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Abstract

This paper studies a Bayesian local influence method to detect influential observa-
tions in a partially linear model with first-order autoregressive skew-normal errors.
This method appears suitable for small or moderate-sized data sets (n = 200~400)
and overcomes some theoretical limitations, bridging the diagnostic gap for small
or moderate-sized data in classical methods. The MCMC algorithm is employed for
parameter estimation, and Bayesian local influence analysis is made using three per-
turbation schemes (priors, variances, and data) and three measurement scales (Bayes
factor, ¢-divergence, and posterior mean). Simulation studies are conducted to vali-
date the reliability of the diagnostics. Finally, a practical application uses data on the
1976 Los Angeles ozone concentration to further demonstrate the effectiveness of
the diagnostics.

Keywords Bayesian local influence method - Gibbs algorithm - Matrix differential
calculus - Time series model

1 Introduction

In regression models, the assumption of independent and identically distributed
errors is often made. However, e.g. Seber and Wild (1989) proposed that this
assumption is unrealistic for time series data, where errors often exhibit serial cor-
relation. Autoregressive (AR) models are commonly used to address this issue
in time series analysis. Additionally, real-world data may not follow a symmetric
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distribution, and the skew-normal (SN) distribution proposed by Azzalini (1985)
can be used to analyze asymmetric data.

Partially linear models (PLMs), widely used in various areas, combine both lin-
ear and non-linear components. Different methods, such as kernel smoothing and
penalized splines, can be used to handle the non-linear components in these models.
For example, a semiparametric model for longitudinal data in HIV seroconverters
is proposed by Zeger and Diggle (1994), while a semiparametric regression model
for air pollution time series is improved by Dominici et al. (2004) using generalized
additive forms. Recent studies on PLMs are made by Ferreira et al. (2013); Ferreira
and Paula (2017); Oliveira and Paula (2021); Cardozo et al. (2022), and Ferreira
et al. (2022a, 2022b).

On the other hand, local influence analysis is a valuable technique for statisti-
cal diagnostics and identifying influential observations. It allows us to scrutinize the
impact of perturbations on the model fitting process. This method has been exten-
sively explored in previous research, particularly in the context of regression and
time series models where normal or elliptical distributions are assumed by e.g. Cook
(1986); Galea et al. (1997); Liu (2000, 2004) and Liu et al. (2022a). Furthermore,
Paula et al. (2012); Ferreira and Paula (2017) and Ferreira et al. (2022b) and others
have demonstrated the effectiveness of the method, by examining various alterna-
tives. Ferreira and Paula (2017); Ferreira et al. (2022a, 2022b) extended the local
influence analysis to PLMs with autoregressive SN errors. Liu et al. (2017, 2020,
2022b, 2023a, 2023b) delved into the application of local influence analysis in
autoregressive models, when considering SN distributions as well.

While traditional local influence analysis has been successful in many models,
it has limitations in terms of computational intensity, theorem proofs, and estima-
tion challenges in PLMs with non-Gaussian distributions. To address these limita-
tions, Bayesian methods have gained attention in statistical modeling tasks, offering
advantages such as overcoming difficult theorems, reducing computational com-
plexity, and being suitable for moderate-sized datasets. Bayesian local influence
techniques, including a general theory proposed by Zhu et al. (2011), have been
enriched. Tang and Duan (2014) applied Bayesian local influence analysis to gen-
eralized partial linear mixed models for longitudinal data, while Dai et al. (2019)
discussed its application to spatial autoregressive models assuming a normal distri-
bution. Ju et al. (2022) extended the study by Dai et al. (2019) to the context of a SN
distribution.

In this paper, we aim to provide statistical diagnostic methods in Bayesian local
influence analysis for PLMs with first-order autoregressive SN errors for small or
moderate-sized data sets. We construct three scales of Bayesian perturbation mani-
fold internal structures for perturbations of priors, variances, and data. Using the
principles of local influence analysis, we conduct statistical diagnostics of the
model. With the introduction of concepts such as prior and posterior distribu-
tions, Bayesian methods can successfully compensate for the limitations of classi-
cal methods for small- or moderate-sized data sets. In addition, Bayesian methods
have some very good advantages: they skip cumbersome theorem proofs and reduce
computational complexity. Finally, in the empirical sanalysis, we once again prove
our point, obtaining results that are almost the same as those of classical methods.
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Moreover, based on the previously obtained results of classical methods, we accu-
rately detect an influential observation and explain its cause using relevant knowl-
edge in geography.

The structure of this paper is as follows: Sect. 2 introduces two representations
of the SN distribution and selects the simpler one. Section 3 introduces PLMs with
first-order autoregressive SN errors, modeling the non-parametric part to facilitate
Bayesian estimation. Section 4 presents Bayesian estimation, including likelihood
function calculation, prior distribution specification, detailed posterior distribution
calculation, and MCMC implementation. Section 5 introduces the theory of local
influence analysis, focusing on three perturbations (priors, variances, and data) and
three metrics (Bayes factor, ¢ divergence, and posterior mean) to quantify the influ-
ence of perturbations on PLM-SNAR(1). Section 6 presents numerical simulations
with a moderate-sized dataset (n = 200), while Sect. 7 demonstrates an empirical
study to validate the proposed method. Section 8 summarizes the paper and sug-
gests future research directions. The appendix includes additional content related to
the model reduction and diagnostic matrices for perturbations involving priors, vari-
ances, and data.

2 The SN distribution

If the probability density function (pdf) of the random variable Y has the following
form (Azzalini 1985):

y—u>q)</1A(y—u))’ "

Oy )

2
2 —
fOlu, 03, A4) = o (p<

where @(x) and ®(x) represent the pdf and cumulative distribution function (cdf)
of the standard normal distribution, respectively, then we refer to Y to follow a uni-
variate SN distribution with location parameter y, scale parameter c? e and skewness
parameter A4, namely ¥ ~ SN(y, ,A4). When A, = 0, the distribution becomes a
normal distribution.

.. d Ao o
Lemma 1 (Azzalini 1985) IfY ~ SN(u, 62, A,), then Y=p + —22-|X,| + —2=
( ) f (/4 A A) H \/7| 0 \/ﬁ

where X, and X, are mutually independent standard normal random variables.

X,

However, there is another representation of the SN distribution. If the pdf of the
random variable Y has the following form (Sahu et al. 2003):

FOl 02 Ag) = —2 (p(\/ig_fzg)@(&&)’ @)

2 2 Og 2 2
\/O'S+/IS \/ 05+ Ag

where @(x) and ®@(x) represent the pdf and cdf of the standard normal distribu-
tion, respectively, then we refer to Y to follow a univariate SN distribution with
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location parameter u, scale parameter o2, and skewness parameter Ag, namely
Y ~SN(u, o-§, Ag). When Ag = 0, the distribution becomes a normal distribution.

d

Lemma 2 (Ferreira et al. 2022b) If Y ~ SN(u, 67, Ag), then Y=p + Ag|X,| + 64X,.
E(Y) = p+ +\/2/nAg, where X, and X, are mutually independent standard normal
random variables.

From Table 1, it is evident that employing the Azzalini (1985) representation of the
SN distribution results in a more intricate form of the model’s coefficients. For compu-
tational ease, we utilize the representation proposed by Sahu et al. (2003) in this paper.

3 PLM-SNAR(1) model

The PLM-SNAR(1) model is defined as follows:

Y, = XiTﬁ +g@) +e;,

€ = pe;_; +e;, -l1<p<l1, 3)
i
e;~SN(=\/2/xA, 6% %), i=1,23...n,
where Y, represents the response variable, x; = (1,x;;, X5, ... ,xip)T represents the

p + 1 linear explanatory variable values, f = (fy, ;. 5. --- ,ﬁp)T isthe (p+1)x1
vector of coefficients of the linear explanatory variables, #; represents the nonlinear
explanatory variable, g(-) denotes a smoothing function, ¢; is the error term of an
AR(1) structure with p as the AR(1) coefficient, and ¢; is the error to follow an iid
SN distribution with zero mean, i = 1, ---, n. Like Ferreira et al. (2022b), we assume
€, = 0 in this paper.

To simplify the expression of the model, we can represent model (3) in matrix form
as follows (the detailed proof can be found in the appendix):

Y, =y, — \2/wA+ Ah; + 1,
i @
n[NN(O’O- )9 i=1,2,3...n,

where Y; represents the response variable, u; =m,, p; =m;+ p(y,_; —m;_,),

m;=w A+zlb, w, = (XI.T,TZ.T)T is a (p+3)x 1 vector, X; = (1, x;, %, ..., x;,) T,

T,=(,1)", A=B".a”)T is a (@+3)x1 vector, B =By bl ,ﬁ[,)T,

Table 1 Comparison of two

. Stochastic representation
representations

Azzalini a

2 |X| + —2A=X
1422

VI+42 !

d
Y=p+

Sahy Y4+ dg|Xo| + 06X,
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1 1
a = (ap, )", z; is the i-th row of the n X K matrix Z, Z=Z,Q * b=Qu

is a KX 1 vector, u = (ul,uQ,...,uK)T, Zy is an nX K matrix with i-th row
Zyi ={lt; =11 ..., |t; — k¢ |*}, Qg is a K X K penalty coefficient matrix with k-
th row Qg = {|k, — k%, ..., |k, — kK |?} (to avoid overfitting), #; = |hy;|, n; = ohy;,

hy; and h; are mutually independent standard normal random variables, 7 is the sam-
ple size and K is the number of knots.

4 Bayesian implementation
4.1 Likelihood function

From model (4), we can get

Y,|A.b,6% A h, ~ N(m, — \/2/7A+ Ah,,6%),

Yi|yi_1,A,b,p,62,/l,hi~N(ﬂ —\2/mA+ AR, o2 i=2,3,....n )

We can observe that the sequence {y;} (i = 1, ---, n) has the Markov property from
the above model. Therefore, we can express the likelihood function for an observed

sample y = (y;, ¥y, ...,Y,)' by

n

LOly) = £y, my. 0%, th)Hf(yiUi—layi—z» e Y1 Hip O ATy
i=2

= fG1lmy 0% Ah) [ TGl vieys pis 0%, A hy)
i=2

=(V2m) " exp <—21—2[(y1 —my +\V2/TA= A+ Y ;= ui+ V2 T - Ahi)2]>,
o i=2

where @ = (AT, 57,62, A, p)".

4.2 Prior distributions

In Bayesian statistics, specifying prior distributions for the parameters is crucial.
These prior distributions reflect our prior beliefs about the parameters and can
lead to more accurate parameter estimation. To refine the Bayesian model, we
partition the parameter 0 = (87, a,bT, 62, A, p)T into two components and spec-
ify separate prior distributions for each component - one for the parametric part
and another for the non-parametric part.

4.2.1 Parametric component
For setting prior distributions for the linear part of the model, a popular approach
is to use conjugate prior distributions. In our case, following Ferreira et al. (2013),

we choose to reparameterize p with 2p, — 1, where p, € (0, 1) follows a beta dis-
tribution. Specifying the prior distribution for the coefficient p, poses a challenge.
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A uniform distribution is not suitable in this context, as it is more appropriate for
random walk processes. Instead, we opt for a beta distribution, which is better suited
for fitting autoregressive processes (Marriott and Newbold 1998). We choose the
following prior distributions:

B~ +1(ﬁ0’90)’

62 ~ IGamma(qO 611>
A~N(p;0,%),
~Beta( b )

Po

where Np denotes a p variate normal distribution, IGamma denotes an inverse
gamma distribution, and Beta denotes a beta distribution.

4.2.2 Non-parametric component

Like Crainiceanu et al. (2005), we assume that the coefficients in the additive mix-
ture model are normally distributed

a~N,(0,%)),
b ~ Ny (0,0,°L,),

where ar is a 2 X 1 vector, bis a 20 X 1 vector (K = 20), X is a 2 X 2 positive definite
matrix, I, is a 20 x 20 identity matrix, and 6, is a positive constant.

4.3 The implementation of MCMC algorithm
4.3.1 Posterior distribution

Now that we have computed the likelihood function and specified the prior distribu-
tions, the next step is to calculate the posterior distributions, so we obtain:

AleAa y9h ~ Np+3 (AAﬂA9AA)5
qo+n q, + l>
2 7 2 )

2
Alel’y’h ~ N(”p’ Jp)7

o 0.,y,h ~ IGamma(

P016,,5¥sh o< py 0~ (1 = pg)’n”!

1 n
exp {_Tﬂ Z;‘[(Zpo = DOy = miy) = y; +m;

—\2/zi+ Ahi]},

b[6y,y,h ~ Ny(A, py.Ap),
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where

0 -1
Ay =(A,_\l +o7 lwlwlT + Z(Wz‘ = pWe)(W; — Pwi—1)Tl ) ,

i=2

Ha :AXIAO +o7? [Wl(rl +/2/wA— Ahy)

i=2

+ D (5= Py + N2/ mA = dh)(w, — pwi_l)] ,
I=(W]A—1 = \2/mi+ i)
+ DLW = pWl DA = 7.+ pr,y = 2/ mh+ A1,
=2

"y = o, — 0,20 — m))(\2/m —hy) + Z?:z(yi = u)(\2/m —h)]
P 62+ 0,2 Z?zl(\/Z/n—hi) ’

o%c,?

0,2

L S 6,2 Z:lzl(\/Z/ﬂ' -h)
" -1
A, = <crh_21 +o07? lZIZI + Z(Zi —pz;_,)(Z; — pzi_l)T] > ,

i=2

Uy =072 l11(§1 +1/2/7wA — Ahy) + Z(éf,- —pé + 2 /mA— Ah)(z; — pzi_l)] ,
i=2

AO = (ﬂg» 07 O)T7
A, =diag(Qy, Zy),

Ti =yi_Z;rb’
& =yi_W,-TAa
1 =) _ZlTb’
& =n —WlTA’
p=2py— 1.

Note that in this context, we use 6,,,, to refer to all parameters in 6 except for par.
Once the posterior distribution is computed, we can employ it as the target distribu-
tion for sampling, thus obtaining estimations for various parameters.

4.3.2 MCMC algorithm
For Bayesian practitioners, the MCMC algorithm stands as a potent tool, allow-

ing the extraction of samples from the posterior distribution for parameter estima-
tion. Moreover, it adeptly tackles computational hurdles, particularly in evaluating
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complex integrals, by employing numerical approximations through Monte Carlo
numerical integration. In this study, we leverage specific algorithms within the
MCMC framework, such as the Metropolis-Hastings (MH) algorithm and Gibbs
sampling (Albert 2007; Gelman et al. 2013).

As delineated in Sect. 4.3.1, explicit posterior distributions can be computed for
all parameters except p,. Consequently, all parameters except p, lend themselves
to parameter estimation via Gibbs sampling, given that Gibbs sampling mandates
explicit posterior distributions for parameters. However, owing to the unattainabil-
ity of an explicit posterior distribution for p,, the Gibbs sampling method proves
impracticable. In this scenario, the MH algorithm emerges as the method of choice
for sampling from the undetermined posterior distribution.

To streamline the integration of data and parameters from R into the WinBUGS
program for MCMC sampling, we rely on the R package R2ZWinBUGS, as detailed
in Sturtz et al. (2005). This integration facilitates seamless and efficient sampling in
our Bayesian analysis (Fig. 1).

Building on the preceding context, we choose to employ the MH algorithm and
the Gibbs sampling, a fundamental component of WinBUGS, with our correspond-
ing pseudo-code outlined in Appendix. To streamline the parameter estimation pro-
cess, we use WinBUGS for a single-step solution. This strategy proves efficient in
exploring the target distribution, thereby enhancing the effectiveness of Bayesian
analysis and parameter estimation.

Establish
model
and
prior distribution
Set Output Calculate

parameters sampling the End
to estimate results mean
Get
information
for sampling
Set information
for sampling

Fig. 1 The operating process of Gibbs sampling using R2winBUGS
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5 Bayesian local influence analysis
5.1 Bayesian perturbation model and manifold

Under the assumption of regularity conditions, we can consider the perturbation
model M = {p(y,0|®) : ® € R} as forming an m-dimensional Riemannian Hil-
bert manifold (Zhu et al. 2011). Let (@) = In[p(y, 0|®)], the tangent space T, of the
manifold M is formed by all the elements in the tangent vector I(y, 8|@) = w)
Furthermore, under the fulfillment of regularity conditions, gij((o), the element at
the i-th row and j-th column of the matrix G(®@), constitutes the measure tensor of

M, where

8;(®) =Eo[0, (@), ()] = —E,[0> )], ij=1.2,...,m,
i j iDj

and E_[f(x)] represents the expectation of f(x) with respect to p(y, 0|®).

In G(w), the diagonal elements represent the perturbation values of the corre-
sponding elements in . The value of g;(@) /4 /8:i(@)g;;(®) indicates the degree of
correlation between w; and w;. If G(@") is a diagonal matrix, it implies that different
perturbations are mutually orthogonal, ensuring no interdependence among them.
On the other hand, if G(@°) is not diagonal, it would invalidate the diagnostic results.

To address this issue, we propose another perturbation vector

d=o’+ G(a)o)%(a) — @"). This ensures that the estimated value of G(®) at point

@" is represented as C * I, where C is a positive constant and I, denotes an m X m

identity matrix.

Based on this theoretical foundation and inspired by the work of Hao et al. (2019),
we conducted research using three different approaches: prior perturbation, model
and prior joint perturbation, and data and prior joint perturbation. These approaches
allow us to effectively perform statistical diagnostic analysis in our study.

5.1.1 Perturbation of priors

In Sect. 4.2, we have established the prior distributions for each coefficient. Now, we
consider perturbations of the parameters, see Hao et al. (2019) and Appendix.

5.1.2 Perturbation of variances

In the context of Bayesian local influence analysis, it is common to apply a small per-
turbation to the PLM-SNAR(1) model by modifying its variance o>. Like Hao et al.

(2019), this is achieved by rescaling the variance using perturbation coefficients,
denoted as w;, resulting in the new variance a)i‘laz, see Appendix. The goal of this
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perturbation is to assess the impact of variance changes on the posterior distribution of
the PLM-SNAR(1) model.

5.1.3 Perturbation of data

Like Hao et al. (2019), we not only explore variance perturbations but also investigate
the impact of data perturbations. The unique aspect of our data perturbation approach is
that it preserves the original data structure while introducing perturbations. By employ-
ing this method, we can derive an updated posterior distribution and assess the model’s
sensitivity and robustness to different variations in the input data. Data perturbations in
this paper are categorized into the following two types: response variable perturbation
and explanatory variable perturbation. This comprehensive analysis allows us to gain
valuable insights into how the model responds to different types of data variations and
enhances our understanding of its performance under various scenarios (we refer to
Appendix for details).

5.2 Local influence measure

Since Cook (1986) introduced the concept of local influence, it has become a pow-
erful tool for detecting influential observations in statistical models. Liu (2004)
has previously validated its effectiveness, particularly in time series models. How-
ever, with the advancement of Bayesian statistics, traditional methods of local
influence analysis may not be directly applicable to Bayesian models. Therefore,
adopting the framework of Bayesian local influence analysis is more appropriate
in this context.

According to Zhu et al. (2011), f(®) : M — R! represents the objective function,
where commonly used objective functions include Bayes factor, ¢-divergence and pos-
terior mean. For a finite-dimensional manifold M, if @(¢) is a geodesic on M with
®(0) = @ and 9,0(t)|,_y =h € R", we can apply Taylor'’s expansion to obtain
flo@®)] = flw(0)] + f; (0)t + o(t*), where £(0) = VfT.h , and V= d,f(@(0)). This
expansion enables us to assess the impact of small pefturbations on the objective func-
tion, allowing us to conduct local influence analysis in the Bayesian setting.

5.2.1 First-order influence measure

When V, # 0, we consider using the first-order influence measure. The first-order
influence measure (FI) is defined in the h € R™ direction by Zhu et al. (2011):

T T
P ~ h Vfoth

fh ™ 2 f(@(0)h T h'Gh

where G = G(@°) and Wf is a positive semi-definite matrix.
Specifically, for an appropriate perturbation @, FI can also be written as:
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T _l T _l
h'G™:V,W,V]G >h
h"h '

Fly ) nio=ar =

If the value of FI., is larger, it indicates that the perturbation @ has a greater local
influence on the model. This conclusion is based on the fact that the maximum value

of FI; is equal to the largest eigenvalue of G VfoV;G_%, and the eigenvector

corresponding to the largest eigenvalue of G'%VfoV;G'% can be used to assess
the robustness of the prior, influential observations, or improper sampling distribu-
tions, while also obtaining the worst perturbation direction corresponding to f(@®),
the direction in which the objective function is maximally perturbed.

In order to evaluate FI; ) 5, objectively, we use the following first-order adjusted
influence measure FIC;, ,j, at @ in an unit direction h :

T

where B = Q/trace(Q), and Q = G_%VfoVfTG_%. By decomposing matrix B, we
can obtain non-zero eigenvalues 4, > 4, > > 4, and their corresponding eigen-
vectors ey, €,, ... , €,. The appropriate perturbation & is reflected by the largest eigen-
value 4;, which means we can use the corresponding eigenvector e, to detect the
most significant perturbation. However, Poon and Poon (1999) proposed that evalu-
ating local influence solely by examining e, is not sufficient. To address this limita-
tion, we can use the overall contribution vector of all eigenvectors associated with
non-zero eigenvalues to estimate local influence: M(0) = 1,e,% + A,e,> + ... + A.e,%,

where e;> = (¢, €%, ..., ¢2)". It is easy to find that the j-th component of M(0) is

equal to M(0); = Z;zl A,-efj = FICy40) = bj;, where bj; is the j-th diagonal element of
the matrix B, j=1,2,...,n. Based on the studies of Zhu and Lee (2001) and Lee
and Xu (2004), we use 1\/_10 + ¢* %« SM(0) as a benchmark, where 1\7[0 and SM(0) are
the respective mean and standard error of M(0), and c* is a selected constant, which
may depend on the specific application; ¢* = 2 is suggested by Zhu and Lee (2001).

A. The commonly used objective function used for first-order influence
measure: Bayes factor

Modified from Hao et al. (2019), in the measure of the logarithmic Bayes factor,
the distance between @ and @, can be expressed as:

BF(®) = In[p(Y|@)] — In[p(Y]|@")],
where p(y|®) = /p(y, 0|®)d6. If we set W, = I, then we can obtain:
VBF = Ep(y,Gla)U) {aa)ln[p(y9 ele)] }’

G(a)o)_% Vir

\/ V5 G@) 'V,

BF __
hmax -
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However, the vast majority of integrals in the world are difficult to compute. There-
fore, in order to compute V., we use the method mentioned in Sect. 4.3.2, using
Gibbs sampling to estimate the statistic

VBF = Ep(y,Ble){awln[p(y’ elm())]}
T
~g 2 0, lnlp(r. 616",
t=1

where 8% is obtained by sampling from the posterior distribution using MCMC
algorithm, 7 is the number of samples.

5.2.2 Second-order influence measure

When V, =0, we consider using the second-order influence measure. For con-

venience of notation, we assume that the dimension of f(w) is 1, then we use Tay-

lor expansion flw(?)] =fl@(0)] + 0+ %fl:’ () + o(r*), where f'(0) = hTHfh

and H, = 03)]‘(60(0)). The second-order influence measure (SI) is defined in the h € R™
direction by Zhu et al. (2011):

h"H;h
Sl = Sk, = —.
fh f(@(0).h h"Gh
Specifically, for an appropriate perturbation @, it can also be written as:
Tl _1
h'G 2H,G zh
STy blamap = ————F——
' h'h

Similar to the first-order sensitivity measure, for the computation of the second-
order sensitivity measure, only the largest eigenvalue of G"2H,G™2 and its corre-
sponding eigenvector need to be considered. We can also perform the same transfor-
mation as before on it:

—_hT
SICf(a)O),h == h B5h7

where B, = Q,/trace(Q,) and Q = G_%HfG_%. For the selection of benchmarks,
we can still use the same approach as in Sect. 5.2.1.

B. The commonly used objective function used for second-order influence
measure: ¢ -divergence

Modified from Hao et al. (2019), the ¢-divergence corresponding to the posterior
distributions before and after perturbation w is defined as follows:

Dy(w) = / PR(6|®)]p(6]y)do,
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where R(0|®) = %, ¢(-) is a convex function, and ¢(1) = 0. If ¢(-) is the loga-

rithmic function In(-), the ¢-divergence degenerates into the Kullback-Leibler
(K-L) divergence, then
H, = ¢"(1)E,0{0,In[p(6]y, ®")]}®*
= ¢"(DEq{9,In[p(y, 8]0")] — E {0, In[p(y, 0]@°)]1}}®>
2
= ¢ (1)[Ego {9, 1n[p(y, 010”1} ®? — {E {9, In[p(y, 80”1} }%7].
T

where a®? = aa’,a = [a,,a,, -+, a,]". Similar to Sect. 5.2.1, H, can be approxi-
mated by MCMC sampling:

H,, = ¢ (1) [E,p {9, Inlp(y, 010"} — (E, {0, In[p(y, 010”1} %]

T T
2" (0] X (0,Inlp0 021001} - {2 Y (3, Inlp(r, 09101} ®2].
=1

=1

C. The commonly used objective function used for second-order influence
measure: posterior mean

Modified from Hao et al. (2019), the posterior mean of the function h() is
defined as follows:

M, (») = / h@)p(Bly, w)d6.

In this paper, we adopt the Cook’s posterior mean distance to characterize the effect
of @ on the posterior mean distance of h(6):

CM,,(®) = (M (@) — My(@))) ' Gy (My(@) — My(@,)),

where G, = [Var(h(@ly))] ~'is the inverse of the posterior covariance matrix of /4(6)
with respect to p(0|y, ®,). When f(®) = CM,, (), we can get
V,=0,
H, = MG, M.,
M,* = Cov, {h(0), d,In[p(y, 6™ |0°)]}

~
~

T T T
> (@10, n(p0, 010"} - [ Y h(@)] [ 3 0, mip(r. 671"
=1 t=1

=1

~l -

The operational steps of the proposed Bayesian local sensitivity analysis method for
solving the objective function above can be summarized as follows:

Step 1: Construct a Bayesian perturbation manifold.

Step 2: Calculate V; = d,f(@(0)), Hy = 0_f(@(0)), and G = G(@°).

Step 3: If V, is not equal to zero, then calculate the first-order influence meas-
ure. Otherwise, calculate the second-order influence measure.

Step 4: Determine whether the k-th point is an influential point for a given
objective function f(®).
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Note: The selection of the objective function

Indeed, there is no one-size-fits-all criterion for selecting different objective
functions or local sensitivity measures in Bayesian local influence analysis. The
choice of objective function depends on the specific context and the target of the
assessment.

For example, when evaluating the impact of perturbations on the posterior dis-
tribution, ¢-divergences are often preferred. On the other hand, if the focus is on
assessing the impact of perturbations on model parameters, the posterior mean
distance is commonly considered first.

Using different objective functions may lead to varying results in the final
analysis. This variation is natural since different objective functions capture dif-
ferent aspects of the model or the perturbation’s influence. Researchers should
carefully select the most appropriate objective function based on the specific
research question and the desired insights. The flexibility in choosing objective
functions provides a valuable tool in Bayesian local influence analysis, enabling a
comprehensive understanding of the model’s sensitivity and robustness to pertur-
bations, see Tang and Duan (2014).

6 Simulation study

To investigate the effectiveness of the proposed method for diagnostics of PLM-
SNAR(1), we conduct a simulation study here.
We generate a sample of n = 200 based on the following model:

V; = 2xy; + 4x,; + cos(4xt;) exp(—%tiz) +e€,

€=02%09-1e_, +e¢, (6)
eithN(—\/Z/ﬂ % 0.22,0.972,0.22), i=1,2,3...200,
where x,; ~ U(0, 1), x,; ~ U(1,2) and ¢; ~ U(0.6, 1.6) are used, with U indicating a
uniform distribution.
To perform spline interpolation, we calculate the sample quantiles of 7. The
simulation includes two parts, namely parameter estimation and statistical diag-
nostics. Our focus is on statistical diagnostics in this section.

6.1 Parameter estimation

For these parameters, the following prior distributions are set, with the intercept
p, not taken into consideration as in Ferreira et al. (2022b):
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Table 2 Parameter estimates

with the corresponding values Parameter True value Mean SD

used in the simulation study 3 2.00 1.97 0.19
b 4.00 4.01 0.20
c 0.97 0.89 0.10
A 0.22 0.24 0.68
Po 0.90 0.91 0.02

B, ~ N(0, 100),

B, ~ N(0, 100),

o2 ~ IGamma(0.1, 10), (7
A ~ N(0.2,400),

po ~ Beta(20, 1.5).

For each sample in our analysis, we utilize the MCMC algorithm and the poste-
rior distribution to calculate the parameter estimates. The resulting estimates for the
parameters are as described in Table 2 and Fig. 2 (the sampling process is presented
in Appendix):

These estimates provide valuable insights into the model’s behavior and help
us understand the relationships between the variables under consideration.

In summary, our sampling process has yielded favorable results. The close
agreement between the sample mean and the true parameter value demonstrates
the effectiveness of our sampling approach. Additionally, the small standard error
indicates the stability of our sampling process, particularly for moderate-sized
samples. This confirms the effectiveness of Bayesian estimation in our analysis.

6.2 Local influence analysis

Incorporating the MCMC algorithm, we conduct diagnostic work for the PLM-
SNAR(1) model using Bayesian local influence analysis. Following a similar pro-
cedure as described in Sect. 5, we subject the model to prior perturbation, variance
perturbation, and data perturbation. Moreover, we use three objective functions
(Bayes factor, ¢-divergence and posterior mean) to evaluate the influence measures.
This comprehensive analysis allows us to assess the impact of small perturbations in
the model and gain valuable insights into its behavior and sensitivity.

6.2.1 Perturbation of variances (and priors)
Firstly, we perform the perturbation of variances. We choose to perturb at num = 50
and num = 150 and the perturbation involves changing the corresponding y,,,, to

Yuum + 50y, Where o is the standard error in generating y. The diagnostic results are
displayed in Fig. 3.
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Fig.3 Schematic diagrams of the Bayesian local influence analysis for the three measures under the per-
turbation of variances

From Fig. 3, it is evident that we accurately diagnose the predetermined perturba-
tion points for all three measures, particularly at num = 50 and num = 150, where
the diagnostic results stand out significantly compared to other points.

Next, we delve into the simultaneous perturbation of variances and priors. We
perturb the variances and, concurrently, adjust the linear parameter f, and the shape
parameter ¢ (as the parameters of the first-order autoregressive assume a similar
role to the linear parameters, we solely perturb the prior distribution of the linear
parameters). The perturbation process entails two steps. First, we change the corre-
sponding y,,,, 0 ¥, + 50, (Where o, is the standard error in generating y). Second,
we modlfy the prior dlstrlbutlon of ﬁl to N(0,N(0,3 x 107), the prior distribution
of 62 to IGamma (0.1,/Gamma (0.1,107%). The diagnostic results are presented in
Fig. 4.

Upon examination, it is observed that the measurement method of the Bayesian
factor is not currently effective in diagnosing the prior perturbation part. However,
with an increase in the perturbation of the prior part, the Bayesian factor contin-
ues to be effective in diagnosing the prior perturbation part. Figure 4 illustrates our
accurate diagnosis of predetermined perturbation points for all three measures. Par-
ticularly noteworthy are the two locations at num = 50 and num = 150, as well as
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Fig.5 Schematic diagrams of the Bayesian local influence analysis for the three measures under the per-
turbation of data on the response variable

for the parameter f;, where diagnostic results stand out significantly compared to
other points. Additionally, it is evident that the ¢-divergence and Bayes factor meas-
ure may not be the optimal choices for diagnosing prior perturbation; the Posterior
mean appears to be the most effective choice.

6.2.2 Perturbation of data

Then, we perform a data perturbation on the response variable. We choose to per-
turb at num = 80 and num = 180 and the perturbation method involves changing the
corresponding y,,... t0 y,... + 10y,,... The diagnostic results are shown in Fig. 5.

From Fig. 5, we can observe that the perturbation of the data (response variable
y) can be accurately diagnosed. Specifically, the two points where num = 80 and
num = 180 were successfully diagnosed by all three methods. For other points, the
diagnostic values are generally small, indicating the effectiveness of our diagnostic
work.

Finally, we perform data perturbation on the explanatory variable (previous pertur-
bation on y has been canceled). The perturbation involves changing the corresponding

m 00 Xom + 8%, at num = 80 and num = 180. The diagnostic results are shown in
Fig. 6.

In Fig. 6, we can clearly see that the diagnostic values obtained at the two locations
where the explanatory variable was perturbed (num = 80 and num = 180) are signifi-
cantly higher than the values at other locations. This indicates that we have success-
fully diagnosed these two points. It appears that the diagnostic of perturbations in the
explanatory variable is equally effective as the previous perturbations we analyzed.
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Fig.6 Schematic diagrams of the Bayesian local influence analysis for the three measures under the per-
turbation of data on the explanatory variable

7 Application

To validate the effectiveness of statistical diagnosis using Bayesian local influence anal-
ysis on the PLM-SNAR(1) model, we conducted practical applications on the 1976 US
California high-altitude ozone pollution data. The dataset consists of n = 366 observa-
tions, with each representing a response variable (daily ozone concentration) and an
explanatory variable (temperature of the day).

To process the data, we follow the following steps:

Step 1: Extract the desired variable column data.

Step 2: Record the corresponding order of the data and denoted it as "#".

Step 3: Delete the sets of data with missing values in the response variable.

Step 4: Delete the sets of data with missing values in the explanatory variable.

Next, we conduct a partial descriptive analysis on the dataset shown in Fig. 7.

Figure 7 provides valuable insights into the dataset. Figure 7a, b reveal significant
skewness in the data, suggesting that a SN distribution could be a suitable fit. Figure 7c
illustrates a clear linear relationship between ozone concentration and temperature,
while Fig. 7d indicates a notable nonlinear relationship between ozone concentration
and the corresponding day. These findings suggest that partial linear models can effec-
tively capture the dataset’s characteristics.

Furthermore, Ferreira et al. (2022b) used the maximum likelihood estimation
method and demonstrated that the partial residuals in the data exhibit characteristics of
an autoregressive process of order 1, i.e., AR(1). This evidence further supports the use
of the PLM-SNAR(1) model for analyzing the dataset and validates the effectiveness of
our statistical diagnostics using Bayesian local influence analysis.

Therefore, we construct the following special case of model (3) for the data:

yi =Po+ Py *x;+8(1) + €,

€ = pe;i_ te, -l1<p<l, 8)

e NSN(—\/2/7 A, 6% A), i=1,2,3...330.
Before proceeding with the subsequent statistical diagnostic work, we first need to
estimate the parameters of the model. The prior distributions will remain the same
as Eq. (7), in addition to the intercept with g, ~ N(=5, 100) (Table 3).

Indeed, the comparison between Bayesian and frequentist parameter estimation
methods shows that they perform similarly in this context. However, the main
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Fig.7 Partial descriptive analysis of Ozone data: a Histogram of Ozone, b Boxp lot of ozone, ¢ scatter
plot of ozone versus temperature, d line chart of ozone versus day

emphasis of this paper lies in the statistical diagnostics, with parameter estima-
tion being only an integral component. As a result, we will not delve further into
the discussion of parameter estimation in this section.

Next, we proceed with the local influence analysis under two scenarios: model
perturbation and data perturbation. We utilize three measures, namely Bayes

Table3 MCMC and maximum

; T Parameter MCMC MPL
penalized likelihood (MPL)
estimates (Ferreira et al. fo -573 -732
2022b)
b 0.29 0.31
c 2.66 1.91
A 6.13 6.80
Po 0.46 0.33
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Fig. 8 Perturbation of variances

factor, ¢-divergence and posterior mean, to conduct the analysis. The results of
the analysis are presented below (Figs. 8, 9 and 10).

Note that in Table 4 B indicates Bayes-factor, ¢ indicates ¢-divergence, P indi-
cates posterior mean, Data y indicates perturbation of data (Ozone) and Data x
indicates perturbation of data (Temperature). As multiple methods detected an
issue with observation #278, it is necessary to review the dataset and verify the
accuracy of this result (Table 5).

Our assessment holds significance as the results of the Bayesian local influence
analysis align with the frequentist local influence analysis conducted by Ferreira
et al. (2022b), albeit with a slight difference. While their diagnostic results were
commendable, ours are comparable, and notably, the Bayesian approach identifies
certain observations (such as #74, #119, #184, #278 and #295) that were not pre-
viously detected. This newly discovered information adds a valuable dimension to
our diagnostic findings (Table 6).

Using observation #74 as an example, we conduct a detailed analysis of the
causes to showcase the effectiveness of our diagnostic method. We see that #74
corresponds to March 17, 1976. To understand the reason for such an influential
observation, we need to examine the weather information for a few days before
that day. This analysis will provide insights into any unusual weather conditions

05

Bayes factor
o-divergence
Posterior mean

0 50 100 150 200 250 300 ) 50 100 150 200 250 300 ) 50 100 150 200 250 300
i i i

Fig. 9 Perturbation of data (Ozone)

Bayes factor
o-divergence
Posterior mean

0 50 100 150 200 250 300 0 50 100 150 200 250 300 T o 50 100 150 200 250 300
i i i

Fig. 10 Perturbation of data (Temperature)
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Table 4 Summary of the diagnostic results

i Variance-B  Variance-¢ Variance-P  Data Data Data Data Data Data
y-B y-¢ y-P x-B x-¢ x-P
117 *
119 * * * o
130 * * * oo
163 * * *
166 *
176 * * * * T
184 * * *
200 *
229 * * *
232 * * * oo
237 * # # * * * o *
240 * * * * * * * * *
246 * * * * * * * * *
251 * * * * * * * * *
253 * * * * * * T
266 * * * * * * T
274 % * * * * * * * *
278 * * * * * * oo
286 *
'.I'able.S Observation #2?8 and Ozone con-
its neighboring observations centration
277 14
278 24
279 10
280 14
Ta!JIe 6 Qbservation #74 and its Ozone con-
neighboring observations centration
71 12
72 16
73 9
74 24
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or other factors that may have influenced the ozone concentration on March 17,
1976. By examining the weather data leading up to that date, we can gain a bet-
ter understanding of the underlying cause of the influential observation and its
impact on the ozone concentration.

Under normal circumstances, the temperature of the troposphere decreases
with increasing altitude, leading to air convection where cold air sinks and hot
air rises, carrying pollutants to higher altitudes for release. However, in certain
conditions, such as the inversion phenomenon, the temperature of the troposphere
may increase with altitude. In Los Angeles, the inversion phenomenon is more
severe due to its location on the west coast with nearby cold ocean currents and
surrounded by deserts.

The inversion phenomenon traps pollutants at ground level, leading to atmos-
pheric pollution and severe ozone concentration. Table 7 confirms that Los Ange-
les experienced the inversion phenomenon on several days, causing ozone to
accumulate at the surface.

Other factors, such as wind speed, humidity, and air visibility, also contribute
to ozone pollution. Low wind speed and high humidity can lead to ozone accu-
mulation, while good air visibility reduces the reaction of ozone with suspended
particles. The data in Table 8 indicates that on the day of abnormal ozone con-
centration, wind speed was low, humidity was at 60% (favorable for ozone stor-
age), and air visibility was good with fewer suspended particles.

Tables 6 and 7 reveal that observation #74 (March 17, 1976) is indeed influen-
tial. Table 8 further indicates that the ozone accumulated on the preceding day was
not effectively cleared, and the favorable conditions on March 17, 1976, exacerbated

Table 7 Inversion phenomenon that occurred from March 12 to March 17, 1976

Date Surface temp Temp at the bottom of the Height of the bottom
inversion layer of the inversion layer

12/03/1976 46.04 59.72 613

13/03/1976 64.40 334

14/03/1976 61.88 567

15/03/1976 57.92 64.94 488

16/03/1976 57.02 71.06 531

17/03/1976 58.64 66.56 508

Table 8 Some weather
indicators from March 12, 1976
(the first day when the inversion 12/03/1976

Date Wind speed Humidity (%) Air visibility

. . . 0 60 300
occurred during this period) to
March 17, 1976 (the units of 13/03/1976 4 31 300
measurement for each column 14/03/1976 3 66 150
are the same) 15/03/1976 5 53 2
16/03/1976 2 42 50
17/03/1976 3 60 70
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ozone pollution. Consequently, there is no misdiagnosis in the Bayesian local influ-
ence analysis, affirming the validity of the conclusion regarding the influential
observation.

8 Concluding remarks

This paper presented the use of Bayesian local influence analysis for statistical diag-
nosis in the PLM-SNAR(1) model, addressing the limitations of maximum likeli-
hood estimation in frequentist statistics for moderate-sized data. By employing
the Gibbs sampling and Metropolis-Hastings sampling, we successfully obtained
parameter estimation results. The method’s feasibility was demonstrated through
simulation experiments and real-world applications, employing different objective
functions and applying variance and data perturbation in the analysis. In the empiri-
cal analysis, we applied the PLM-SNAR(1) model to the 1976 Los Angeles ozone
concentration dataset (moderate-sized data) and achieved superior results compared
to frequentist statistics, confirming the effectiveness of our improvements. Our
future research may include extending the method to study PLM-SNAR(p) models
and PLMs with errors following a skew-t autoregressive structure of order p, i.e.
PLM-STAR(p) models.

Appendix
A1: Deviation of model reduction

Proof By Lemma 2, model (3) can be further expressed as:

V=X B+gt) +pi — Xy B—gt) + e

9
e;=—V\2/mA+ Ahy| +ohy, i=1,2,3..n ®

In model (9), Ay and & ,; are mutually independent standard normal random vari-
ables. Let h; = |hy;| and n; = ohy;. Then, we can further simplify the model to:

Vi =X B gW) + pOiy — Xy B = 8t_)) — V2/mA+ Ay + 1, (10)
nSN@©, 6%, i=1,2,3...n.

Ruppert et al. (2003) addressed the semiparametric modeling problem by demon-
strating the equivalence of penalized splines and additive mixed models. In this
paper, similar to Ruppert, we aim to use the low-rank thin-plate spline to represent
the non-parametric part of the model in a different manner. We will expand the
smooth function g(t) as follows:
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K
gty =y +ayt+ ) ult -, (11)
s=1

where ¢, < k| <k, ... < kg <1, and they are fixed knots. In spline expansion,
the selection of knots is crucial. Typically, these knots are determined as the sample
quantiles of the covariate #’s corresponding to probability k/(K + 1), where K is the
number of knots. Having too many or too few knots can lead to poor spline estima-
tion. In this paper, we adopt the knots selection method proposed by Ruppert et al.
(2003) and choose 20 knots (K = 20) for the spline expansion of the non-paramet-
ric part. After a series of matrix transformations (Crainiceanu et al. 2005), we can

express Eq. (7) in the following form:
gO)=Ta+Ziu
= Ta + (ZQy ) Q1)

=Ta+Zb,
Where g(t) = (g(t])9 g(t2)7 7g(tn))T’ t = (t]7 tz’ LR ] tn)T’ o = (a()7 al)T’ T = (lnx]’t)7
u= Uiy, ..., ug)", Zy is a matrix with i-th row Zy; = {|t; — k1%, ..., [t; — k¢ |*},
Qy is a penalty coefficient matrix with k-th row Q. = {|x;, -« 13, ..k — kg P}

(to avoid overfitting), Z = ZKQ;E, b= Qf(u is assumed to be normally distributed

with mean zero and variance o-,f.
Then we get

Yi=w, A+2]b+p(,.; — Wiy | A—2z,_1b) — \/2/z A+ Ah; + 1,
ii 12)
neN©,6%), i=1,23...n,

which gives model (4). O

A2: Perturbation of priors

We established perturbations of the parameters.

p Bi — Boi — w5 ay — , ) — o, A=y, —w
p(yselwp+5+20) (XH([J( - O-l 2 ) x (D( o - ) X(ﬂ( - ) X (D( ; A)
i=1 bi

ag a) [P}

1 u/,0+w/,0—1 (

X— 1 — py)bro~!
Bla,g +w,0.b,0) " ° 0

1 3 20 -
Ga+ep)® g1 + 0, by —ay,
X——g——o0 expy — ——— [ X 17 ,
I'(G40) 20 =1 Obj
= 0 represents the scenario

- 0
where @, 5,70 = (Wg, Wy, ®,, W, ®,2, @), and o,

o2 +5+20

without any perturbation, B(-) means beta function, I'(-) means gamma function. The
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perturbation model M = {p(y, 0|®) : ® € RP*>*?0} yields a Riemannian manifold
and the tangent space T, spanned by M is given by

. b = Bor — @y, By = Bop— @, ay— @, =@, A—p, -
l(y,@la))z( . a R R 1
651 Gﬂ,, % @ O-A
_1 a,tw,—1
/ lnpo(l _ po)b,o 1 p() 0~ d,D() | o ! bl —w,,
B B(a, + ) e e, 262 o2
a0 pr’ p0 q1 W52 o aﬂl

bzo ~ Dpy, >
“e s T .
%

Then, we obtain

. 1 1 1 1 1 1 1
G(w°)=dlag(—, —2,—2,—2,—2,D(lnp0), —07 _2""’T>’
%, %5 %aq % 9 9 o, %o
where
! 1
D(Inp )=/ 1% py—————(1 = pp)? ™" o~ dp
0 o OB(apO’pr) 0 0
2

1
1 b —1 ao—l
~( [ Mmooz = p) " dpy ).
< /0 O B(a,0.b,0) 0 0 0

A3: Perturbation of variances

By incorporating the perturbations, we obtain a refined posterior distribution that
helps in better understanding the model’s behavior under different variance scenar-
ios. We have that:
p(, 0l®) =p(6) - L(6|w)
x L(0]o)

i 2
—my +\2/xA= i) - Z% ‘;—

1, o2
exp[—zlnw— ~ % 2

—222 — Wi+ V2 A= A,
(1 : Oy —my +/2/zmA— ) ] =ty +2/mA— /1}12)2

I(y, 6lw)

2w, 262 2602 262
1 Ou—#+V2/mA—n,) )
2w, 202

n
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Then, we obtain:
G(mo) - 5 nxn*
A4: Perturbation of data

A4A: Response variable
Establishing perturbations on the response variable y

v+ o m, 0 V2/7 = h m
Y2+, m, Y1+ —m V2/z —h M

y3taw; [=|ms |+ p Yo + @y —my — A \V2/m—hy [+ 15|
Yn +wn m, Yn—1 +a)n—l —m,_ 2/71' _hn UM
(13)
We have that
P, 0lw) =p(0) - L(6|w)
x L(O|w)
« exp[—— (R + Z RD)I,
=2
. R, — R R., —R; R — R _ R,
l(y,ela))=(p 22 l,”"pl+12 l’.”’pn 2;11’__2)'
c o o o
Then, we obtain:
2
. pm+1 pr+1
G(w0)=d1ag(Emo[7],...,Ew[ LEgl— ])
where
R =0, +w)—m ++/2/wi— Ahy,
R, =0+ w) —m; — pl(yi_y + o)) —m; — D]+ \/2/7nA— Ah, i=23,...,n

Ad4B: Explanatory variable
Establishing perturbations on the explanatory variable x, (assumed continuous)

Xy(w) =
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As a result, we obtain

p(y,0|w) =p(0) - L(0|®)
«L(0|®)

1 n
o exp l_ﬁ (U% + Z Ul.2 )] ,

i=2

. s s s s
16.010) = ( 25Uy = pUn). o Uy = pUsei)s oo 5Uys = pU,). U, ).

Then, it follows that

) 241 241
G(a)o) :dlag(Emo [ﬁkp -'2' ]’ . [ﬂk%:l’Emo [ﬁk%])
[0} lod o

where

Uy =y = (o + @) —xlT(_k)ﬂ(_k) —tla—z[b+\/2/mA— Ah
U=y, — (g + 0)fy — x,-'[_k)ﬂ(—k) - tiTa - Z,-Tb = plyicy = Gy + @)y
x| CoPop — 1@ =z P+ \2/xA— Ak, i=23,...n

A5: Metropolis-Hastings algorithm

As a widely used MCMC method, the Metropolis-Hastings (MH) algorithm gener-
ates samples from complex probability distributions where direct sampling is chal-
lenging. For detailed introductions, we refer to two books Albert (2007) and Gelman
et al. (2013), which provide a comprehensive overview of Bayesian statistical meth-
ods, including WinBUGS, covering both theory and practical applications. Here’s
how the MH algorithm works:

Step 1. Initialization: Start with an initial sample from the target distribution,
preferably drawn from a distribution similar to the target.

Step 2. Proposal Distribution: Choose a proposal distribution for suggesting new
samples, often selected for convenience and ease of sampling.

Step 3. Proposing a Candidate: Generate a new sample (candidate sample) by
drawing from the proposal distribution.

Step 4. Acceptance Probability: Calculate the acceptance probability for the can-
didate sample based on the ratio of the target distribution at the candidate sample
and the current sample.

Step 5. Acceptance or Rejection: Accept the candidate sample with a probability
determined by the acceptance probability; otherwise, reject it and remain at the cur-
rent sample.

Step 6. Iteration: Repeat Steps 3-5 for numerous iterations until convergence cri-
teria are met.
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The algorithm constructs a Markov chain with the desired target distribution as
its stationary distribution, leading to convergence of the generated samples over
iterations.

To address low acceptance rates in MCMC sampling, careful selection of the
proposed distribution g(x) is crucial. This distribution should encompass the
support set of the target distribution; be easily samplable, often chosen from
known distributions like the normal or student distributions; facilitate easy cal-
culation of the acceptance probability; have a thicker tail compared to the tar-
get distribution; and minimise the frequency of rejecting new candidate points.
Adhering to these conditions ensures that the resulting Markov chain satisfies
normalisation conditions and possesses a stationary distribution f(x), crucial for
effective sampling from complex target distributions.

Given f(x) as the target distribution (posterior distribution), g(x) as the pro-
posed distribution, and h(x) as the acceptance rate, we iteratively generate a sam-
ple sequence pg, p(l), e pf)v from the target probability distribution f(x). Below is our
pseudo-code outlining the MH algorithm:

Algorithm 1 Metropolis-Hastings algorithm

Data: p #Select a random initial sample p
Result: Sampling sequence {pJ, pd, p2, - -+, p5'}
1 fort =1t N do
2 y ~ g (C|pi™) #For the ¢t-th sample, repeat the following steps.
F@)g (o5 Iy)
Fo5 Mglylos™)
ifr ~U(0,1) < h(phtly) (where r~U(0,1)) then
| by
else
| b6
end
end

3 h (o5 y) + min{1, } #Calculate the acceptance rate

© ® a9 S ;e

A6: The sampling process of parameters in parameter estimation (simulation)

In the iterative process of parameter estimation, it is evident that the vast majority of
parameters have reached a convergent state. The primary emphasis of our paper lies
in statistical diagnostics rather than extensive parameter estimation. Therefore, our
requirement may be limited to obtaining a parameter estimate that closely approxi-
mates the true value.

Figures 11, 12, 13, 14 and 15 depict the iterative process of three Markov chains
through curves represented in three distinct colors. These curves illustrate three
independent parameter estimation sampling processes, offering valuable insights
into the fluctuation range of each sampling procedure.
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