

EAAOP 7

**The 7th International Conference on
Environmental Applications of Advanced
Oxidation Processes**

PROGRAMME BOOKLET

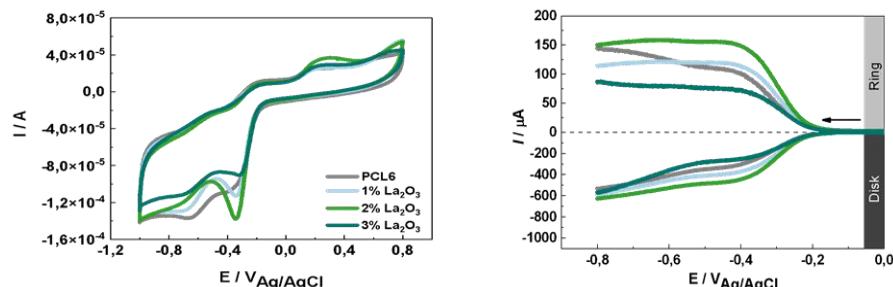
**10th-13th June, 2025
Paestum (SA), Italy**

CARBON-BASED GAS DIFFUSION ELECTRODES IN UVC/e-H₂O₂ TECHNOLOGY FOR THE REMOVAL OF ANTIDEPRESSANT RESIDUES (Oral)

F. Escalona-Durán^{a,c*}, C.H.M. Fernandes^a, W.R.P. Barros^{a,b}, M.A.R. Rodrigo^c, M.R.V. Lanza^a

^aSão Carlos Institute of Chemistry, University of São Paulo, Avenida João Dagnone, 1100 – Jardim Santa Angelina, São Carlos/SP, 13563-120, Brazil.

^bFederal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados /MS, 79804-970, Brazil

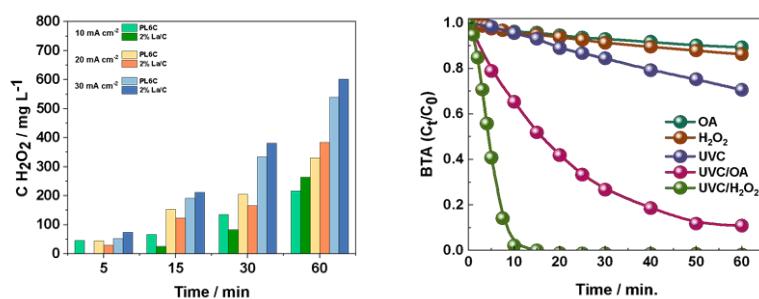

^cChemical Engineering Department, University of Castilla-La Mancha, Ciudad Real, Spain

Amitriptyline (AMTP) is a tricyclic compound used for the treatment of depression, anxiety, and pain management. Despite the availability of newer substitute drugs in Brazil, its low cost and effectiveness maintain its popularity. AMTP can enter water systems through incomplete metabolism or improper disposal, impacting aquatic life even at low concentrations. Since conventional water treatments face difficulties in eliminating these types of recalcitrant compounds, developing new methods like UVC/e-H₂O₂ is essential.

Electrogenerated H₂O₂ (e-H₂O₂) using gas diffusion electrodes (GDE) is a promising technology for AMTP degradation, offering a simple, sustainable, and cost-effective system through the oxygen reduction reaction (ORR), which enables the in-situ production of H₂O₂ (a precursor of the hydroxyl radical, a stronger oxidizing species) and reduces the use of reagents. In this regard, the search for stable electrocatalysts with high activity and selectivity for the two-electron pathway has become a topic of interest in recent years (Wang et al., 2021; Xie et al., 2022). This study explores the use of La₂O₃ in GDE to improve oxygen reduction selectivity and activity in the two-electron pathway for AMTP degradation.

Electrochemical characterization

ORR was evaluated using the rotating disk electrode technique with La/C ratios (1.0-3.0%) supported on Printex L6 carbon. The electrolyte used was a 0.05 M K₂SO₄ solution (pH 9) saturated with O₂ during measurements. Experiments were conducted with an Autolab PGSTAT 302N potentiostat/galvanostat at a constant scan rate of 5.0 mV s⁻¹ and rotation speeds ranging from 300 to 1,500 rpm. Figure 1 shows CV and LSV curves in basic media for ORR with 1.0-3.0% La on PCL6. The La/C ratios of 1.0% and 2.0% show a more positive onset potential for ORR and a higher ring current compared to PCL6, indicating selective reduction of O₂ through the 2e⁻ pathway. In contrast, the 3.0% La/C modifier exhibits a more negative onset potential for ORR and a lower ring current compared to PCL6, suggesting a decrease in H₂O₂ production, favouring the 4e⁻ pathway for water production.


Figure 1. (A) CV and **(B)** LSV curves for the ORR at 1.0 – 3.0% content of La/C in a 0.05 M K₂SO₄ solution, saturated with O₂(g). Electrode rotation speed: 900 rpm.

H₂O₂ quantification using La/C-GDE

The optimal metal/carbon ratio (2.0%) determined by the RRDE was utilized to prepare the gas diffusion electrodes (GDEs). Both modified and unmodified GDEs were tested in a non-divided cell to measure H₂O₂ production at various current densities. An Ag/AgCl (3 M KCl) electrode served as the reference, while a DSA® electrode was used as the counter electrode. A 250 mL 0.05 M K₂SO₄ solution acted as the supporting electrolyte, with O₂(g) supplied to the GDEs at a rate of 80 mL min⁻¹. H₂O₂ concentration was quantified using the peroxyxomolybdate complex method and analyzed via UV-visible spectrophotometry at 350 nm using a UV-1900 spectrophotometer. Fig. 2A shows electrogenerated H₂O₂ in 0.05 M K₂SO₄ at current densities of 10, 20, and 30 mA cm⁻². In all cases, the final accumulation of H₂O₂ is greater for the La-modified electrode, achieving optimal results at the highest current density studied, with a maximum concentration of H₂O₂ of 600 mg L⁻¹ compared to 540 mg L⁻¹.

AMTP electrochemical degradation

The optimal current density, identified from H₂O₂ production studies, was applied to assess the degradation of 250 mL of 25 mg L⁻¹ amitriptyline (AMTP) in 0.05 M K₂SO₄ (pH 9). The same non-divided cell used for H₂O₂ electrogeneration was utilized for this purpose. AMTP degradation and mineralization were conducted using the e-H₂O₂/UVC method, with a UV-C light source (NUCHONG 9W lamp) serving as the irradiation source. Fig. 2B shows the degradation of 25 mg L⁻¹ of AMTP at 30 mA cm⁻² by e-H₂O₂, e-H₂O₂/UVC, anodic oxidation (AO), and the AO/UVC process. The e-H₂O₂/UVC treatment shows the removal of 92.44% of the contaminant in 25 minutes of electrolysis and 49.58% mineralization after 1 hour.

Figure 2. (A) Concentration of H₂O₂ electrogenerated in a 0.05 M K₂SO₄ as a function of the applied current density, and **(B)** AMTP degradation by e-H₂O₂, e-H₂O₂/UVC, AO and AO/UVC process at 30 mA cm⁻².

Conclusions

The La₂O₃ used as a modifier in low proportions demonstrated high performance for the ORR via 2-e- pathway, showing enhanced activity at lower potentials compared to PCL6, at basic condition.

Acknowledgments

The authors acknowledge the financial support provided by the following Brazilian research funding agencies: the National Council for Scientific and Technological Development - CNPq (grant #303943/2021-1) and São Paulo Research Foundation – FAPESP (grants #2018/22211-7, #2018/22210-0, #2018/22022-0, #2019/06650-3, #2023/05895-8, #2023/06558-5 and #2022/12895-1).

References

Wang, J., Li, C., Rauf, M., Luo, H., Sun, X., Jiang, Y., Gas diffusion electrodes for H₂O₂ production and their applications for electrochemical degradation of organic pollutants in water: A review. *Sci. Total Environ.* 2021. 759, 143459.

Xie, J., Jing, J., Gu, J., Guo, J., Li, Y., Zhou, M., Hydrogen peroxide generation from gas diffusion electrode for electrochemical degradation of organic pollutants in water: A review. *J. Environ. Chem. Eng.* 2022. 10,

107882.