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ABSTRACT
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1. Introduction

We consider finite-dimensional Jordan superalgebras over a field of character-
istic zero and study their Zs-graded and non-graded identities. Given an alge-
bra A, one can associate the sequence {c,(A),n = 1,2,...}, of codimensions
of A depending on the polynomial identities of A. The asymptotic behavior
of {¢,(A)} has been studied for several classes of algebras such as associative
algebras (see, for instance, references in [3], [4], [5], [12], [14]), Lie algebras (e.g.,
[17], [19], [20]) and superalgebras (e.g., [14], [25]), Jordan algebras (e.g., [13],
[9]), Novikov algebras [8] and many others.

If A is an associative algebra without additional poynomial identities,
then ¢, (A) = nl, that is the codimension sequence has an overexponential
growth. But an unexpected result by Regev [22] has shown that if A satisfies a
non-trivial polynomial identity (that is A is PI) then {¢,(A)} is exponentially
bounded.

At the end of the 1980’s Amitsur conjectured that for any Pl-algebra A the
limit of the sequence {‘/ cn(A) exists and is an integer called the PI-exponent
of A. This conjecture was confirmed in [10, 11]. It was also shown that
exp(A) < dim A for a finite-dimensional algebra A. Moreover, exp(A) = dim A
if and only if A is simple provided that the base field is algebraically closed.

In the non-associative case there are a lot of algebras with non-exponential
codimension growth. For example, the relatively free Lie algebra L of countable
rank of the variety ANy has the growth ¢, (L) ~ v/n! (see [27]). Moreover, for
any integer t > 2 there exists a Lie algebra L with c,(L) ~ n'+ (see [20]).
The class of Jordan algbras also contains examples of overexponential growth
as follows from [6, 16]. In [15] it was shown that for any real 0 < o < 1 there
exists a two-step right nilpotent algebra A, with ¢, (Aq) ~n"".

Nevertheless, the class of algebras with exponentially bounded codimension
sequence is sufficiently wide. It contains, for example, all infinite-dimensional
simple Lie algebras of Cartan type [19], all affine Kac-Moody algebras [28], all
Novikov algebras [8] and all finite-dimensional algebras [2, 13].

In the light of previous discussion three main questions arise. Given an al-
gebra A with exponentially bounded codimension sequence, can one show that
its PI-exponent exists? In the case of a positive answer, is it an integer? Is it
true that if the field is algebraically closed and A is finite-dimensional, then the
equality exp(A) = dim A is equivalent to the simplicity of A?
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If A is graded by a finite group, say, if A is Zs-graded, one can consider
graded codimensions ¢8"(A) and graded Pl-exponent exp®(A). Then the same
questions look reasonable for graded codimensions and graded Pl-exponents.

The second question was answered in the negative in the class of finite-
dimensional Lie superalgebras both for an ordinary Pl-exponent [14] and for
Zs-graded Pl-exponent [24]. Inequalities exp(L),exp® (L) < dim L were also
proved for a series of finite-dimensional simple Lie superalgebras [14, 23].

In the present paper we discuss the codimension growth and graded codi-
mension growth of finite-dimensional Jordan superalgebras. We prove that both
exp(H (M, trp)) and exp® (H (My;, trp)) are strictly less than dim H (M, trp)
for all ¢ > 2 (Theorem 1 and Theorem 2 below). Then we compute the precise
value exp8'(H (M, trp) = 4 + 2v/3 of H(Mjy|3, trp) (Theorem 3). Finally, we
prove that the ordinary Pl-exponent of H(My)o,trp) exists and is fractional,
namely, 7 < exp(H (Mjy,trp)) < 8 = dim H(Myz, trp) (Theorem 4). All de-
tails concerning polynomial identities and their numerical invariants one can

find in [12].

2. Preliminaries

Throughout the paper F is a field of characteristic zero. Denote by F{X}
the free non-associative algebra over I’ with an infinite set X of free gener-
ators. Let A be an algebra over F' and let Id(A) C F{X} be the set of all
polynomial identities of A. Then Id(A) is an ideal of F{X}. Consider a sub-
space P, = P,(x1,...,x,) C F{X} of all multilinear polynomials on 1, ..., z,.
Then the intersection Id(A) N P, is in fact the set of all multilinear identities
of A of degree n in x1,...,x,. Denote
_ Py

- P,NId(A)’

The sequence ¢, (A),n = 1,2..., called the codimension sequence of A, is ex-

Po(A) cn(A) = dim P, (A).

ponentially bounded for any finite-dimensional algebra A, ¢, (A4) < d"*! where
d=dim A ([2, 13]), and one can define
exp(A) = liminf {/c,(A), exp(A) = limsup /¢, (A),
n—oo n—o00
the lower and upper Pl-exponents of A, respectively, and also the (ordinary)
Pl-exponent

exp(A) = lim {/c,(A)

n—r oo



4 1. SHESTAKOV AND M. ZAICEV Isr. J. Math.

if the lower and upper exponents coincide. The existence of the PI-exponent of a
finite-dimensional algebra is an open problem, but exp(A) does exist if A is sim-
ple. Moreover, exp(A) = dim A if A is an associative, alternative, Jordan or Lie
algebra provided that F' is algebraically closed. For some series of simple Lie su-
peralgebras the same equality also occurs. However, for simple Lie superalgebras
of the type P(t), t>2, we have the inequality exp(P(t)) < 2t>— 1=dimP(¢) ([14]).

In the current paper we are interested in numerical characteristics of the
identities of Jordan superalgebras, therefore we need to consider also the cor-
responding graded objects. Let F{X,Y} be the free non-associative algebra
with infinite sets of even generators X and odd generators Y. The notion of
parity can be uniquely extended to all monomials on X UY and hence F{X,Y'}
becomes a Zs-graded algebra.

Given non-negative integers 0 < k < n, denote by Py ,—j the subspace of
all multilinear polynomials f(z1,..., 2k, Y1, .., Yn—k) € F{X, Y} of degree k
on even variables and of degree n — k on odd variables. Given a Zs-graded
algebra A = Ay @ A1, denote by Id®"(A) the ideal of all graded identities of A.
Then Py ,—, NId® (A) is the subspace of all multilinear graded identities of total
degree n depending on k even variables and n — k odd variables. Also denote
by Py n—i(A) the quotient

_ Pn—rk
Pk,nfk N 1de" (A) '

Py - (4)
Then the graded (k,n — k)-codimension of A is
Ck,n—k(A) = dim Pk,n—k(A)

and the total graded codimension of A is

It is also known (see [2]) that (as in the non-graded case) if dim A = d < oo,
then c&'(A) < d"*! and one can consider the related sequence { {/cf (4)}. The

latter sequence has the lower and upper limits

exp® (A) = liminf {/c§ (A), exp® (A) = limsup ’\’/c%r(A),

n—0o0 n—00
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called the lower and upper graded Pl-exponents, respectively. If an ordinary
limit exists, it is called an (ordinary) graded PI-exponent of A,

exp® (A) = lim {/ci' (A) .

n—o0

According to [2] we have
(1) cn(A) < i (4)

and hence exps'(A) > exp(A).

3. Symmetric group action on multilinear polynomials

Symmetric groups and their representations play an important role in the theory
of codimensions. All details concerning the application of representation theory
of symmetric groups to the study of polynomial identities can be found in [12],
[1], [7].

We start with the non-graded case. Consider S,,-action on P, by setting

oo f(xr,...,2n) = f(To(1),-- 1 Tom)), O € Sn.

The subspace P, of F{X} has the structure of an S,,-module and P, NId(A)
is its submodule for an algebra A. Hence P, (A) is also an S,,-module and can
be decomposed into the sum of irreducible components,

(2) P,(A)=M & ---& M,

Note that according to Mashke’s Theorem one can identify P, (A) with a sub-
module of P,.

There exists a one-to-one correspondence between irreducible S,,-representa-
tions and partitions of n (see, for example, [18]). We recall the main con-
structions which we use subsequently. Let A = (A1,...,\r) F n be a partition
of Ay +---4+ X =n, Ay > --- > X\ > 0. The Young diagram D) is a tableau
with n boxes, A1 in the 1st row, A2 in the 2nd row, and so on. The Young
tableau T is the Young diagram D, filled up by integers 1,2,...,n. Given a
Young tableau of shape A - n, let Ry, and Cr, denote the subgroups of S, of
the row and column stabilizers of T}, respectively, and set

R;A: Z o, Cp = Z (sgnT)T.

O'GRTX TECTA
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The element
(3) er, = R}, Cr €5,

is an essential idempotent, that is e2TA = ver,,0 # v € Q, and FS,er, is the
minimal left ideal of the group ring F'S,. Its S,-character is denoted by xx.
Decomposition (2) can be written as

(4) Xn(A) = xn(Pr(A)) = ZmAXA

Abn
where non-negative integers m) are multiplicities of S,,-modules isomorphic
to FSper, among My,..., M,. The character x,(A) is called the nth cochar-
acter of A. If dy = deg x\ = dim F'S,er, then

Cn(A) = Zm)\d)\.

AbFn

In particular,
() cn(A) = dy

for any A F n with my # 0 in (4). We will use relation (5) for getting the lower
bound of PI-exponents.

In the case of graded identities, the subspace Py, ,— C F{X,Y} has a natural
structure of an S; x S, _r-module where S} acts on even variables 1, ...,z
whereas S,,_j acts on odd variables y1,...,yn—g. Clearly, Py ,—r N1d® (A) is
the submodule under an Sy x S, _g-action and we get an induced Sk X Sj,_g-
action on Py ,_k(A). The character xxn—k(A4) = x(Pxn—k(A)) is called the
(k,n — k)-cocharacter of A. This character can be decomposed into the sum of
irreducible characters

(6) Xkn—k(A) = Z ML X

Ak
phn—k

where A\ and p are partitions of k and n — k, respectively.

The irreducible Sy, x S, —r-module with the character x5, is the tensor prod-
uct of the Sg-module with the character y) and the S,,_g-module with the
character x,. In particular, the dimension deg x»,, of this module is the prod-
uct dad,. Taking into account multiplicities m, , in (6) we get the relation
(7) Ck,n—k(A) = Z m)\,ud)\du.

AFE
pkn—k
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The number of irreducible components in the decomposition (6), i.e., the sum

leon-k(A) = > mag,
Ak
uFn—k

is called the partial (k,n — k)-colength of A, and the total sum
IE(A) = linrk(A)
k=0

is called the graded colength of A. If dim A < oo then the sequence {Ig"(A)} is
polynomially bounded.

PROPOSITION 1 (see [29, Theorem 1]): Let A = Ag® Ay be a Zy-graded algebra
with dim A = d < oo. Then I8"(A) < d(n + 1)d2+d+1.

This Proposition shows that the principle part of the exponential growth is
defined by dimensions dy with my # 0 in (7). For this purpose it is convenient

to use the following function. Given a partition g = (u1,..., puqa) - n we define
the function
1
O(p) = T

where

H1 Hd

21 = yeeeyRd = .
n n

The value of ®(u) is closely connected with d, = degx,. By the Young-
Frobenius formula for dimensions of irreduccible S,,-representations we have

n!
d’\:>\1g...>\| H (li = 1)

4 <ici<d

where l; = \; +d—j, j=1,...,d. From the Stirling formula for factorials
n! = \/27Tn(n) efgln, 0<6, <1,
e
it easily follows that

(8)

One can easily check that

1

a2 < dy < n® o).

1

(I)(Zl,...,Zd): 2L pRd
1 d

achieves the maximal value ® =d only if 21 = --- = 24 = }l.
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We will also use the next property of ®(\). Let A = (A1,...,\q) and
w=(p1,...,uq) be two partitions of m with corresponding Young diagrams D
and D,,, respectively. We say that D, is obtained from D, by pushing down
one box if there exist 1 < ¢ < j < d such that p; = \; — 1, = A\; +1 and
i = Ak for all remaining k.

LEMMA 1 (see [14, Lemma 3]): Let Du be obtained from D) by pushing down
one box. Then ®(p) > ®(N).

For a partition A = (A1,...,Aq) of n we define the height of A as ht(\) = d.

LEMMA 2 (see [12, Lemma 6.2.4]): Let A and p be two partitions of n and n+1,
respectively, of the same height d, such that \ is obtained from p by erasing
one box. Then dy < d, < (n+ 1)d,.

Finally, we note that from standard arguments and from the structure of
essential idempotent (3) the following statement holds (see, for example, [12,
Theorem 4.6.1]).

LEMMA 3: Let A = Ay @ Ay be a finite-dimensional Zs-graded algebra with
do = dim Ay, dy = dim A;. Then my, = 0 in the decomposition (6) for A as
soon as ht(\) > dy or ht(u) > dy.

4. Upper bound for codimensiion growth

We start with recalling the Jordan superalgebra H (M, trp) (see, for exam-
ple, [21]) and denote it for brevity by P(¢). Then P(t) = Py & Py is a subspace
of the 2¢ x 2t matrix algebra Mato:(F') where

A
Py = { <0 £T> | Ae Mt(F)}, T : X — X7 is the transpose involution

and

P = { <2~ ﬁ) BT =B, (T = —C, B,C’EMt(F)}.

Elements from Py U P; are called homogeneous. Any = € Py (resp. z € Pp)
has the homogeneous degree || = 0 (resp. |z| = 1). Algebra P(t) is a Jordan
superalgebra with Z»-grading if we define the product {x, x} of two homogeneous
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elements x,y € P(t) as
{z,y} =y + (1)1 Wlyz,
It is easily seen that P(t) has also a natural Z-grading
Pt) =P e pP®gp®,

where PO = P,

pD — { (g 8) 1CT=-C,Ce Mt(F)},

P<1>={<8 ﬁ) |BT:B,BeMt(F)}.

In order to get the main result of this section we need first to prove some
technical results. Coonsider the decomposition

9) Xkn—k (H (My, trp)) = Z M XA

AFE
pbn—k

of the partial (k,n — k)-cocharacter of H(M,,trp) = P(t).
LEMMA 4: Let my,, # 0 in (9). Then ®(\) < t2 and dy < k" 2%,

Proof. By Lemma 3 the height ht()\) does not exceed t2. If ht()\) = d < ¢? then,
as mentioned in the previous Section, ®(\) < d. Hence, dy < Kt 42k by (8), and
we are done.

Similarly,
d(p)<t2—1<ty/2—1 and d, < (n—k)" (2 —1)"*

as soon as my,, # 0 in (9) and ht(u) < #* — 1. Hence throughout the rest of
the section we consider only the case ht(u) = ¢2.

Now we define the weight of a partition p = (u1,...,m2) F m as follows.
Fill up the Young diagram of p with the integers —1, 1 by inserting —1 into the

boxes of the first t(tgl) rows and 1 into the boxes of the remaining t(t;rl) TOWS.
Then wt(p) is defined as the sum of all such integers appearing in the diagram

of p. Hence

wtll — _(,ul 4+ .+ /’Lt(t;I) ) —+ (Mt(t;1)+1 + -4 MtZ).



10 I. SHESTAKOV AND M. ZAICEV Isr. J. Math.

LEMMA 5: Let my,, # 0in (9). Then wtp < 1. If m = n—k is even, then wt 1
is an even non-positive integer.

Proof. From the structure of essential idempotent ep, (see (3)) it follows that
any irreducible Sy x S,_g-submodule in Py ,_x(P(t)) with the character xx ,
can be generated by a multilinear polynomial f = f(z1,..., 2k, Y1, -, Ym)
such that the set Y = {y1,...,ym} of odd generators is a disjoint union
Y=Y1U---UY),, p= 1, and f is alternating on each subset Y7,...,Y}.

First fix a basis by,...,b,,¢1,...,cs of Py where
t(t+1 t(t—1
r= ( ;r ), s = ( 5 ), bl,...,b,«EP(l), C1,y...,Cq GP(fl),
and a basis aq, . .., a2 of Py. Since f is multilinear, in order to check an inclusion

f € 1d® (P(t)) it is sufficient to consider only evaluations

oz, apt = {ar, . aet s o {yn, o ymt = {01, beyer, oo s )

Denote by deg w the degree in Z-grading of a homogeneous element w € P(t).

In particular,
(10) dega; = --- =degap =0,
degcy =--- =degec, = —1,degby = --- =degb, = 1.

Suppose that wt u > 2 and consider an evaluation ¢. Fix one of the skew-
symmetric sets Y;. If we substitute more than s = t(t; D elements from
{c1,...,¢,} instead of y, € Y;, then we will get ¢(f) = 0 due to skew sym-
metry. Hence the maximal number of y; € Y such that ¢(y;) € {c1,...,¢}
does not exceed

py 4 +Mt<t2—1) .

According to (10) we obtain
deg<p(f) > _(Ml + .4 ,U/t(t;l) ) + (/Lt(t2—1)+1 + -+ 'u,tz) =wtp > 2.

Since P(t)(q) = 0 in Z-grading of P = P(t) for any ¢ > 2 we complete the proof
of the first part of our lemma.

Now let m be even. We can split the Young diagram D, into two parts
D#u) U D#m), where

/’L(I) = (:u‘la s a,u‘*(t;U) va M(II) - (:u’*(tgl)_i_l +o +,u‘t2) + q,

and m = p+ q. Since wty = q—p = m — 2p and m is even, then wt u is also
even and max wt pu < 0.
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We will use the following technical result from [23].

LEMMA 6 ([23, Lemma 5]): Let m be a multiple of t(t*~1) and let v=(v1, . .., v42)
be a partition of m with wtv = 0. Then ®(v) < t/t2 — 1.

Now we will restrict d,, in (7) for H (M, trp) provided that my , # 0.

LEMMA 7: Let m be a multiple of 2t(t> — 1). Then there is a partition
v=(vi,...,v2) of m with wtv < 0 such that ®(u) < ®(v) < tv/t2 —1 and
d, < mt (112 —1)m.

Proof. If wty = 0, then there is nothing to prove by Lemma 6. Otherwise
we align the partition 1 and Young diagram D,, in the following sense. As in
Lemma 5 we split 4 into two parts,

p = () py plD = (peen 4 4 ) Fa,

and start to push down boxes in D,. If we push down one box inside put
or pID | then we do not change the weight of the partition. If we move a box
from D, to D,an we get p’ with wt pu' = wt pu + 2. This process will stop in
two cases: either we will get a partition v with wtv = 0 and ®(u) < ®(v) by
Lemma 1, or we will get a partition v - m which does not admit pushing down
boxes.

Suppose v does not admit to push boxes down. Then v is a rectangular
partition

V:(g,...,g)
s

or almost rectangular, that is

V:(q+15"'7q+]‘7Q""’q)
~ ~ e VR
T t2—r
for some 0 < r < t2. In the first case we have
tt+1 tt—1
wtu:q(+)—q( )zqt>0.

2 2

Consider the second option. In this case m = ¢t? + r and minimal weight for a
fixed ¢ is equal to
t(t—1)

tf
q 2
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Since m > 2t(t?> — 1) then

22—t A —t* -3t
2 2 '
Hence gt > 4t2_2t_3 and wtv > 4t2_2t_3 — t22_t = 3t22_3 > 0 for all ¢t > 2.
This means that we obtain a partition v = m such that ®(u) < ®(v) and

®(v) < tv/t2 — 1 by Lemma 6 and

> =m—r>2{t* - 1) —

d, <mt (112 —1)™
by (8).
Now we continue with m which is not a multiple of 2¢(t> — 1).

LEMMA 8: Let m = 2qt(t> — 1) +r, 0 < r < 2t(t* — 1), and let u be a
partition of m with wt u < 1. Then there exists a polynomial 1)(m) of degree
at most t* + 2t3 — 2t + 1 such that

d, < P(m)(t/t2 —1)™

Proof. First let wt p be even. Then wt u < 0 and we glue m—r < 2t(t2—1) boxes
to the first row of D,,. As a result we obtain a partition v of mg < m-+2t(t*—1)
with a non-negative weight and my is a mutiple of 2¢(t> — 1). By Lemma 7 we
have

dy, < mb (112 = 1) < (m + 26(2 — 1)) (t/12 — 1)™
Appplying Lemma 2 several times we also obtain
d, <m0, < o(m)(tV/E2 —1)™
where
t\/tz 2t(t2—1) (m + 2t(t2 ))t4+2t3—2t_

Obviously, the same arguments work if wtyu < 0 while m is odd. Finally,
let wt ;1 = 1. We glue one extra box to the first row of D,, and get a partition y’
of m+ 1 with even m + 1 and wt ¢/ = 0. According to the previous conclusion,
dy < o(m+ 1)(tv/t2 — 1)™+! and hence by Lemma 2

d,, < P(m)(t/12 — 1)
where 1(m) = tv/t2 — 1(m + 1)e(m + 1).

Now we restrict partial graded codimensions cy ,,—x (H (My), trp)).
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LEMMA 9: Let P(t) be an algebra H(M,,trp). Then
crn-k(P(1)) < a(n)t* (/12 — 1)"*
for all k =0,...,n and for some polynomial a(n) of degree at most t'.

Proof. The total number of summands in the right-hand side of (7) does not
exceed t2(n+1)""+*+1 by Proposition 1. By Lemma 4, Lemma 7 and Lemma 8,

dy <nf' 0% d, <ln— k)2 - 1)"F deg <t 26 — 2t + 1.

chm-k(P(t)) < a(n)t* (/2 — 1)"F,
where a(n) is a polynomial of degree at most
Ittt 2t 2t 1 =3t 23 -2t + L < T
for all t > 2.

THEOREM 1: The graded Pl-exponent of a simple Jordan superalgebra
H (M, trp) exists and is less than or equal to t2 + t\/t2 — 1. In particular,
exp8" (H My, trp)) is strictly less than 2t* = dim H(My,, trp).

Proof. The existence of exp(H (M;,trp)) has been proved earlier [26]. The

required inequality follows immediately from Lemma 8 since

& (H My, trp)) Zn:( )Ckn K (H My, trp))

<o) (Z) 2R (/12 — 1)k

n=0
=a(n)( +t /12— 1)"

Taking into account the inequality (1) and the results of [14] we get an upper
bound for the ordinary PIl-exponent.

THEOREM 2: The ordinary Pl-exponent of the algebra H(M,,trp) exists and
exp(H (M, trp)) < 2 +13/t2 — 1.

In particular, exp(H (My;, trp)) is strictly less than 2t =dim H (M, trp).
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5. The graded Pl-exponent of algebra H(My),,trp)

Futhermore we will not use associative multiplication. This allows us to omit
the super-Jordan circle, i.e., to write ab instead of {a,b}. We will also use the
notation ab - - - ¢ for the left-normed product

{{...{a,b}...},c}_

We will also use the following agreement for denoting alternating sets of
variables. If we apply to a multilinear polynomial

f:f(‘rla"'awmayla"'ayk)

the operator of alternation on variables z1, ..., z,,, then we shall put the same
symbol (bar, double bar, tilde, double tilde, etc.) over variables w1,...,xy,
that is

f = f(:fla"'vjmvyla"'vyk) - Z (Sgno')f('ro'(l)a'"azo(m)vyla"'ayk)'

0ESm
For example, zay = xay — yax, or
Tayzt = zayzt — yaxzt
= zayzt — xaytz — yaxzt + yaxtz.

We shall also use the same notation for non-multilinear polynomials with re-
peating variables as follows:

T1T2aT 1Ty = T1T2aT1 Ty — ToT1GT1T2
= T1T2AT1T2 — L1XL2AT2L1 — T2X1AX1L2 + Lo2L1AL2T.

Fix the following basis of P(2) = H(Mj)s, trp):

1 0 00 0 1.0 0
I 01 0O X = -1 0 0 O 7
0 010 0 0 0 -1
0 0 0 1 0 0 1 O
01 0 0 1 0 0 O
1 0 0 O 0 -1 0 O
X2 = 5 XS = )
0 0 01 0 0 1 O
0 010 0 0 0 -1
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for even part P(2)y, and

0 010 0 01 0
Y1:0001,Y2:000_1,
0 0 0O 00 0 O
0 0 0O 0 0 0 O
0 0 01 0 0 0 0
Y3:0010,Z= 0 000,
0 0 0O 0 1 0 0
0 0 0O -1 0 0 O

for odd part P(2);.
Under our agreement the multiplication table has the following form:

al =2a for all a € P(2),
ZP=Y?=X:Z=X;Y;=0, i=1,23,
—X{=X3=X;=2I
and
Y17 = X, YoZ = X, Y52 = - X5,
X1Ye = =-2Y3, XiY3 =2Ys, XoY1 = 2Y3,
XoYs = 2Y7, X3Y) = 2Y5, X3Yo =2Y), X1Xo=X1X35=XX3=0.
Now we compute some expressions in H (M, trp). First note that
la,cl,b] = a0 (boc) — (aob)oc

in any associative algebra, that is any left-normed Lie commutator of odd degree
is a Jordan product. If an associative algebra is equipped with Zs-grading, then
the commutator [a, b] of two odd elements is their super-Jordan product in the
associated Jordan super-algebra. Hence the element

(11) B = [Xy,[V1, 2], [Ya, Z], [Y3, Z], X1, X, X5]Y2(Z1)
of Maty(F) lies in H(Mjy)3,trp). By the multiplication rule for basis elements
of H(Msy)z,trp) we have (if we first compute associative products in Mat4(F"))
[X1,X1, X2, X3
(12) = [[X1, Xa], [Xo, Xa]] — [[X1, Xo], [Xy1, Xa]] + [X1, X5], [ X1, Xo]]
= —2[[X1, X, [X1, X3]] = 8[X3, Xa] = 16X
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and hence
(13) (X1, (Y1, Z], [Ya, Z], [V, Z]] = [ X1, X1, Xp, = X3] = —16X].

Note that the expression on the left hand side of (13) is also alternating
on Y7, Ys,Ys and the first Z, that is

(14)  [X1, [, 2], [Ya, 2], V3, Z]) = 2[X1, (Y1, Z], [Ya, Z], V3, Z]] = —32X1.
It is also clear that
(15) (X1, X1, Xo, X3]Ya(Z1) = 2[X1, X1, Xo, X3]YaZ = 32X, Y, Z.

From (14) and (15) it follows that the alternation of B from (11) separately
on {Y1,Y5,Ys, Z} and on {X7, Xo, X3,I} gives us an expression

[Xla [YlaZ]a [}72’Z]a [}_{’)aZ]a)lea)’ZQade(ZT) - _210X1YVQZ-

Generalizing this construction we obtain

W= [Xl,@‘q, 2),[Ya, Z2).[Y3, Z),...,[V1, Z], [Ya, Z], [Ys, Z/],
Tt\i;es
(16) )?13)22))?3""5)213225)’53]}/2(ZT"'T)
~ ~ ~ SN~
s times s times

= (—1)TO/X1YVQZ = 04X3 75 O,

where « is a non-zero scalar.

The expression W contains r four-alternating sets {Y7,Ys,Ys, Z}, s four-
alternating sets {X7, Xo, X3, I} plus 2r + 1 factors Z out of alternating sets,
plus one X7 and one Y5. Besides, W is a super-Jordan polynomial provided
that r + s is even.

Consider a super-Jordan polynomial

w= oo, 517, 2O 1557, 21], 1957, 2l 17 2OL 7 2] 57, 2],
=(s) =(s) =(s) =~

~(1) ~(1) ~(1 ~ e
175 )7xé)7xg)a"'azl 7':62 7':63 ]yQ('ZOul"'uS)

depending on even variables g, {xgi)}, {u;} and odd variables zo, {z}, {z(V}.
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Let k = 4s, m = 6r, and let the symmetric groups Sk, S, act on the sets
(o w1 <i<s,5=1,23) and {y" 48”95 20 20, n1 <i <),

respectively. Relation (16) shows that o(w) = W # 0 in H(My)s, trp) under
the evaluation

¢:$04)le (J)%Ylv yé)%}é; yéj)g)}%a Z(J)%Zv j:]-a"'vrv
2D Xy, a5 Xo, a5 Xy, =18, x> Z, i=0,...,2n
u; — 1, i=1,...,s.

This means that the corresponding symmetrization w is not a graded identity of
H(Ms)2, trp) and generates in Pysy1,6r42(H (M, trp)) an irreducible Sy, x Sy,-
module M with the character xx,, where A = (s, s,s,s) F k,u= (3r,r,7,7) - m.
In particular,

dim Pysy1,6r42(H (Maj2, trp)) > dad,..

It is easy to see that
d(N\) =4 and ®(p) = (3/6)7%/6(1/6)73/6 = 2v/3.
Then, according to (8), we have
1

(4i)4q)(A)k - 734 A2 (g 2 7114 V3™

Hence, we have proved the following inequality.

dy >

LEMMA 10: Let k = 4s, m = 6r with even s +r and let n = k +m + 3. Then
. ]' m
dim Pot1,m+2(H (Map2, trp)) 2, 45(2v3)
One can generalize Lemma 10 to almost arbitrary n and k.

LEMMA 11: Let P be an algebra H(Ma|z,trp). Then for any n and k > 5 with
n — k > 8 one has
1
Chn—k(P) > 4154 4k (2y/s)"
Proof. 1t is not difficult to see that for any n and k > 5 with n — k > 8, one can
choose an even sum r+ s such that k —1 =4s+4,0<i<r,n—k—2=6r+j,
0<j<5and

1 X )
(17)  hor—in—k—2—j(P) > AFIT@V3)n R0 > 4k (2/3)nF
n

= 415

by Lemma 10.
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Now we prove that, given n,n’, k, k¥’ such that n’ > n, k' > k,n’ — k' > n — k,
and n—k is even, the graded codimension ¢, (P) does not exceed cx s — s (P).
Let

T = cpn—tk
and let f1,..., fr be multilinear polynomials on x1, ..., Tk, Y1, - ., Yn—k linearly
independent modulo Id®"(P). Since n — k is even, all f1,..., fr are even in Zs-

grading. First suppose that &/ — k = m > 0. Then the polynomials

fl=fix-xl, 1<i<T, withevena)... 2},

are even and linearly independent modulo I1d® (P). Indeed, if

arfi+--+arfr=0,

then
(p(alfl"l‘""i‘anT){'\;_I/ =plarfi+---+arfr)=0
m times
for any evaluation ¢ of indeterminates x1,...,yn—% in P. This means that
arfi+--+arfr=0and oy = --- = ar =0.

The previous remark allows us to reduce the proof to the case where k' = k.
Let now (n’ — k') — (n—k) =m > 0. If m > 2, then consider the polynomials

fi=fihyy, 1<i<T,
with odd y}, y5. As before, the relation ay f{ +- - -+ ay f» = 0 implies equalities
plarfi+-+arfr)YiZ =0, 1<i<3,

for any evaluation ¢ where Y;, Z are basis elements of the odd part of P(2) that
is possible only if a3 = -+ = ap = 0.

Finally, let m = 1. Similar arguments as before show that f1y],..., fry} are
linearly independent modulo Id®"(P). Now we refer to (17) and complete the
proof of the lemma.

We are ready to prove the main result of this Section.

THEOREM 3: Let P be a simple Jordan algebra of the type H(Ms|s,trp). Then
the graded Pl-exponent exp®* (P) has a fractional value. Moreover,

exp®(P) = 4 + 2V/3.
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Proof. By Lemma 11 we have

C%Y(P):i<7;)ck,n k(P) > 415 . Z( )4’“ (2v/3)"~

k=0
= 415, 42()4k2\/3 - B
:415n4(4+2 3)" —
where
415n4z< )c;m k(P 415n4 Z ( )C’m &(P).
k=n—T7
By Lemma 9,

Chm—k(P) < a(n)4*(2v/3)" % < a(n)4”

for some polynomial a(n) of degree deg v < 7. Therefore B < (n)n* where

= B2(0)+ () )
a polynomial of degree at most 10. Hence
(18) ¢ (P) > (4+2v3)" = B(n)n’.
Relation (18) implies that for any € > 0,
B(P) > (4+2V3—¢e)

for n large enough and

liminf > 4 + 2V/3.

n—roo

Since

limsup < 4 + 2v/3

n—roo

by Theorem 1, we complete the proof.
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6. Lower bound for non-graded PI-exponent of H(Mj,,trp)

For computing the lower bound of non-graded codimensions we need to modify
substantially the construction of multialternating polynomials from the previous
Section. Denote

Bl:[XQ,[}/hz]vDfQ,Z]v[}/&Z]levXQaXB]a C1 =271,
and set
BQ = [Bla [leaZ]a [YVQaZ]a [YE’MZ];XDXQ’X3]3 Dl = Altl{}éCIB2}’

where Alt; is the alternation of the product Dion Y7, Y, Y3, X1, Xo, X3 from By,
I from C} and Z from the commutator [Y7, Z] in By. That is, D; is the expres-
sion
(19) D1 = }/Q(ZT)[X% [}717Z]5 [}A}27Z]a [%az]v)?l;)?%)}&

Vi, Z), [Ya, 2], [Ys, Z), X1, Xa, X3].

For computing the value of D; we first note that if Z comes to B; instead
of Y7,Y5 or Y3, then we get 0. Similarly, we cannot replace I in C; with Z.
Second, we cannot take out Y7,Ys,Ys; from B;. Hence the right-hand side
of (19) is equal to

(20) YVQ(Z—’[V)[XQa[?I;Z]a[Eaz]a[%az]a)’zla)?Qajz3a

[}/lvz]a [}/27Z]5 [}/37Z]5X17X2;X3]'

From the multiplication rules for H(Mys, trp) it follows that the product (20)
up to a scalar factor is equal to

E(ZI)[X2)X13X2)X33X1)X23X3)X13X23X3)X13X2;X3]-
Like in (12) one can see that
[XQaZaEaE] %X2;

where we write for brevity a =~ b if a = ab for some non-zero scalar a. Since
[Xo, X1, X3] & X5, we have as a result

Then we generalize the construction of D; by setting, for k£ > 2,

Cr = Cr—11, Bypy1 = [Br,[V1,Z2],[Y2, Z],[Y3, Z], X1, X2, X3]
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and
Dy, = Al {Y2CyBj41},

where Alty is the alternation on Y7, Y5, Y3, X1, Xo, X3 from By, I from C) and Z
from [Y1, Z] in Byy1. Applying the same arguments as in the proof of (21) we

have
(22) D, ~ 1.
Now we associate with Dj a multilinear polynomial of degree 10k 4 11 as
follows:
b= (2" 1”217 L5 2870 [ e s ),
co = z((JO), 1 = coulV,
by = (b1, 917, 21), ™, 28 ™ 25, 0 ),

dy = Alty {8” (cou)by}

where all :1750 are even variables whereas all z§i),y§i) are odd and Alt; is the

alternation on the set

(20,20, 2y 0 0 @) 0y

Starting from this expression we set, for all k > 2,

k+1 k k+1 k k+1 k k+1 k+1 k+1
bk-i-l [bka[ ( )a § )]a [yé );Zé )]’ [yg )’Zé )]axg )awé )axg )]

)

and
Cr — Ckfl’u,(k), dk = Altk{yéo) (Ckflu(k))karl},
where Alt;, is the alternation on the set

k k k k
{wl ZC% )’y§ )’yé )a - u(k)"z; )}'

We split all variables in dj, to two parts. The first part of order 10k consists
of k eight-alternating sets

(2 20) 29 @ 0 D O D < < k)

plus 2k extra variables zéj ), zéj ) j=0,...,k — 1. The second one contains the

remaining eleven variables

R R S S Y e S I A S o
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We may consider the subspace P, of multilinear polynomials as an F.S,,-
module where m = 10k and the symmetric group Sy, acts on 10k indeterminates
from the first part. Denote

fr = SYMM(dy),

where SYMM is the action of eight symmetrizations of variables, namely:

e three on {yil), . ,ygk)}, 1=1,2,3;
e three on {:171(-1), . .,zz(-k)}, 1=1,2,3;

e one on {u(l)7 . u(k)};
and
e one on {z%l), 251), Zél), . ,z§k), zék), zék)}

Computation of the value of Dy, (see (22)) shows that the polynomial f, takes
a non-zero value in H (My)o, trp) under evaluation

o) =Y, e =X, o) =2, eu®) =1

On the other hand, fi generates an irreducible F'S,,-module with the charac-
ter x\ where
A= 3k, k,.... k),
N~

~ -
7 times

as follows from the structure of the essential idempotent ep, (see (3)). Since fi
is not an identity of H(My)s,trp), it follows that
(23)

1 1
cn(H (Mo, trp)) > dy >

oA >

> (n B 11)8@()\)71711 Z 87117178@()\)”

m
according to (8) since ®(\) < 8. The next lemma is a direct corollary of (23)

and the equality
1 3
D(N) = 5 , =10-37 10,
(130) 10 (170)10
LEMMA 12: Let P be the Jordan superalgebra H (Ma)a, trp) and let n=10k+11.
Then
10\
en(P) > 87117172( 3 ) .
310
Combining all previous estimations we get the lower and upper bounds for
the ordinary Pl-exponent of H(Mj)s, trp).
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THEOREM 4: The Pl-exponent of the simple Jordan superalgebra H(Mjs,trp)
is strictly less than the dimension of H(Myz, trp). Moreover, exp(H (Myja, trp))
is not an integer and

7.19 < 103710 < exp(H (Myy, trp)) < 4+ 2V/3 < 7.47.

Proof. The upper bound was obtained in Theorem 2. To obtain the lower
restriction we apply Lemma 12. If n — 11 is a multiple of 10 then

(en(H (Myja, trp)))» > (8™ 1n~8)n - 10372,

hence
1

lim inf (10511 (H (Mpz, trp)) ») = 10 370,
—00
For all the other n we may use the inequality

Cn1(H (Majz,trp)) > cn(H (Myya, trp))

that holds since H(Mjyz,trp) is a unital algebra. Clearly, if {a,} is a non-
decreasing sequence and «,, > ya™ for some n, and for some fixed a > 1, then
nyj > Joa™t provided that 1 < j < 10.
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