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ABSTRACT

We study asymptotic behaviour of graded and non-graded codimensions of

simple Jordan superalgebras over a field of characteristic zero. It is known

that the PI-exponent of any finite-dimensional associative or Jordan or Lie

algebra A is a non-negative integer less than or equal to the dimension of

algebra A. Moreover, the PI-exponent is equal to the dimension if and only

if A is simple provided that the base field is algebraically closed. In the

present paper we prove that for a Jordan superalgebra P (t) = H(Mt|t, trp)
its non-graded and Z2-graded exponents are strictly less than dimP (t).

In particular, expP (2) is fractional.
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1. Introduction

We consider finite-dimensional Jordan superalgebras over a field of character-

istic zero and study their Z2-graded and non-graded identities. Given an alge-

bra A, one can associate the sequence {cn(A), n = 1, 2, . . .}, of codimensions

of A depending on the polynomial identities of A. The asymptotic behavior

of {cn(A)} has been studied for several classes of algebras such as associative

algebras (see, for instance, references in [3], [4], [5], [12], [14]), Lie algebras (e.g.,

[17], [19], [20]) and superalgebras (e.g., [14], [25]), Jordan algebras (e.g., [13],

[9]), Novikov algebras [8] and many others.

If A is an associative algebra without additional poynomial identities,

then cn(A) = n!, that is the codimension sequence has an overexponential

growth. But an unexpected result by Regev [22] has shown that if A satisfies a

non-trivial polynomial identity (that is A is PI) then {cn(A)} is exponentially

bounded.

At the end of the 1980’s Amitsur conjectured that for any PI-algebra A the

limit of the sequence n
√
cn(A) exists and is an integer called the PI-exponent

of A. This conjecture was confirmed in [10, 11]. It was also shown that

exp(A) ≤ dimA for a finite-dimensional algebra A. Moreover, exp(A) = dimA

if and only if A is simple provided that the base field is algebraically closed.

In the non-associative case there are a lot of algebras with non-exponential

codimension growth. For example, the relatively free Lie algebra L of countable

rank of the variety AN2 has the growth cn(L) ∼
√
n! (see [27]). Moreover, for

any integer t ≥ 2 there exists a Lie algebra L with cn(L) ∼ n
t−1
t (see [20]).

The class of Jordan algbras also contains examples of overexponential growth

as follows from [6, 16]. In [15] it was shown that for any real 0 < α < 1 there

exists a two-step right nilpotent algebra Aα with cn(Aα) ∼ nnα

.

Nevertheless, the class of algebras with exponentially bounded codimension

sequence is sufficiently wide. It contains, for example, all infinite-dimensional

simple Lie algebras of Cartan type [19], all affine Kac–Moody algebras [28], all

Novikov algebras [8] and all finite-dimensional algebras [2, 13].

In the light of previous discussion three main questions arise. Given an al-

gebra A with exponentially bounded codimension sequence, can one show that

its PI-exponent exists? In the case of a positive answer, is it an integer? Is it

true that if the field is algebraically closed and A is finite-dimensional, then the

equality exp(A) = dimA is equivalent to the simplicity of A?
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If A is graded by a finite group, say, if A is Z2-graded, one can consider

graded codimensions cgrn (A) and graded PI-exponent expgr(A). Then the same

questions look reasonable for graded codimensions and graded PI-exponents.

The second question was answered in the negative in the class of finite-

dimensional Lie superalgebras both for an ordinary PI-exponent [14] and for

Z2-graded PI-exponent [24]. Inequalities exp(L), expgr(L) < dimL were also

proved for a series of finite-dimensional simple Lie superalgebras [14, 23].

In the present paper we discuss the codimension growth and graded codi-

mension growth of finite-dimensional Jordan superalgebras. We prove that both

exp(H(Mt|t, trp)) and expgr(H(Mt|t, trp)) are strictly less than dimH(Mt|t, trp)
for all t ≥ 2 (Theorem 1 and Theorem 2 below). Then we compute the precise

value expgr(H(M2|2, trp) = 4 + 2
√
3 of H(M2|2, trp) (Theorem 3). Finally, we

prove that the ordinary PI-exponent of H(M2|2, trp) exists and is fractional,

namely, 7 < exp(H(M2|2, trp)) < 8 = dimH(M2|2, trp) (Theorem 4). All de-

tails concerning polynomial identities and their numerical invariants one can

find in [12].

2. Preliminaries

Throughout the paper F is a field of characteristic zero. Denote by F{X}
the free non-associative algebra over F with an infinite set X of free gener-

ators. Let A be an algebra over F and let Id(A) ⊆ F{X} be the set of all

polynomial identities of A. Then Id(A) is an ideal of F{X}. Consider a sub-

space Pn = Pn(x1, . . . , xn) ⊆ F{X} of all multilinear polynomials on x1, . . . , xn.

Then the intersection Id(A) ∩ Pn is in fact the set of all multilinear identities

of A of degree n in x1, . . . , xn. Denote

Pn(A) =
Pn

Pn ∩ Id(A)
, cn(A) = dimPn(A).

The sequence cn(A), n = 1, 2 . . ., called the codimension sequence of A, is ex-

ponentially bounded for any finite-dimensional algebra A, cn(A) ≤ dn+1 where

d = dimA ([2, 13]), and one can define

exp(A) = lim inf
n→∞

n
√
cn(A), exp(A) = lim sup

n→∞
n
√
cn(A),

the lower and upper PI-exponents of A, respectively, and also the (ordinary)

PI-exponent

exp(A) = lim
n→∞

n
√
cn(A)
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if the lower and upper exponents coincide. The existence of the PI-exponent of a

finite-dimensional algebra is an open problem, but exp(A) does exist if A is sim-

ple. Moreover, exp(A) = dimA if A is an associative, alternative, Jordan or Lie

algebra provided that F is algebraically closed. For some series of simple Lie su-

peralgebras the same equality also occurs. However, for simple Lie superalgebras

of the type P (t), t≥2, we have the inequality exp(P (t))<2t2−1=dimP (t) ([14]).

In the current paper we are interested in numerical characteristics of the

identities of Jordan superalgebras, therefore we need to consider also the cor-

responding graded objects. Let F{X,Y } be the free non-associative algebra

with infinite sets of even generators X and odd generators Y . The notion of

parity can be uniquely extended to all monomials on X∪Y and hence F{X,Y }
becomes a Z2-graded algebra.

Given non-negative integers 0 ≤ k ≤ n, denote by Pk,n−k the subspace of

all multilinear polynomials f(x1, . . . , xk, y1, . . . , yn−k) ∈ F{X,Y } of degree k

on even variables and of degree n − k on odd variables. Given a Z2-graded

algebra A = A0 ⊕A1, denote by Idgr(A) the ideal of all graded identities of A.

Then Pk,n−k∩Idgr(A) is the subspace of all multilinear graded identities of total

degree n depending on k even variables and n − k odd variables. Also denote

by Pk,n−k(A) the quotient

Pk,n−k(A) =
Pk,n−k

Pk,n−k ∩ Idgr(A)
.

Then the graded (k, n− k)-codimension of A is

ck,n−k(A) = dimPk,n−k(A)

and the total graded codimension of A is

cgrn (A) =

n∑
k=0

(
n

k

)
ck,n−k(A).

It is also known (see [2]) that (as in the non-graded case) if dimA = d < ∞,

then cgrn (A) ≤ dn+1 and one can consider the related sequence { n
√
cgrn (A)}. The

latter sequence has the lower and upper limits

expgr(A) = lim inf
n→∞

n

√
cgrn (A), expgr(A) = lim sup

n→∞
n

√
cgrn (A),
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called the lower and upper graded PI-exponents, respectively. If an ordinary

limit exists, it is called an (ordinary) graded PI-exponent of A,

expgr(A) = lim
n→∞

n

√
cgrn (A) .

According to [2] we have

(1) cn(A) ≤ cgrn (A)

and hence expgr(A) ≥ exp(A).

3. Symmetric group action on multilinear polynomials

Symmetric groups and their representations play an important role in the theory

of codimensions. All details concerning the application of representation theory

of symmetric groups to the study of polynomial identities can be found in [12],

[1], [7].

We start with the non-graded case. Consider Sn-action on Pn by setting

σ ◦ f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)), σ ∈ Sn.

The subspace Pn of F{X} has the structure of an Sn-module and Pn ∩ Id(A)

is its submodule for an algebra A. Hence Pn(A) is also an Sn-module and can

be decomposed into the sum of irreducible components,

(2) Pn(A) =M1 ⊕ · · · ⊕Mq.

Note that according to Mashke’s Theorem one can identify Pn(A) with a sub-

module of Pn.

There exists a one-to-one correspondence between irreducible Sn-representa-

tions and partitions of n (see, for example, [18]). We recall the main con-

structions which we use subsequently. Let λ = (λ1, . . . , λk) 
 n be a partition

of λ1 + · · · + λk = n, λ1 ≥ · · · ≥ λk > 0. The Young diagram Dλ is a tableau

with n boxes, λ1 in the 1st row, λ2 in the 2nd row, and so on. The Young

tableau Tλ is the Young diagram Dλ filled up by integers 1, 2, . . . , n. Given a

Young tableau of shape λ 
 n, let RTλ
and CTλ

denote the subgroups of Sn of

the row and column stabilizers of Tλ, respectively, and set

R+
Tλ

=
∑

σ∈RTλ

σ, C−
Tλ

=
∑

τ∈CTλ

(sgnτ)τ.
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The element

(3) eTλ
= R+

Tλ
C−

Tλ
∈ Sn

is an essential idempotent, that is e2Tλ
= γeTλ

, 0 �= γ ∈ Q, and FSneTλ
is the

minimal left ideal of the group ring FSn. Its Sn-character is denoted by χλ.

Decomposition (2) can be written as

(4) χn(A) = χn(Pn(A)) =
∑
λ�n

mλχλ

where non-negative integers mλ are multiplicities of Sn-modules isomorphic

to FSneTλ
among M1, . . . ,Mq. The character χn(A) is called the nth cochar-

acter of A. If dλ = degχλ = dimFSneTλ
then

cn(A) =
∑
λ�n

mλdλ.

In particular,

(5) cn(A) ≥ dλ

for any λ 
 n with mλ �= 0 in (4). We will use relation (5) for getting the lower

bound of PI-exponents.

In the case of graded identities, the subspace Pk,n−k ⊂ F{X,Y } has a natural
structure of an Sk × Sn−k-module where Sk acts on even variables x1, . . . , xk

whereas Sn−k acts on odd variables y1, . . . , yn−k. Clearly, Pk,n−k ∩ Idgr(A) is

the submodule under an Sk × Sn−k-action and we get an induced Sk × Sn−k-

action on Pk,n−k(A). The character χk,n−k(A) = χ(Pk,n−k(A)) is called the

(k, n− k)-cocharacter of A. This character can be decomposed into the sum of

irreducible characters

(6) χk,n−k(A) =
∑
λ�k

μ�n−k

mλ,μχλ,μ

where λ and μ are partitions of k and n− k, respectively.

The irreducible Sk×Sn−k-module with the character χλ,μ is the tensor prod-

uct of the Sk-module with the character χλ and the Sn−k-module with the

character χμ. In particular, the dimension degχλ,μ of this module is the prod-

uct dλdμ. Taking into account multiplicities mλ,μ in (6) we get the relation

(7) ck,n−k(A) =
∑
λ�k

μ�n−k

mλ,μdλdμ.
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The number of irreducible components in the decomposition (6), i.e., the sum

lk,n−k(A) =
∑
λ�k

μ�n−k

mλ,μ,

is called the partial (k, n− k)-colength of A, and the total sum

lgrn (A) =
n∑

k=0

lk,n−k(A)

is called the graded colength of A. If dimA <∞ then the sequence {lgrn (A)} is

polynomially bounded.

Proposition 1 (see [29, Theorem 1]): Let A = A0⊕A1 be a Z2-graded algebra

with dimA = d <∞. Then lgrn (A) ≤ d(n+ 1)d
2+d+1.

This Proposition shows that the principle part of the exponential growth is

defined by dimensions dλ with mλ �= 0 in (7). For this purpose it is convenient

to use the following function. Given a partition μ = (μ1, . . . , μd) 
 n we define

the function

Φ(μ) =
1

zz11 · · · zzdd
where

z1 =
μ1

n
, . . . , zd =

μd

n
.

The value of Φ(μ) is closely connected with dμ = degχμ. By the Young–

Frobenius formula for dimensions of irreduccible Sn-representations we have

dλ =
n!

λ1! · · ·λd!
∏

1≤i<j≤d

(li − lj)

where lj = λj + d− j, j = 1, . . . , d. From the Stirling formula for factorials

n! =
√
2πn

(n
e

)n
e

θn
12n , 0 < θn < 1,

it easily follows that

(8)
1

nd
Φ(λ)n ≤ dλ ≤ nd2

Φ(λ)n.

One can easily check that

Φ(z1, . . . , zd) =
1

zz11 · · · zzdd
achieves the maximal value Φ = d only if z1 = · · · = zd = 1

d .
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We will also use the next property of Φ(λ). Let λ = (λ1, . . . , λd) and

μ = (μ1, . . . , μd) be two partitions of m with corresponding Young diagrams Dλ

and Dμ, respectively. We say that Dμ is obtained from Dλ by pushing down

one box if there exist 1 ≤ i < j ≤ d such that μi = λi − 1, μj = λj + 1 and

μk = λk for all remaining k.

Lemma 1 (see [14, Lemma 3]): Let Dμ be obtained from Dλ by pushing down

one box. Then Φ(μ) ≥ Φ(λ).

For a partition λ = (λ1, . . . , λd) of n we define the height of λ as ht(λ) = d.

Lemma 2 (see [12, Lemma 6.2.4]): Let λ and μ be two partitions of n and n+1,

respectively, of the same height d, such that λ is obtained from μ by erasing

one box. Then dλ ≤ dμ ≤ (n+ 1)dλ.

Finally, we note that from standard arguments and from the structure of

essential idempotent (3) the following statement holds (see, for example, [12,

Theorem 4.6.1]).

Lemma 3: Let A = A0 ⊕ A1 be a finite-dimensional Z2-graded algebra with

d0 = dimA0, d1 = dimA1. Then mλ,μ = 0 in the decomposition (6) for A as

soon as ht(λ) > d0 or ht(μ) > d1.

4. Upper bound for codimensiion growth

We start with recalling the Jordan superalgebra H(Mt|t, trp) (see, for exam-

ple, [21]) and denote it for brevity by P (t). Then P (t) = P0 ⊕ P1 is a subspace

of the 2t× 2t matrix algebra Mat2t(F ) where

P0 =

{(
A 0

0 AT

)
| A ∈Mt(F )

}
, T : X → XT is the transpose involution

and

P1 =

{(
0 B

C 0

)
| BT = B, CT = −C, B,C ∈Mt(F )

}
.

Elements from P0 ∪ P1 are called homogeneous. Any x ∈ P0 (resp. x ∈ P1)

has the homogeneous degree |x| = 0 (resp. |x| = 1). Algebra P (t) is a Jordan

superalgebra with Z2-grading if we define the product {∗, ∗} of two homogeneous
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elements x, y ∈ P (t) as

{x, y} = xy + (−1)|x||y|yx.

It is easily seen that P (t) has also a natural Z-grading

P (t) = P (−1) ⊕ P (0) ⊕ P (1),

where P (0) = P0,

P (−1) =

{(
0 0

C 0

)
| CT = −C, C ∈Mt(F )

}
,

P (1) =

{(
0 B

0 0

)
| BT = B, B ∈Mt(F )

}
.

In order to get the main result of this section we need first to prove some

technical results. Coonsider the decomposition

(9) χk,n−k(H(Mt|t, trp)) =
∑
λ�k

μ�n−k

mλ,μχλ,μ

of the partial (k, n− k)-cocharacter of H(Mt|t, trp) = P (t).

Lemma 4: Let mλ,μ �= 0 in (9). Then Φ(λ) ≤ t2 and dλ ≤ kt
4

t2k.

Proof. By Lemma 3 the height ht(λ) does not exceed t2. If ht(λ) = d ≤ t2 then,

as mentioned in the previous Section, Φ(λ) ≤ d. Hence, dλ ≤ kt
4

t2k by (8), and

we are done.

Similarly,

Φ(μ) ≤ t2 − 1 < t
√
t2 − 1 and dμ ≤ (n− k)t

4

(t2 − 1)n−k

as soon as mλ,μ �= 0 in (9) and ht(μ) ≤ t2 − 1. Hence throughout the rest of

the section we consider only the case ht(μ) = t2.

Now we define the weight of a partition μ = (μ1, . . . , μt2) 
 m as follows.

Fill up the Young diagram of μ with the integers −1, 1 by inserting −1 into the

boxes of the first t(t−1)
2 rows and 1 into the boxes of the remaining t(t+1)

2 rows.

Then wt(μ) is defined as the sum of all such integers appearing in the diagram

of μ. Hence

wtμ = −(μ1 + · · ·+ μ t(t−1)
2

) + (μ t(t−1)
2 +1

+ · · ·+ μt2).
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Lemma 5: Let mλ,μ �= 0 in (9). Then wtμ ≤ 1. If m = n−k is even, then wtμ

is an even non-positive integer.

Proof. From the structure of essential idempotent eTλ
(see (3)) it follows that

any irreducible Sk × Sn−k-submodule in Pk,n−k(P (t)) with the character χλ,μ

can be generated by a multilinear polynomial f = f(x1, . . . , xk, y1, . . . , ym)

such that the set Y = {y1, . . . , ym} of odd generators is a disjoint union

Y = Y1 ∪ · · · ∪ Yp, p = μ1, and f is alternating on each subset Y1, . . . , Yp.

First fix a basis b1, . . . , br, c1, . . . , cs of P0 where

r =
t(t+ 1)

2
, s =

t(t− 1)

2
, b1, . . . , br ∈ P (1), c1, . . . , cs ∈ P (−1),

and a basis a1, . . . , at2 of P0. Since f is multilinear, in order to check an inclusion

f ∈ Idgr(P (t)) it is sufficient to consider only evaluations

ϕ : {x1, . . . , xk} → {a1, . . . , at2} : ϕ : {y1, . . . , ym} → {b1, . . . , br, c1, . . . , cs}.
Denote by degw the degree in Z-grading of a homogeneous element w ∈ P (t).

In particular,

(10) deg a1 = · · · = deg at2 = 0,

deg c1 = · · · = deg cr = −1, deg b1 = · · · = deg br = 1.

Suppose that wtμ ≥ 2 and consider an evaluation ϕ. Fix one of the skew-

symmetric sets Yi. If we substitute more than s = t(t−1)
2 elements from

{c1, . . . , cr} instead of yα ∈ Yi, then we will get ϕ(f) = 0 due to skew sym-

metry. Hence the maximal number of yj ∈ Y such that ϕ(yj) ∈ {c1, . . . , cr}
does not exceed

μ1 + · · ·+ μ t(t−1)
2

.

According to (10) we obtain

degϕ(f) ≥ −(μ1 + · · ·+ μ t(t−1)
2

) + (μ t(t−1)
2 +1

+ · · ·+ μt2) = wtμ ≥ 2.

Since P (t)(q) = 0 in Z-grading of P = P (t) for any q ≥ 2 we complete the proof

of the first part of our lemma.

Now let m be even. We can split the Young diagram Dμ into two parts

Dμ(I) ∪Dμ(II) , where

μ(I) = (μ1, . . . , μ t(t−1)
2

) 
 p, μ(II) = (μ t(t−1)
2 +1

+ · · ·+ μt2) 
 q,
and m = p+ q. Since wtμ = q − p = m − 2p and m is even, then wtμ is also

even and max wtμ ≤ 0.
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We will use the following technical result from [23].

Lemma 6 ([23, Lemma 5]): Letm be a multiple of t(t2−1) and let ν=(ν1, . . . , νt2)

be a partition of m with wt ν = 0. Then Φ(ν) ≤ t
√
t2 − 1.

Now we will restrict dμ in (7) for H(Mt|t, trp) provided that mλ,μ �= 0.

Lemma 7: Let m be a multiple of 2t(t2 − 1). Then there is a partition

ν = (ν1, . . . , νt2) of m with wt ν ≤ 0 such that Φ(μ) ≤ Φ(ν) ≤ t
√
t2 − 1 and

dμ ≤ mt4(t
√
t2 − 1)m.

Proof. If wtμ = 0, then there is nothing to prove by Lemma 6. Otherwise

we align the partition μ and Young diagram Dμ in the following sense. As in

Lemma 5 we split μ into two parts,

μ(I) = (μ1, . . . , μ t(t−1)
2

) 
 p, μ(II) = (μ t(t−1)
2 +1

+ · · ·+ μt2) 
 q,

and start to push down boxes in Dμ. If we push down one box inside μ(I)

or μ(II), then we do not change the weight of the partition. If we move a box

from Dμ(I) to Dμ(II) we get μ′ with wtμ′ = wtμ+ 2. This process will stop in

two cases: either we will get a partition ν with wt ν = 0 and Φ(μ) ≤ Φ(ν) by

Lemma 1, or we will get a partition ν 
 m which does not admit pushing down

boxes.

Suppose ν does not admit to push boxes down. Then ν is a rectangular

partition

ν = (q, . . . , q︸ ︷︷ ︸
t2

)

or almost rectangular, that is

ν = (q + 1, . . . , q + 1︸ ︷︷ ︸
r

, q, . . . , q︸ ︷︷ ︸
t2−r

)

for some 0 < r < t2. In the first case we have

wt ν = q
t(t+ 1)

2
− q

t(t− 1)

2
= qt > 0.

Consider the second option. In this case m = qt2 + r and minimal weight for a

fixed q is equal to

qt− t(t− 1)

2
.
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Since m ≥ 2t(t2 − 1) then

qt2 = m− r ≥ 2t(t2 − 1)− t2 − t

2
=

4t3 − t2 − 3t

2
.

Hence qt ≥ 4t2−t−3
2 and wt ν ≥ 4t2−t−3

2 − t2−t
2 = 3t2−3

2 > 0 for all t ≥ 2.

This means that we obtain a partition ν 
 m such that Φ(μ) ≤ Φ(ν) and

Φ(ν) ≤ t
√
t2 − 1 by Lemma 6 and

dμ ≤ mt4(t
√
t2 − 1)m

by (8).

Now we continue with m which is not a multiple of 2t(t2 − 1).

Lemma 8: Let m = 2qt(t2 − 1) + r, 0 < r < 2t(t2 − 1), and let μ be a

partition of m with wtμ ≤ 1. Then there exists a polynomial ψ(m) of degree

at most t4 + 2t3 − 2t+ 1 such that

dμ ≤ ψ(m)(t
√
t2 − 1)m.

Proof. First let wtμ be even. Then wtμ ≤ 0 and we gluem−r < 2t(t2−1) boxes

to the first row of Dμ. As a result we obtain a partition ν ofm0 ≤ m+2t(t2−1)

with a non-negative weight and m0 is a mutiple of 2t(t2 − 1). By Lemma 7 we

have

dν < mt4

0 (t
√
t2 − 1)m0 ≤ (m+ 2t(t2 − 1))m0−m(t

√
t2 − 1)m.

Appplying Lemma 2 several times we also obtain

dμ ≤ mm0−m
0 dν ≤ ϕ(m)(t

√
t2 − 1)m

where

ϕ(m) = (t
√
t2 − 1)2t(t

2−1)(m+ 2t(t2 − 1))t
4+2t3−2t.

Obviously, the same arguments work if wtμ ≤ 0 while m is odd. Finally,

let wtμ = 1. We glue one extra box to the first row of Dμ and get a partition μ′

of m+ 1 with even m+ 1 and wtμ′ = 0. According to the previous conclusion,

dμ′ ≤ ϕ(m+ 1)(t
√
t2 − 1)m+1 and hence by Lemma 2

dμ ≤ ψ(m)(t
√
t2 − 1)m

where ψ(m) = t
√
t2 − 1(m+ 1)ϕ(m+ 1).

Now we restrict partial graded codimensions ck,n−k(H(Mt|t, trp)).
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Lemma 9: Let P (t) be an algebra H(Mt|t, trp). Then

ck,n−k(P (t)) ≤ α(n)t2k(t
√
t2 − 1)n−k

for all k = 0, . . . , n and for some polynomial α(n) of degree at most t7.

Proof. The total number of summands in the right-hand side of (7) does not

exceed t2(n+1)t
4+t2+1 by Proposition 1. By Lemma 4, Lemma 7 and Lemma 8,

dλ ≤ nt4n2k, dμ ≤ ψ(n− k)(t
√
t2 − 1)n−k, degψ ≤ t4 + 2t3 − 2t+ 1.

Hence

ck,n−k(P (t)) ≤ α(n)t2k(t
√
t2 − 1)n−k,

where α(n) is a polynomial of degree at most

t4 + t2 + 1 + t4 + t4 + 2t3 − 2t+ 1 = 3t4 + 2t3 + t2 − 2t+ 1 < t7

for all t ≥ 2.

Theorem 1: The graded PI-exponent of a simple Jordan superalgebra

H(Mt|t, trp) exists and is less than or equal to t2 + t
√
t2 − 1. In particular,

expgr(H(Mt|t, trp)) is strictly less than 2t2 = dimH(Mt|t, trp).

Proof. The existence of exp(H(Mt|t, trp)) has been proved earlier [26]. The

required inequality follows immediately from Lemma 8 since

cgrn (H(Mt|t, trp)) =
n∑

k=0

(
n

k

)
ck,n−k(H(Mt|t, trp))

≤ α(n)
k∑

n=0

(
n

k

)
t2k(t

√
t2 − 1)n−k

= α(n)(t2 + t
√
t2 − 1)n.

Taking into account the inequality (1) and the results of [14] we get an upper

bound for the ordinary PI-exponent.

Theorem 2: The ordinary PI-exponent of the algebra H(Mt|t, trp) exists and

exp(H(Mt|t, trp)) ≤ t2 + t
√
t2 − 1.

In particular, exp(H(Mt|t, trp)) is strictly less than 2t2=dimH(Mt|t, trp).
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5. The graded PI-exponent of algebra H(M2|2, trp)

Futhermore we will not use associative multiplication. This allows us to omit

the super-Jordan circle, i.e., to write ab instead of {a, b}. We will also use the

notation ab · · · c for the left-normed product

{{· · · {a, b} · · · }, c}.

We will also use the following agreement for denoting alternating sets of

variables. If we apply to a multilinear polynomial

f = f(x1, . . . , xm, y1, . . . , yk)

the operator of alternation on variables x1, . . . , xm, then we shall put the same

symbol (bar, double bar, tilde, double tilde, etc.) over variables x1, . . . , xm,

that is

f = f(x̄1, . . . , x̄m, y1, . . . , yk) =
∑

σ∈Sm

(sgnσ)f(xσ(1), . . . , xσ(m), y1, . . . , yk).

For example, x̄aȳ = xay − yax, or

x̄aȳ ¯̄z¯̄t = xay ¯̄z¯̄t− yax¯̄z¯̄t

= xayzt− xaytz − yaxzt+ yaxtz.

We shall also use the same notation for non-multilinear polynomials with re-

peating variables as follows:

x̄1x̄2a¯̄x1 ¯̄x2 = x1x2a¯̄x1 ¯̄x2 − x2x1a¯̄x1 ¯̄x2

= x1x2ax1x2 − x1x2ax2x1 − x2x1ax1x2 + x2x1ax2x1.

Fix the following basis of P (2) = H(M2|2, trp):

I =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ , X1 =

⎛⎜⎜⎜⎝
0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

⎞⎟⎟⎟⎠ ,

X2 =

⎛⎜⎜⎜⎝
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠ , X3 =

⎛⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎠ ,
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for even part P (2)0, and

Y1 =

⎛⎜⎜⎜⎝
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , Y2 =

⎛⎜⎜⎜⎝
0 0 1 0

0 0 0 −1

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ ,

Y3 =

⎛⎜⎜⎜⎝
0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , Z =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 1 0 0

−1 0 0 0

⎞⎟⎟⎟⎠ ,

for odd part P (2)1.

Under our agreement the multiplication table has the following form:

aI = 2a for all a ∈ P (2),

Z2 = Y 2
i = XiZ = XiYi = 0, i = 1, 2, 3,

−X2
1 = X2

2 = X2
3 = 2I,

and

Y1Z = X1, Y2Z = X2, Y3Z = −X3,

X1Y2 = −2Y3, X1Y3 = 2Y2, X2Y1 = 2Y3,

X2Y3 = 2Y1, X3Y1 = 2Y2, X3Y2 = 2Y1, X1X2 = X1X3 = X2X3 = 0.

Now we compute some expressions in H(M2|2, trp). First note that

[[a, c], b] = a ◦ (b ◦ c)− (a ◦ b) ◦ c
in any associative algebra, that is any left-normed Lie commutator of odd degree

is a Jordan product. If an associative algebra is equipped with Z2-grading, then

the commutator [a, b] of two odd elements is their super-Jordan product in the

associated Jordan super-algebra. Hence the element

(11) B = [X1, [Y1, Z], [Y2, Z], [Y3, Z], X1, X2, X3]Y2(ZI)

of Mat4(F ) lies in H(M2|2, trp). By the multiplication rule for basis elements

of H(M2|2, trp) we have (if we first compute associative products in Mat4(F ))

(12)

[X1,X̄1, X̄2, X̄3]

= [[X1, X1], [X2, X3]]− [[X1, X2], [X1, X3]] + [[X1, X3], [X1, X2]]

= −2[[X1, X2], [X1, X3]] = 8[X3, X2] = 16X1
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and hence

(13) [X1, [Ȳ1, Z], [Ȳ2, Z], [Ȳ3, Z]] = [X1, X̄1, X̄2,−X̄3] = −16X1.

Note that the expression on the left hand side of (13) is also alternating

on Y1, Y2, Y3 and the first Z, that is

(14) [X1, [Ȳ1, Z̄], [Ȳ2, Z], [Ȳ3, Z]] = 2[X1, [Ȳ1, Z], [Ȳ2, Z], [Ȳ3, Z]] = −32X1.

It is also clear that

(15) [X1, X̃1, X̃2, X̃3]Y2(ZĨ) = 2[X1, X̃1, X̃2, X̃3]Y2Z = 32X1Y2Z.

From (14) and (15) it follows that the alternation of B from (11) separately

on {Y1, Y2, Y3, Z} and on {X1, X2, X3, I} gives us an expression

[X1, [Ȳ1, Z̄], [Ȳ2, Z], [Ȳ3, Z], X̃1, X̃2, X̃3]Y2(ZĨ) = −210X1Y2Z.

Generalizing this construction we obtain

(16)

W = [X1, [Ȳ1, Z̄], [Ȳ2, Z].[Ȳ3, Z], . . . , [
¯̄Y1,

¯̄Z], [ ¯̄Y2, Z], [
¯̄Y3, Z]︸ ︷︷ ︸

r times

,

X̃1, X̃2, X̃3, . . . ,
˜̃
X1,

˜̃
X2,

˜̃
X3︸ ︷︷ ︸

s times

]Y2(Z Ĩ · · · ˜̃I︸ ︷︷ ︸
s times

)

= (−1)rα′X1Y2Z = αX3 �= 0,

where α is a non-zero scalar.

The expression W contains r four-alternating sets {Y1, Y2, Y3, Z}, s four-

alternating sets {X1, X2, X3, I} plus 2r + 1 factors Z out of alternating sets,

plus one X1 and one Y2. Besides, W is a super-Jordan polynomial provided

that r + s is even.

Consider a super-Jordan polynomial

w = [x0, [ȳ
(1)
1 , z̄(1)], [ȳ

(1)
2 , z1], [ȳ

(1)
3 , z2], . . . , [¯̄y

(r)
1 , ¯̄z(r)], [¯̄y

(r)
2 , z2r−1], [¯̄y

(r)
3 , z2r],

x̃
(1)
1 , x̃

(1)
2 , x̃

(1)
3 , . . . , ˜̃x(s)1 , ˜̃x(s)2 , ˜̃x(s)3 ]y2(z0ũ1 · · · ˜̃us)

depending on even variables x0, {x(i)j }, {ui} and odd variables z0, {zi}, {z(i)}.
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Let k = 4s, m = 6r, and let the symmetric groups Sk, Sm act on the sets

{x(i)j , ui|1 ≤ i ≤ s, j = 1, 2, 3} and {y(i)1 , y
(i)
2 , y

(i)
3 , z(i), z1, . . . , zr|1 ≤ i ≤ r},

respectively. Relation (16) shows that ϕ(w) = W �= 0 in H(M2|2, trp) under

the evaluation

ϕ : x0 → X1, y
(j)
1 → Y1, y

(j)
2 → Y2, y

(j)
3 → Y3, z

(j) → Z, j = 1, . . . , r,

x
(i)
1 → X1, x

(i)
2 → X2, x

(i)
3 → X3, i = 1, . . . , s, zi → Z, i = 0, . . . , 2r,

uj → I, i = 1, . . . , s.

This means that the corresponding symmetrization w is not a graded identity of

H(M2|2, trp) and generates in P4s+1,6r+2(H(M2|2, trp)) an irreducible Sk×Sm-

moduleM with the character χλ,μ where λ = (s, s, s, s) 
 k, μ = (3r, r, r, r) 
 m.

In particular,

dimP4s+1,6r+2(H(M2|2, trp)) ≥ dλdμ.

It is easy to see that

Φ(λ) = 4 and Φ(μ) = (3/6)−3/6(1/6)−3/6 = 2
√
3.

Then, according to (8), we have

dλ ≥ 1

(4s)4
Φ(λ)k ≥ 1

n4
· 4k, dμ ≥ 1

(6r)4
Φ(μ)m ≥ 1

n4
(2
√
3)m.

Hence, we have proved the following inequality.

Lemma 10: Let k = 4s,m = 6r with even s+ r and let n = k +m+ 3. Then

dimPk+1,m+2(H(M2|2, trp)) ≥ 1

n4
4k(2

√
3)m.

One can generalize Lemma 10 to almost arbitrary n and k.

Lemma 11: Let P be an algebra H(M2|2, trp). Then for any n and k ≥ 5 with

n− k ≥ 8 one has

ck,n−k(P ) ≥ 1

415n4
4k(2

√
s)n−k.

Proof. It is not difficult to see that for any n and k ≥ 5 with n−k ≥ 8, one can

choose an even sum r+ s such that k− 1 = 4s+ i, 0 ≤ i < r, n−k− 2 = 6r+ j,

0 ≤ j ≤ 5 and

(17) ck−1−i,n−k−2−j(P ) ≥ 1

n4
4k−1−i(2

√
3)n−k−2−j ≥ 1

415
4k(2

√
3)n−k

by Lemma 10.
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Now we prove that, given n, n′, k, k′ such that n′ ≥ n, k′ ≥ k, n′ − k′ ≥ n− k,

and n−k is even, the graded codimension ck,n−k(P ) does not exceed ck′,n′−k′(P ).

Let

T = ck,n−k

and let f1, . . . , fT be multilinear polynomials on x1, . . . , xk, y1, . . . , yn−k linearly

independent modulo Idgr(P ). Since n− k is even, all f1, . . . , fT are even in Z2-

grading. First suppose that k′ − k = m > 0. Then the polynomials

f ′
i = fix

′
1 · · ·x′m 1 ≤ i ≤ T, with even x′1 . . . , x

′
m

are even and linearly independent modulo Idgr(P ). Indeed, if

α1f
′
1 + · · ·+ αT f

′
T ≡ 0,

then

ϕ(α1f1 + · · ·+ αT fT ) I · · · I︸ ︷︷ ︸
m times

= ϕ(α1f1 + · · ·+ αT fT ) = 0

for any evaluation ϕ of indeterminates x1, . . . , yn−k in P . This means that

α1f1 + · · ·+ αT fT ≡ 0 and α1 = · · · = αT = 0.

The previous remark allows us to reduce the proof to the case where k′ = k.

Let now (n′ − k′)− (n− k) = m > 0. If m ≥ 2, then consider the polynomials

f ′
i = fiy

′
1y

′
2, 1 ≤ i ≤ T,

with odd y′1, y
′
2. As before, the relation α1f

′
1+ · · ·+αY f

′
T ≡ 0 implies equalities

ϕ(α1f1 + · · ·+ αT fT )YiZ = 0, 1 ≤ i ≤ 3,

for any evaluation ϕ where Yi, Z are basis elements of the odd part of P (2) that

is possible only if α1 = · · · = αT = 0.

Finally, let m = 1. Similar arguments as before show that f1y
′
1, . . . , fT y

′
1 are

linearly independent modulo Idgr(P ). Now we refer to (17) and complete the

proof of the lemma.

We are ready to prove the main result of this Section.

Theorem 3: Let P be a simple Jordan algebra of the type H(M2|2, trp). Then
the graded PI-exponent expgr(P ) has a fractional value. Moreover,

expgr(P ) = 4 + 2
√
3.
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Proof. By Lemma 11 we have

cgrn (P ) =

n∑
k=0

(
n

k

)
ck,n−k(P ) ≥ 1

415n4

n−8∑
k=5

(
n

k

)
4k(2

√
3)n−k

=
1

415n4

n∑
k=0

(
n

k

)
4k(2

√
3)n−k −B

=
1

415n4
(4 + 2

√
3)n −B,

where

B =
1

415n4

4∑
k=0

(
n

k

)
ck,n−k(P ) +

1

415n4

n∑
k=n−7

(
n

k

)
ck,n−k(P ).

By Lemma 9,

ck,n−k(P ) ≤ α(n)4k(2
√
3)n−k ≤ α(n)4n

for some polynomial α(n) of degree degα ≤ 7. Therefore B ≤ β(n)n4 where

β(n) =
2α(n)

415n4

((
n

0

)
+

(
n

1

)
+ · · ·+

(
n

7

))
,

a polynomial of degree at most 10. Hence

(18) cgrn (P ) ≥ (4 + 2
√
3)n − β(n)n4.

Relation (18) implies that for any ε > 0,

cgrn (P ) ≥ (4 + 2
√
3− ε)n

for n large enough and

lim inf
n→∞ ≥ 4 + 2

√
3.

Since

lim sup
n→∞

≤ 4 + 2
√
3

by Theorem 1, we complete the proof.
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6. Lower bound for non-graded PI-exponent of H(M2|2, trp)

For computing the lower bound of non-graded codimensions we need to modify

substantially the construction of multialternating polynomials from the previous

Section. Denote

B1 = [X2, [Y1, Z], [Y2, Z], [Y3, Z], X1, X2, X3], C1 = ZI,

and set

B2 = [B1, [Y1, Z], [Y2, Z], [Y3, Z], X1, X2, X3], D1 = Alt1{Y2C1B2},
where Alt1 is the alternation of the productD1on Y1, Y2, Y3, X1, X2, X3 fromB1,

I from C1 and Z from the commutator [Y1, Z] in B2. That is, D1 is the expres-

sion

(19)
D1 = Y2(ZĨ)[X2, [Ỹ1, Z], [Ỹ2, Z], [Ỹ3, Z], X̃1, X̃2, X̃3,

[Y1, Z̃], [Y2, Z], [Y3, Z], X1, X2, X3].

For computing the value of D1 we first note that if Z comes to B1 instead

of Y1, Y2 or Y3, then we get 0. Similarly, we cannot replace I in C1 with Z.

Second, we cannot take out Y1, Y2, Y3 from B1. Hence the right-hand side

of (19) is equal to

(20)
Y2(Z

˜̃
I)[X2, [Ỹ1, Z], [Ỹ2, Z], [Ỹ3, Z],

˜̃
X1,

˜̃
X2,

˜̃
X3,

[Y1,
˜̃
Z], [Y2, Z], [Y3, Z], X1, X2, X3].

From the multiplication rules for H(M2|2, trp) it follows that the product (20)

up to a scalar factor is equal to

Y2(ZI)[X2, X̃1, X̃2, X̃3,
˜̃
X1,

˜̃
X2,

˜̃
X3, X1, X2, X3, X1, X2, X3].

Like in (12) one can see that

[X2, X̃1, X̃2, X̃3] ≈ X2,

where we write for brevity a ≈ b if a = αb for some non-zero scalar α. Since

[X2, X1, X3] ≈ X2, we have as a result

(21) D1 ≈ Y2ZX2 ≈ I.

Then we generalize the construction of D1 by setting, for k ≥ 2,

Ck = Ck−1I, Bk+1 = [Bk, [Y1, Z], [Y2, Z], [Y3, Z], X1, X2, X3]



Vol. TBD, 2021 CODIMENSION OF SIMPLE JORDAN SUPERALGEBRAS 21

and

Dk = Altk{Y2CkBk+1},
where Altk is the alternation on Y1, Y2, Y3, X1, X2, X3 from Bk, I from Ck and Z

from [Y1, Z] in Bk+1. Applying the same arguments as in the proof of (21) we

have

(22) Dk ≈ I.

Now we associate with Dk a multilinear polynomial of degree 10k + 11 as

follows:

b1 = [x
(0)
2 , [y

(1)
1 , z

(0)
1 ], [y

(1)
2 , z

(0)
2 ], [y

(1)
3 , z

(0)
3 ], x

(1)
1 , x

(1)
2 , x

(1)
3 ],

c0 = z
(0)
0 , c1 = c0u

(1),

b2 = [b1, [y
(2)
1 , z

(1)
1 ], [y

(2)
2 , z

(1)
2 ], [y

(2)
3 , z

(1)
3 ], x

(2)
1 , x

(2)
2 , x

(2)
3 ],

d1 = Alt1{y(0)2 (c0u
(1))b2}

where all x
(i)
j are even variables whereas all z

(i)
j , y

(i)
j are odd and Alt1 is the

alternation on the set

{x(1)1 , x
(1)
2 , x

(1)
3 , y

(1)
1 , y

(1)
2 , y

(1)
3 , u(1), z

(1)
1 }.

Starting from this expression we set, for all k ≥ 2,

bk+1 = [bk, [y
(k+1)
1 , z

(k)
1 ], [y

(k+1)
2 , z

(k)
2 ], [y

(k+1)
3 , z

(k)
3 ], x

(k+1)
1 , x

(k+1)
2 , x

(k+1)
3 ],

and

ck = ck−1u
(k), dk = Altk{y(0)2 (ck−1u

(k))bk+1},
where Altk is the alternation on the set

{x(k)1 , x
(k)
2 , x

(k)
3 , y

(k)
1 , y

(k)
2 , y

(k)
3 , u(k), z

(k)
1 }.

We split all variables in dk to two parts. The first part of order 10k consists

of k eight-alternating sets

{x(j)1 , x
(j)
2 , x

(j)
3 , y

(j)
1 , y

(j)
2 , y

(j)
3 , u(j), z

(j)
1 |1 ≤ j ≤ k}

plus 2k extra variables z
(j)
2 , z

(j)
3 , j = 0, . . . , k − 1. The second one contains the

remaining eleven variables

x
(0)
0 , z

(0)
0 , y

(0)
2 , y

(k+1)
1 , y

(k+1)
2 , y

(k+1)
3 , x

(k+1)
1 , x

(k+1)
2 , x

(k+1)
3 , z

(k)
2 , z

(k)
3 .
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We may consider the subspace Pn of multilinear polynomials as an FSm-

module wherem = 10k and the symmetric group Sm acts on 10k indeterminates

from the first part. Denote

fk = SYMM(dk),

where SYMM is the action of eight symmetrizations of variables, namely:

• three on {y(1)i , . . . , y
(k)
i }, i = 1, 2, 3;

• three on {x(1)i , . . . , x
(k)
i }, i = 1, 2, 3;

• one on {u(1), . . . , u(k)};
and

• one on {z(1)1 , z
(1)
2 , z

(1)
3 , . . . , z

(k)
1 , z

(k)
2 , z

(k)
3 }.

Computation of the value of Dk (see (22)) shows that the polynomial fk takes

a non-zero value in H(M2|2, trp) under evaluation

ϕ(y
(i)
j ) = Yj , ϕ(x

(i)
j ) = Xj, ϕ(z

(i)
j ) = Z, ϕ(u(i)) = I.

On the other hand, fk generates an irreducible FSm-module with the charac-

ter χλ where

λ = (3k, k, . . . , k︸ ︷︷ ︸
7 times

),

as follows from the structure of the essential idempotent eTλ
(see (3)). Since fk

is not an identity of H(M2|2, trp), it follows that
(23)

cn(H(M2|2, trp)) ≥ dλ ≥ 1

m2
Φ(λ)m ≥ 1

(n− 11)8
Φ(λ)n−11 ≥ 8−11n−8Φ(λ)n

according to (8) since Φ(λ) ≤ 8. The next lemma is a direct corollary of (23)

and the equality

Φ(λ) =
1

( 3
10 )

3
10 ( 7

10 )
7
10

= 10 · 3− 3
10 .

Lemma 12: Let P be the Jordan superalgebraH(M2|2, trp) and let n=10k+11.

Then

cn(P ) ≥ 8−11n−2
( 10

3
3
10

)n
.

Combining all previous estimations we get the lower and upper bounds for

the ordinary PI-exponent of H(M2|2, trp).
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Theorem 4: The PI-exponent of the simple Jordan superalgebra H(M2|2, trp)
is strictly less than the dimension of H(M2|2, trp). Moreover, exp(H(M2|2, trp))
is not an integer and

7.19 < 10 · 3− 3
10 ≤ exp(H(M2|2, trp)) ≤ 4 + 2

√
3 < 7.47.

Proof. The upper bound was obtained in Theorem 2. To obtain the lower

restriction we apply Lemma 12. If n− 11 is a multiple of 10 then

(cn(H(M2|2, trp)))
1
n ≥ (8−11n−8)

1
n · 10 · 3− 3

2 ,

hence

lim inf
k→∞

(c10k+11(H(M2|2, trp))
1
n ) ≥ 10 · 3− 3

10 .

For all the other n we may use the inequality

cn+1(H(M2|2, trp)) ≥ cn(H(M2|2, trp))

that holds since H(M2|2, trp) is a unital algebra. Clearly, if {αn} is a non-

decreasing sequence and αn ≥ γan for some n, and for some fixed a > 1, then

αn+j ≥ γ
a10 a

n+j provided that 1 ≤ j ≤ 10.

References

[1] Yu. A. Bahturin, Identical Relations in Lie Algebras, VNU Science Press, Utrecht, 1987.

[2] Yu. Bahturin and V. Drensky, Graded polynomial identities of matrices, Linear Algebra

and its Applications 357 (2002), 15–34.

[3] A. Berele, Properties of hook Schur functions with applications to p.i. algebras, Advances

in Applied Mathematics 41 (2008), 52–75.

[4] A. Berele and A. Regev, Asymptotic behaviour of codimensions of p.i. algebras satisfying

Capelli identities, Transactions of the American Mathematical Society 360 (2008), 5155–

5172.

[5] V. Drensky, Codimensions of T-ideals and Hilbert series of relatively free algebras, Jour-

nal of Algebra 91 (1984), 1–17.

[6] V. Drensky, Polynomial identities for the Jordan algebra of a symmetric bilinear form,

Journal of Algebra 108 (1987), 66–87.

[7] V. Drensky, Free algebras and PI-algebras, Springer, Singapore, 2000.

[8] A. S. Dzhumadil’daev, Codimension growth and non-Koszulity of Novikov operad, Com-

munications in Algebra 39 (2011), 2943–2952.

[9] A. Giambruno, I. Shestakov and M. Zaicev, Finite-dimensional non-associative algebras

and codimension growth, Advances in Applied Mathematics 47 (2011), 125–139.

[10] A. Giambruno and M. Zaicev, On codimension growth of finitely generated associative

algebras, Advances in Mathematics 140 (1998), 145–155.



24 I. SHESTAKOV AND M. ZAICEV Isr. J. Math.

[11] A. Giambruno and M. Zaicev, Exponential codimension growth of PI algebras: an exact

estimate, Advances in Mathematics 142 (1999), 221–243.

[12] A. Giambruno and M. Zaicev, Polynomial Identities and Asymptotic Methods, Mathe-

matical Surveys and Monographs, Vol. 122, American Mathematical Society, Providence,

RI, 2005.

[13] A. Giambruno and M. Zaicev, Codimension growth of special simple Jordan algebras,

Transactions of the American Mathematical Society 362 (2010), 3107–3123.

[14] A. Giambruno and M. Zaicev, On codimension growth of finite-dimensional Lie superal-

gebras, Journal of the London Mathematical Society 85 (2012), 534–548.

[15] A. Giambruno and M. Zaicev, Sturmian words and overexponential codimension growth,

Advances in Applied Mathematics 95 (2018), 53–64.

[16] A. Giambruno and E. Zelmanov, On growth of codimensions of Jordan algebras, in

Groups, Algebras and Applications, Contemporary Mathematics, Vol. 537, American

Mathematical Society, Providence, RI, 2011, pp. 205–210.

[17] A, N. Grishkov, Growth of varieties of Lie algebras, Matematicheskie Zametki 44 (1988),

51–54, 154; English translation: Mathematical Notes 44 (1988), 515–517.

[18] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Ency-

clopedia of Mathematics and its Applications, Vol. 16. Addison-Wesley, Reading, MA,

1981.

[19] S. P. Mishchenko, Growth of varieties of Lie algebras, Uspekhi Matematicheskikh Nauk

45 (1990), 25–45, 189; English translation: Russian Mathematical Surveys 45 (1990),

27–52

[20] V. M. Petrogradskii, On types of superexponential growth of identities in Lie PI-algebras,

Fundamenatal’naya i Prikladnaya Matematika 1 (1995), 989–1007.

[21] M. L. Racine and E. I. Zelmanov, Simple Jordan superalgebras with semisimple even

part, Journal of Algebra 270 (2003), 374–444.

[22] A. Regev, Existence of identities in A ⊗ B, Israel Journal of Mathematics 11 (1972),

131–152.

[23] D. Repovš and M. Zaicev, Graded identities of some simple Lie superalgebras, Algebras

and Representation Theory 17 (2014), 1401–1412.
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