∈ [0, T ]. (30)

Formulas (29) clearly show the nature of the influence of the viscous external damping coefficient μ(x), 
as a unique damping factor on the energy decay rate.
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4.2. A cantilever beam fixed at one end and attached to a spring at other

This case corresponds to the zero values ka = kv = 0 of the boundary damping parameters, and hence 
to the linear spring conditions at x = �:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ(x)utt + μ(x)ut + (r(x)uxx)xx = 0, (x, t) ∈ ΩT ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, �),

u(0, t) = ux(0, t) = 0, (−r(x)uxx)x=� = krux(�, t),

(− (r(x)uxx)x)x=� = kd u(�, t), t ∈ [0, T ].

(31)

As in the previous case, the dissipativity of system (31) is provided only by the viscous external damping 
given by the coefficient μ(x) > 0.

The same exponential stability result given in (29) holds for system (31). Furthermore, the energy function 
E(t) corresponding to system (31) is given by the same formula (4) which, different from formula (30), 
contains also the spring constants kr, kd ≥ 0.

4.3. A cantilever beam fixed at one end and subjected two dampers at other

Consider the case where both spring parameters in (1) are zero, kr = kd = 0:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ(x)utt + μ(x)ut + (r(x)uxx)xx = 0, (x, t) ∈ ΩT ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, �),

u(0, t) = ux(0, t) = 0, (−r(x)uxx)x=� = kauxt(�, t),

(− (r(x)uxx)x)x=� = −kv ut(�, t), t ∈ [0, T ].

(32)

This is a mathematical model for the mast control system. The simplest version⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mutt + EI uxxxx = 0, (x, t) ∈ ΩT ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, �),

u(0, t) = ux(0, t) = 0, (−EI uxx)x=� = kauxt(�, t),

(−EI uxxx)x=� = −kv ut(�, t), t ∈ [0, T ],

(33)

of this model for the undamped Euler-Bernoulli equation with constant coefficients was first studied in [1]
within NASA’s Program of Control of Flexible Structures, and then developed in [2].

In this model, the meaning of the boundary conditions at x = � is that the shear force −EI uxxx is 
proportional to velocity ut, and the bending moment −EI uxx is negatively proportional to angular velocity 
uxt, while the values of the boundary dampers ka, kv ≥ 0 play the role of the proportionality factors. Thus, 
the rate feedback laws at x = � reflect basic features of mast control systems with bending and torsion rate 
control.

The uniform exponential stability result E(t) ≤ K e−μ t E(0) for the energy of vibration of the beam 
governed by system (33) was proved in [2]. However, the constants K, μ > 0 are not related to either 
physical or boundary damping parameters. Therefore, from this estimate, it is impossible to reveal the 
degree of influence of these parameters on energy decay.

The results given in (20)-(22), with the same constants β0, β1 > 0 introduced in (14), are valid also for 
system (32). However, in the case of μ(x) = 0, the sufficient condition (26) for ensuring the inequality (27)
cannot be given over the coefficient μ(x). As a consequence, the above results can not be used for system 
(33) with undamped Euler-Bernoulli equation.
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Theorem 2. Assume that conditions (2) are satisfied and μ(x) = 0. Suppose, in addition that

u2
xt(�, t) + u2

t (�, t) > 0, for all t ∈ [0, T ]. (34)

Then system (33) is exponentially stable:

E(t) ≤ Md e
−σt E(0), t ∈ [0, T ], (35)

where

Md = 1 + β1λ

1 − β0λ
, σ = 2λ

1 + β1λ
,

β1 = β0

[
1 + 1√

mEI

(
2
�
ka + � kv

)]
, β0 = �2

2

√
m

EI
,

0 < λ < min
(

1
β0

,
inf [0,T ]

[
k2
au

2
xt(�, t) + k2

vu
2
t (�, t)

]
2m‖ut‖2

L∞(0,T ;L2(0,�))

)
.

(36)

Proof. This theorem is proved in the similar way as the previous theorem, one only needs to derive the 
similar inequality for the Lyapunov function L(t), through the boundary damping parameters ka, kv ≥ 0. 
To this end, we use the following analogue

dL(t)
dt

+ 2λE(t) = 2λm

�∫
0

u2
tdx− kau

2
xt(�, t) − kvu

2
t (�, t), t ∈ [0, T ] (37)

of formula (25) of the Lyapunov function, which corresponds to system (33). We require that

2λm

�∫
0

u2
tdx− kau

2
xt(�, t) − kvu

2
t (�, t) < 0, t ∈ [0, T ]

Evidently, for the penalty term λ > 0 satisfying the third condition of (36), the above inequality holds for 
all t ∈ [0, T ]. This implies inequality (27). The uniform exponential decay estimate (35) is obtained from 
this inequality in the same way as in the proof of Theorem 1. �
5. Numerical results

In many cases, especially with variable coefficients, it is not easy to obtain an analytical solution for 
given problem (1). Since the demand for finding energy function in (4) involves u and its derivatives, 
these quantities should be calculated by an efficient numerical technique. In the next part, we first briefly 
summarize a robust one which is known the Method of Lines (MOL) approach that has been used successfully 
in many previous studies related to Euler-Bernoulli beam equations with the classical boundary conditions 
[8–12]. Another efficient alternative approach can be found in [6]. Then we both show the implementation 
of this method to the considered problem (1) and demonstrate its high accuracy performance.

5.1. Method of lines approach for the numerical solution of (1)

The MOL approach is based on two-stage decomposition principle for (1); first, a semi-discrete formula 
is obtained from the variational formulation by Finite Element Method (FEM) with Hermite cubic shape 
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functions, then the full discretization is generated by the second order appropriate time integrators. At the 
end of this process an algebraic system is obtained which is simple to solve. This technique is commonly 
employed, particularly in the case of dynamical multi-dimensional phenomena.

Assume the finite dimensional space Vh ⊂ V2(0, �) spanned by the Hermite cubic shape functions {ψi}2M
i=1

by uniformly discretizing spatial domain 0 = x1 < x2 < · · · < xM = � (where h = �/(M − 1)). Consider the 
following semi-discrete Galerkin approximation of the problem (1).

For all t ∈ (0, T ], find uh(·, t) ∈ Vh such that ∀vh ∈ Vh,

⎧⎪⎨
⎪⎩

(uh,tt(·, t), vh) + (μ(·)uh,t(·, t), vh) + a(uh(·, t), vh) =
−[kd uh(�, t) + kvuh,t(�, t)]vh(�) − [(kr uh,x(�, t) + kauh,xt(�, t)])vh,x(�),

uh(x, 0) = 0, uh,t(x, 0) = 0.
(38)

Here uh(x, t) is the finite element approximation of the weak solution of (1) and the symmetric bilinear 
functional a : H2(0, �) ×H2(0, �) → R is defined by a(w, v) := (r(·)wxx, vxx).

The above second-order system of ODE can be approximately solved by using the following second-order 
backward finite difference approximations of uh,t(x, tj) and uh,tt(x, tj) with uniform temporal discretization. 
0 = t1 < t2 < · · · < tN = T (where dt = T/(N − 1)).

uh,t(x, tj) ≈ ∂−
t U j

h(x) := 3uh(x, tj) − 4uh(x, tj−1) + uh(x, tj−2)
2ht

,

uh,tt(x, tj) ≈ ∂−
ttU

j
h(x) := 2uh(x, tj) − 5uh(x, tj−1) + 4uh(x, tj−2) − uh(x, tj−3)

h2
t

.

By substituting these difference quotients for uh(x, t) in the semi-discrete analogy (38), one can get the 
following full-discrete algebraic problem of which solution U j

h(x) is the approximate solution of (1) at t = tj
such that U j

h ≈ u(·, tj).

For each j = 1, 2, ..., N , find U j
h ∈ Vh such that ∀vh ∈ Vh,

{
(∂−

ttU
j
h, vh) + (μ(·)∂−

t U j
h, vh) + a(U j

h, vh) =
−[kd U j

h(�) + kv∂
−
t U j

h(�)]vh(�) − [(kr U j
h,x(�) + ka∂

−
t U j

h,x(�)])vh,x(�). (39)

In order to compare numerical and exact solution on cartesian coordinates, we define Uh(x) as linear 
interpolation of set of all solutions {U j

h ∈ Vh}Nj=1 in temporal dimension such that for j = 1, · · · , N − 1,

Uh(x, t)|[tj ,tj+1] := t− tj
ht

U j+1
h (x) − t− tj+1

ht
U j
h(x).

In the next section, we will test the success of this MOL technique with a problem for which we know the 
exact solution and develop a simple method for approximating the desired energy function.

5.2. First test problem

The numerical studies below allow to analyze graphically the influence of the boundary control parameters 
on the stabilization of the beam vibration and on the asymptotic behavior of the energy of the system. We 
also illustrate the verification of the theoretical results throughout the paper by this numerical test.
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Fig. 1. Numerical solution Uh(x, t) and error |Uh(x, t) − u(x, t)|.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

utt + 2ut + ((1 + x)uxx)xx = 0, (x, t) ∈ ΩT := (0, 1) × (0, 1.5],

u(x, 0) = x2, ut(x, 0) = −2x2, x ∈ (0, 1),

u(0, t) = ux(0, t) = 0, t ∈ [0, 1.5]
−(1 + x)uxx|x=1 = 6ux(1, t) + 3uxt(1, t) = −4 exp(−2t), t ∈ [0, 1.5]

((1 + x)uxx)x |x=1 = 4u(1, t) + 2ut(1, t) = 2 exp(−2t), t ∈ [0, 2].

(40)

Here boundary spring parameters are kr = 6, kd = 4 and the damper parameters are ka = 3, kv = 2. 
The exact solution of (40) and its first partial derivative with respect to x are u(x, t) = x2 exp(−2t) and 
ux(x, t) = 2 x exp(−2t). Numerical approximation of these functions can be found directly from the MOL 
technique in (39) with the ratio of mesh parameters hx/ht = 40. Corresponding approximate results are 
quite accurate and illustrated in Fig. 1 and Fig. 2.

The energy function E(t) and auxiliary function J (t) for the given problem (40) can be found respectively 
E(t) = 17.4 exp(−4t) and J (t) = 6.8 exp(−4t). In order to find their approximations Eh and Jh one needs 
to compute ut(x, t) and uxx(x, t). For this, we use centered difference quotient as follows.

{
ut(x, tj) ≈ ∂t Uh(x, tj) = [Uh(x, tj+1) − Uh(x, tj−1)] /2ht,

uxx(xi, t) ≈ ∂x Uh,x(xi, t) = [Uh,x(xi+1, t) − Uh,x(xi−1, t)] /2hx.
(41)

Approximate form of these derivatives ∂t Uh(x, t) and ∂x Uh,x(x, t) are obtained as a result of this centered 
difference approach and shown in Fig. 3 and Fig. 4 with their absolute errors. Therefore, by replacing all 
of these approximations represented in Figs. 1-4 with corresponding exact quantities in (4) and (11), we 
obtain desired approximations Eh ≈ E(t) = 17.4 exp(−4t) and Jh ≈ J (t) = 6.8 exp(−4t). The accuracy of 
these approximations is illustrated in Fig. 5 (right).

The upper bound of J (t) and E(t) are follows from (13) and (35), respectively. Here β0 = 1/2 and β1 = 5, 
then

J (t) = 6.8 exp(−4t) ≤ β1 E(t) = 87 exp(−4t).

Similarly, λ = 1, Md ∈ (1, 12) and σ ∈ (0, 1/3) for the considered test problem (40). Therefore,
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Fig. 2. Numerical solution Uh,x(x, t) and error |Uh,x(x, t) − ux(x, t)|.

Fig. 3. Numerical solution ∂tUh(x, t) and error |∂tUh(x, t) − ut(x, t)|.

E(t) = 17.4 exp(−4t) ≤ 17.4 exp(−t/3) < Md exp(−σ t)E(0).

All these numerical studies related to E(t) and J (t) verify the theoretical results given in Proposition 3 and 
Theorem 1 and are illustrated in Fig. 5 (left).

5.3. Second test problem

The previous test problem is prepared only to illustrate the algorithm performance and verify the the-
oretical inequalities given in (13) and (22). In this section, the effect of internal and external damping 



O. Baysal et al. / J. Math. Anal. Appl. 533 (2024) 128031 15
Fig. 4. Numerical solution ∂xUh,x(x, t) and error |∂xUh,x(x, t) − uxx(x, t)|.

Fig. 5. Approximation of Eh(t) and Jh(t) with their upper bounds in logarithmic scale and errors |Eh(t) −E(t)| and |Jh(t) −J (t)|.

parameters on the energy quantity is examined with some series of test problems. This analysis is also 
performed by using realistic problem parameters suggested in [17].

Let’s consider the damped Euler-Bernoulli equation in (1) on the domain [0, 1/2] × [0, 1/4] with the 
following elasticity modulus

r(x) = −64x2 + 32x + 12.

These parameters are chosen in accordance with the choice of � = 0.502 m and r = 14.41 m4/s2. It should 
be noted that 12 ≤ r(x) = −64x2 + 32x + 12 ≤ 16 for x ∈ [0, 1/2].
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Fig. 6. Comparison of Eh(t) in logarithmic scale. Various viscous damping terms μ and null boundary terms (left). Fixed viscous 
damping term μ = 0 and boundary damping terms in different positions (right).

According to the results in Fig. 6-left, the boundary damping effect is more dominant on the energy 
function (4) than the viscous damping term. As is well known, four boundary parameters kr, kd, ka, kv ≥ 0
play a role at the right tip of the beam. This first simple analysis does not allow us to make a comparison 
in terms of their impact on energy. For this reason, it would be appropriate to make a comparison between 
these parameters by using a series of new test problems with fixing μ = 0. These parameters kr, kd, ka, kv
are selected systematically between 4 and 0 in order to see their individual effects and results are illustrated 
in Fig. 6-right. The numerical results obtained here agree the theoretical analyses. For example, ka and kν
are in the damping position in the energy function (4) and this is also seen in this figure.

6. Some preliminary conclusions

In this study we propose an approach which allows to obtain an explicit form of energy decay estimate for 
typical systems governed by Euler-Bernoulli beam controlled by boundary springs and dampers. As far as 
our knowledge extends, the relationship between the decay rate parameter σ > 0 in the exponential stability 
estimate E(t) ≤ Md e

−σt E(0) and the physical parameters of the problem, including the damping parameters 
and the boundary dampers, was established here for the first time in the literature. This achievement was 
made possible through the utilization of a mathematical method rooted in the Lyapunov stability approach 
[21]. The theoretical results are also supported by numerical test studies. It can be shown that in addition 
to the above studied cases, the considered approach is also applicable for cases of pinned-pinned, pinned-
sliding, sliding-pinned, and sliding-sliding boundary conditions, including various types of inputs on the 
boundary x = �.
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