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Castelnuovo-Mumford Regularity of the Fiber
Cone for good filtrations
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Abstract

In this paper we show that there is a close relationship between
the invariants characterizing the homogeneous vanishing of the local
cohomology of the Rees algebra and the associated graded ring for
good filtration case. We obtain relationships between the Castelnuovo-
Mumford regularity of the fiber cone, associated graded ring, Rees
algebra and reduction number for the good filtration case.

1 Introduction

Let (A, m) be a commutative Noetherian local ring and § : ADIDI*D..
a adic-filtration. Then we have important graded algebras, namely, R(I) :=
Dnsol™t", the associated graded ring, G(I) := @uol™/I™" and the fiber
cone, F(I) := @nxol®/mI* = R(I)/mR(I). In the papers [CZ1], [CZ2] and
[CZ], Cortadellas and Zarzuella, studied the depth properties of the fiber
cone by using certain graded modules associated to filtration of modules.
Jayanthan and Nanduri, in [JN], used some results of those articles to study
the regularity of the fiber cone.

The Castelnuovo-Mumford regularity of R(I) and G(I) are very known
([HZ], [0], [H], [T], [JU], etc). In the paper [HZ], for example, Hoa and
Zarzuela obtain many results between reduction number and a-invariant of
good filtrations. Ooishi, in [O], proved that the regularity of R(I) and G(I)
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are equal. This formula was also discovered by Johnson and Ulrich [JU].
After, in [T], Trung studied the relationships between the Rees algebra and
the associated graded ring, and then, he also concluded that for any ideal in
a Noetherian local ring, the regularity of R(I) and G(I) are equal. We show
this same equality for the good filtration case.

For the /-adic case, Jayanthan and Nanduri [JN] prove that for any ideal
of analytic spread one in a Noetherian local ring, the regularity of the fiber
cone is bounded by the regularity of the associated graded ring. Moreover,
they obtain on certain conditions that in fact the equality holds. The goal
in this paper is to give an analogous theory on regularity of the fiber cone,
Rees algebra, associated graded ring and reduction number for good filtration
case. We show that the regularity of the fiber cone for good filtration case
behave well as in the /-adic case.

The paper is divided into three parts. In section 2 we introduce the basic
concepts about good filtration, reduction and regularity. In the section 3 we
extend the Theorem 3.1, Corollary 3.2 and Corollary 3.3 of Trung [T] for
the good filtration case. In section 4, we obtain relationship between the
regularities of the fiber cone, the associated graded ring, Rees algebra and
reduction number for the good filtration case. The results of this section
generalize the results of the section 2 in [JN].

2 Preliminaries

A sequence § = (I)n>0 of ideals of A is called a filtration of A if Io = AD
Il 2 IQ D) 13 =) oo Il # A and Iin Q Lj+j for all Z,j > 0.

Let I be and ideal of A. § is called an I-good filtration if I1; C I;y for
all i > 0 and I+, = I, for all n > 0. § is called a good filtration if it is an
I-good filtration for some ideal I of A. § is a good-filtration if and only if it
is a [;-good filtration.

Given any filtration § we can construct the following two graded rings

RF)=AohtoLt?*®.. , G =A/LoL/LO L/ ...

We call R(F) the Rees algebra of § and G(T) the associated graded ring
of §. We also denote G(F)+ = ®ns1ln/Intr. If § is an [-adic filtration,
ie, § = (I")nxo for some ideal I, we denote R(F) and G(§) by R(/) and
G(I) respectively. A filtration § is called Noetherian if R(§) is a Noetherian



ring. Noctherian filtration satisfies Nn>ol, = 0. By adapting the proof of [M,
Theorem 15.7], we can prove that if § is Noetherian then dim G(§) = dim A.

For any filtration § = (I,) and any ideal J of A, we let §/J denote the
filtration ((I, + J)/J). in the ring A/J. Of course that if § is Noetherian
then §/J so is.

A reduction of a filtration § is an ideal J C I; such that JI, = I,4 for
n > 0. We also know that J C I; is a reduction of § if and only if R(%)
is a finite R(J)-module. By [B, Theorem I11.3.1.1 and Corollary I11.3.1.4],
R(3) is a finite R(J)-module if and only if there exists an integer k such that
I, C (I,)"* for all n. A minimal reduction of § is a reduction of § minimal
with respect to containment. A good filtration § is called equimultiple if Iy
is equimultiple, i.e, s(;) = ht I;.

If J is a reduction of the I-adic filtration, we say simply that J is a
reduction of I. By [NR], minimal reduction of ideals always exist. If R(J)
is a R(I;)-module, then J is a reduction of § if and only if J is a reduction
of I;. Thus minimal reductions of good filtration always exist. For minimal
reduction J of § we set 74(F) = sup{n € Z | I, # JI,_1}. The reduction
number of § is defined as r(§) = min{r;(§) | J is minimal reduction of §}.
Let § be a Noetherian filtration. For any element x € I; we let z* denote the
image of z in G(F); = I1/I> and z° denote the image of © in F(%): = I/mi.
If 2* is a regular element of G(J) then z is a regular element of A and by
the [HZ, Lemma 3.4], G(§/(z)) = G(3)/(z").

An element z € I is called superficial for § if there exists an integer
¢ such that (I4, : z)NI. = I, for all n > c¢. By [HZ, Remark 2.10], an
element z is superficial for § if and only if (0 :¢g) %) = 0 for all sufficiently
large. If grade I, > 1 and x is superficial for § then x is a regular element of
A. To see that, let suppose that z is not a zero-divisor. Thus if uz = 0 then
(I)u € Nu((In : x)N 1) =0Npl, = 0. Hence u=0.

A sequence 1, ..., Tk is called a superficial sequence for § if z; is superficial
for § and z; is superficial for §/(z1, ..., zi-1) for 2 <@ < k.

Let fi,..., fr be a sequence of homogeneous elements of a noetherian
graded algebra S = @®,505, over a local ring Sp. It is called filter-regular
sequence of S if f; & p for all primes p € Ass(S/(fi, ..., fi—1)) such that
Se T, i=1,.u5¥

Let (A, m) be is a local ring and § a good filtration. Then vy, ..., v €
I, are analytically independent in § if and only if, whenever h € N and
f e A[Xy,..,X;) (the ring of polynomials over A in ¢ indeterminates) is
a homogeneous polynomial of degree h such that f (vi,...,v) € Iym, then
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all coefficients of f lie in m. Moreover, if vy,...,v, € I are analytically
independent in §, and J = (vy, ..., v¢), then JhnIm = J'm for all h € N.

Now let define the analytic spread of a filtration §. The number s =
s(§) = dim R(F)/mR(F) [HZ] is said to be the analytic spread of §. Thus,
when § is the I-adic filtration, the analytic spread s(I) equals s(5). Rees
introduced the notion of basic reductions of Noetherian filtrations and he
showed in [R, Theorem 6.12] that s(§) equals the minimal number of genera-
tors of any minimal reduction. By [HZ, Lemma 2.7}, s(F) = dim G(F)/mG ()
and by [HZ, Lemma 2.8], s(§) = s(1).

Let S = @,5, 5. be a finitely generated standard graded ring over a
Noetherian commutative ring Sp. For any graded S-module M we denote by
M,, the homogeneous part of degre n of M and we define

[ max{n | M, #0} if M #0
a(M) = { —00 it M =0

Let S be the ideal generated by the homogeneous elements of positive degree
of S. For i > 0, set A
a;(S) := a(Hg, (5)),

where H fg+() denotes the i-th local cohomology functor with respect to the
ideal S,. More generally, for ¢ > 0 and any graded S-module M, set

a; (M) = a(Hng(/V[))7

where Hg+(]\/[ ) denotes the i-th local cohomology module of M with respect
to the irrelevant ideal S.. The Castelnuovo-Mumford regularity (or simply
reqularity) of M is defined as the number

reg(M) := max{a;(M) +1 | i > 0}.

When M = S, the regularity reg S is an important invariant of the graded

ring S, [EG] and [O2].

3 Regularity of the Rees Algebra and the As-
sociated Graded Ring for good filtrations

In the paper [T], Trung showed that there is a close relationship between
the invariants characterizing the homogeneous vanishing of the local coho-
mology of the Rees algebra and the associated graded ring of an ideal. In
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1987, Oishi proved in [O] that the Castelnuovo-Mumford regularity of the
associated graded ring and the associated graded ring of an ideal are equal,
i.e, reg G(I) = reg R(I). In 1996, Johnson and Ulrich [JU] rediscovered this
equality. After that, Trung [T] also showed this equality in a Corollary. In
this section we obtain generalizations of these results for good filtration case.
Let § a filtration over a ring A. We consider the ring A as a graded ring
concentrated in degree zero. Now, consider the following exact sequences

0= R(F)+ = R(E) = A= 0; (3.1)
0= R(F)+(1) = R(F) = G(J) = 0. (3.2)
Lemma 3.1. Let § a filtration over a ring A. We have
Hiyg), (R(3))n = 0 para n > max{0, a;(G(F)) +1}if i=0,1
and for n > a;(G(F))+1if i > 2.

Proof. We denote H'(.) = Hp (). As H°(A) = A and Hi(A) = 0 for
i > 1, from the exact sequence (3.1) we have

H{(R(F))n =~ H(R(F))n for n=0, 1 >2, and forn #0, i >0. (3.3)

As Hg(3)+(G(1”§)) = HY(G(J)), the exact sequence (3.2) induces the long
exact sequence

H (R(F)+)ne1 = H(R(E))n = H(GE))n = HT (R()+)ns1.
Then we have a surjective map
H{(R()4+)ns1 = Hi(R(F))n for n > max{0,a,(G(3)) + 1} if 1 = 0,1
and for n > a;(G(§)) +1if i > 2.
By the fact that H*(R(F)), = 0 for n > 0, we can conclude
HY(R(F))n = 0 for n > max{0, a;(G(F)) + 1} if i = 0,1

(3.4)
and for n > a;(G(F)) +1if ¢ > 2.

O

Theorem 3.2. Let § a filtration over a ring A. Then
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(1) ai(R(F)) < ailG(S)), 1# L;
(i) ai(R(F)) = ai(G(3)) if ai(G(F)) 2 ain(G(T)), i # 15

(iti) The statements (i) and (i) are true for i = 1 if Hpg (G(F)) #
Oorif I C \/6;

(iv) a(R(F)) = -1 if Hig), (GF)) =0 and I, £ V0;

Proof. We denote H'(.) = Hpg (). From Lemma above, ai(R(F)) <
a;(G(3)) for i > 2. For i = 0, we have two cases. If H(G(F)) = 0,
ag(G(F)) = —oo. Hence, by using the Lemma 3.1, H°(R(F)), = 0 para
n > 0. But H(R(F)) C R(F) is a ideal, then H°(R(F)) = 0. It follow that
ao(R(F)) = ao(G(F)) = —co. If HYG(F))n # 0, since H*(G(F)) C G(J) is
a ideal, ag(G(F)) > 0. Hence by the Lemma 3.1,

H(R(F))n =0 for n > ap(G(F)) + 1.

It implies ao(R(F)) < ao(G(F)). (i) is proved.

Let show (ii): By using (i), it is enough to show a;(R(F)) > a;(G(T)).
Clearly we can suppose a;(G(J)) # —oc. If i = 0, H°(G(F)) # 0 and then
ao(G(F)) = 0. Due to (3.2) and (3.3),

HO(R(S»(LO(G(\S _>H (G( ))aO(G(a _)HI(R(S))ao(G(S‘))'H'

By the Lemma 3.1, we have either a;(G(F)) < —1or a1 (R(F)) < a1(G(F)). In
the first case, since ag(G(F)) > 0> —1 > a1(R(F)), H (R(F))aoc(3)+1 = 0.
Then

H(R(®))ao(c@) = H(G())aoicts) = 0
Since HO(G(T))ao(c()) # 0, it follows that HO(R(F))ao(a(z)) # 0, i-€, ao(R(T)) >
ao(G(F)). For the second case by using the hypothesis ag(G(F)) > a1(G(F))
we have a;(R(F)) < ao(G(T)) so that H'(R(F))as(c)+1 = 0. It follows
similarly to first case that ao(R(F)) > ao(G(F)). Now if i > 1, by (i),
ai+1(G(F)) > air1(R(F)). From hypothesis, a;+1(R(F)) < a;(G(F)). Then

H*Y(R(B)H)ac@n+ = HHRE))ac@)+1 = 0-
From the exact sequence (3.2), we have a surjective map
HY(R(®))ac@) = H(GE))aicw)-
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Since H{(G(3)) e # 0 H(RE)aan # 0. e, a(R(F) > a(G(3).

Now let prove (iii). If Hgg, (G(F)) # 0. By [T, Corollary 2.3(iii)]
a1(G(F)) + 1 > 0. Hence by using Lemma 3.1, H'(R(3)), = 0 for n >
a1(G(F)) + 1. Then a1 (R(F)) < al(G(S)).

If I, € V0, R(F)+ C \/6 and G(F)+ € V0. We have ara(R(F)+) =
ara(/R(3)+) = ara(+v/0) = 0. Similarly, ara(G(F)+) = 0. By [BS, Corollary
3.3.3],

H{(R(F)) =0 for i > ara(R(F)) =0
and
H{(G(F)) = 0 for i > ara(G(F)) = 0.
In particular a;(R(F)) = a1(G(F)) = —oo.

Now, let prove (iv). By the hypothesis, H'(G(F)) = 0 and I; £ V0.
Then a;(G(F)) = —oco. By the Lemma 3.1, a;(R(J)) < —1. Let suppose
that a1(R(F)) < —1. Then HY(R(F))-1 = 0. As H°(G(F))-1 = 0 since
H°(G(T)) € G(3). It follow that

HO(G(F))-1 = H'(R(F)+)o = H'(R(F))-1.
Then H'(R(F)+)o = 0. From the exact sequence (3.1),
H(R(3)+)o — H*(R(§))o — H(A) — 0.

But H'(R(F)+) € R(F)+ and (R(F)+)o = 0. Then H(R(F)4)o = 0. It is
easy to show HO(R(%))o = H? (A). We also know that H°(A) = A. From
exact sequence above HY (A) = A and this implies that I = 0 for some
n > 1. By hypothesis it is a contradiction. Therefore a;(R(F)) = —1. O

Corollary 3.3. Define £ := max{i : Hy (G(3)) # 0}. Then
(1) a(R(3)) = a(G(T))
(if) € =max{i: Hpg (R(S)) # 0} if L1 C VO ort>1.

Proof. Fori > ¢ we have a;1(G(F)) = —oo. Thus we always have a;(G(F)) >
ai+1(G(3))-

If 4 # 1, by the Theorem 3.2, a;(R(T))
> 1, a(R(F)) = a(G(F)) If ngi(o (R(3))
a¢(G(F)) = —oo. A contradiction. Thus

Hiys,. (R(3)) # 0.

( (F)). In this way, if
ae(R(F)) = —oo. Then

|| I
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If there exist j > ¢ such that H] 5, (1 (%) # 0 (a;(R(F)) # —o0), by the

Theorem 3.2(ii), a;(G(F)) = a;(R ( )). A contradiction, since Hé(3)+(G(S)) =
0. Therefore if £ > 1,

¢ =max{i : Hpg, (R(F)) # 0}.

If ¢ = 1, Hi), (G(F)) # 0. By the Theorem 3.2(iil), a1(R(F)) =
a1(G(F)). If Hpg, (R(F)) = 0 then a1 (R(F)) = —oo. It implies HCI?(S)Jr(G(‘S)) =
0. A contradiction. Thus Hlli(S)Jr(R(&)) #£ 0. If there exist 7 > 1 such that
Hiyg, (R(F)) # 0, by the Theorem 3.2(i1),

a;(R(3)) = a;(G(3)) # —oo.
A contradiction.

Now let prove the last case. Let suppose ¢ = 0 and [; C V0. From the
Theorem 3.2(ii), ao(R(F)) = ao(G(F)). If HR(ls) (R(3)) = 0 then ao(R(F)) =
—oo and it implies that Hg(3)+(G(S)) = 0. A contradiction. The rest is
similar. O
Corollary 3.4. Let A a Noetherian local ring and § a good filtration. Then

reg R(3) = reg G(5).
Proof. By the Theorem 3.2(i), a;(R(F)) +1 < a;(G(F)) + for # 1. By the
Theorem 3.2(iii)(iv) either
a1 (R(F) +1 < ai(G(F)) +1or ai(R(F)) +1=0<reg G(F).
In both case we have reg R(F) < reg G(F).

For the other inequality, first remember that by [HZ, Proposition 3.2],

reg G(§) > 0. Let i be maximal such that
a;(G(F)) +i=reg G(T) 20

It implies that a;(G(F))+1 > a:+1(G(F))+i+1,1e, a:(G(F)) > a1 (G (F)). 1
Hg, (G(3)) = 0 then a;(G(3)) = —oo. A contradiction since reg G(§) = 0
Thus .

Hes), (G(3)) #
If i # 1, by the Theorem 3.2(ii), a;(R(T)) = ( (F)). If ¢ = 1, by Theorem
3.2(iil), a1(R(F)) = a1(G(3)) since Heg), (G(F) # 0. Thus a;(R(%)) =
a;i(G(%)) for i > 0. Therefore

reg G(§) = ai(R(F)) + i < reg R(3).

(5
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4 Regularity of the Fiber Cone for good fil-
trations

In the previous section we have shown the relationship between the a-invariants
and regularity of the associated graded ring G(§) and the Rees algebra R(3).
Tt is natural asks when we have inequality or equality between the fiber cone
F(F) and the Rees algebra R(F). In the article [JN], Jayanthan and Nan-
duri obtained, under some assumption, inequalities and equalities between
the regularities of F(I) and R(I). The main aim this section is generalize
the results of the second section of [JN] for good filtration case, that is, we
search upper bound for the fiber cone F(§F). The proofs are essentially the
same.

Let A a Noetherian Local Ring of dimension d > 0 with an infinite residue
field A/m and § a good-filtration. Consider the filtrations

F:ADm>Dml; Dmly D ..

S:ADIlDIQD[:J,D...

Throughout we suppose that § < F, i.e, I,.1 € ml,. Hence R(F) is a
R(F)-module finitely generated since § is a reduction of 7. We have two
exact sequences

0 — R(F) = R(F) = mG(F)(~-1) =0 (4.1)
0= mG(F) = GE) = FE) =0 (4.2)

of R(F)-modules finitely generated.
In this article we always consider £ := s(§) = dim F(§) > 0.

Lemma 4.1. Let x = 1, ...,x¢ generators of a minimal reduction §. We
know that \/R(Z)+ = /(z1,., 7). Denote z¥ = (zF,...,zf). We have
ae(R(F)) — 1 < ae(R(T))-

Proof. By [HIO, Corollary 35.21],

. I n
[, (RE))]n = lim ot

x (%)I(E—l)k-i-n
and I
HE o (R, & lim k=t
[HR), (R(F))] T PR
Then a¢(R(F)) — 1 < ag(R(F)). O



Lemma 4.2. Let (A,m) a Noetherian local ring and § a good-filtration such
that s(§) = 1. If J is a minimal reduction of § and grade I; =1 then

reg F(3) = (3.

Proof. Since J is a minimal reduction of §, it follow by [R], that s(§) = pu(J).
But by the hypothesis s(F) = 1, then J = (a). By a adaptation of [BS,
Proposition 18.2.4], a is independent analytically in §. By [BS, 18.2.3], F'(J)
is isomorphic to k[z], where k = A/m since a is independent analytically in
I;. We also have J* N I;m = J'm. Then

F(J) <= F(3).

Now by [V, Example 9.3.1] or [GP, Theorem 2.6.1]

(F())/a% F(J)(~d;).

b~

F(@) e @F(J)(—b»

j=1

<
Il

Let assume by < ... < b, and d; < ...

IN

ds. Hence

b 4 abe 4 (1 — )t + .+ (1 — 2% )z
HF(S)(J)) = 11—z ;

Observe that
ri(F) = rs(F(F)) = max{be,dys}
reg F(F) = max{b.,c; +d; — 1}
By the hypothesis I; contain a regular element. Note that since J is a

reduction of I;, a is also a regular element. Let r := r;(§). If n > r then
I, =a™ "I.. Hence

(4.3)

I, a®* L,

ml, a*ml,’

Then we have the map
Ly I,
—_— 3

ml, ml,’

multiplication by a™ . It is easy to show that the map is bijective. Thus
w(Il,) = u(l;) for n > r. Then

1+ (u(h) = D+ .+ (u(ly) — p(dr—1))2”
l1-z '

Hp () =Y p(ln)z" =

n>0

10




Comparing both the expression of the Hilbert series, it follow that ¢;+d; <
and then d; < r — 1. In particular r := r;(¥) = be. Therefore reg F(3) =
r(8)-

O

We denote Hiyg (M) by H'(M).

Theorem 4.3. Let (A, m) a Noetherian local ring and § a good-filtration such
that £ := s(T) = 1. Then reg F(F) < reg G(F). Furthermore, if grade I; =1
we have reg F(F) = reg G( ) r(F).

Proof. Since ¢ = 1, /R = +/(z1). As H’ RE)s (M) = 0 para ¢ >
ara(R(F)+) and ara(R(ls)+) < 1, it follows that H(M) = 0 for i > 1.
From exact sequence (4.2), we have the long exact sequence

0 - H'mG(F) — HGEE) — HU(F())
— H'(mG(F) — HYGE) — HY(FE) — O

Hence ap(mG(F)) < ao(G(F)) e a1(F(F)) < a1(G(T)). From exact se-
quence (4.1), we have the long exact sequence

0 — HYR®F)) — HY(R(F) — H(mG(
— HYR(F) — HYR(F)) — H'(mGS

(4.4)

(4.5)

)(=1) — 0.

Hence a;(mG(F)(—1)) = a1(mG(F)) + 1 < ai(R(F)) and by the Lemma
4.1 we have
a1 (mG(3)) < ar(R(S))-

By hypothesis £ = 1 and by a remark of [T, p. 2818], we have H'(G(J)) # 0.
Hence, by the Theorem 3.2, we have a; (R(F)) < a1(G(F)). Then a;(mG(F)) <
a1(G(F)). Therefore

reg mG (%) < reg G(3).

By using the exact sequence (4.2) and [BS, Exercise 15.2.15] we have
reg F(§) < max{reg G(3),reg mG(F) — 1} = reg G(T).

Now let suppose that grade I; = 1. By the Lemma 4.2, we have reg
F(F) = r,(3), for any minimal reduction J of §. Furthermore by [HZ,
Proposition 3.6], reg G() = rs(3). Therefore reg F(F) =reg G(T) = ().

O
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Corollary 4.4. Let (A,m) be a Noetherian local ring and § a good-fillration
such that s(F) = dim F(§) = 1. If (A,m) is Cohen-Macaulay and § is
equimultiple we have reg F(F) = reg G(F) = r(J).

Proof. Since A is Cohen-Macaulay and § is equimultiple, by [HZ, Lemma
2.8] and by [GP, Corollary 7.7.10], we have s(F) = s(I1) = h(I;) = grade I;.
The result follows by the Theorem 4.3.

O

Lemma 4.5. Let (A,m) be a local ring and a € Iy. If a* is a reqular element
of G(3), then

FG) o s
W—F@/( ))-

Proof. Since a* is a regular element of G(F) it is easy to show that aAN T, =
al,_; for any n > 0. Note that

Intad Lntad I, +aA
F(S/((l)) = @ l(?n—i—aA) = @ m],?—&—aA = EB ml, + ad’

n>0 aA\ aA n>0 aA n>0

The natural map

I I, +aA
" ml, + aA

induces a isomorphism

I, I aA

ml, + (I,Nad) ~ ml,+aA
Note that
FE\ _ F®n __ ab . I _ L,
aF(F) /), (a°F(@))n a_frt_;ll_;‘L’“ “al,_ +ml, (aANIL,)+ml,
O

Theorem 4.6. Let (A, m) be a Noetherian local ring and § a good-filtration.
Let suppose grade I; = £ and grade G(F)~ > { — 1. Then reg F(F) >
reg G(F). Futhermore, if depth F(F) > € — 1, then

reg F(F) =reg G(3).

12



Proof. If £ = 1, by the Theorem 4.3 the result is true. Then we can suppose
£ > 2. By [JV, Proposition 2.2], there exist generators 1, ..., Z¢ of a minimal
reduction J of I; such that @, ..., z} € I;/I5 is filter-regular sequence of G()
and 22, ..., 79 € I;/ml is filter-regular of F'(F). By hypothesis grade G(F)+ >
€=1 Thus 3, ..., x5y is G(F)-regular due to [HM, Lemma 2.1]. We denote
F= e B [HZ, Lemma 3.4],

1

By Lemma 4.5,
F(§) = F(§)/(a5, ..., 75_y)-
Since z*, ..., z}_, are regular, reg G(J) = reg G( ). By [JV, Proposition 2.5],
dim F(§) = dim F(F) — ({ — 1) = 1. By using [HM, Proposition 3.5] and
[BH, Proposition 1.2.10(d)], we have
I
(X1, ey Tp—1)

Thus, by Theorem 4.3 we achieve reg F(F) = reg G(F) = reg G(¥). By [BS,
Proposition 18.3.11], reg F(F) < reg F(F) and it implies that

reg G(J) < reg F(J).

Now, let assume depth F(F) > £ — 1. Then z9,...,27_, is F(J)-regular.
Then reg F(F) = reg F(T). Therefore reg F(F) = reg G(3). O

grade =grade ; — ({—1) =1.

Proposition 4.7. Let (A,m) a Noetherian local ring and § a good filtration.
If reg R(F) < reg R(T), then

reg F'(§) = reg G(3).

Proof. By using the properties of regularity for exact sequences [BS, Exercise
15.2.15], we can conclude by the exact sequence (4.1) that

reg mG(F)(—1) = reg mG(F) + 1 < max{reg R(F) — 1,reg R(F)}.
But reg R(F) < reg R(F), then from the exact sequence (4.2)
reg F(F) < max{reg mG(F) — 1,reg G(3)} < regR(T)

since reg R(F) = reg G(3F) (Corollary 3.4). Thus reg R(F) < regG(F) as we
required. O
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Proposition 4.8. Let (A, m) be a Noetherian local ring such that grade I >
0. Let suppose that I, = ml,_y forn > 0. Then

reg R(3) = reg G(5).

Proof. Let ng be such that I,, = mI,_; for n > ng. Note that R(F)1°mG(T) =
0. Hence R(F)7° € Ann(mG(F)) and it implies V (Ann(mG(F))) € V(R(F)Y).
By [HIO, Corollary 35.19],

Hpg, (mG(F)) = Hl ”o(mG(g)) 0,
for i > 0. Since R(F)P"mG(F) =0,
H%(3)+(n1G(3)) = mG(F).

If mG(F) = 0, we have mI,, = I,4; for all n. Thus F(%) = G(3) and the
proposition follows trivially. Let suppose that mG(§) # 0. From the exact
sequence (4.2) we can conclude that

0 — H'(mG(F)) — HY(G(F)) —» HY(F(F)) = 0

and H{(G(3)) & H(F(F)) for i > 0. Hence ao(F(J)) < ao(G(F)) and
a;(G(F)) = a;(F(F)) for i > 0. We claim that

depth G(3) = grade(G(3)+, G(T)) = grade(R(F)+, G(3))

is equal zero. If depth G(§) > 0, by [BS, Theorem 6.2.7], H*(G(J)) = 0.
Then, from the exact sequence above, H°(mG(F)) = 0, a contradiction. By
[HZ, Proposition 3.5] and by the hypothesis

ao(F(F)) < a(G(F)) < a1(G(3)) = a1 (F ().
Therefore
reg F(§) = max{a;(F(F))+i: i > 1} = max{a;(G(F))+i:i > 1} = reg G(J).
O

Proposition 4.9. Let (A,m) be a Noetherian local ring and § a good fil-
tration such that grade I; > 0. Let suppose that mG(gF) is R(F)-module
Cohen-Macaulay of dimension €. Then
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(i) reg F(F) < reg G(3);
(ii) if ae(R(F)) — 1 < ae(R(T)) then reg F(F) =reg R(F);

(iti) if ag(R(F))—1 = ae(R(F)) thenreg mG(F) < reg R(F) and reg F(F) <
reg R(3).
Futhermore, if reg mG(F) < reg G(F) then reg F(§) = reg R(T).

Proof. Since mG/(J) is Cohen-Macaulay and by [BS, Theorem 6.2.7 and The-
orem 6.1.2], H{(mG(3F)) = 0 for ¢ # ¢. From the exact sequence (4.1) we have

. = HY(R(F)) = H(R(F)) —» H(mG(F)(-1)) = H(R(F)) = .-

Then HY(R(F)) & H(R(F)) for i # € so that a;(R(F)) = ai(1(T)) for i # L.
First, let prove (ii). By hyphotesis we have a¢(R(F)) < ar(R(S)). There-
fore a;(R(F)) < a;(R(F)) for all 7 so that reg R(F) < reg R(§). From the
Proposition 4.7, reg F(F) = reg R(J).
Now, let prove (iii). If a;(R(F)) — 1 = a;(R(F)) we have

reg R(F) < reg R(F) +1
since a;(R(F)) = a;(R(F)) for i # ¢. From the exact sequence (4.1) we have
reg (mG(F)(-1)) = reg mG(S) +1
< max{reg R(F) - 1,reg R(F)}
< reg R(3) + 1.
From the exact sequence (4.2),
reg F(F) < max{reg mG(F) — 1,reg G(F)} < reg R(T).

Hence (iii) is proved. By Lemma 4.1, ag(R(F)) — 1 < a¢(R(F)). Then by (ii)
and (iii), we have (i).
Finally, let assume reg mG(F) < reg G(F). From the exact sequence (4.2),

reg G(¥) < max{mG(F),reg F(F)}. (4.6)
Since reg mG(F) < reg G(F), by (4.6),

max{mG(%),reg F(F)} = reg F(J).
Thus reg G(F) < reg F(F). By Corollary 3.4, reg G(F) = reg I(F). Hence
reg R(F) < reg F(F). The other inequality already was proved. O
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