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Microwave Glucose Sensing Using Double
Circular Split Ring Resonators for Improved

Sensitivity: The Role of Artificial Blood
Plasma and Deionized Water
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Vinicius M. Pepino , and Ben-Hur V. Borges

Abstract—In 2021, approximately 537 million people were
diagnosed with diabetes mellitus. With rates expected to
rise, health expenditures are projected to reach one trillion
USD by 2030. Thus, measuring glucose levels is essential
for rationalizing the costs of public health systems. In this
context, this article presents two major contributions. First,
it demonstrates that using deionized water (DI-water) as a
reference for glucose sensing is not a reliable approach for
representing human blood plasma (BP), as it lacks ions and
suppresses essential effects such as losses. As an alter-
native, we investigate the use of an artificial BP solution
(ABPS) that closely resembles real human BP. Character-
ized over a range from 500 MHz to 10 GHz, ABPS shows
marginal differences in real permittivity but significant dif-
ferences in imaginary permittivity compared to DI-water.
The second contribution is the design of a highly sensitive
microwave (MW) sensor based on double concentric circular
split ring resonator (DCCSRR) on a 49 × 45 mm ROGERS 5880 TM substrate. This sensor can differentiate glucose
concentrations from 0 to 400 mg/dL, exceeding the relevant range for diabetic individuals (50–300 mg/dL). The DCCSRR
operates at 2.48 GHz and can detect minimal concentration variations of 25 mg/dL in low concentrations, representing a
significant advancement in the field. Different from most sensitive approaches available to date, this structure operates
in a nonlicensed band and a fully passive form, offering flexibility for implementation and low cost. These characteristics
position it as a state-of-the-art solution in MW glucose sensors.

Index Terms— Artificial blood plasma (BP), dielectric characterization, glucose sensing, microwave (MW) sensor.
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I. INTRODUCTION

ACCORDING to the International Diabetes Federation
(IDF), in 2021, 537 million people were diagnosed with

diabetes mellitus. This is a troubling scenario, as diabetes has
no cure, and incidence rates are expected to rise, affecting
children, adolescents, and adults alike. Predictions indicate
that global health expenditures will reach one trillion USD
by 2030, increasing concerns among global authorities [1].

Diabetes manifests in two forms: type-1 and type-2.
In type-1 diabetes, the immune system destroys the beta cells
responsible for insulin production, making it impossible to
regulate glycemia, which controls glucose levels in the blood-
stream. Although less prevalent, type-1 diabetes remains a
significant issue. In contrast, type-2 diabetes is more common,
accounting for 96% of cases in 2021 [2]. In type-2 diabetes,
the beta cells produce insulin, but not effectively, necessitating
adjustments to hormonal levels.
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Administering the correct insulin dosage typically involves
measuring glycemia levels. The traditional method requires
pricking the fingertip with a blade to collect a blood sam-
ple for use in an electrochemical sensor. This sensor reads
the current amplitude produced by the reaction between the
sample and the oxidase enzyme (GOx) on a strip. While
effective, this method is uncomfortable, requiring multiple
daily measurements, which can lead to complications such
as irritations or infections. Moreover, the relatively high
cost of glucometers and strips makes it unaffordable for
many. In addition, electrochemical devices have a limited
lifespan, necessitating replacement over time. Of course, the
best alternative is a noninvasive approach [3], [4], [5] due
to its potential to improve patient comfort, eliminate infec-
tion risks, and simplify continuous monitoring of biomedical
parameters. However, current technology still faces significant
challenges in terms of sensitivity, accuracy, and cost, limiting
its widespread application. As will be described later in this
section, most of the references listed below (encompassing
both invasive and noninvasive approaches) share the same
issue when it comes to the reference media they use, which
is deionized water (DI-water).

Currently, there is no commercially available technology
that offers both noninvasive operation and affordability. How-
ever, some emerging options show promise in meeting these
conditions. One such example is microstrip line (ML) sen-
sors, operating in the microwave (MW) band, but at low
frequencies, offering sufficient sensitivity and low-cost. While
in the past, these sensors were unable to measure glucose
concentrations comparable to bloodstream levels [6], recent
advances have made this capability a reality [7], [8], [9], [10],
[11], [12], [13], [14], [15]. Moreover, their low manufactur-
ing costs and seamless integration with electronic systems
make ML sensors a good choice for exploration [16]. With
increasing sensitivity over time and their cost-effectiveness,
there is a strong belief that ML sensors could soon replace
current invasive methods [17], [18]. Certainly, ML sensors are
not the only category of sensors with the potential to detect
glucose variations in the human body. To provide a more
comprehensive comparison and explore other viable alterna-
tives, we have added an additional topic to the Supplementary
Material, discussing other sensor technologies.

It is well-known that MLs encompass a diverse array of
applications, including filters [19], [20], antennas [21], [22],
transmission lines [23], metamaterials [24], [25], and res-
onators [26], [27]. Among these applications, resonators stand
out for their extensive use in sensing due to their capacity to
generate strong electromagnetic fields at specific frequencies.
These fields, easily detected using a vector network analyzer
(VNA), show a distinct resonance signature. When consid-
ering biomedical applications, resonators are an innovative
approach for sensing various biological samples, including
blood plasma (BP). By placing a real BP sample near
the resonator, the electromagnetic fields interact with the
material, inducing changes in resonance parameters. These
changes, ranging from shifts in transmission (1S21) and
reflection amplitudes (1S11), to alterations in the resonant

frequency (1 fr ) and quality factor (1Q), provide valuable
insights into the composition and properties of the sample.

In [7], [8], [9], and [15] the proposed sensors operated
by measuring the glucose concentration based on changes
in |S21|. In [7], a resonator designed on a ceramic sub-
strate was assessed based on temperature changes in the
sample. A coefficient was determined to correct the mea-
sured values, thereby reducing error. Jang et al. [8], [15]
utilized two complementary split-ring resonators (CSRRs)
coupled with other active elements, forming an interfero-
metric system for thermal noise reduction. This strategy
effectively stabilized and improved the sensitivity of the
CSRRs. In [9], the measured samples were positioned beneath
the copper trail of a transmission line, where the electric
fields are stronger. In this arrangement, the samples inter-
acted more strongly with the sensor’s fields, thus increasing
sensitivity.

Zidane et al. [10] presented a set of split-ring resonators
(SRRs), in which the measured parameter with the glucose
variation was |S11|. Despite good resolution (50 mg/dL), the
device utilizes active components, thereby increasing fabrica-
tion costs. Alternatively, there are sensors that assess glucose
concentration through frequency shifting (1 fr ) [11], [12].
In [11], an antenna achieved a resolution of 100 mg/dL with
significant frequency shifting, but its elevated operating fre-
quency range increases the technology costs. In [9], a structure
exhibited extremely high-frequency shifting. However, no tests
were presented to demonstrate how concentration curves
behave when measurements are repeated. Yi and Wang [13]
and Wang et al. [14] employed multiple parameters to map
glucose concentrations. In [13], a defective-ground-structure
coplanar waveguide was proposed as sensor, with 1 fr and
1S11 serving as the reference parameters. In [14], a new error
correction methodology based on the 1 fr and |S21| readings
from adjacent concentrations was introduced, improving the
sensor’s accuracy.

A new category of MW sensors has emerged, designed to
measure glucose levels noninvasively by simply positioning
the fingertip over the sensing area. To achieve this, researchers
are integrating active MW sensors with machine learning
techniques. Kazemi and Musilek [28] developed an active
resonator combined with a cycle generative adversarial net-
work (CycleGAN) to infer glucose levels noninvasively from
interstitial fluid. Measurements were evaluated in both passive
and active modes. In [29], an SRR coupled to a patch was used
with a long short-term memory (LSTM) algorithm to predict
glucose concentration events 30 and 60 min in advance, using
interstitial fluid as the target sample. The results showed strong
agreement with readings from a commercial glucometer used
as a reference. Although these approaches are relatively new,
they represent significant progress toward fully noninvasive
devices operating in the MW band.

Note that the previous structures can be classified as either
passive [7], [8], [9], [10], [11], [12], [13] or active [14],
[15], [28], [29] sensors. Passive sensors are generally pre-
ferred due to their self-sufficiency, requiring no additional
components for operation, which reduces fabrication costs.
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However, active sensors typically exhibit superior performance
compared to passive ones.

As previously mentioned, most of the previous approaches
have relied on DI-water with added glucose as test samples.
While this is a fair approximation, considering that BP is
composed of 92% water [30], it does not properly repre-
sent real scenarios, as it neglects several ion concentrations
present in human plasma. Therefore, we investigate a new
reference solution capable of reliably mimicking a real human
blood sample. This new reference is called artificial BP
solution (ABPS), synthesized in the laboratory as described
in [31], considering conventional simulated body fluid (c-SBF)
as reference. In addition, we characterize the electromagnetic
properties of ABPS-glucose solutions in a frequency band
ranging from 500 MHz to 10 GHz by adding pure glucose
to form five different concentrations (0, 100, 200, 300, and
400 mg/dL), aiming to fully represent the glycemic variations
observed in human blood.

Furthermore, upon closer examination, it becomes evident
that the passive devices investigated thus far have a limit
to measure variations of 50 mg/dL in glucose concentration,
when repeated measurements are assumed. To address the gap
between current limitations and ideal performance, we pro-
pose a novel MW sensor consisting of a double concentric
circular SRR (DCCSRR). The sensor improves the variation
to 25 mg/dL in low concentration levels (0–50 mg/dL) and
shows the capability to capture 50 mg/dL of variation for
the proposed concentrations (0–400 mg/dL), encompassing
the relevant range for glucose monitoring in diabetes patients
(50–300 mg/dL) [32]. The DCCSRR can achieve this bench-
mark passively, demonstrating superior performance even
when compared to active sensors.

This article is organized as follows. Section II outlines the
method employed for the electromagnetic characterization of
ABPS and compares its characteristics with those of con-
ventional DI-water samples. Section III presents the design,
fabrication, and testing of a new sensor, utilizing DI-water
and ABPS as reference samples and examining their effects
on the sensor performance. Section IV evaluates the sensor
performance and compares it with recent studies. Finally,
Section V provides the conclusion and final remarks.

II. ELECTROMAGNETIC CHARACTERIZATION OF
THE ARTIFICIAL BP

In general, DI-water is commonly used as a reference to
represent BP in sensor platforms. As the name suggests,
DI-water lacks ions, which are present in real BP. Therefore,
using DI-water as a reference for BP representation fails to
account for the ion effect. In contrast, ABPS, particularly
the c-SBF assessed in [31], accurately represents this effect,
making it a more accurate representation of BP than DI-water.
Fig. 1 shows the most relevant ions found in BP, with the
blue bars representing their concentrations and the orange
bars representing the concentrations in ABPS. ABPS closely
mimics a real BP sample, with only minor differences in
ion concentrations, such as Cl− and HCO−

3 , being, therefore,
a reliable reference for BP.

Fig. 1. Comparison between the ion concentrations found in BP
and those present in the ABPS, showing minor differences for Cl−
and HCO−

3 .

To understand the electromagnetic response of ABPS,
we must first extract its frequency dependent, complex relative
permittivity εr ( f ). The complex relative permittivity of a
material is defined as follows:

εr ( f ) = ε′ ( f ) jε′′ ( f ) (1)

where ε′( f ) represents the real part of the dielectric constant,
ε′′( f ) the imaginary part (associated with the dielectric loss),
and f is the frequency.

One method for experimentally determining εr ( f ) is to use
an open-ended coaxial probe with a network or impedance
analyzer. Such probes are available in commercial kits;
however, these kits can be quite costly. Alternatively, method-
ologies described in the literature, such as the approach
outlined in [33], yield comparable results. This alternative
involves the fabrication of a probe, as described in [34]. The
principal component of this probe is an open-ended coaxial
cable, with polytetrafluoroethylene (PTFE) as the dielectric
material, attached to a brass housing for rigidness. The probe
is connected to a VNA (R&S ZVA-40), which is calibrated
within the desired bandwidth. Subsequently, the reflection
coefficient (S11) is measured under three conditions: open
circuit, short circuit, and submersion in a reference liquid
(DI-water). The probe is then immersed in the target sample,
and S11 is measured again. Using the acquired data and the
equations from [33], the complex permittivity of the target
sample is determined.

The experimental setup for the characterization of ABPS is
shown in Fig. 2. The probe is connected to the VNA cable,
affixed to a support, and immersed in pure water. A beaker is
used to contain the liquid, while a moving platform facilitates
the probe’s immersion, ensuring its stable position. To prevent
interference from the metallic platform, a foam block is used
as a spacer. The inset shows the probe in detail and its
dimensions.

To reproduce glycemia variation, glucose powder (99.9%
purity, NOX brand) was proportionally added to the ABPS
sample, aiming to achieve the following concentrations: 0, 100,
200, 300, and 400 mg/dL. These concentrations were selected
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Fig. 2. Setup used for ABPS characterization, where the probe appears
affixed to a support and immersed in pure water as the reference liquid.
The VNA screen shows the S11 response for DI-water, from 500 MHz to
10 GHz, at 25 ◦C ± 0.5 ◦C.

as they encompass the relevant range for glucose monitoring
in diabetes patients [32]. S-parameter data were collected from
the VNA across a frequency range of 500 MHz–10 GHz, with
the room temperature maintained at 25 ◦C ± 0.5 ◦C.

Following data acquisition, it is essential to apply a math-
ematical model to represent the complex permittivity of the
samples. The Cole–Cole model, known for its accurate repre-
sentation of biological media [31], is particularly relevant for
characterizing the ABPS. The Cole–Cole model is defined as
follows:

ε∗
r ( f ) = ε∞ +

∑
n

1εn

1 + ( j2π f τn)1−αn
+

σi

j2π f ε0
(2)

where ε∞ refers to the limit of permittivity as angular fre-
quency nears infinity, n is the order of the Cole–Cole model,
1εn is the magnitude of dispersion, εo is the permittivity
of the vacuum, τn is the relaxation time constant, αn is the
dispersion-broadening parameters, and σi is the static ionic
conductivity.

The experimental data were used to fit models for each
concentration, with parameters accurately estimated to repro-
duce the experimental curves with high fidelity. The mean
R-squared value for the fit curves was 0.9978, indicating
excellent agreement between the experimental data and the
model. The experimental and fit curves for all concentrations,
including the estimated parameters, are provided in the Sup-
plementary Material, specifically in Fig. S1 and Table S1.

Fig. 3(a) illustrates the real permittivity of ABPS for two
cases: with no glucose concentration (ε′

ABPS,000) and with
400 mg/dL of glucose (ε′

ABPS,400). The dashed lines show
that these curves are closely aligned, indicating that the
changes in ABPS permittivity are minimal for small varia-
tions. The blue solid line represents the real permittivity of
DI-water (ε′

DI-water), as obtained from [35], and contrasts
with ε′

ABPS,000 as the frequency increases. Fig. 3(b) maintains

Fig. 3. Comparison of the complex permittivity curves for DI-water (solid
lines) and ABPS (dashed lines) when no glucose level is present (blue
dashed lines) and when 400 mg/dL is considered (red dashed lines).
The models were obtained using the Cole–Cole model, with (a) real part
and (b) imaginary part.

the same notations for the liquids, but for the imaginary
part of the permittivity. It is evident that ABPS exhibits
significantly high losses across the entire frequency range,
with even higher losses from 500 MHz to 2 GHz, suggesting
an unfavorable region for sensing applications. Conversely,
the frequency range from 2 to 3 GHz is the lowest loss
region, indicating a more favorable region when using ABPS.
In addition, a comparison of the pure solutions, ε′′

ABPS,000
and ε′′

DI-water, reveals substantial differences, particularly at
lower frequencies, indicating that ABPS and DI-water samples
will exhibit significantly different responses when subjected
to testing with sensors at these frequencies. For frequencies
above 3 GHz, the curves tend to converge to similar values.

To assess the similarity between the real and imaginary parts
of the complex permittivity for DI-water and ABPS, Pearson’s
correlation coefficient (ρ) is employed. The possible values
range from −1 to +1, where a negative value indicates a nega-
tive correlation, zero indicates no correlation, and +1 indicates
a positive correlation. The coefficients are used to compare
ε′

DI-water/ε
′

ABPS,000 and ε′′
DI-water/ε

′′

ABPS,000, as described by the
following equation:

ρ(XDI-W XABPS)

=
1

N − 1

N∑
i

(
XDI-Wi − µDI-W

σDI-W

) (
XABPSi − µABPS

σABPS

)
. (3)

Let XDI-Wi represent the data corresponding to DI-water,
µDI-W denote its mean, and σDI-W its standard deviation.
Similarly, XABPSi , µABPS and σABPS represent the corre-
sponding values for ABPS. The calculated coefficients are
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99.25% for the real part of permittivity and −13.43% for the
imaginary part. As anticipated, ABPS and DI-water exhibit
similar electromagnetic characteristics for the real part but
differ significantly in terms of losses, a discrepancy that arises
because of the ions present in ABPS, thereby confirming the
initial hypothesis. Consequently, when ABPS is used as a
sample reference for blood glucose sensing, it is expected to
provide a higher level of accuracy compared to DI-water.

Having discussed the electromagnetic properties and distinct
characteristics of these two media, the next step is to propose
a new sensor and evaluate it using the corresponding samples.
Details of this process are presented in Section III.

III. SENSOR DESIGN AND FABRICATION

SRRs consist of a pair of concentric, open rings with gaps
on opposite sides. Originally, these structures were developed
to create metamaterials with negative refractive index [36],
[37], [38]. Over time, SRRs have enabled numerous appli-
cations, including oscillators [39], filters [40], antennas [41],
and sensors [17], [18], [19], [20], [21], [22]. The proposed
sensor is a DCCSRR, which is derived from the classic SRR
geometry. Two critical design requirements were established
for the DCCSRR: 1) it must exhibit a bandpass response and
2) it must operate within the industrial, scientific, and medical
(ISM) band at 2.4–2.48 GHz [48].

The bandpass response is essential for maintaining high
amplitudes at resonance peaks, which are typically used as ref-
erence points for sensing. Structures with a stopband response
tend to degrade the signal-to-noise ratio (SNR) at resonance
valleys, compromising the detection accuracy. To illustrate,
a variation of 50 mg/dL in glucose concentration in water at
2.5 GHz corresponds to a change in the dielectric constant
of 1εr = 0.026 [49]. Detecting this perturbation passively
via resonance shift is challenging, so measuring it through
resonance amplitude variation is preferred; therefore, a high
SNR is necessary to precisely detect small amplitude varia-
tions. In this sense, a bandpass response is more suitable for
such applications. The ISM band offers several advantages
for commercial sensors, including exemption from licensing
requirements, ease of integration with other components, and
interoperability, all of which contribute to a lower-cost device
in the commercial phase.

Following these design criteria, simulations were conducted
using the high-frequency structure simulator (HFSS) soft-
ware [50], resulting in the final DCCSRR design shown in
Fig. 4(a). The DCCSRR is designed on a 0.787-mm-thick
ROGERS 58801 substrate (εr = 2.2 − j0.002). The yellow
regions represent the copper areas, while the gray areas depict
the substrate. The associated dimensions are listed in Table I.
Fig. 4(b) and (c) illustrates the electric field distributions over
the DCCSRR at f1 = 985 MHz and f2 = 3 GHz, respectively.
The frequency response for magnitude transmission of the
DCCSRR, ranging from 0.5 to 3.5 GHz, is shown in Fig. 4(d),
with f1 and f2 clearly marked. As noted, the electric field at
f1 = 985 MHz is higher than at f2 = 3 GHz, indicating
potentially better sensitivity at f1. However, in this first

1Trademarked.

Fig. 4. DCCSRR final geometry and its simulation frequency response.
In (a), the DCCSRR final geometry is considered, in (b) and (c), the
electric fields at two resonance peaks, at f1 = 985 MHz and f2 =

3 GHz, are shown, while in (d), its frequency response in magnitude
is presented.

TABLE I
DCCSRR GEOMETRIC PARAMETERS IN (mm)

resonance region, the losses for ABPS are higher, as shown
in Fig. 3(b), which would significantly compromise the reso-
nance amplitude and, consequently, the SNR. However, further
experimental data are required to confirm these observations,
and this will be analyzed subsequently.

To adapt the structure for glucose sensing, a sample con-
tainer was strategically positioned over the region with the
highest electric field intensity, as shown in Fig. 4(b) and (c).
Fig. 5(a) presents this setup in an isometric view, where the
container is illustrated in orange, with a sample represented
in green. Fig. 5(b) provides a side view, showing only the
essential components, while Fig. 5(c) shows a front view,
detailing the sample container and its dimensions. In addition,
a 150-µm-thick glass disk layer (matching the container
diameter) was added to the bottom of the container to secure
the samples. Glass was selected due to its low-loss character-
istics, and this thin layer enhances sample interaction, thereby
increasing sensitivity.

The optimized DCCSRR was fabricated using electronic
prototyping, specifically with an LPKF machine, model S-103.
Silver nitrate (AgNO3) was deposited on the copper traces
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Fig. 5. Representation of the 3-D schematic of the DCCSRR and
sample container, which was fabricated using a resin 3-D printer and
positioned in the region of highest electric field. The bottom of the
container is covered with a thin glass disk layer to enhance interaction
(and thereby improving sensitivity) while preventing the liquid from
directly contacting the sensor. (a) Isometric view, (b) lateral view, and
(c) frontal view, detailing the container’s dimensions. The green color
represents a given sample.

Fig. 6. Fabricated DCCSRR and its adaptation system used for glucose
sensing. In (a), fabricated DCCSRR is shown; in (b), DCCSRR is
inserted into the adaptation system; and in (c), |S21| curves: without
support (black lines), with the supports added (red lines), with DI-water
in the sample holder (blue lines), and with ABPS in the sample holder
(green lines).

to prevent oxidation over time. The connectorized sensor is
depicted in Fig. 6(a), while in Fig. 6(b), it is positioned within
an ABS plastic support (white component) to ensure stability.
The DCCSRR was tested in the VNA under four different
conditions: without any support, with the supports added, and
with DI-water and ABPS in the reservoir. Fig. 6(c) presents
the results for the same frequency range as the simulated
results. The black line represents the experimental sensor
response without any sample in the reservoir, showing good
agreement with the simulation results depicted in Fig. 4(d).
The red line highlights the effect of the supports, showing a
redshift compared to the black line. The blue and green lines

Fig. 7. Experimental transmission coefficients obtained from DCCSRR
when pure DI-water (blue lines) and ABPS (green lines) are considered.
In (a), comparison is done in the Region 1, which clearly shows how
different the sensor’s response is when these two liquids are tested.
In (b), same comparison is repeated, but in Region 2, which presents
minor changes for the tested samples.

indicate the responses when DI-water and ABPS, respectively,
are added to the reservoir.

As observed, the liquids significantly attenuate the DCC-
SRR response due to their inherent losses, resulting in only
two resonances appearing within the band, highlighted by
Regions 1 and 2. To determine the volume, initially, a sample
of 1 mL was tested, but due to the large surface area of the
sample holder (required to cover the high electric field region),
the liquid was not evenly distributed at the bottom, leading
to unstable measurements. To resolve this issue, the sample
volume was doubled to 2 mL, which effectively eliminated
the instability.

Fig. 7(a) focuses on Region 1, clearly reaffirming the earlier
discussion: at low frequencies, ABPS (green lines) exhibits
much higher absorption than DI-water (blue lines), resulting
in an attenuation exceeding 27 dB relative to the DI-water
response and cause a resonance shift of nearly 50 MHz.
Although ABPS is more representative than DI water, it makes
it difficult for the DCCSRR to detect small amplitude vari-
ations at 650 MHz due to its pronounced impact on the
resonance as earlier mentioned. It is important to emphasize
that similar signal degradation would be observed if any MW
resonator were to switch its reference sample from DI-water
to ABPS at low frequencies. Such a substitution would also
shift the operating point, rendering the sensor ineffective at its
originally intended frequency.

Fig. 7(b) presents Region 2, the second resonance observed
in Fig. 6(c) for DI-water (blue line) and ABPS (green line).
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The displacement observed for ABPS compared to DI-water
is approximately 40 MHz, consistent with the permittivity
data shown in Fig. 3(a). Similarly, the amplitude difference
observed in Region 2 is around 3 dB, which aligns with the
findings in Fig. 3(b), as the losses of these two samples are
closer in Region 2 than in Region 1. Based on the previous
discussion, we conclude that the DCCSRR achieves optimal
performance when operated in Region 2 at 2.48 GHz, defining
this as its operating point.

Section IV presents the DCCSRR’s response to DI water
and ABPS at different glucose concentrations, its performance
under repeated measurements, a comparison with other alter-
natives, and a final discussion of its limitations and future
perspectives.

IV. EXPERIMENTAL RESULTS

A. DCCSRR Performance
After determining the operating point, the next step is to

analyze the DCCSRR sensitivity to various glucose concen-
tration levels. The samples are prepared using DI-water and
ABPS. The following concentrations are considered: 400, 350,
300, 250, 200, 150, 100, 50, 25, and 0 mg/dL. As previ-
ously mentioned, the relevant range for glucose monitoring
in diabetes patients is from 50 to 300 mg/dL [32]. The
selected solutions extend beyond this range to ensure that the
DCCSRR operates effectively even under critical conditions.
Moreover, the concentration set provides two types of varia-
tions, 50 and 25 mg/dL, to test the DCCSRR’s sensitivity. The
glucose samples were weighed using an i-ThermoGA64M (Bel
Engineering) scale, and all measurements were conducted at
25 ◦C ± 0.5 ◦C in a controlled indoor environment. Fig. 8
shows the fit curves obtained experimentally from the VNA
for the previous situation, but they can be visualized in their
original form in Fig. S2.

Fig. 8(a) shows the fit magnitude of the transmission coeffi-
cient based on experimental data, |SDI-water

21 (C)|, for DI-water,
where C refers to the glucose concentration level in mg/dL.
The curves are well-organized with a decrease of the resonance
amplitude and a redshift of the frequency as C decreases. This
behavior is consistent with the permittivity curves for glucose
diluted in DI-water [49], since curves with lower glucose
levels exhibit higher permittivity and lower losses compared
to those with higher concentrations, resulting in a redshift
for lower concentrations. Fig. 8(b) represents the fit values
for |SABPS

21 (C)| considering the same set of concentrations,
but with DI-water replaced by ABPS. The dotted gray lines
represent the optimal performance point of the sensor when
measurements are repeated, but they will be thoroughly ana-
lyzed later. Note that the resonances with ABPS exhibit a more
pronounced attenuation compared to DI-water, along with a
lower quality factor. This is attributed to the additional losses
inherent to ABPS. Furthermore, the attenuation levels show
proportional losses as the concentration changes, aligning with
the imaginary part of the ABPS complex permittivity curves
in Fig. 3(b).

Note that the reference change between DI-water and
ABPS measurements leads to different frequency shifts and
attenuation levels across all concentrations. Although this

Fig. 8. Fit experimental |S21(C)| for the DCCSRR tested with DI-water
solution with glucose added in (a) and ABPS with glucose added in (b),
considering the same mode found at 3 GHz and with concentrations
ranging from 0 to 400 mg/dL. The dashed gray lines refer to the
DCCSRR’s operation point. Original experimental dataset are available
in Fig. S2 of the supplemental material.

modification may appear minor, a sensor designed to operate
at the DI-water resonance peak would, when utilized with
ABPS, function at a point red-shifted with respect to the
ABPS resonance peak, at a position determined by the red
line in Fig. 8(b). This offset point would be substantially
distant from the ABPS resonance peak. In this region, the
amplitude differences between concentrations are considerably
reduced when compared to those at the resonance peak.
While these differences might still appear distinguishable,
the inherent background noise in the measurement process
degrades the sensor accuracy, making it less sensitive to
detecting low concentrations. This is clearly illustrated in
Fig. S2, where a specific ABPS measurement set is considered.
At a frequency point midway through the actual shift between
the ABPS and DI-water resonances, the curves for lower
concentrations tend to overlap, as the SNR worsens in this
region. This highlights the crucial role SNR plays in our design
requirements.

To evaluate the DCCSRR’s performance, three measure-
ments were repeated for each concentration level using
both DI-water and ABPS. Fig. 9(a) illustrates the sen-
sor’s performance for DI-water at 2.515 GHz [gray line in
Fig. 8(a)]. Symbols correspond to the experimental measure-
ments, while error bars indicate the standard deviation for
each concentration. As shown, the error bars do not overlap,
demonstrating the DCCSRR’s capability to detect variations
of 25 mg/dL. A second-order polynomial was used to fit
the data, represented by the dashed lines, which achieved
an R-squared value of 0.998, indicating strong agreement
with the experimental data. The fitting curve is expressed as
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Fig. 9. Repeated experimental measurements for the DCCSRR when,
in (a), operating frequency is 2.477 GHz and DI-water is used as the
reference. In (b), operating frequency is 2.515 GHz and ABPS is used
as the reference. In (c), sensitivity is calculated for each concentration,
considering the two media.

follows:

ŷDI-water
2.515 GHz = 7.8 × 10−7C2

+ 1.21 × 10−3C − 19.203. (4)

In the second part of the experiment, the DCCSRR was
subjected to the same process, using the same concentration
levels, but at 2.477 GHz and with ABPS as the reference
sample. The results are shown in Fig. 9(b), where the trend is
described by the linear function in (5), also with an R-squared
value of 0.998, signifying a strong correlation between the
experimental data and the fit curve

ŷABPS
2.477 GHz (C) = 8.04 × 10−4C − 22.379. (5)

At the operating frequency, ABPS causes a decrease of
approximately 3 dB in |S21| and compromises the quality
factor.

Sensitivity is another crucial parameter for estimating the
sensor’s response to the analyte. Sensitivity can be expressed
by calculating the first derivative of (5) at specific con-
centration points. The results are plotted in Fig. 9(c) for
both DI-water and ABPS. As shown, the DCCSRR’s sen-
sitivity varies with concentration when DI-water is used as

the reference, while it remains constant for ABPS, evidenc-
ing that the sample composition influences the DCCSRR
behavior.

Another common metric for assessing sensor reliability is
the Clarke error grid analysis (EGA) [51]. This diagram is
used to quantify the accuracy of sensors to measure glucose
concentration in blood. The x-axis represents the reference
concentration (Cref), while the y-axis represents the measured
values (Cmeas), both in mg/dL. The diagram is divided into
five zones: A, B, C, D, and E. Zone A includes variations
up to 20% of the reference values and is the most desirable
region for sensing. Sensors operating in Zone B have measure-
ment errors greater than 20%, which could lead to incorrect
insulin dosages being administered to patients. However, the
errors presented by Zone B sensors do not pose a direct
risk to the patient’s life. Conversely, sensors operating in
Zones C, D, and E are unsuitable, as they can endanger the
patient’s life.

In this context, the Clarke diagram is constructed for the
DCCSRR, using (5) and (6) to establish the relationship
between the measured variables and the reference concen-
trations. Fig. 10(a) and (b) shows the results for DI-water
and ABPS, respectively. As observed, all data points fall
within Zone A, confirming the performance of the proposed
sensor. So far, the DCCSRR has been analyzed indepen-
dently, without any comparison to other technologies; we
compare its performance with other existing sensors in the next
section.

B. DCCSRR and the Stateof-Art
Table II summarizes the DCCSRR’s performance in com-

parison to other biosensors recently reported in the literature.
The DCCSRR operates at 2.48 GHz, an ISM frequency that
offers the advantage of cheaper electronic components com-
pared to other alternatives that operate at higher frequencies,
such as those in [7], [9], and [11].

Regarding sensing parameters, the DCCSRR operates using
the transmission coefficient rather than reflection. This is
another advantage, as fewer components are needed for
transmission-based measurements. Reflection-based systems
require a circulator, which increases the cost and complex-
ity at the commercial stage. A limited number of sensors
possess the capability to passively provide frequency shifting
at low frequencies, as sensitivity generally diminishes with
decreasing frequency. Therefore, the focus is on the trans-
mission coefficient amplitude, which is simpler and more
cost-effective.

In terms of signal levels, at the operating frequency, our
DCCSRR sensor provides signals around −19 dB (∼35 mVp)
for DI-water and −22 dB (∼25 mVp) for ABPS, con-
sidering an input power of 0 dBm and a line impedance
of 50 �. These values are significant as they fall within an
acceptable range to be measured by typical microcontrollers.
Conversely, signals that are excessively low, as reported
in [9], [11], [22], [23], and [24], can be read by a VNA
but will require costly amplifiers and analog-to-digital con-
verters to be precisely measured, making the sensor less
attractive at a commercial stage. For instance, a sensor that



SOUZA et al.: MW GLUCOSE SENSING USING DOUBLE CIRCULAR SRRs FOR IMPROVED SENSITIVITY 4537

Fig. 10. Resulting Clarke error grids for the DCCSRR when operated using (a) DI-water and (b) ABPS as reference samples for the following
concentrations: 25, 50, 100, 150, 200, 250, 300, 350, and 400 mg/dL.

TABLE II
COMPARISON OF RECENTLY PUBLISHED GLUCOSE SENSORS IN THE MW BAND USING ML TECHNOLOGY

operates at −55 dB would have its mean values around
0.56 mVp, without considering concentration steps that would
be even smaller. This underscores the importance of the SNR
discussion.

The DCCSRR also offers other advantages over existing
technologies, such as its ability to detect glucose variations as
small as 25 mg/dL, a precision superior to all other analyzed
sensors [16], [17], [18], [19], [20], [21], [22], [23], [24].
In addition, its measuring range of 0–400 mg/dL fully covers
the relevant range for diabetes patients (50–300 mg/dL), which
is not addressed by Odabashyan et al. [7], Hanna et al. [18],
Moloudian et al. [19], Basit et al. [20], and Gao et al. [21].
Its passive nature ensures simpler operation compared to
active platforms [8], [10], [14], [15]. Moreover, its measuring
capabilities within the unlicensed ISM band offer advantages
over others [17], [18], [19], [20], [21], [22], [23], [24].

Note that among the compared sensors, both frequency shift
and amplitude approaches are present. Given that frequency
and amplitude are distinct quantities, it is important to empha-
size that the sensitivity values are reported in mdB per (mg/dL)
or in kHz per (mg/dL), depending on the approach utilized by
each specific reference. In addition, although the DCCSRR
exhibits a relatively low sensitivity value per (mg/dL), its mea-
surements demonstrate high stability and minimal deviation for
the same glucose concentration, enabling the sensor to detect
glucose concentrations in ABPS as low as 25 mg/dL, which
is the lowest value alongside [29]. Moreover, the DCCSRR
possesses comparable dimensions relative to the other sensors.
Lastly, the DCCSRR can measure glucose variations from 0 to
400 mg/dL using ABPS, which better mimics BP rather than
DI-water. This capability is not assured by all other MW
resonators [16], [17], [18], [19], [20], [21], [22], [23], [24].
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Although the DCCSRR has demonstrated strong perfor-
mance, it shares a common limitation with MW sensors for
water-based samples: the need for temperature stability, which
can compromise measurements. A potential solution is to adapt
a differential design to the DCCSRR, as seen in [8], enabling
differential measurements that mitigate temperature variations
and increase robustness.

The use of plasma samples is also a drawback, as it requires
an invasive procedure for collection and analysis. However,
since the DCCSRR was designed as a flexible platform with
potential for future enhancements, noninvasive measurements
are certainly a consideration. Its resonances fall within a
favorable frequency range (<3 GHz), enabling electromag-
netic fields to penetrate and reach glucose concentrations
in blood vessels [52]. This capability, combined with the
use of amplifiers, could significantly enhance the sensor’s
sensitivity and accuracy, paving the way for fully noninvasive
measurements.

Scalability is not a significant concern, as PCB proto-
typing machines can produce large numbers of structures
with high reproducibility and low cost. In addition, the
DCCSRR benefits from low power consumption, requiring
only 0 dBm, and readings are completed in just a few
seconds, making battery life a minor concern. Considering
these factors, the DCCSRR offers a wide range of potential
applications, extending its capabilities and supporting new
innovations.

V. CONCLUSION

In this article, we present two major contributions to the
MW sensing field. The first one reveals that DI-water, the
most used reference sample to represent BP in MW sensing,
has electromagnetic properties that are significantly different
when compared to BP. These differences are more pronounced
when losses are considered, especially in the range from
0.5 up to 3 GHz. The reference sample used for comparison
was the ABPS, a laboratory-synthesized solution that closely
resembles real BP. When the complex permittivity of DI-water
and ABPS are compared, they present significant differences,
showing that DI-water is not as accurate a representation of
BP as ABPS. This occurs due to the ion effect, which is not
observable in DI-water.

In the second approach, we propose the DCCSRR, a struc-
ture designed and fabricated to operate in the ISM band,
specifically at 2.48 GHz. The DCCSRR was assessed when
DI-water and ABPS were tested under different glucose
levels (0, 25, 50, 100, 150, 200, 250, 300, 350, and
400 mg/dL), showing different behaviors for DI-water and
ABPS, and therefore, aligning with the first analysis. Fur-
thermore, the DCCSRR achieved a remarkable result, as it
was able to detect variations as small as 25 mg/dL for
both DI-water and ABPS, passively. In addition, when the
DCCSRR measurements were analyzed using the Clarke
diagram, they remained in the A category, with low
dispersion among concentrations. All these achievements
together demonstrate the potential of the DCCSRR as a
promising, sensitive, and low-cost alternative for the MW
sensors field.
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